Commit graph

27 commits

Author SHA1 Message Date
mj-xmr
dc48de74e8 Reduce compilation time of epee/portable_storage.h 2021-02-06 08:18:42 +01:00
TheCharlatan
80e535c95a
wallet2: adapt to deterministic unlock time 2020-09-15 11:40:31 +00:00
SomaticFanatic
5ef0607da6 Update copyright year to 2020
Update copyright year to 2020
2020-05-06 22:36:54 -04:00
woodser
87d75584e8 Allow wallet2.h to run in WebAssembly
- Add abstract_http_client.h which http_client.h extends.
- Replace simple_http_client with abstract_http_client in wallet2,
message_store, message_transporter, and node_rpc_proxy.
- Import and export wallet data in wallet2.
- Use #if defined __EMSCRIPTEN__ directives to skip incompatible code.
2020-04-15 13:22:46 -04:00
moneromooo-monero
054b2621b1
node_rpc_proxy: init some new rpc payment fields in invalidate
The cache time would take care of these, but it's cleaner that way

Coverity 205412
2019-11-27 19:52:37 +00:00
xiphon
09f59eccad wallet: set non-empty error string on connection failure 2019-11-14 19:49:57 +00:00
moneromooo-monero
e108330248
wallet: reuse cached height when set after refresh
Refreshing sets cached height, which is otherwise got by calling
get_info. Since get_info is called upon needing to display a prompt
after a command has finished, it can be used to determine how much
time a given command took to run if the cache timeout lapses while
the command runs. Refreshing caches the height as a side effect, so
get_info will never be called as a result of displaying a prompt
after refreshing (and potentially leaking how much time it took to
process a set of transactions, therefore leaking whether we got
some monero in them).
2019-11-01 18:59:41 +00:00
moneromooo-monero
2899379791
daemon, wallet: new pay for RPC use system
Daemons intended for public use can be set up to require payment
in the form of hashes in exchange for RPC service. This enables
public daemons to receive payment for their work over a large
number of calls. This system behaves similarly to a pool, so
payment takes the form of valid blocks every so often, yielding
a large one off payment, rather than constant micropayments.

This system can also be used by third parties as a "paywall"
layer, where users of a service can pay for use by mining Monero
to the service provider's address. An example of this for web
site access is Primo, a Monero mining based website "paywall":
https://github.com/selene-kovri/primo

This has some advantages:
 - incentive to run a node providing RPC services, thereby promoting the availability of third party nodes for those who can't run their own
 - incentive to run your own node instead of using a third party's, thereby promoting decentralization
 - decentralized: payment is done between a client and server, with no third party needed
 - private: since the system is "pay as you go", you don't need to identify yourself to claim a long lived balance
 - no payment occurs on the blockchain, so there is no extra transactional load
 - one may mine with a beefy server, and use those credits from a phone, by reusing the client ID (at the cost of some privacy)
 - no barrier to entry: anyone may run a RPC node, and your expected revenue depends on how much work you do
 - Sybil resistant: if you run 1000 idle RPC nodes, you don't magically get more revenue
 - no large credit balance maintained on servers, so they have no incentive to exit scam
 - you can use any/many node(s), since there's little cost in switching servers
 - market based prices: competition between servers to lower costs
 - incentive for a distributed third party node system: if some public nodes are overused/slow, traffic can move to others
 - increases network security
 - helps counteract mining pools' share of the network hash rate
 - zero incentive for a payer to "double spend" since a reorg does not give any money back to the miner

And some disadvantages:
 - low power clients will have difficulty mining (but one can optionally mine in advance and/or with a faster machine)
 - payment is "random", so a server might go a long time without a block before getting one
 - a public node's overall expected payment may be small

Public nodes are expected to compete to find a suitable level for
cost of service.

The daemon can be set up this way to require payment for RPC services:

  monerod --rpc-payment-address 4xxxxxx \
    --rpc-payment-credits 250 --rpc-payment-difficulty 1000

These values are an example only.

The --rpc-payment-difficulty switch selects how hard each "share" should
be, similar to a mining pool. The higher the difficulty, the fewer
shares a client will find.
The --rpc-payment-credits switch selects how many credits are awarded
for each share a client finds.
Considering both options, clients will be awarded credits/difficulty
credits for every hash they calculate. For example, in the command line
above, 0.25 credits per hash. A client mining at 100 H/s will therefore
get an average of 25 credits per second.
For reference, in the current implementation, a credit is enough to
sync 20 blocks, so a 100 H/s client that's just starting to use Monero
and uses this daemon will be able to sync 500 blocks per second.

The wallet can be set to automatically mine if connected to a daemon
which requires payment for RPC usage. It will try to keep a balance
of 50000 credits, stopping mining when it's at this level, and starting
again as credits are spent. With the example above, a new client will
mine this much credits in about half an hour, and this target is enough
to sync 500000 blocks (currently about a third of the monero blockchain).

There are three new settings in the wallet:

 - credits-target: this is the amount of credits a wallet will try to
reach before stopping mining. The default of 0 means 50000 credits.

 - auto-mine-for-rpc-payment-threshold: this controls the minimum
credit rate which the wallet considers worth mining for. If the
daemon credits less than this ratio, the wallet will consider mining
to be not worth it. In the example above, the rate is 0.25

 - persistent-rpc-client-id: if set, this allows the wallet to reuse
a client id across runs. This means a public node can tell a wallet
that's connecting is the same as one that connected previously, but
allows a wallet to keep their credit balance from one run to the
other. Since the wallet only mines to keep a small credit balance,
this is not normally worth doing. However, someone may want to mine
on a fast server, and use that credit balance on a low power device
such as a phone. If left unset, a new client ID is generated at
each wallet start, for privacy reasons.

To mine and use a credit balance on two different devices, you can
use the --rpc-client-secret-key switch. A wallet's client secret key
can be found using the new rpc_payments command in the wallet.
Note: anyone knowing your RPC client secret key is able to use your
credit balance.

The wallet has a few new commands too:

 - start_mining_for_rpc: start mining to acquire more credits,
regardless of the auto mining settings
 - stop_mining_for_rpc: stop mining to acquire more credits
 - rpc_payments: display information about current credits with
the currently selected daemon

The node has an extra command:

 - rpc_payments: display information about clients and their
balances

The node will forget about any balance for clients which have
been inactive for 6 months. Balances carry over on node restart.
2019-10-25 09:34:38 +00:00
moneromooo-monero
b18f0b1051
wallet: new --offline option
It will avoid connecting to a daemon (so useful for cold signing
using a RPC wallet), and not perform DNS queries.
2019-04-15 09:14:12 +00:00
binaryFate
1f2930ce0b Update 2019 copyright 2019-03-05 22:05:34 +01:00
Martijn Otto
bd98e99c80
Removed a lot of unnecessary includes 2018-11-15 17:29:34 +01:00
moneromooo-monero
b766014933
node_rpc_proxy: return a non empty error string on connection failure
This makes it easier to avoid bugs on the caller side if errors are
represented by non empty strings.

This fixes the refresh height setting in new wallets when no daemon
is running.
2018-09-17 11:03:46 +00:00
moneromooo-monero
5ffb2ff9b7
v8: per byte fee, pad bulletproofs, fixed 11 ring size 2018-09-11 13:38:07 +00:00
fireice-uk
10475ab23f node_rpc_proxy: fix fork earliest height caching [RYO backport]
xref https://github.com/ryo-currency/ryo-currency/pull/86
2018-08-13 22:16:17 +02:00
moneromooo-monero
8c4db68ff7
node_rpc_proxy: factor a few RPC calls using get_info
Takes advantage of caching
2018-07-02 17:59:44 +01:00
stoffu
71d186566e
replace invoke_http_json("/json_rpc",...) with invoke_http_json_rpc("/json_rpc",methodname,...) to reduce boilerplate 2018-03-14 23:23:59 +09:00
moneromooo-monero
ec41006cad
node_rpc_proxy: fix target height caching 2018-03-11 13:11:49 +00:00
xmr-eric
84a7f6a482 Readd copyright starting date 2018-01-26 10:03:20 -05:00
xmr-eric
18216f19dd Update 2018 copyright 2018-01-26 10:03:20 -05:00
moneromooo-monero
1741fb5f2b
node_rpc_proxy: remove unused local and time call 2017-12-09 11:28:18 +00:00
moneromooo-monero
f1307bbd7b
node_rpc_proxy: add a proxy for target height 2017-08-02 14:43:47 +01:00
moneromooo-monero
0a182576d0
node_rpc_proxy: fix earliest fork height query for unknown forks 2017-05-26 21:34:44 +01:00
moneromooo-monero
24ae71404f
wallet: increase node_rpc_proxy timeout to match wallet2 2017-03-18 23:06:06 +00:00
moneromooo-monero
6fd4b827fb
node_rpc_proxy: allow caching daemon RPC version 2017-02-27 17:57:18 +00:00
moneromooo-monero
b5c74e4041
wallet: invalidate node proxy cache when reconnecting 2017-02-27 17:46:55 +00:00
Lee Clagett
c02e1cb943 Updates to epee HTTP client code
- http_simple_client now uses std::chrono for timeouts
  - http_simple_client accepts timeouts per connect / invoke call
  - shortened names of epee http invoke functions
  - invoke command functions only take relative path, connection
    is not automatically performed
2017-01-25 15:39:32 -05:00
moneromooo-monero
693c190881
wallet: add a node RPC cache layer for simple RPC calls
Mostly getinfo and get_hard_fork_info, which are called
pretty often. This speeds up transfers as a bonus.
2017-01-16 08:59:15 +00:00