/* * parseutil.c - parse utilities for string and wire conversion * * (c) NLnet Labs, 2004-2006 * * See the file LICENSE for the license */ /** * \file * * Utility functions for parsing, base32(DNS variant) and base64 encoding * and decoding, Hex, Time units, Escape codes. */ #include "config.h" #include "sldns/parseutil.h" #include <sys/time.h> #include <time.h> #include <ctype.h> sldns_lookup_table * sldns_lookup_by_name(sldns_lookup_table *table, const char *name) { while (table->name != NULL) { if (strcasecmp(name, table->name) == 0) return table; table++; } return NULL; } sldns_lookup_table * sldns_lookup_by_id(sldns_lookup_table *table, int id) { while (table->name != NULL) { if (table->id == id) return table; table++; } return NULL; } /* Number of days per month (except for February in leap years). */ static const int mdays[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; #define LDNS_MOD(x,y) (((x) % (y) < 0) ? ((x) % (y) + (y)) : ((x) % (y))) #define LDNS_DIV(x,y) (((x) % (y) < 0) ? ((x) / (y) - 1 ) : ((x) / (y))) static int is_leap_year(int year) { return LDNS_MOD(year, 4) == 0 && (LDNS_MOD(year, 100) != 0 || LDNS_MOD(year, 400) == 0); } static int leap_days(int y1, int y2) { --y1; --y2; return (LDNS_DIV(y2, 4) - LDNS_DIV(y1, 4)) - (LDNS_DIV(y2, 100) - LDNS_DIV(y1, 100)) + (LDNS_DIV(y2, 400) - LDNS_DIV(y1, 400)); } /* * Code adapted from Python 2.4.1 sources (Lib/calendar.py). */ time_t sldns_mktime_from_utc(const struct tm *tm) { int year = 1900 + tm->tm_year; time_t days = 365 * ((time_t) year - 1970) + leap_days(1970, year); time_t hours; time_t minutes; time_t seconds; int i; for (i = 0; i < tm->tm_mon; ++i) { days += mdays[i]; } if (tm->tm_mon > 1 && is_leap_year(year)) { ++days; } days += tm->tm_mday - 1; hours = days * 24 + tm->tm_hour; minutes = hours * 60 + tm->tm_min; seconds = minutes * 60 + tm->tm_sec; return seconds; } #if SIZEOF_TIME_T <= 4 static void sldns_year_and_yday_from_days_since_epoch(int64_t days, struct tm *result) { int year = 1970; int new_year; while (days < 0 || days >= (int64_t) (is_leap_year(year) ? 366 : 365)) { new_year = year + (int) LDNS_DIV(days, 365); days -= (new_year - year) * 365; days -= leap_days(year, new_year); year = new_year; } result->tm_year = year; result->tm_yday = (int) days; } /* Number of days per month in a leap year. */ static const int leap_year_mdays[] = { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; static void sldns_mon_and_mday_from_year_and_yday(struct tm *result) { int idays = result->tm_yday; const int *mon_lengths = is_leap_year(result->tm_year) ? leap_year_mdays : mdays; result->tm_mon = 0; while (idays >= mon_lengths[result->tm_mon]) { idays -= mon_lengths[result->tm_mon++]; } result->tm_mday = idays + 1; } static void sldns_wday_from_year_and_yday(struct tm *result) { result->tm_wday = 4 /* 1-1-1970 was a thursday */ + LDNS_MOD((result->tm_year - 1970), 7) * LDNS_MOD(365, 7) + leap_days(1970, result->tm_year) + result->tm_yday; result->tm_wday = LDNS_MOD(result->tm_wday, 7); if (result->tm_wday < 0) { result->tm_wday += 7; } } static struct tm * sldns_gmtime64_r(int64_t clock, struct tm *result) { result->tm_isdst = 0; result->tm_sec = (int) LDNS_MOD(clock, 60); clock = LDNS_DIV(clock, 60); result->tm_min = (int) LDNS_MOD(clock, 60); clock = LDNS_DIV(clock, 60); result->tm_hour = (int) LDNS_MOD(clock, 24); clock = LDNS_DIV(clock, 24); sldns_year_and_yday_from_days_since_epoch(clock, result); sldns_mon_and_mday_from_year_and_yday(result); sldns_wday_from_year_and_yday(result); result->tm_year -= 1900; return result; } #endif /* SIZEOF_TIME_T <= 4 */ static int64_t sldns_serial_arithmitics_time(int32_t time, time_t now) { int32_t offset = time - (int32_t) now; return (int64_t) now + offset; } struct tm * sldns_serial_arithmitics_gmtime_r(int32_t time, time_t now, struct tm *result) { #if SIZEOF_TIME_T <= 4 int64_t secs_since_epoch = sldns_serial_arithmitics_time(time, now); return sldns_gmtime64_r(secs_since_epoch, result); #else time_t secs_since_epoch = sldns_serial_arithmitics_time(time, now); return gmtime_r(&secs_since_epoch, result); #endif } int sldns_hexdigit_to_int(char ch) { switch (ch) { case '0': return 0; case '1': return 1; case '2': return 2; case '3': return 3; case '4': return 4; case '5': return 5; case '6': return 6; case '7': return 7; case '8': return 8; case '9': return 9; case 'a': case 'A': return 10; case 'b': case 'B': return 11; case 'c': case 'C': return 12; case 'd': case 'D': return 13; case 'e': case 'E': return 14; case 'f': case 'F': return 15; default: return -1; } } uint32_t sldns_str2period(const char *nptr, const char **endptr) { int sign = 0; uint32_t i = 0; uint32_t seconds = 0; for(*endptr = nptr; **endptr; (*endptr)++) { switch (**endptr) { case ' ': case '\t': break; case '-': if(sign == 0) { sign = -1; } else { return seconds; } break; case '+': if(sign == 0) { sign = 1; } else { return seconds; } break; case 's': case 'S': seconds += i; i = 0; break; case 'm': case 'M': seconds += i * 60; i = 0; break; case 'h': case 'H': seconds += i * 60 * 60; i = 0; break; case 'd': case 'D': seconds += i * 60 * 60 * 24; i = 0; break; case 'w': case 'W': seconds += i * 60 * 60 * 24 * 7; i = 0; break; case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': i *= 10; i += (**endptr - '0'); break; default: seconds += i; /* disregard signedness */ return seconds; } } seconds += i; /* disregard signedness */ return seconds; } int sldns_parse_escape(uint8_t *ch_p, const char** str_p) { uint16_t val; if ((*str_p)[0] && isdigit((unsigned char)(*str_p)[0]) && (*str_p)[1] && isdigit((unsigned char)(*str_p)[1]) && (*str_p)[2] && isdigit((unsigned char)(*str_p)[2])) { val = (uint16_t)(((*str_p)[0] - '0') * 100 + ((*str_p)[1] - '0') * 10 + ((*str_p)[2] - '0')); if (val > 255) { goto error; } *ch_p = (uint8_t)val; *str_p += 3; return 1; } else if ((*str_p)[0] && !isdigit((unsigned char)(*str_p)[0])) { *ch_p = (uint8_t)*(*str_p)++; return 1; } error: *str_p = NULL; return 0; /* LDNS_WIREPARSE_ERR_SYNTAX_BAD_ESCAPE */ } /** parse one character, with escape codes */ int sldns_parse_char(uint8_t *ch_p, const char** str_p) { switch (**str_p) { case '\0': return 0; case '\\': *str_p += 1; return sldns_parse_escape(ch_p, str_p); default: *ch_p = (uint8_t)*(*str_p)++; return 1; } } size_t sldns_b32_ntop_calculate_size(size_t src_data_length) { return src_data_length == 0 ? 0 : ((src_data_length - 1) / 5 + 1) * 8; } size_t sldns_b32_ntop_calculate_size_no_padding(size_t src_data_length) { return ((src_data_length + 3) * 8 / 5) - 4; } static int sldns_b32_ntop_base(const uint8_t* src, size_t src_sz, char* dst, size_t dst_sz, int extended_hex, int add_padding) { size_t ret_sz; const char* b32 = extended_hex ? "0123456789abcdefghijklmnopqrstuv" : "abcdefghijklmnopqrstuvwxyz234567"; size_t c = 0; /* c is used to carry partial base32 character over * byte boundaries for sizes with a remainder. * (i.e. src_sz % 5 != 0) */ ret_sz = add_padding ? sldns_b32_ntop_calculate_size(src_sz) : sldns_b32_ntop_calculate_size_no_padding(src_sz); /* Do we have enough space? */ if (dst_sz < ret_sz + 1) return -1; /* We know the size; terminate the string */ dst[ret_sz] = '\0'; /* First process all chunks of five */ while (src_sz >= 5) { /* 00000... ........ ........ ........ ........ */ dst[0] = b32[(src[0] ) >> 3]; /* .....111 11...... ........ ........ ........ */ dst[1] = b32[(src[0] & 0x07) << 2 | src[1] >> 6]; /* ........ ..22222. ........ ........ ........ */ dst[2] = b32[(src[1] & 0x3e) >> 1]; /* ........ .......3 3333.... ........ ........ */ dst[3] = b32[(src[1] & 0x01) << 4 | src[2] >> 4]; /* ........ ........ ....4444 4....... ........ */ dst[4] = b32[(src[2] & 0x0f) << 1 | src[3] >> 7]; /* ........ ........ ........ .55555.. ........ */ dst[5] = b32[(src[3] & 0x7c) >> 2]; /* ........ ........ ........ ......66 666..... */ dst[6] = b32[(src[3] & 0x03) << 3 | src[4] >> 5]; /* ........ ........ ........ ........ ...77777 */ dst[7] = b32[(src[4] & 0x1f) ]; src_sz -= 5; src += 5; dst += 8; } /* Process what remains */ switch (src_sz) { case 4: /* ........ ........ ........ ......66 666..... */ dst[6] = b32[(src[3] & 0x03) << 3]; /* ........ ........ ........ .55555.. ........ */ dst[5] = b32[(src[3] & 0x7c) >> 2]; /* ........ ........ ....4444 4....... ........ */ c = src[3] >> 7 ; case 3: dst[4] = b32[(src[2] & 0x0f) << 1 | c]; /* ........ .......3 3333.... ........ ........ */ c = src[2] >> 4 ; case 2: dst[3] = b32[(src[1] & 0x01) << 4 | c]; /* ........ ..22222. ........ ........ ........ */ dst[2] = b32[(src[1] & 0x3e) >> 1]; /* .....111 11...... ........ ........ ........ */ c = src[1] >> 6 ; case 1: dst[1] = b32[(src[0] & 0x07) << 2 | c]; /* 00000... ........ ........ ........ ........ */ dst[0] = b32[ src[0] >> 3]; } /* Add padding */ if (add_padding) { switch (src_sz) { case 1: dst[2] = '='; dst[3] = '='; case 2: dst[4] = '='; case 3: dst[5] = '='; dst[6] = '='; case 4: dst[7] = '='; } } return (int)ret_sz; } int sldns_b32_ntop(const uint8_t* src, size_t src_sz, char* dst, size_t dst_sz) { return sldns_b32_ntop_base(src, src_sz, dst, dst_sz, 0, 1); } int sldns_b32_ntop_extended_hex(const uint8_t* src, size_t src_sz, char* dst, size_t dst_sz) { return sldns_b32_ntop_base(src, src_sz, dst, dst_sz, 1, 1); } size_t sldns_b32_pton_calculate_size(size_t src_text_length) { return src_text_length * 5 / 8; } static int sldns_b32_pton_base(const char* src, size_t src_sz, uint8_t* dst, size_t dst_sz, int extended_hex, int check_padding) { size_t i = 0; char ch = '\0'; uint8_t buf[8]; uint8_t* start = dst; while (src_sz) { /* Collect 8 characters in buf (if possible) */ for (i = 0; i < 8; i++) { do { ch = *src++; --src_sz; } while (isspace((unsigned char)ch) && src_sz > 0); if (ch == '=' || ch == '\0') break; else if (extended_hex) if (ch >= '0' && ch <= '9') buf[i] = (uint8_t)ch - '0'; else if (ch >= 'a' && ch <= 'v') buf[i] = (uint8_t)ch - 'a' + 10; else if (ch >= 'A' && ch <= 'V') buf[i] = (uint8_t)ch - 'A' + 10; else return -1; else if (ch >= 'a' && ch <= 'z') buf[i] = (uint8_t)ch - 'a'; else if (ch >= 'A' && ch <= 'Z') buf[i] = (uint8_t)ch - 'A'; else if (ch >= '2' && ch <= '7') buf[i] = (uint8_t)ch - '2' + 26; else return -1; } /* Less that 8 characters. We're done. */ if (i < 8) break; /* Enough space available at the destination? */ if (dst_sz < 5) return -1; /* 00000... ........ ........ ........ ........ */ /* .....111 11...... ........ ........ ........ */ dst[0] = buf[0] << 3 | buf[1] >> 2; /* .....111 11...... ........ ........ ........ */ /* ........ ..22222. ........ ........ ........ */ /* ........ .......3 3333.... ........ ........ */ dst[1] = buf[1] << 6 | buf[2] << 1 | buf[3] >> 4; /* ........ .......3 3333.... ........ ........ */ /* ........ ........ ....4444 4....... ........ */ dst[2] = buf[3] << 4 | buf[4] >> 1; /* ........ ........ ....4444 4....... ........ */ /* ........ ........ ........ .55555.. ........ */ /* ........ ........ ........ ......66 666..... */ dst[3] = buf[4] << 7 | buf[5] << 2 | buf[6] >> 3; /* ........ ........ ........ ......66 666..... */ /* ........ ........ ........ ........ ...77777 */ dst[4] = buf[6] << 5 | buf[7]; dst += 5; dst_sz -= 5; } /* Not ending on a eight byte boundary? */ if (i > 0 && i < 8) { /* Enough space available at the destination? */ if (dst_sz < (i + 1) / 2) return -1; switch (i) { case 7: /* ........ ........ ........ ......66 666..... */ /* ........ ........ ........ .55555.. ........ */ /* ........ ........ ....4444 4....... ........ */ dst[3] = buf[4] << 7 | buf[5] << 2 | buf[6] >> 3; case 5: /* ........ ........ ....4444 4....... ........ */ /* ........ .......3 3333.... ........ ........ */ dst[2] = buf[3] << 4 | buf[4] >> 1; case 4: /* ........ .......3 3333.... ........ ........ */ /* ........ ..22222. ........ ........ ........ */ /* .....111 11...... ........ ........ ........ */ dst[1] = buf[1] << 6 | buf[2] << 1 | buf[3] >> 4; case 2: /* .....111 11...... ........ ........ ........ */ /* 00000... ........ ........ ........ ........ */ dst[0] = buf[0] << 3 | buf[1] >> 2; break; default: return -1; } dst += (i + 1) / 2; if (check_padding) { /* Check remaining padding characters */ if (ch != '=') return -1; /* One down, 8 - i - 1 more to come... */ for (i = 8 - i - 1; i > 0; i--) { do { if (src_sz == 0) return -1; ch = *src++; src_sz--; } while (isspace((unsigned char)ch)); if (ch != '=') return -1; } } } return dst - start; } int sldns_b32_pton(const char* src, size_t src_sz, uint8_t* dst, size_t dst_sz) { return sldns_b32_pton_base(src, src_sz, dst, dst_sz, 0, 1); } int sldns_b32_pton_extended_hex(const char* src, size_t src_sz, uint8_t* dst, size_t dst_sz) { return sldns_b32_pton_base(src, src_sz, dst, dst_sz, 1, 1); } size_t sldns_b64_ntop_calculate_size(size_t srcsize) { return ((((srcsize + 2) / 3) * 4) + 1); } /* RFC 1521, section 5.2. * * The encoding process represents 24-bit groups of input bits as output * strings of 4 encoded characters. Proceeding from left to right, a * 24-bit input group is formed by concatenating 3 8-bit input groups. * These 24 bits are then treated as 4 concatenated 6-bit groups, each * of which is translated into a single digit in the base64 alphabet. * * This routine does not insert spaces or linebreaks after 76 characters. */ int sldns_b64_ntop(uint8_t const *src, size_t srclength, char *target, size_t targsize) { const char* b64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; const char pad64 = '='; size_t i = 0, o = 0; if(targsize < sldns_b64_ntop_calculate_size(srclength)) return -1; /* whole chunks: xxxxxxyy yyyyzzzz zzwwwwww */ while(i+3 <= srclength) { if(o+4 > targsize) return -1; target[o] = b64[src[i] >> 2]; target[o+1] = b64[ ((src[i]&0x03)<<4) | (src[i+1]>>4) ]; target[o+2] = b64[ ((src[i+1]&0x0f)<<2) | (src[i+2]>>6) ]; target[o+3] = b64[ (src[i+2]&0x3f) ]; i += 3; o += 4; } /* remainder */ switch(srclength - i) { case 2: /* two at end, converted into A B C = */ target[o] = b64[src[i] >> 2]; target[o+1] = b64[ ((src[i]&0x03)<<4) | (src[i+1]>>4) ]; target[o+2] = b64[ ((src[i+1]&0x0f)<<2) ]; target[o+3] = pad64; i += 2; o += 4; break; case 1: /* one at end, converted into A B = = */ target[o] = b64[src[i] >> 2]; target[o+1] = b64[ ((src[i]&0x03)<<4) ]; target[o+2] = pad64; target[o+3] = pad64; i += 1; o += 4; break; case 0: default: /* nothing */ break; } /* assert: i == srclength */ if(o+1 > targsize) return -1; target[o] = 0; return (int)o; } size_t sldns_b64_pton_calculate_size(size_t srcsize) { return (((((srcsize + 3) / 4) * 3)) + 1); } int sldns_b64_pton(char const *src, uint8_t *target, size_t targsize) { const uint8_t pad64 = 64; /* is 64th in the b64 array */ const char* s = src; uint8_t in[4]; size_t o = 0, incount = 0; while(*s) { /* skip any character that is not base64 */ /* conceptually we do: const char* b64 = pad'=' is appended to array "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/="; const char* d = strchr(b64, *s++); and use d-b64; */ char d = *s++; if(d <= 'Z' && d >= 'A') d -= 'A'; else if(d <= 'z' && d >= 'a') d = d - 'a' + 26; else if(d <= '9' && d >= '0') d = d - '0' + 52; else if(d == '+') d = 62; else if(d == '/') d = 63; else if(d == '=') d = 64; else continue; in[incount++] = (uint8_t)d; if(incount != 4) continue; /* process whole block of 4 characters into 3 output bytes */ if(in[3] == pad64 && in[2] == pad64) { /* A B = = */ if(o+1 > targsize) return -1; target[o] = (in[0]<<2) | ((in[1]&0x30)>>4); o += 1; break; /* we are done */ } else if(in[3] == pad64) { /* A B C = */ if(o+2 > targsize) return -1; target[o] = (in[0]<<2) | ((in[1]&0x30)>>4); target[o+1]= ((in[1]&0x0f)<<4) | ((in[2]&0x3c)>>2); o += 2; break; /* we are done */ } else { if(o+3 > targsize) return -1; /* write xxxxxxyy yyyyzzzz zzwwwwww */ target[o] = (in[0]<<2) | ((in[1]&0x30)>>4); target[o+1]= ((in[1]&0x0f)<<4) | ((in[2]&0x3c)>>2); target[o+2]= ((in[2]&0x03)<<6) | in[3]; o += 3; } incount = 0; } return (int)o; }