// Copyright (c) 2006-2013, Andrey N. Sabelnikov, www.sabelnikov.net // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // * Neither the name of the Andrey N. Sabelnikov nor the // names of its contributors may be used to endorse or promote products // derived from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER BE LIABLE FOR ANY // DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND // ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // #pragma once //#include //#include #include #include #include #include #include #include #include #include #include "net/net_utils_base.h" #include "net/net_ssl.h" #include "misc_language.h" #undef MONERO_DEFAULT_LOG_CATEGORY #define MONERO_DEFAULT_LOG_CATEGORY "net" #ifndef MAKE_IP #define MAKE_IP( a1, a2, a3, a4 ) (a1|(a2<<8)|(a3<<16)|(a4<<24)) #endif namespace epee { namespace net_utils { class blocked_mode_client { enum try_connect_result_t { CONNECT_SUCCESS, CONNECT_FAILURE, CONNECT_NO_SSL, }; struct handler_obj { handler_obj(boost::system::error_code& error, size_t& bytes_transferred):ref_error(error), ref_bytes_transferred(bytes_transferred) {} handler_obj(const handler_obj& other_obj):ref_error(other_obj.ref_error), ref_bytes_transferred(other_obj.ref_bytes_transferred) {} boost::system::error_code& ref_error; size_t& ref_bytes_transferred; void operator()(const boost::system::error_code& error, // Result of operation. std::size_t bytes_transferred // Number of bytes read. ) { ref_error = error; ref_bytes_transferred = bytes_transferred; } }; public: inline blocked_mode_client():m_initialized(false), m_connected(false), m_deadline(m_io_service), m_shutdowned(0), m_ssl_support(epee::net_utils::ssl_support_t::e_ssl_support_autodetect), m_ctx({boost::asio::ssl::context(boost::asio::ssl::context::tlsv12), {}}), m_ssl_socket(new boost::asio::ssl::stream(m_io_service,m_ctx.context)) { m_initialized = true; // No deadline is required until the first socket operation is started. We // set the deadline to positive infinity so that the actor takes no action // until a specific deadline is set. m_deadline.expires_at(std::chrono::steady_clock::time_point::max()); // Start the persistent actor that checks for deadline expiry. check_deadline(); } inline ~blocked_mode_client() { //profile_tools::local_coast lc("~blocked_mode_client()", 3); try { shutdown(); } catch(...) { /* ignore */ } } inline void set_ssl(epee::net_utils::ssl_support_t ssl_support = epee::net_utils::ssl_support_t::e_ssl_support_autodetect, const std::pair &private_key_and_certificate_path = {}, std::list allowed_certificates = {}, std::vector> allowed_fingerprints = {}, bool allow_any_cert = false) { if (ssl_support == epee::net_utils::ssl_support_t::e_ssl_support_disabled) m_ctx = {boost::asio::ssl::context(boost::asio::ssl::context::tlsv12), {}, {}}; else m_ctx = create_ssl_context(private_key_and_certificate_path, std::move(allowed_certificates), std::move(allowed_fingerprints), allow_any_cert); m_ssl_support = ssl_support; } inline bool connect(const std::string& addr, int port, std::chrono::milliseconds timeout, const std::string& bind_ip = "0.0.0.0") { return connect(addr, std::to_string(port), timeout, bind_ip); } inline try_connect_result_t try_connect(const std::string& addr, const std::string& port, const boost::asio::ip::tcp::endpoint &remote_endpoint, std::chrono::milliseconds timeout, const std::string& bind_ip, epee::net_utils::ssl_support_t ssl_support) { m_ssl_socket->next_layer().open(remote_endpoint.protocol()); if(bind_ip != "0.0.0.0" && bind_ip != "0" && bind_ip != "" ) { boost::asio::ip::tcp::endpoint local_endpoint(boost::asio::ip::address::from_string(addr.c_str()), 0); m_ssl_socket->next_layer().bind(local_endpoint); } m_deadline.expires_from_now(timeout); boost::system::error_code ec = boost::asio::error::would_block; m_ssl_socket->next_layer().async_connect(remote_endpoint, boost::lambda::var(ec) = boost::lambda::_1); while (ec == boost::asio::error::would_block) { m_io_service.run_one(); } if (!ec && m_ssl_socket->next_layer().is_open()) { m_connected = true; m_deadline.expires_at(std::chrono::steady_clock::time_point::max()); // SSL Options if (ssl_support == epee::net_utils::ssl_support_t::e_ssl_support_enabled || ssl_support == epee::net_utils::ssl_support_t::e_ssl_support_autodetect) { if (!ssl_handshake(*m_ssl_socket, boost::asio::ssl::stream_base::client, m_ctx)) { if (ssl_support == epee::net_utils::ssl_support_t::e_ssl_support_autodetect) { boost::system::error_code ignored_ec; m_ssl_socket->next_layer().shutdown(boost::asio::ip::tcp::socket::shutdown_both, ignored_ec); m_ssl_socket->next_layer().close(); m_connected = false; return CONNECT_NO_SSL; } else { MWARNING("Failed to establish SSL connection"); m_connected = false; return CONNECT_FAILURE; } } m_ssl_support = epee::net_utils::ssl_support_t::e_ssl_support_enabled; } return CONNECT_SUCCESS; }else { MWARNING("Some problems at connect, message: " << ec.message()); return CONNECT_FAILURE; } } inline bool connect(const std::string& addr, const std::string& port, std::chrono::milliseconds timeout, const std::string& bind_ip = "0.0.0.0") { m_connected = false; try { m_ssl_socket->next_layer().close(); // Set SSL options // disable sslv2 m_ctx.context.set_options(boost::asio::ssl::context::default_workarounds | boost::asio::ssl::context::no_sslv2); m_ctx.context.set_default_verify_paths(); m_ssl_socket.reset(new boost::asio::ssl::stream(m_io_service, m_ctx.context)); // Get a list of endpoints corresponding to the server name. ////////////////////////////////////////////////////////////////////////// boost::asio::ip::tcp::resolver resolver(m_io_service); boost::asio::ip::tcp::resolver::query query(boost::asio::ip::tcp::v4(), addr, port, boost::asio::ip::tcp::resolver::query::canonical_name); boost::asio::ip::tcp::resolver::iterator iterator = resolver.resolve(query); boost::asio::ip::tcp::resolver::iterator end; if(iterator == end) { LOG_ERROR("Failed to resolve " << addr); return false; } ////////////////////////////////////////////////////////////////////////// //boost::asio::ip::tcp::endpoint remote_endpoint(boost::asio::ip::address::from_string(addr.c_str()), port); boost::asio::ip::tcp::endpoint remote_endpoint(*iterator); try_connect_result_t try_connect_result = try_connect(addr, port, remote_endpoint, timeout, bind_ip, m_ssl_support); if (try_connect_result == CONNECT_FAILURE) return false; if (m_ssl_support == epee::net_utils::ssl_support_t::e_ssl_support_autodetect) { m_ssl_support = epee::net_utils::ssl_support_t::e_ssl_support_enabled; if (try_connect_result == CONNECT_NO_SSL) { MERROR("SSL handshake failed on an autodetect connection, reconnecting without SSL"); m_ssl_support = epee::net_utils::ssl_support_t::e_ssl_support_disabled; if (try_connect(addr, port, remote_endpoint, timeout, bind_ip, m_ssl_support) != CONNECT_SUCCESS) return false; } } } catch(const boost::system::system_error& er) { MDEBUG("Some problems at connect, message: " << er.what()); return false; } catch(...) { MDEBUG("Some fatal problems."); return false; } return true; } inline bool disconnect() { try { if(m_connected) { m_connected = false; if(m_ssl_support != epee::net_utils::ssl_support_t::e_ssl_support_disabled) shutdown_ssl(); m_ssl_socket->next_layer().shutdown(boost::asio::ip::tcp::socket::shutdown_both); } } catch(const boost::system::system_error& /*er*/) { //LOG_ERROR("Some problems at disconnect, message: " << er.what()); return false; } catch(...) { //LOG_ERROR("Some fatal problems."); return false; } return true; } inline bool send(const std::string& buff, std::chrono::milliseconds timeout) { try { m_deadline.expires_from_now(timeout); // Set up the variable that receives the result of the asynchronous // operation. The error code is set to would_block to signal that the // operation is incomplete. Asio guarantees that its asynchronous // operations will never fail with would_block, so any other value in // ec indicates completion. boost::system::error_code ec = boost::asio::error::would_block; // Start the asynchronous operation itself. The boost::lambda function // object is used as a callback and will update the ec variable when the // operation completes. The blocking_udp_client.cpp example shows how you // can use boost::bind rather than boost::lambda. async_write(buff.c_str(), buff.size(), ec); // Block until the asynchronous operation has completed. while (ec == boost::asio::error::would_block) { m_io_service.run_one(); } if (ec) { LOG_PRINT_L3("Problems at write: " << ec.message()); m_connected = false; return false; }else { m_deadline.expires_at(std::chrono::steady_clock::time_point::max()); } } catch(const boost::system::system_error& er) { LOG_ERROR("Some problems at connect, message: " << er.what()); return false; } catch(...) { LOG_ERROR("Some fatal problems."); return false; } return true; } inline bool send(const void* data, size_t sz) { try { /* m_deadline.expires_from_now(boost::posix_time::milliseconds(m_reciev_timeout)); // Set up the variable that receives the result of the asynchronous // operation. The error code is set to would_block to signal that the // operation is incomplete. Asio guarantees that its asynchronous // operations will never fail with would_block, so any other value in // ec indicates completion. boost::system::error_code ec = boost::asio::error::would_block; // Start the asynchronous operation itself. The boost::lambda function // object is used as a callback and will update the ec variable when the // operation completes. The blocking_udp_client.cpp example shows how you // can use boost::bind rather than boost::lambda. boost::asio::async_write(m_socket, boost::asio::buffer(data, sz), boost::lambda::var(ec) = boost::lambda::_1); // Block until the asynchronous operation has completed. while (ec == boost::asio::error::would_block) { m_io_service.run_one(); } */ boost::system::error_code ec; size_t writen = write(data, sz, ec); if (!writen || ec) { LOG_PRINT_L3("Problems at write: " << ec.message()); m_connected = false; return false; }else { m_deadline.expires_at(std::chrono::steady_clock::time_point::max()); } } catch(const boost::system::system_error& er) { LOG_ERROR("Some problems at send, message: " << er.what()); m_connected = false; return false; } catch(...) { LOG_ERROR("Some fatal problems."); return false; } return true; } bool is_connected(bool *ssl = NULL) { if (!m_connected || !m_ssl_socket->next_layer().is_open()) return false; if (ssl) *ssl = m_ssl_support == epee::net_utils::ssl_support_t::e_ssl_support_enabled; return true; } inline bool recv(std::string& buff, std::chrono::milliseconds timeout) { try { // Set a deadline for the asynchronous operation. Since this function uses // a composed operation (async_read_until), the deadline applies to the // entire operation, rather than individual reads from the socket. m_deadline.expires_from_now(timeout); // Set up the variable that receives the result of the asynchronous // operation. The error code is set to would_block to signal that the // operation is incomplete. Asio guarantees that its asynchronous // operations will never fail with would_block, so any other value in // ec indicates completion. //boost::system::error_code ec = boost::asio::error::would_block; // Start the asynchronous operation itself. The boost::lambda function // object is used as a callback and will update the ec variable when the // operation completes. The blocking_udp_client.cpp example shows how you // can use boost::bind rather than boost::lambda. boost::system::error_code ec = boost::asio::error::would_block; size_t bytes_transfered = 0; handler_obj hndlr(ec, bytes_transfered); char local_buff[10000] = {0}; async_read(local_buff, sizeof(local_buff), boost::asio::transfer_at_least(1), hndlr); // Block until the asynchronous operation has completed. while (ec == boost::asio::error::would_block && !boost::interprocess::ipcdetail::atomic_read32(&m_shutdowned)) { m_io_service.run_one(); } if (ec) { MTRACE("READ ENDS: Connection err_code " << ec.value()); if(ec == boost::asio::error::eof) { MTRACE("Connection err_code eof."); //connection closed there, empty return true; } MDEBUG("Problems at read: " << ec.message()); m_connected = false; return false; }else { MTRACE("READ ENDS: Success. bytes_tr: " << bytes_transfered); m_deadline.expires_at(std::chrono::steady_clock::time_point::max()); } /*if(!bytes_transfered) return false;*/ buff.assign(local_buff, bytes_transfered); return true; } catch(const boost::system::system_error& er) { LOG_ERROR("Some problems at read, message: " << er.what()); m_connected = false; return false; } catch(...) { LOG_ERROR("Some fatal problems at read."); return false; } return false; } inline bool recv_n(std::string& buff, int64_t sz, std::chrono::milliseconds timeout) { try { // Set a deadline for the asynchronous operation. Since this function uses // a composed operation (async_read_until), the deadline applies to the // entire operation, rather than individual reads from the socket. m_deadline.expires_from_now(timeout); // Set up the variable that receives the result of the asynchronous // operation. The error code is set to would_block to signal that the // operation is incomplete. Asio guarantees that its asynchronous // operations will never fail with would_block, so any other value in // ec indicates completion. //boost::system::error_code ec = boost::asio::error::would_block; // Start the asynchronous operation itself. The boost::lambda function // object is used as a callback and will update the ec variable when the // operation completes. The blocking_udp_client.cpp example shows how you // can use boost::bind rather than boost::lambda. buff.resize(static_cast(sz)); boost::system::error_code ec = boost::asio::error::would_block; size_t bytes_transfered = 0; handler_obj hndlr(ec, bytes_transfered); async_read((char*)buff.data(), buff.size(), boost::asio::transfer_at_least(buff.size()), hndlr); // Block until the asynchronous operation has completed. while (ec == boost::asio::error::would_block && !boost::interprocess::ipcdetail::atomic_read32(&m_shutdowned)) { m_io_service.run_one(); } if (ec) { LOG_PRINT_L3("Problems at read: " << ec.message()); m_connected = false; return false; }else { m_deadline.expires_at(std::chrono::steady_clock::time_point::max()); } if(bytes_transfered != buff.size()) { LOG_ERROR("Transferred mismatch with transfer_at_least value: m_bytes_transferred=" << bytes_transfered << " at_least value=" << buff.size()); return false; } return true; } catch(const boost::system::system_error& er) { LOG_ERROR("Some problems at read, message: " << er.what()); m_connected = false; return false; } catch(...) { LOG_ERROR("Some fatal problems at read."); return false; } return false; } bool shutdown() { m_deadline.cancel(); boost::system::error_code ec; if(m_ssl_support != epee::net_utils::ssl_support_t::e_ssl_support_disabled) shutdown_ssl(); m_ssl_socket->next_layer().cancel(ec); if(ec) MDEBUG("Problems at cancel: " << ec.message()); m_ssl_socket->next_layer().shutdown(boost::asio::ip::tcp::socket::shutdown_both, ec); if(ec) MDEBUG("Problems at shutdown: " << ec.message()); m_ssl_socket->next_layer().close(ec); if(ec) MDEBUG("Problems at close: " << ec.message()); boost::interprocess::ipcdetail::atomic_write32(&m_shutdowned, 1); m_connected = false; return true; } void set_connected(bool connected) { m_connected = connected; } boost::asio::io_service& get_io_service() { return m_io_service; } boost::asio::ip::tcp::socket& get_socket() { return m_ssl_socket->next_layer(); } private: void check_deadline() { // Check whether the deadline has passed. We compare the deadline against // the current time since a new asynchronous operation may have moved the // deadline before this actor had a chance to run. if (m_deadline.expires_at() <= std::chrono::steady_clock::now()) { // The deadline has passed. The socket is closed so that any outstanding // asynchronous operations are cancelled. This allows the blocked // connect(), read_line() or write_line() functions to return. LOG_PRINT_L3("Timed out socket"); m_connected = false; m_ssl_socket->next_layer().close(); // There is no longer an active deadline. The expiry is set to positive // infinity so that the actor takes no action until a new deadline is set. m_deadline.expires_at(std::chrono::steady_clock::time_point::max()); } // Put the actor back to sleep. m_deadline.async_wait(boost::bind(&blocked_mode_client::check_deadline, this)); } void shutdown_ssl() { // ssl socket shutdown blocks if server doesn't respond. We close after 2 secs boost::system::error_code ec = boost::asio::error::would_block; m_deadline.expires_from_now(std::chrono::milliseconds(2000)); m_ssl_socket->async_shutdown(boost::lambda::var(ec) = boost::lambda::_1); while (ec == boost::asio::error::would_block) { m_io_service.run_one(); } // Ignore "short read" error if (ec.category() == boost::asio::error::get_ssl_category() && ec.value() != #if BOOST_VERSION >= 106200 boost::asio::ssl::error::stream_truncated #else // older Boost supports only OpenSSL 1.0, so 1.0-only macros are appropriate ERR_PACK(ERR_LIB_SSL, 0, SSL_R_SHORT_READ) #endif ) MDEBUG("Problems at ssl shutdown: " << ec.message()); } protected: bool write(const void* data, size_t sz, boost::system::error_code& ec) { bool success; if(m_ssl_support == epee::net_utils::ssl_support_t::e_ssl_support_enabled) success = boost::asio::write(*m_ssl_socket, boost::asio::buffer(data, sz), ec); else success = boost::asio::write(m_ssl_socket->next_layer(), boost::asio::buffer(data, sz), ec); return success; } void async_write(const void* data, size_t sz, boost::system::error_code& ec) { if(m_ssl_support == epee::net_utils::ssl_support_t::e_ssl_support_enabled) boost::asio::async_write(*m_ssl_socket, boost::asio::buffer(data, sz), boost::lambda::var(ec) = boost::lambda::_1); else boost::asio::async_write(m_ssl_socket->next_layer(), boost::asio::buffer(data, sz), boost::lambda::var(ec) = boost::lambda::_1); } void async_read(char* buff, size_t sz, boost::asio::detail::transfer_at_least_t transfer_at_least, handler_obj& hndlr) { if(m_ssl_support != epee::net_utils::ssl_support_t::e_ssl_support_enabled) boost::asio::async_read(m_ssl_socket->next_layer(), boost::asio::buffer(buff, sz), transfer_at_least, hndlr); else boost::asio::async_read(*m_ssl_socket, boost::asio::buffer(buff, sz), transfer_at_least, hndlr); } protected: boost::asio::io_service m_io_service; epee::net_utils::ssl_context_t m_ctx; std::shared_ptr> m_ssl_socket; epee::net_utils::ssl_support_t m_ssl_support; std::string m_ssl_private_key; std::string m_ssl_certificate; std::list m_ssl_allowed_certificates; bool m_ssl_allow_any_cerl; bool m_initialized; bool m_connected; boost::asio::steady_timer m_deadline; volatile uint32_t m_shutdowned; }; /************************************************************************/ /* */ /************************************************************************/ class async_blocked_mode_client: public blocked_mode_client { public: async_blocked_mode_client():m_send_deadline(blocked_mode_client::m_io_service) { // No deadline is required until the first socket operation is started. We // set the deadline to positive infinity so that the actor takes no action // until a specific deadline is set. m_send_deadline.expires_at(boost::posix_time::pos_infin); // Start the persistent actor that checks for deadline expiry. check_send_deadline(); } ~async_blocked_mode_client() { m_send_deadline.cancel(); } bool shutdown() { blocked_mode_client::shutdown(); m_send_deadline.cancel(); return true; } inline bool send(const void* data, size_t sz) { try { /* m_send_deadline.expires_from_now(boost::posix_time::milliseconds(m_reciev_timeout)); // Set up the variable that receives the result of the asynchronous // operation. The error code is set to would_block to signal that the // operation is incomplete. Asio guarantees that its asynchronous // operations will never fail with would_block, so any other value in // ec indicates completion. boost::system::error_code ec = boost::asio::error::would_block; // Start the asynchronous operation itself. The boost::lambda function // object is used as a callback and will update the ec variable when the // operation completes. The blocking_udp_client.cpp example shows how you // can use boost::bind rather than boost::lambda. boost::asio::async_write(m_socket, boost::asio::buffer(data, sz), boost::lambda::var(ec) = boost::lambda::_1); // Block until the asynchronous operation has completed. while(ec == boost::asio::error::would_block) { m_io_service.run_one(); }*/ boost::system::error_code ec; size_t writen = write(data, sz, ec); if (!writen || ec) { LOG_PRINT_L3("Problems at write: " << ec.message()); return false; }else { m_send_deadline.expires_at(boost::posix_time::pos_infin); } } catch(const boost::system::system_error& er) { LOG_ERROR("Some problems at connect, message: " << er.what()); return false; } catch(...) { LOG_ERROR("Some fatal problems."); return false; } return true; } private: boost::asio::deadline_timer m_send_deadline; void check_send_deadline() { // Check whether the deadline has passed. We compare the deadline against // the current time since a new asynchronous operation may have moved the // deadline before this actor had a chance to run. if (m_send_deadline.expires_at() <= boost::asio::deadline_timer::traits_type::now()) { // The deadline has passed. The socket is closed so that any outstanding // asynchronous operations are cancelled. This allows the blocked // connect(), read_line() or write_line() functions to return. LOG_PRINT_L3("Timed out socket"); m_ssl_socket->next_layer().close(); // There is no longer an active deadline. The expiry is set to positive // infinity so that the actor takes no action until a new deadline is set. m_send_deadline.expires_at(boost::posix_time::pos_infin); } // Put the actor back to sleep. m_send_deadline.async_wait(boost::bind(&async_blocked_mode_client::check_send_deadline, this)); } }; } }