Commit graph

81 commits

Author SHA1 Message Date
jeffro256
38f354e89f
Enforce Tx unlock_time is Zero by Relay Rule
Related to https://github.com/monero-project/research-lab/issues/78

Added a relay rule that enforces the `unlock_time` field is equal to 0 for non-coinbase transactions.

UIs changed:
* Removed `locked_transfer` and `locked_sweep_all` commands from `monero-wallet-cli`

APIs changed:
* Removed `unlock_time` parameters from `wallet2` transfer methods
* Wallet RPC transfer endpoints send error codes when requested unlock time is not 0
* Removed `unlock_time` parameters from `construct_tx*` cryptonote core functions
2024-02-24 14:27:17 -06:00
luigi1111
9bf06ea75d
Merge pull request #8698
5b4fea7 Copyright: Update to 2023 (mj-xmr)
2023-04-25 11:12:56 -04:00
tevador
3771641fc5 Add a size limit for tx_extra in tx pool 2023-02-26 10:26:53 +01:00
mj-xmr
5b4fea72cf Copyright: Update to 2023
Co-authored-by: plowsof <plowsof@protonmail.com>
extra files
2023-01-16 13:00:18 +01:00
SChernykh
dab7d01dc0 Refactored rx-slow-hash.c
- Straight-forward call interface: `void rx_slow_hash(const char *seedhash, const void *data, size_t length, char *result_hash)`
- Consensus chain seed hash is now updated by calling `rx_set_main_seedhash` whenever a block is added/removed or a reorg happens
- `rx_slow_hash` will compute correct hash no matter if `rx_set_main_seedhash` was called or not (the only difference is performance)
- New environment variable `MONERO_RANDOMX_FULL_MEM` to force use the full dataset for PoW verification (faster block verification)
- When dataset is used for PoW verification, dataset updates don't stall other threads (verification is done in light mode then)
- When mining is running, PoW checks now also use dataset for faster verification
2023-01-09 07:43:07 +01:00
anon
c7b2944f89 multisig: fix critical vulnerabilities in signing 2022-06-30 12:56:40 -05:00
j-berman
ea87b30f89 Add view tags to outputs to reduce wallet scanning time
Implements view tags as proposed by @UkoeHB in MRL issue
https://github.com/monero-project/research-lab/issues/73

At tx construction, the sender adds a 1-byte view tag to each
output. The view tag is derived from the sender-receiver
shared secret. When scanning for outputs, the receiver can
check the view tag for a match, in order to reduce scanning
time. When the view tag does not match, the wallet avoids the
more expensive EC operations when deriving the output public
key using the shared secret.
2022-04-18 00:49:53 -07:00
mj-xmr
da9aa1f7f8
Copyright: Update to 2022 2022-03-04 06:59:20 +01:00
luigi1111
5eaa4434e8
Merge pull request #7877
e08abaa multisig key exchange update and refactor (koe)
2022-03-02 18:51:54 -05:00
koe
e08abaa43f multisig key exchange update and refactor 2022-02-22 16:37:42 -06:00
Howard Chu
0221b01519
Add calcpow RPC
Calculate PoW hash for a block candidate
2021-11-20 18:52:05 +00:00
mj-xmr
581c3af03a
Warnings: unused var at cryptonote_tx_utils.cpp 2021-05-02 18:00:29 +02:00
moneromooo-monero
9d42649d58
core: fix mining from a block that's not the current top 2020-08-27 15:13:00 +00:00
SomaticFanatic
5ef0607da6 Update copyright year to 2020
Update copyright year to 2020
2020-05-06 22:36:54 -04:00
luigi1111
443f5c6bda
Merge pull request #6436
688a3e8 Add timelock verification on device (cslashm)
2020-05-01 15:20:05 -05:00
cslashm
688a3e87e7 Add timelock verification on device 2020-04-08 11:12:32 +02:00
Interchained
c61abf87c0 remove empty statements
Cleaning up a little around the code base.
2020-02-17 11:55:15 -05:00
moneromooo-monero
ebc6ce44f4
cryptonote: untangle dependency from miner to blockchain
It causes link errors at least on mac
2019-10-31 01:06:42 +00:00
cslashm
d25acd7a1d Add hmac over encrypted value during transaction 2019-10-03 16:01:34 +02:00
Howard Chu
81c2ad6d5b
RandomX integration
Support RandomX PoW algorithm
2019-09-25 21:29:42 +01:00
Jesus Ramirez
2cd4fd8972 Changed the use of boost:value_initialized for C++ list initializer 2019-09-02 14:16:29 +02:00
Tom Smeding
7b9a420787 Replace std::random_shuffle with std::shuffle
According to [1], std::random_shuffle is deprecated in C++14 and removed
in C++17. Since std::shuffle is available since C++11 as a replacement
and monero already requires C++11, this is a good replacement.

A cryptographically secure random number generator is used in all cases
to prevent people from perhaps copying an insecure std::shuffle call
over to a place where a secure one would be warranted. A form of
defense-in-depth.

[1]: https://en.cppreference.com/w/cpp/algorithm/random_shuffle
2019-08-15 16:33:15 +02:00
binaryFate
1f2930ce0b Update 2019 copyright 2019-03-05 22:05:34 +01:00
cslashm
460da140ec New scheme key destination contrfol
Implies protocol version management.
2019-02-08 17:02:44 +01:00
moneromooo-monero
f931e16c6e
add a bulletproof version, new bulletproof type, and rct config
This makes it easier to modify the bulletproof format
2019-01-22 23:17:24 +00:00
moneromooo-monero
c6d387184e
core: include a dummy encrypted payment id when no payment is used
For better transaction uniformity, even though this wastes space.
2019-01-18 16:58:50 +00:00
moneromooo-monero
a9b1c04acf
crptonote_core: do not error out sending unparsable extra field
extra is arbitrary, and the user may well want to send custom data
2019-01-18 16:58:45 +00:00
moneromooo-monero
611639710d
a few minor (but easy) performance tweaks
Found by codacy.com
2018-11-23 15:36:48 +00:00
Riccardo Spagni
1c91963dcd
Merge pull request #4308
9907ea06 cryptonote: sort tx_extra fields (moneromooo-monero)
2018-10-26 22:18:28 +02:00
moneromooo-monero
9907ea0694
cryptonote: sort tx_extra fields
This removes some small amount of fingerprinting entropy.
There is no consensus rule to require this since this field
is technically free form, and a transaction is free to have
custom data in it.
2018-10-07 11:13:22 +00:00
xiphon
fa9e54b6ee build: fix gcc false positive 'stringop-overflow' warning 2018-09-30 10:58:00 +00:00
moneromooo-monero
5ffb2ff9b7
v8: per byte fee, pad bulletproofs, fixed 11 ring size 2018-09-11 13:38:07 +00:00
moneromooo-monero
2a8fcb421b
Bulletproof aggregated verification and tests
Also constrains bulletproofs to simple rct, for simplicity
2018-09-11 13:37:37 +00:00
moneromooo-monero
9ce9f8caf6
bulletproofs: add multi output bulletproofs to rct 2018-09-11 13:37:28 +00:00
stoffu
1f2409e9e2
Do memwipe for critical secret keys copied to rct::key 2018-08-16 22:26:30 +09:00
stoffu
cb9c7972b6
Fix output shuffling for multisig 2018-05-20 09:38:41 +09:00
stoffu
eb59f7c563
cryptonote_tx_util: make destinations properly shuffled 2018-03-31 18:37:46 +09:00
stoffu
8705beaf51
keypair::generate: always require hw::device to avoid possible mistake 2018-03-14 21:00:16 +09:00
stoffu
27a196b126
device: untangle cyclic depenency
When #3303 was merged, a cyclic dependency chain was generated:

    libdevice <- libcncrypto <- libringct <- libdevice

This was because libdevice needs access to a set of basic crypto operations
implemented in libringct such as scalarmultBase(), while libringct also needs
access to abstracted crypto operations implemented in libdevice such as
ecdhEncode(). To untangle this cyclic dependency chain, this patch splits libringct
into libringct_basic and libringct, where the basic crypto ops previously in
libringct are moved into libringct_basic. The cyclic dependency is now resolved
thanks to this separation:

    libcncrypto <- libringct_basic <- libdevice <- libcryptonote_basic <- libringct

This eliminates the need for crypto_device.cpp and rctOps_device.cpp.

Also, many abstracted interfaces of hw::device such as encrypt_payment_id() and
get_subaddress_secret_key() were previously implemented in libcryptonote_basic
(cryptonote_format_utils.cpp) and were then called from hw::core::device_default,
which is odd because libdevice is supposed to be independent of libcryptonote_basic.
Therefore, those functions were moved to device_default.cpp.
2018-03-14 21:00:15 +09:00
Cédric
73dd883d51 Ledger HW Bug fixes
Fix the way the REAL mode is handle:
  Let create_transactions_2 and create_transactions_from construct the vector of transactions.
  Then iterate on it and resign.
  We just need to add 'outs' list in the TX struct for that.

Fix default secret keys value when DEBUG_HWDEVICE mode is off
  The magic value (00...00 for view key and FF..FF for spend key) was not correctly set
  when DEBUG_HWDEVICE was off. Both was set to 00...00.

Add sub-address info in ABP map in order to correctly display destination sub-address on device

Fix DEBUG_HWDEVICE mode:
   - Fix compilation errors.
   - Fix control device init in ledger device.
   - Add more log.

Fix sub addr control

Fix debug Info
2018-03-12 10:43:06 +01:00
Riccardo Spagni
9841a452e5
Merge pull request #3338
51219457 core: fix sending to the source address with a short payment id (moneromooo-monero)
2018-03-05 19:13:28 +02:00
Jean Pierre Dudey
9f9e095a8c
Use genesis_tx parameter in generate_genesis_block. #3261
* src/cryptnote_config.h: The constant `config::testnet::GENESIS_TX` was
changed to be the same as `config::GENESIS_TX` (the mainnet's transaction)
because the mainnet's transaction was being used for both networks.

* src/cryptonote_core/cryptonote_tx_utils.cpp: The `generate_genesis_block` function
was ignoring the  `genesis_tx` parameter, and instead it was using the `config::GENESIS_TX`
constant. That's why the testnet genesis transaction was changed. Also five lines of unused
code were removed.

Signed-off-by: Jean Pierre Dudey <jeandudey@hotmail.com>
2018-03-05 11:19:01 +09:00
cslashm
e745c1e38d Code modifications to integrate Ledger HW device into monero-wallet-cli.
The basic approach it to delegate all sensitive data (master key, secret
ephemeral key, key derivation, ....) and related operations to the device.
As device has low memory, it does not keep itself the values
(except for view/spend keys) but once computed there are encrypted (with AES
are equivalent) and return back to monero-wallet-cli. When they need to be
manipulated by the device, they are decrypted on receive.

Moreover, using the client for storing the value in encrypted form limits
the modification in the client code. Those values are transfered from one
C-structure to another one as previously.

The code modification has been done with the wishes to be open to any
other hardware wallet. To achieve that a C++ class hw::Device has been
introduced. Two initial implementations are provided: the "default", which
remaps all calls to initial Monero code, and  the "Ledger", which delegates
all calls to Ledger device.
2018-03-04 12:54:53 +01:00
moneromooo-monero
51219457b1
core: fix sending to the source address with a short payment id
It would fail to send, thinking it needs a destination address,
since the destination matches the change address in this case.
2018-03-02 23:27:57 +00:00
stoffu
402c9eef0e
cryptonote_tx_utils: fixed logic bug in get_destination_view_key_pub 2018-01-29 17:05:07 +09:00
xmr-eric
18216f19dd Update 2018 copyright 2018-01-26 10:03:20 -05:00
moneromooo-monero
b49ddc766d
check accessing an element past the end of a container 2017-12-18 15:15:49 +00:00
moneromooo-monero
fa5697127f
make multisig work with subaddresses
Thanks to kenshi84 for help getting this work
2017-12-17 16:12:27 +00:00
moneromooo-monero
66e34e85b1
add multisig core test and factor multisig building blocks 2017-12-17 16:12:15 +00:00
moneromooo-monero
4c313324b1
Add N/N multisig tx generation and signing
Scheme by luigi1111:

    Multisig for RingCT on Monero

    2 of 2

    User A (coordinator):
    Spendkey b,B
    Viewkey a,A (shared)

    User B:
    Spendkey c,C
    Viewkey a,A (shared)

    Public Address: C+B, A

    Both have their own watch only wallet via C+B, a

    A will coordinate spending process (though B could easily as well, coordinator is more needed for more participants)

    A and B watch for incoming outputs

    B creates "half" key images for discovered output D:
    I2_D = (Hs(aR)+c) * Hp(D)

    B also creates 1.5 random keypairs (one scalar and 2 pubkeys; one on base G and one on base Hp(D)) for each output, storing the scalar(k) (linked to D),
    and sending the pubkeys with I2_D.

    A also creates "half" key images:
    I1_D = (Hs(aR)+b) * Hp(D)

    Then I_D = I1_D + I2_D

    Having I_D allows A to check spent status of course, but more importantly allows A to actually build a transaction prefix (and thus transaction).

    A builds the transaction until most of the way through MLSAG_Gen, adding the 2 pubkeys (per input) provided with I2_D
    to his own generated ones where they are needed (secret row L, R).

    At this point, A has a mostly completed transaction (but with an invalid/incomplete signature). A sends over the tx and includes r,
    which allows B (with the recipient's address) to verify the destination and amount (by reconstructing the stealth address and decoding ecdhInfo).

    B then finishes the signature by computing ss[secret_index][0] = ss[secret_index][0] + k - cc[secret_index]*c (secret indices need to be passed as well).

    B can then broadcast the tx, or send it back to A for broadcasting. Once B has completed the signing (and verified the tx to be valid), he can add the full I_D
    to his cache, allowing him to verify spent status as well.

    NOTE:
    A and B *must* present key A and B to each other with a valid signature proving they know a and b respectively.
    Otherwise, trickery like the following becomes possible:
    A creates viewkey a,A, spendkey b,B, and sends a,A,B to B.
    B creates a fake key C = zG - B. B sends C back to A.
    The combined spendkey C+B then equals zG, allowing B to spend funds at any time!
    The signature fixes this, because B does not know a c corresponding to C (and thus can't produce a signature).

    2 of 3

    User A (coordinator)
    Shared viewkey a,A
    "spendkey" j,J

    User B
    "spendkey" k,K

    User C
    "spendkey" m,M

    A collects K and M from B and C
    B collects J and M from A and C
    C collects J and K from A and B

    A computes N = nG, n = Hs(jK)
    A computes O = oG, o = Hs(jM)

    B anc C compute P = pG, p = Hs(kM) || Hs(mK)
    B and C can also compute N and O respectively if they wish to be able to coordinate

    Address: N+O+P, A

    The rest follows as above. The coordinator possesses 2 of 3 needed keys; he can get the other
    needed part of the signature/key images from either of the other two.

    Alternatively, if secure communication exists between parties:
    A gives j to B
    B gives k to C
    C gives m to A

    Address: J+K+M, A

    3 of 3

    Identical to 2 of 2, except the coordinator must collect the key images from both of the others.
    The transaction must also be passed an additional hop: A -> B -> C (or A -> C -> B), who can then broadcast it
    or send it back to A.

    N-1 of N

    Generally the same as 2 of 3, except participants need to be arranged in a ring to pass their keys around
    (using either the secure or insecure method).
    For example (ignoring viewkey so letters line up):
    [4 of 5]
    User: spendkey
    A: a
    B: b
    C: c
    D: d
    E: e

    a -> B, b -> C, c -> D, d -> E, e -> A

    Order of signing does not matter, it just must reach n-1 users. A "remaining keys" list must be passed around with
    the transaction so the signers know if they should use 1 or both keys.
    Collecting key image parts becomes a little messy, but basically every wallet sends over both of their parts with a tag for each.
    Thia way the coordinating wallet can keep track of which images have been added and which wallet they come from. Reasoning:
    1. The key images must be added only once (coordinator will get key images for key a from both A and B, he must add only one to get the proper key actual key image)
    2. The coordinator must keep track of which helper pubkeys came from which wallet (discussed in 2 of 2 section). The coordinator
    must choose only one set to use, then include his choice in the "remaining keys" list so the other wallets know which of their keys to use.

    You can generalize it further to N-2 of N or even M of N, but I'm not sure there's legitimate demand to justify the complexity. It might
    also be straightforward enough to support with minimal changes from N-1 format.
    You basically just give each user additional keys for each additional "-1" you desire. N-2 would be 3 keys per user, N-3 4 keys, etc.

The process is somewhat cumbersome:

To create a N/N multisig wallet:

 - each participant creates a normal wallet
 - each participant runs "prepare_multisig", and sends the resulting string to every other participant
 - each participant runs "make_multisig N A B C D...", with N being the threshold and A B C D... being the strings received from other participants (the threshold must currently equal N)

As txes are received, participants' wallets will need to synchronize so that those new outputs may be spent:

 - each participant runs "export_multisig FILENAME", and sends the FILENAME file to every other participant
 - each participant runs "import_multisig A B C D...", with A B C D... being the filenames received from other participants

Then, a transaction may be initiated:

 - one of the participants runs "transfer ADDRESS AMOUNT"
 - this partly signed transaction will be written to the "multisig_monero_tx" file
 - the initiator sends this file to another participant
 - that other participant runs "sign_multisig multisig_monero_tx"
 - the resulting transaction is written to the "multisig_monero_tx" file again
 - if the threshold was not reached, the file must be sent to another participant, until enough have signed
 - the last participant to sign runs "submit_multisig multisig_monero_tx" to relay the transaction to the Monero network
2017-12-17 16:11:57 +00:00