0de14396 tests: add a CNv4 JIT test (moneromooo-monero)
24d281c3 crypto: plug CNv4 JIT into cn_slow_hash (moneromooo-monero)
78ab59ea crypto: clear cache after generating random program (moneromooo-monero)
b9a61884 performance_tests: add tests for new Cryptonight variants (moneromooo-monero)
fff23bf7 CNv4 JIT compiler for x86-64 and tests (SChernykh)
3dde67d8 blockchain: add v10 fork heights (moneromooo-monero)
2dbc487e Add support for V10 protocol with BulletProofV2 and short amount. (cslashm)
63cc02c0 Fix dummy decryption in debug mode (cslashm)
f0e55ceb fix log namespace (cslashm)
460da140 New scheme key destination contrfol (cslashm)
a17da720 Print the reason why a notification spec failed to parse (moneromooo-monero)
356d8137 blockchain: include number of discarded blocks in --reorg-notify (moneromooo-monero)
4d598e3d core: add a few more block rate window sizes (moneromooo-monero)
d4fb9641 core: add --block-rate-notify (moneromooo-monero)
28b6dbf2 notify: fix tokenizing being too strict (moneromooo-monero)
Minimalistic JIT code generator for random math sequence in CryptonightR.
Usage:
- Allocate writable and executable memory
- Call v4_generate_JIT_code with "buf" pointed to memory allocated on the previous step
- Call the generated code instead of "v4_random_math(code, r)", omit the "code" parameter
The 10 minute one will never trigger for 0 blocks, as it's still
fairly likely to happen even without the actual hash rate changing
much, so we add a 20 minute window, where it will (for 0 blocks)
and a one hour window.
This curbs runaway growth while still allowing substantial
spikes in block weight
Original specification from ArticMine:
here is the scaling proposal
Define: LongTermBlockWeight
Before fork:
LongTermBlockWeight = BlockWeight
At or after fork:
LongTermBlockWeight = min(BlockWeight, 1.4*LongTermEffectiveMedianBlockWeight)
Note: To avoid possible consensus issues over rounding the LongTermBlockWeight for a given block should be calculated to the nearest byte, and stored as a integer in the block itself. The stored LongTermBlockWeight is then used for future calculations of the LongTermEffectiveMedianBlockWeight and not recalculated each time.
Define: LongTermEffectiveMedianBlockWeight
LongTermEffectiveMedianBlockWeight = max(300000, MedianOverPrevious100000Blocks(LongTermBlockWeight))
Change Definition of EffectiveMedianBlockWeight
From (current definition)
EffectiveMedianBlockWeight = max(300000, MedianOverPrevious100Blocks(BlockWeight))
To (proposed definition)
EffectiveMedianBlockWeight = min(max(300000, MedianOverPrevious100Blocks(BlockWeight)), 50*LongTermEffectiveMedianBlockWeight)
Notes:
1) There are no other changes to the existing penalty formula, median calculation, fees etc.
2) There is the requirement to store the LongTermBlockWeight of a block unencrypted in the block itself. This is to avoid possible consensus issues over rounding and also to prevent the calculations from becoming unwieldy as we move away from the fork.
3) When the EffectiveMedianBlockWeight cap is reached it is still possible to mine blocks up to 2x the EffectiveMedianBlockWeight by paying the corresponding penalty.
Note: the long term block weight is stored in the database, but not in the actual block itself,
since it requires recalculating anyway for verification.
The change made for v2 broke v1, and we have no way to know which
version we're serializing here. However, since we don't actually
care about space savings in this case, we continue serialiazing
both mask and amount.