mirror of
https://github.com/monero-project/monero.git
synced 2025-01-25 12:05:58 +00:00
Cryptonight variant 4 aka CryptonightR
It introduces random integer math into the main loop.
This commit is contained in:
parent
b980fec41c
commit
1b77e80a78
9 changed files with 543 additions and 23 deletions
|
@ -73,18 +73,18 @@ namespace crypto {
|
||||||
inline void generate_chacha_key(const void *data, size_t size, chacha_key& key, uint64_t kdf_rounds) {
|
inline void generate_chacha_key(const void *data, size_t size, chacha_key& key, uint64_t kdf_rounds) {
|
||||||
static_assert(sizeof(chacha_key) <= sizeof(hash), "Size of hash must be at least that of chacha_key");
|
static_assert(sizeof(chacha_key) <= sizeof(hash), "Size of hash must be at least that of chacha_key");
|
||||||
epee::mlocked<tools::scrubbed_arr<char, HASH_SIZE>> pwd_hash;
|
epee::mlocked<tools::scrubbed_arr<char, HASH_SIZE>> pwd_hash;
|
||||||
crypto::cn_slow_hash(data, size, pwd_hash.data(), 0/*variant*/, 0/*prehashed*/);
|
crypto::cn_slow_hash(data, size, pwd_hash.data(), 0/*variant*/, 0/*prehashed*/, 0/*height*/);
|
||||||
for (uint64_t n = 1; n < kdf_rounds; ++n)
|
for (uint64_t n = 1; n < kdf_rounds; ++n)
|
||||||
crypto::cn_slow_hash(pwd_hash.data(), pwd_hash.size(), pwd_hash.data(), 0/*variant*/, 0/*prehashed*/);
|
crypto::cn_slow_hash(pwd_hash.data(), pwd_hash.size(), pwd_hash.data(), 0/*variant*/, 0/*prehashed*/, 0/*height*/);
|
||||||
memcpy(&unwrap(unwrap(key)), pwd_hash.data(), sizeof(key));
|
memcpy(&unwrap(unwrap(key)), pwd_hash.data(), sizeof(key));
|
||||||
}
|
}
|
||||||
|
|
||||||
inline void generate_chacha_key_prehashed(const void *data, size_t size, chacha_key& key, uint64_t kdf_rounds) {
|
inline void generate_chacha_key_prehashed(const void *data, size_t size, chacha_key& key, uint64_t kdf_rounds) {
|
||||||
static_assert(sizeof(chacha_key) <= sizeof(hash), "Size of hash must be at least that of chacha_key");
|
static_assert(sizeof(chacha_key) <= sizeof(hash), "Size of hash must be at least that of chacha_key");
|
||||||
epee::mlocked<tools::scrubbed_arr<char, HASH_SIZE>> pwd_hash;
|
epee::mlocked<tools::scrubbed_arr<char, HASH_SIZE>> pwd_hash;
|
||||||
crypto::cn_slow_hash(data, size, pwd_hash.data(), 0/*variant*/, 1/*prehashed*/);
|
crypto::cn_slow_hash(data, size, pwd_hash.data(), 0/*variant*/, 1/*prehashed*/, 0/*height*/);
|
||||||
for (uint64_t n = 1; n < kdf_rounds; ++n)
|
for (uint64_t n = 1; n < kdf_rounds; ++n)
|
||||||
crypto::cn_slow_hash(pwd_hash.data(), pwd_hash.size(), pwd_hash.data(), 0/*variant*/, 0/*prehashed*/);
|
crypto::cn_slow_hash(pwd_hash.data(), pwd_hash.size(), pwd_hash.data(), 0/*variant*/, 0/*prehashed*/, 0/*height*/);
|
||||||
memcpy(&unwrap(unwrap(key)), pwd_hash.data(), sizeof(key));
|
memcpy(&unwrap(unwrap(key)), pwd_hash.data(), sizeof(key));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -79,7 +79,7 @@ enum {
|
||||||
};
|
};
|
||||||
|
|
||||||
void cn_fast_hash(const void *data, size_t length, char *hash);
|
void cn_fast_hash(const void *data, size_t length, char *hash);
|
||||||
void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed);
|
void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed, uint64_t height);
|
||||||
|
|
||||||
void hash_extra_blake(const void *data, size_t length, char *hash);
|
void hash_extra_blake(const void *data, size_t length, char *hash);
|
||||||
void hash_extra_groestl(const void *data, size_t length, char *hash);
|
void hash_extra_groestl(const void *data, size_t length, char *hash);
|
||||||
|
|
|
@ -71,12 +71,12 @@ namespace crypto {
|
||||||
return h;
|
return h;
|
||||||
}
|
}
|
||||||
|
|
||||||
inline void cn_slow_hash(const void *data, std::size_t length, hash &hash, int variant = 0) {
|
inline void cn_slow_hash(const void *data, std::size_t length, hash &hash, int variant = 0, uint64_t height = 0) {
|
||||||
cn_slow_hash(data, length, reinterpret_cast<char *>(&hash), variant, 0/*prehashed*/);
|
cn_slow_hash(data, length, reinterpret_cast<char *>(&hash), variant, 0/*prehashed*/, height);
|
||||||
}
|
}
|
||||||
|
|
||||||
inline void cn_slow_hash_prehashed(const void *data, std::size_t length, hash &hash, int variant = 0) {
|
inline void cn_slow_hash_prehashed(const void *data, std::size_t length, hash &hash, int variant = 0, uint64_t height = 0) {
|
||||||
cn_slow_hash(data, length, reinterpret_cast<char *>(&hash), variant, 1/*prehashed*/);
|
cn_slow_hash(data, length, reinterpret_cast<char *>(&hash), variant, 1/*prehashed*/, height);
|
||||||
}
|
}
|
||||||
|
|
||||||
inline void tree_hash(const hash *hashes, std::size_t count, hash &root_hash) {
|
inline void tree_hash(const hash *hashes, std::size_t count, hash &root_hash) {
|
||||||
|
|
|
@ -39,6 +39,7 @@
|
||||||
#include "hash-ops.h"
|
#include "hash-ops.h"
|
||||||
#include "oaes_lib.h"
|
#include "oaes_lib.h"
|
||||||
#include "variant2_int_sqrt.h"
|
#include "variant2_int_sqrt.h"
|
||||||
|
#include "variant4_random_math.h"
|
||||||
|
|
||||||
#define MEMORY (1 << 21) // 2MB scratchpad
|
#define MEMORY (1 << 21) // 2MB scratchpad
|
||||||
#define ITER (1 << 20)
|
#define ITER (1 << 20)
|
||||||
|
@ -172,7 +173,7 @@ extern void aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *ex
|
||||||
const uint64_t sqrt_input = SWAP64LE(((uint64_t*)(ptr))[0]) + division_result
|
const uint64_t sqrt_input = SWAP64LE(((uint64_t*)(ptr))[0]) + division_result
|
||||||
|
|
||||||
#define VARIANT2_INTEGER_MATH_SSE2(b, ptr) \
|
#define VARIANT2_INTEGER_MATH_SSE2(b, ptr) \
|
||||||
do if (variant >= 2) \
|
do if ((variant == 2) || (variant == 3)) \
|
||||||
{ \
|
{ \
|
||||||
VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr); \
|
VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr); \
|
||||||
VARIANT2_INTEGER_MATH_SQRT_STEP_SSE2(); \
|
VARIANT2_INTEGER_MATH_SQRT_STEP_SSE2(); \
|
||||||
|
@ -182,7 +183,7 @@ extern void aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *ex
|
||||||
#if defined DBL_MANT_DIG && (DBL_MANT_DIG >= 50)
|
#if defined DBL_MANT_DIG && (DBL_MANT_DIG >= 50)
|
||||||
// double precision floating point type has enough bits of precision on current platform
|
// double precision floating point type has enough bits of precision on current platform
|
||||||
#define VARIANT2_PORTABLE_INTEGER_MATH(b, ptr) \
|
#define VARIANT2_PORTABLE_INTEGER_MATH(b, ptr) \
|
||||||
do if (variant >= 2) \
|
do if ((variant == 2) || (variant == 3)) \
|
||||||
{ \
|
{ \
|
||||||
VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr); \
|
VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr); \
|
||||||
VARIANT2_INTEGER_MATH_SQRT_STEP_FP64(); \
|
VARIANT2_INTEGER_MATH_SQRT_STEP_FP64(); \
|
||||||
|
@ -192,7 +193,7 @@ extern void aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *ex
|
||||||
// double precision floating point type is not good enough on current platform
|
// double precision floating point type is not good enough on current platform
|
||||||
// fall back to the reference code (integer only)
|
// fall back to the reference code (integer only)
|
||||||
#define VARIANT2_PORTABLE_INTEGER_MATH(b, ptr) \
|
#define VARIANT2_PORTABLE_INTEGER_MATH(b, ptr) \
|
||||||
do if (variant >= 2) \
|
do if ((variant == 2) || (variant == 3)) \
|
||||||
{ \
|
{ \
|
||||||
VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr); \
|
VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr); \
|
||||||
VARIANT2_INTEGER_MATH_SQRT_STEP_REF(); \
|
VARIANT2_INTEGER_MATH_SQRT_STEP_REF(); \
|
||||||
|
@ -214,6 +215,47 @@ extern void aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *ex
|
||||||
lo ^= SWAP64LE(*(U64(hp_state + (j ^ 0x20)) + 1)); \
|
lo ^= SWAP64LE(*(U64(hp_state + (j ^ 0x20)) + 1)); \
|
||||||
} while (0)
|
} while (0)
|
||||||
|
|
||||||
|
#define V4_REG_LOAD(dst, src) \
|
||||||
|
do { \
|
||||||
|
memcpy((dst), (src), sizeof(v4_reg)); \
|
||||||
|
if (sizeof(v4_reg) == sizeof(uint32_t)) \
|
||||||
|
*(dst) = SWAP32LE(*(dst)); \
|
||||||
|
else \
|
||||||
|
*(dst) = SWAP64LE(*(dst)); \
|
||||||
|
} while (0)
|
||||||
|
|
||||||
|
#define VARIANT4_RANDOM_MATH_INIT() \
|
||||||
|
v4_reg r[9]; \
|
||||||
|
struct V4_Instruction code[NUM_INSTRUCTIONS_MAX + 1]; \
|
||||||
|
do if (variant >= 4) \
|
||||||
|
{ \
|
||||||
|
for (int i = 0; i < 4; ++i) \
|
||||||
|
V4_REG_LOAD(r + i, (uint8_t*)(state.hs.w + 12) + sizeof(v4_reg) * i); \
|
||||||
|
v4_random_math_init(code, height); \
|
||||||
|
} while (0)
|
||||||
|
|
||||||
|
#define VARIANT4_RANDOM_MATH(a, b, r, _b, _b1) \
|
||||||
|
do if (variant >= 4) \
|
||||||
|
{ \
|
||||||
|
uint64_t t; \
|
||||||
|
memcpy(&t, b, sizeof(uint64_t)); \
|
||||||
|
\
|
||||||
|
if (sizeof(v4_reg) == sizeof(uint32_t)) \
|
||||||
|
t ^= SWAP64LE((r[0] + r[1]) | ((uint64_t)(r[2] + r[3]) << 32)); \
|
||||||
|
else \
|
||||||
|
t ^= SWAP64LE((r[0] + r[1]) ^ (r[2] + r[3])); \
|
||||||
|
\
|
||||||
|
memcpy(b, &t, sizeof(uint64_t)); \
|
||||||
|
\
|
||||||
|
V4_REG_LOAD(r + 4, a); \
|
||||||
|
V4_REG_LOAD(r + 5, (uint64_t*)(a) + 1); \
|
||||||
|
V4_REG_LOAD(r + 6, _b); \
|
||||||
|
V4_REG_LOAD(r + 7, _b1); \
|
||||||
|
V4_REG_LOAD(r + 8, (uint64_t*)(_b1) + 1); \
|
||||||
|
\
|
||||||
|
v4_random_math(code, r); \
|
||||||
|
} while (0)
|
||||||
|
|
||||||
|
|
||||||
#if !defined NO_AES && (defined(__x86_64__) || (defined(_MSC_VER) && defined(_WIN64)))
|
#if !defined NO_AES && (defined(__x86_64__) || (defined(_MSC_VER) && defined(_WIN64)))
|
||||||
// Optimised code below, uses x86-specific intrinsics, SSE2, AES-NI
|
// Optimised code below, uses x86-specific intrinsics, SSE2, AES-NI
|
||||||
|
@ -298,6 +340,7 @@ extern void aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *ex
|
||||||
p = U64(&hp_state[j]); \
|
p = U64(&hp_state[j]); \
|
||||||
b[0] = p[0]; b[1] = p[1]; \
|
b[0] = p[0]; b[1] = p[1]; \
|
||||||
VARIANT2_INTEGER_MATH_SSE2(b, c); \
|
VARIANT2_INTEGER_MATH_SSE2(b, c); \
|
||||||
|
VARIANT4_RANDOM_MATH(a, b, r, &_b, &_b1); \
|
||||||
__mul(); \
|
__mul(); \
|
||||||
VARIANT2_2(); \
|
VARIANT2_2(); \
|
||||||
VARIANT2_SHUFFLE_ADD_SSE2(hp_state, j); \
|
VARIANT2_SHUFFLE_ADD_SSE2(hp_state, j); \
|
||||||
|
@ -694,7 +737,7 @@ void slow_hash_free_state(void)
|
||||||
* @param length the length in bytes of the data
|
* @param length the length in bytes of the data
|
||||||
* @param hash a pointer to a buffer in which the final 256 bit hash will be stored
|
* @param hash a pointer to a buffer in which the final 256 bit hash will be stored
|
||||||
*/
|
*/
|
||||||
void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed)
|
void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed, uint64_t height)
|
||||||
{
|
{
|
||||||
RDATA_ALIGN16 uint8_t expandedKey[240]; /* These buffers are aligned to use later with SSE functions */
|
RDATA_ALIGN16 uint8_t expandedKey[240]; /* These buffers are aligned to use later with SSE functions */
|
||||||
|
|
||||||
|
@ -730,6 +773,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
|
||||||
|
|
||||||
VARIANT1_INIT64();
|
VARIANT1_INIT64();
|
||||||
VARIANT2_INIT64();
|
VARIANT2_INIT64();
|
||||||
|
VARIANT4_RANDOM_MATH_INIT();
|
||||||
|
|
||||||
/* CryptoNight Step 2: Iteratively encrypt the results from Keccak to fill
|
/* CryptoNight Step 2: Iteratively encrypt the results from Keccak to fill
|
||||||
* the 2MB large random access buffer.
|
* the 2MB large random access buffer.
|
||||||
|
@ -901,6 +945,7 @@ union cn_slow_hash_state
|
||||||
p = U64(&hp_state[j]); \
|
p = U64(&hp_state[j]); \
|
||||||
b[0] = p[0]; b[1] = p[1]; \
|
b[0] = p[0]; b[1] = p[1]; \
|
||||||
VARIANT2_PORTABLE_INTEGER_MATH(b, c); \
|
VARIANT2_PORTABLE_INTEGER_MATH(b, c); \
|
||||||
|
VARIANT4_RANDOM_MATH(a, b, r, &_b, &_b1); \
|
||||||
__mul(); \
|
__mul(); \
|
||||||
VARIANT2_2(); \
|
VARIANT2_2(); \
|
||||||
VARIANT2_SHUFFLE_ADD_NEON(hp_state, j); \
|
VARIANT2_SHUFFLE_ADD_NEON(hp_state, j); \
|
||||||
|
@ -1063,7 +1108,7 @@ STATIC INLINE void aligned_free(void *ptr)
|
||||||
}
|
}
|
||||||
#endif /* FORCE_USE_HEAP */
|
#endif /* FORCE_USE_HEAP */
|
||||||
|
|
||||||
void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed)
|
void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed, uint64_t height)
|
||||||
{
|
{
|
||||||
RDATA_ALIGN16 uint8_t expandedKey[240];
|
RDATA_ALIGN16 uint8_t expandedKey[240];
|
||||||
|
|
||||||
|
@ -1100,6 +1145,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
|
||||||
|
|
||||||
VARIANT1_INIT64();
|
VARIANT1_INIT64();
|
||||||
VARIANT2_INIT64();
|
VARIANT2_INIT64();
|
||||||
|
VARIANT4_RANDOM_MATH_INIT();
|
||||||
|
|
||||||
/* CryptoNight Step 2: Iteratively encrypt the results from Keccak to fill
|
/* CryptoNight Step 2: Iteratively encrypt the results from Keccak to fill
|
||||||
* the 2MB large random access buffer.
|
* the 2MB large random access buffer.
|
||||||
|
@ -1278,7 +1324,7 @@ STATIC INLINE void xor_blocks(uint8_t* a, const uint8_t* b)
|
||||||
U64(a)[1] ^= U64(b)[1];
|
U64(a)[1] ^= U64(b)[1];
|
||||||
}
|
}
|
||||||
|
|
||||||
void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed)
|
void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed, uint64_t height)
|
||||||
{
|
{
|
||||||
uint8_t text[INIT_SIZE_BYTE];
|
uint8_t text[INIT_SIZE_BYTE];
|
||||||
uint8_t a[AES_BLOCK_SIZE];
|
uint8_t a[AES_BLOCK_SIZE];
|
||||||
|
@ -1317,6 +1363,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
|
||||||
|
|
||||||
VARIANT1_INIT64();
|
VARIANT1_INIT64();
|
||||||
VARIANT2_INIT64();
|
VARIANT2_INIT64();
|
||||||
|
VARIANT4_RANDOM_MATH_INIT();
|
||||||
|
|
||||||
// use aligned data
|
// use aligned data
|
||||||
memcpy(expandedKey, aes_ctx->key->exp_data, aes_ctx->key->exp_data_len);
|
memcpy(expandedKey, aes_ctx->key->exp_data, aes_ctx->key->exp_data_len);
|
||||||
|
@ -1353,6 +1400,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
|
||||||
copy_block(c, p);
|
copy_block(c, p);
|
||||||
|
|
||||||
VARIANT2_PORTABLE_INTEGER_MATH(c, c1);
|
VARIANT2_PORTABLE_INTEGER_MATH(c, c1);
|
||||||
|
VARIANT4_RANDOM_MATH(a, c, r, b, b + AES_BLOCK_SIZE);
|
||||||
mul(c1, c, d);
|
mul(c1, c, d);
|
||||||
VARIANT2_2_PORTABLE();
|
VARIANT2_2_PORTABLE();
|
||||||
VARIANT2_PORTABLE_SHUFFLE_ADD(long_state, j);
|
VARIANT2_PORTABLE_SHUFFLE_ADD(long_state, j);
|
||||||
|
@ -1476,7 +1524,7 @@ union cn_slow_hash_state {
|
||||||
};
|
};
|
||||||
#pragma pack(pop)
|
#pragma pack(pop)
|
||||||
|
|
||||||
void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed) {
|
void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed, uint64_t height) {
|
||||||
#ifndef FORCE_USE_HEAP
|
#ifndef FORCE_USE_HEAP
|
||||||
uint8_t long_state[MEMORY];
|
uint8_t long_state[MEMORY];
|
||||||
#else
|
#else
|
||||||
|
@ -1505,6 +1553,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
|
||||||
|
|
||||||
VARIANT1_PORTABLE_INIT();
|
VARIANT1_PORTABLE_INIT();
|
||||||
VARIANT2_PORTABLE_INIT();
|
VARIANT2_PORTABLE_INIT();
|
||||||
|
VARIANT4_RANDOM_MATH_INIT();
|
||||||
|
|
||||||
oaes_key_import_data(aes_ctx, aes_key, AES_KEY_SIZE);
|
oaes_key_import_data(aes_ctx, aes_key, AES_KEY_SIZE);
|
||||||
for (i = 0; i < MEMORY / INIT_SIZE_BYTE; i++) {
|
for (i = 0; i < MEMORY / INIT_SIZE_BYTE; i++) {
|
||||||
|
@ -1537,6 +1586,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
|
||||||
j = e2i(c1, MEMORY / AES_BLOCK_SIZE) * AES_BLOCK_SIZE;
|
j = e2i(c1, MEMORY / AES_BLOCK_SIZE) * AES_BLOCK_SIZE;
|
||||||
copy_block(c2, &long_state[j]);
|
copy_block(c2, &long_state[j]);
|
||||||
VARIANT2_PORTABLE_INTEGER_MATH(c2, c1);
|
VARIANT2_PORTABLE_INTEGER_MATH(c2, c1);
|
||||||
|
VARIANT4_RANDOM_MATH(a, c2, r, b, b + AES_BLOCK_SIZE);
|
||||||
mul(c1, c2, d);
|
mul(c1, c2, d);
|
||||||
VARIANT2_2_PORTABLE();
|
VARIANT2_2_PORTABLE();
|
||||||
VARIANT2_PORTABLE_SHUFFLE_ADD(long_state, j);
|
VARIANT2_PORTABLE_SHUFFLE_ADD(long_state, j);
|
||||||
|
|
441
src/crypto/variant4_random_math.h
Normal file
441
src/crypto/variant4_random_math.h
Normal file
|
@ -0,0 +1,441 @@
|
||||||
|
#ifndef VARIANT4_RANDOM_MATH_H
|
||||||
|
#define VARIANT4_RANDOM_MATH_H
|
||||||
|
|
||||||
|
// Register size can be configured to either 32 bit (uint32_t) or 64 bit (uint64_t)
|
||||||
|
typedef uint32_t v4_reg;
|
||||||
|
|
||||||
|
enum V4_Settings
|
||||||
|
{
|
||||||
|
// Generate code with minimal theoretical latency = 45 cycles, which is equivalent to 15 multiplications
|
||||||
|
TOTAL_LATENCY = 15 * 3,
|
||||||
|
|
||||||
|
// Always generate at least 60 instructions
|
||||||
|
NUM_INSTRUCTIONS_MIN = 60,
|
||||||
|
|
||||||
|
// Never generate more than 70 instructions (final RET instruction doesn't count here)
|
||||||
|
NUM_INSTRUCTIONS_MAX = 70,
|
||||||
|
|
||||||
|
// Available ALUs for MUL
|
||||||
|
// Modern CPUs typically have only 1 ALU which can do multiplications
|
||||||
|
ALU_COUNT_MUL = 1,
|
||||||
|
|
||||||
|
// Total available ALUs
|
||||||
|
// Modern CPUs have 4 ALUs, but we use only 3 because random math executes together with other main loop code
|
||||||
|
ALU_COUNT = 3,
|
||||||
|
};
|
||||||
|
|
||||||
|
enum V4_InstructionList
|
||||||
|
{
|
||||||
|
MUL, // a*b
|
||||||
|
ADD, // a+b + C, C is an unsigned 32-bit constant
|
||||||
|
SUB, // a-b
|
||||||
|
ROR, // rotate right "a" by "b & 31" bits
|
||||||
|
ROL, // rotate left "a" by "b & 31" bits
|
||||||
|
XOR, // a^b
|
||||||
|
RET, // finish execution
|
||||||
|
V4_INSTRUCTION_COUNT = RET,
|
||||||
|
};
|
||||||
|
|
||||||
|
// V4_InstructionDefinition is used to generate code from random data
|
||||||
|
// Every random sequence of bytes is a valid code
|
||||||
|
//
|
||||||
|
// There are 8 registers in total:
|
||||||
|
// - 4 variable registers
|
||||||
|
// - 4 constant registers initialized from loop variables
|
||||||
|
//
|
||||||
|
// This is why dst_index is 2 bits
|
||||||
|
enum V4_InstructionDefinition
|
||||||
|
{
|
||||||
|
V4_OPCODE_BITS = 3,
|
||||||
|
V4_DST_INDEX_BITS = 2,
|
||||||
|
V4_SRC_INDEX_BITS = 3,
|
||||||
|
};
|
||||||
|
|
||||||
|
struct V4_Instruction
|
||||||
|
{
|
||||||
|
uint8_t opcode;
|
||||||
|
uint8_t dst_index;
|
||||||
|
uint8_t src_index;
|
||||||
|
uint32_t C;
|
||||||
|
};
|
||||||
|
|
||||||
|
#ifndef FORCEINLINE
|
||||||
|
#if defined(__GNUC__)
|
||||||
|
#define FORCEINLINE __attribute__((always_inline)) inline
|
||||||
|
#elif defined(_MSC_VER)
|
||||||
|
#define FORCEINLINE __forceinline
|
||||||
|
#else
|
||||||
|
#define FORCEINLINE inline
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#ifndef UNREACHABLE_CODE
|
||||||
|
#if defined(__GNUC__)
|
||||||
|
#define UNREACHABLE_CODE __builtin_unreachable()
|
||||||
|
#elif defined(_MSC_VER)
|
||||||
|
#define UNREACHABLE_CODE __assume(false)
|
||||||
|
#else
|
||||||
|
#define UNREACHABLE_CODE
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// Random math interpreter's loop is fully unrolled and inlined to achieve 100% branch prediction on CPU:
|
||||||
|
// every switch-case will point to the same destination on every iteration of Cryptonight main loop
|
||||||
|
//
|
||||||
|
// This is about as fast as it can get without using low-level machine code generation
|
||||||
|
static FORCEINLINE void v4_random_math(const struct V4_Instruction* code, v4_reg* r)
|
||||||
|
{
|
||||||
|
enum
|
||||||
|
{
|
||||||
|
REG_BITS = sizeof(v4_reg) * 8,
|
||||||
|
};
|
||||||
|
|
||||||
|
#define V4_EXEC(i) \
|
||||||
|
{ \
|
||||||
|
const struct V4_Instruction* op = code + i; \
|
||||||
|
const v4_reg src = r[op->src_index]; \
|
||||||
|
v4_reg* dst = r + op->dst_index; \
|
||||||
|
switch (op->opcode) \
|
||||||
|
{ \
|
||||||
|
case MUL: \
|
||||||
|
*dst *= src; \
|
||||||
|
break; \
|
||||||
|
case ADD: \
|
||||||
|
*dst += src + op->C; \
|
||||||
|
break; \
|
||||||
|
case SUB: \
|
||||||
|
*dst -= src; \
|
||||||
|
break; \
|
||||||
|
case ROR: \
|
||||||
|
{ \
|
||||||
|
const uint32_t shift = src % REG_BITS; \
|
||||||
|
*dst = (*dst >> shift) | (*dst << ((REG_BITS - shift) % REG_BITS)); \
|
||||||
|
} \
|
||||||
|
break; \
|
||||||
|
case ROL: \
|
||||||
|
{ \
|
||||||
|
const uint32_t shift = src % REG_BITS; \
|
||||||
|
*dst = (*dst << shift) | (*dst >> ((REG_BITS - shift) % REG_BITS)); \
|
||||||
|
} \
|
||||||
|
break; \
|
||||||
|
case XOR: \
|
||||||
|
*dst ^= src; \
|
||||||
|
break; \
|
||||||
|
case RET: \
|
||||||
|
return; \
|
||||||
|
default: \
|
||||||
|
UNREACHABLE_CODE; \
|
||||||
|
break; \
|
||||||
|
} \
|
||||||
|
}
|
||||||
|
|
||||||
|
#define V4_EXEC_10(j) \
|
||||||
|
V4_EXEC(j + 0) \
|
||||||
|
V4_EXEC(j + 1) \
|
||||||
|
V4_EXEC(j + 2) \
|
||||||
|
V4_EXEC(j + 3) \
|
||||||
|
V4_EXEC(j + 4) \
|
||||||
|
V4_EXEC(j + 5) \
|
||||||
|
V4_EXEC(j + 6) \
|
||||||
|
V4_EXEC(j + 7) \
|
||||||
|
V4_EXEC(j + 8) \
|
||||||
|
V4_EXEC(j + 9)
|
||||||
|
|
||||||
|
// Generated program can have 60 + a few more (usually 2-3) instructions to achieve required latency
|
||||||
|
// I've checked all block heights < 10,000,000 and here is the distribution of program sizes:
|
||||||
|
//
|
||||||
|
// 60 27960
|
||||||
|
// 61 105054
|
||||||
|
// 62 2452759
|
||||||
|
// 63 5115997
|
||||||
|
// 64 1022269
|
||||||
|
// 65 1109635
|
||||||
|
// 66 153145
|
||||||
|
// 67 8550
|
||||||
|
// 68 4529
|
||||||
|
// 69 102
|
||||||
|
|
||||||
|
// Unroll 70 instructions here
|
||||||
|
V4_EXEC_10(0); // instructions 0-9
|
||||||
|
V4_EXEC_10(10); // instructions 10-19
|
||||||
|
V4_EXEC_10(20); // instructions 20-29
|
||||||
|
V4_EXEC_10(30); // instructions 30-39
|
||||||
|
V4_EXEC_10(40); // instructions 40-49
|
||||||
|
V4_EXEC_10(50); // instructions 50-59
|
||||||
|
V4_EXEC_10(60); // instructions 60-69
|
||||||
|
|
||||||
|
#undef V4_EXEC_10
|
||||||
|
#undef V4_EXEC
|
||||||
|
}
|
||||||
|
|
||||||
|
// If we don't have enough data available, generate more
|
||||||
|
static FORCEINLINE void check_data(size_t* data_index, const size_t bytes_needed, int8_t* data, const size_t data_size)
|
||||||
|
{
|
||||||
|
if (*data_index + bytes_needed > data_size)
|
||||||
|
{
|
||||||
|
hash_extra_blake(data, data_size, (char*) data);
|
||||||
|
*data_index = 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Generates as many random math operations as possible with given latency and ALU restrictions
|
||||||
|
// "code" array must have space for NUM_INSTRUCTIONS_MAX+1 instructions
|
||||||
|
static inline int v4_random_math_init(struct V4_Instruction* code, const uint64_t height)
|
||||||
|
{
|
||||||
|
// MUL is 3 cycles, 3-way addition and rotations are 2 cycles, SUB/XOR are 1 cycle
|
||||||
|
// These latencies match real-life instruction latencies for Intel CPUs starting from Sandy Bridge and up to Skylake/Coffee lake
|
||||||
|
//
|
||||||
|
// AMD Ryzen has the same latencies except 1-cycle ROR/ROL, so it'll be a bit faster than Intel Sandy Bridge and newer processors
|
||||||
|
// Surprisingly, Intel Nehalem also has 1-cycle ROR/ROL, so it'll also be faster than Intel Sandy Bridge and newer processors
|
||||||
|
// AMD Bulldozer has 4 cycles latency for MUL (slower than Intel) and 1 cycle for ROR/ROL (faster than Intel), so average performance will be the same
|
||||||
|
// Source: https://www.agner.org/optimize/instruction_tables.pdf
|
||||||
|
const int op_latency[V4_INSTRUCTION_COUNT] = { 3, 2, 1, 2, 2, 1 };
|
||||||
|
|
||||||
|
// Instruction latencies for theoretical ASIC implementation
|
||||||
|
const int asic_op_latency[V4_INSTRUCTION_COUNT] = { 3, 1, 1, 1, 1, 1 };
|
||||||
|
|
||||||
|
// Available ALUs for each instruction
|
||||||
|
const int op_ALUs[V4_INSTRUCTION_COUNT] = { ALU_COUNT_MUL, ALU_COUNT, ALU_COUNT, ALU_COUNT, ALU_COUNT, ALU_COUNT };
|
||||||
|
|
||||||
|
int8_t data[32];
|
||||||
|
memset(data, 0, sizeof(data));
|
||||||
|
uint64_t tmp = SWAP64LE(height);
|
||||||
|
memcpy(data, &tmp, sizeof(uint64_t));
|
||||||
|
|
||||||
|
// Set data_index past the last byte in data
|
||||||
|
// to trigger full data update with blake hash
|
||||||
|
// before we start using it
|
||||||
|
size_t data_index = sizeof(data);
|
||||||
|
|
||||||
|
int code_size;
|
||||||
|
|
||||||
|
// There is a small chance (1.8%) that register R8 won't be used in the generated program
|
||||||
|
// So we keep track of it and try again if it's not used
|
||||||
|
bool r8_used;
|
||||||
|
do {
|
||||||
|
int latency[9];
|
||||||
|
int asic_latency[9];
|
||||||
|
|
||||||
|
// Tracks previous instruction and value of the source operand for registers R0-R3 throughout code execution
|
||||||
|
// byte 0: current value of the destination register
|
||||||
|
// byte 1: instruction opcode
|
||||||
|
// byte 2: current value of the source register
|
||||||
|
//
|
||||||
|
// Registers R4-R8 are constant and are treated as having the same value because when we do
|
||||||
|
// the same operation twice with two constant source registers, it can be optimized into a single operation
|
||||||
|
uint32_t inst_data[9] = { 0, 1, 2, 3, 0xFFFFFF, 0xFFFFFF, 0xFFFFFF, 0xFFFFFF, 0xFFFFFF };
|
||||||
|
|
||||||
|
bool alu_busy[TOTAL_LATENCY + 1][ALU_COUNT];
|
||||||
|
bool is_rotation[V4_INSTRUCTION_COUNT];
|
||||||
|
bool rotated[4];
|
||||||
|
int rotate_count = 0;
|
||||||
|
|
||||||
|
memset(latency, 0, sizeof(latency));
|
||||||
|
memset(asic_latency, 0, sizeof(asic_latency));
|
||||||
|
memset(alu_busy, 0, sizeof(alu_busy));
|
||||||
|
memset(is_rotation, 0, sizeof(is_rotation));
|
||||||
|
memset(rotated, 0, sizeof(rotated));
|
||||||
|
is_rotation[ROR] = true;
|
||||||
|
is_rotation[ROL] = true;
|
||||||
|
|
||||||
|
int num_retries = 0;
|
||||||
|
code_size = 0;
|
||||||
|
|
||||||
|
int total_iterations = 0;
|
||||||
|
r8_used = false;
|
||||||
|
|
||||||
|
// Generate random code to achieve minimal required latency for our abstract CPU
|
||||||
|
// Try to get this latency for all 4 registers
|
||||||
|
while (((latency[0] < TOTAL_LATENCY) || (latency[1] < TOTAL_LATENCY) || (latency[2] < TOTAL_LATENCY) || (latency[3] < TOTAL_LATENCY)) && (num_retries < 64))
|
||||||
|
{
|
||||||
|
// Fail-safe to guarantee loop termination
|
||||||
|
++total_iterations;
|
||||||
|
if (total_iterations > 256)
|
||||||
|
break;
|
||||||
|
|
||||||
|
check_data(&data_index, 1, data, sizeof(data));
|
||||||
|
|
||||||
|
const uint8_t c = ((uint8_t*)data)[data_index++];
|
||||||
|
|
||||||
|
// MUL = opcodes 0-2
|
||||||
|
// ADD = opcode 3
|
||||||
|
// SUB = opcode 4
|
||||||
|
// ROR/ROL = opcode 5, shift direction is selected randomly
|
||||||
|
// XOR = opcodes 6-7
|
||||||
|
uint8_t opcode = c & ((1 << V4_OPCODE_BITS) - 1);
|
||||||
|
if (opcode == 5)
|
||||||
|
{
|
||||||
|
check_data(&data_index, 1, data, sizeof(data));
|
||||||
|
opcode = (data[data_index++] >= 0) ? ROR : ROL;
|
||||||
|
}
|
||||||
|
else if (opcode >= 6)
|
||||||
|
{
|
||||||
|
opcode = XOR;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
opcode = (opcode <= 2) ? MUL : (opcode - 2);
|
||||||
|
}
|
||||||
|
|
||||||
|
uint8_t dst_index = (c >> V4_OPCODE_BITS) & ((1 << V4_DST_INDEX_BITS) - 1);
|
||||||
|
uint8_t src_index = (c >> (V4_OPCODE_BITS + V4_DST_INDEX_BITS)) & ((1 << V4_SRC_INDEX_BITS) - 1);
|
||||||
|
|
||||||
|
const int a = dst_index;
|
||||||
|
int b = src_index;
|
||||||
|
|
||||||
|
// Don't do ADD/SUB/XOR with the same register
|
||||||
|
if (((opcode == ADD) || (opcode == SUB) || (opcode == XOR)) && (a == b))
|
||||||
|
{
|
||||||
|
// Use register R8 as source instead
|
||||||
|
b = 8;
|
||||||
|
src_index = 8;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Don't do rotation with the same destination twice because it's equal to a single rotation
|
||||||
|
if (is_rotation[opcode] && rotated[a])
|
||||||
|
{
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Don't do the same instruction (except MUL) with the same source value twice because all other cases can be optimized:
|
||||||
|
// 2xADD(a, b, C) = ADD(a, b*2, C1+C2), same for SUB and rotations
|
||||||
|
// 2xXOR(a, b) = NOP
|
||||||
|
if ((opcode != MUL) && ((inst_data[a] & 0xFFFF00) == (opcode << 8) + ((inst_data[b] & 255) << 16)))
|
||||||
|
{
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Find which ALU is available (and when) for this instruction
|
||||||
|
int next_latency = (latency[a] > latency[b]) ? latency[a] : latency[b];
|
||||||
|
int alu_index = -1;
|
||||||
|
while (next_latency < TOTAL_LATENCY)
|
||||||
|
{
|
||||||
|
for (int i = op_ALUs[opcode] - 1; i >= 0; --i)
|
||||||
|
{
|
||||||
|
if (!alu_busy[next_latency][i])
|
||||||
|
{
|
||||||
|
// ADD is implemented as two 1-cycle instructions on a real CPU, so do an additional availability check
|
||||||
|
if ((opcode == ADD) && alu_busy[next_latency + 1][i])
|
||||||
|
{
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Rotation can only start when previous rotation is finished, so do an additional availability check
|
||||||
|
if (is_rotation[opcode] && (next_latency < rotate_count * op_latency[opcode]))
|
||||||
|
{
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
alu_index = i;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (alu_index >= 0)
|
||||||
|
{
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
++next_latency;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Don't generate instructions that leave some register unchanged for more than 7 cycles
|
||||||
|
if (next_latency > latency[a] + 7)
|
||||||
|
{
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
next_latency += op_latency[opcode];
|
||||||
|
|
||||||
|
if (next_latency <= TOTAL_LATENCY)
|
||||||
|
{
|
||||||
|
if (is_rotation[opcode])
|
||||||
|
{
|
||||||
|
++rotate_count;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Mark ALU as busy only for the first cycle when it starts executing the instruction because ALUs are fully pipelined
|
||||||
|
alu_busy[next_latency - op_latency[opcode]][alu_index] = true;
|
||||||
|
latency[a] = next_latency;
|
||||||
|
|
||||||
|
// ASIC is supposed to have enough ALUs to run as many independent instructions per cycle as possible, so latency calculation for ASIC is simple
|
||||||
|
asic_latency[a] = ((asic_latency[a] > asic_latency[b]) ? asic_latency[a] : asic_latency[b]) + asic_op_latency[opcode];
|
||||||
|
|
||||||
|
rotated[a] = is_rotation[opcode];
|
||||||
|
|
||||||
|
inst_data[a] = code_size + (opcode << 8) + ((inst_data[b] & 255) << 16);
|
||||||
|
|
||||||
|
code[code_size].opcode = opcode;
|
||||||
|
code[code_size].dst_index = dst_index;
|
||||||
|
code[code_size].src_index = src_index;
|
||||||
|
code[code_size].C = 0;
|
||||||
|
|
||||||
|
if (src_index == 8)
|
||||||
|
{
|
||||||
|
r8_used = true;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (opcode == ADD)
|
||||||
|
{
|
||||||
|
// ADD instruction is implemented as two 1-cycle instructions on a real CPU, so mark ALU as busy for the next cycle too
|
||||||
|
alu_busy[next_latency - op_latency[opcode] + 1][alu_index] = true;
|
||||||
|
|
||||||
|
// ADD instruction requires 4 more random bytes for 32-bit constant "C" in "a = a + b + C"
|
||||||
|
check_data(&data_index, sizeof(uint32_t), data, sizeof(data));
|
||||||
|
uint32_t t;
|
||||||
|
memcpy(&t, data + data_index, sizeof(uint32_t));
|
||||||
|
code[code_size].C = SWAP32LE(t);
|
||||||
|
data_index += sizeof(uint32_t);
|
||||||
|
}
|
||||||
|
|
||||||
|
++code_size;
|
||||||
|
if (code_size >= NUM_INSTRUCTIONS_MIN)
|
||||||
|
{
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
++num_retries;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// ASIC has more execution resources and can extract as much parallelism from the code as possible
|
||||||
|
// We need to add a few more MUL and ROR instructions to achieve minimal required latency for ASIC
|
||||||
|
// Get this latency for at least 1 of the 4 registers
|
||||||
|
const int prev_code_size = code_size;
|
||||||
|
while ((code_size < NUM_INSTRUCTIONS_MAX) && (asic_latency[0] < TOTAL_LATENCY) && (asic_latency[1] < TOTAL_LATENCY) && (asic_latency[2] < TOTAL_LATENCY) && (asic_latency[3] < TOTAL_LATENCY))
|
||||||
|
{
|
||||||
|
int min_idx = 0;
|
||||||
|
int max_idx = 0;
|
||||||
|
for (int i = 1; i < 4; ++i)
|
||||||
|
{
|
||||||
|
if (asic_latency[i] < asic_latency[min_idx]) min_idx = i;
|
||||||
|
if (asic_latency[i] > asic_latency[max_idx]) max_idx = i;
|
||||||
|
}
|
||||||
|
|
||||||
|
const uint8_t pattern[3] = { ROR, MUL, MUL };
|
||||||
|
const uint8_t opcode = pattern[(code_size - prev_code_size) % 3];
|
||||||
|
latency[min_idx] = latency[max_idx] + op_latency[opcode];
|
||||||
|
asic_latency[min_idx] = asic_latency[max_idx] + asic_op_latency[opcode];
|
||||||
|
|
||||||
|
code[code_size].opcode = opcode;
|
||||||
|
code[code_size].dst_index = min_idx;
|
||||||
|
code[code_size].src_index = max_idx;
|
||||||
|
code[code_size].C = 0;
|
||||||
|
++code_size;
|
||||||
|
}
|
||||||
|
|
||||||
|
// There is ~98.15% chance that loop condition is false, so this loop will execute only 1 iteration most of the time
|
||||||
|
// It never does more than 4 iterations for all block heights < 10,000,000
|
||||||
|
} while (!r8_used || (code_size < NUM_INSTRUCTIONS_MIN) || (code_size > NUM_INSTRUCTIONS_MAX));
|
||||||
|
|
||||||
|
// It's guaranteed that NUM_INSTRUCTIONS_MIN <= code_size <= NUM_INSTRUCTIONS_MAX here
|
||||||
|
// Add final instruction to stop the interpreter
|
||||||
|
code[code_size].opcode = RET;
|
||||||
|
code[code_size].dst_index = 0;
|
||||||
|
code[code_size].src_index = 0;
|
||||||
|
code[code_size].C = 0;
|
||||||
|
|
||||||
|
return code_size;
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif
|
|
@ -1054,7 +1054,7 @@ namespace cryptonote
|
||||||
}
|
}
|
||||||
blobdata bd = get_block_hashing_blob(b);
|
blobdata bd = get_block_hashing_blob(b);
|
||||||
const int cn_variant = b.major_version >= 7 ? b.major_version - 6 : 0;
|
const int cn_variant = b.major_version >= 7 ? b.major_version - 6 : 0;
|
||||||
crypto::cn_slow_hash(bd.data(), bd.size(), res, cn_variant);
|
crypto::cn_slow_hash(bd.data(), bd.size(), res, cn_variant, height);
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
//---------------------------------------------------------------
|
//---------------------------------------------------------------
|
||||||
|
|
|
@ -43,7 +43,7 @@ set_property(TARGET hash-tests
|
||||||
PROPERTY
|
PROPERTY
|
||||||
FOLDER "tests")
|
FOLDER "tests")
|
||||||
|
|
||||||
foreach (hash IN ITEMS fast slow slow-1 slow-2 tree extra-blake extra-groestl extra-jh extra-skein)
|
foreach (hash IN ITEMS fast slow slow-1 slow-2 slow-4 tree extra-blake extra-groestl extra-jh extra-skein)
|
||||||
add_test(
|
add_test(
|
||||||
NAME "hash-${hash}"
|
NAME "hash-${hash}"
|
||||||
COMMAND hash-tests "${hash}" "${CMAKE_CURRENT_SOURCE_DIR}/tests-${hash}.txt")
|
COMMAND hash-tests "${hash}" "${CMAKE_CURRENT_SOURCE_DIR}/tests-${hash}.txt")
|
||||||
|
|
|
@ -44,6 +44,13 @@ using namespace std;
|
||||||
using namespace crypto;
|
using namespace crypto;
|
||||||
typedef crypto::hash chash;
|
typedef crypto::hash chash;
|
||||||
|
|
||||||
|
struct V4_Data
|
||||||
|
{
|
||||||
|
const void* data;
|
||||||
|
size_t length;
|
||||||
|
uint64_t height;
|
||||||
|
};
|
||||||
|
|
||||||
PUSH_WARNINGS
|
PUSH_WARNINGS
|
||||||
DISABLE_VS_WARNINGS(4297)
|
DISABLE_VS_WARNINGS(4297)
|
||||||
extern "C" {
|
extern "C" {
|
||||||
|
@ -54,13 +61,17 @@ extern "C" {
|
||||||
tree_hash((const char (*)[crypto::HASH_SIZE]) data, length >> 5, hash);
|
tree_hash((const char (*)[crypto::HASH_SIZE]) data, length >> 5, hash);
|
||||||
}
|
}
|
||||||
static void cn_slow_hash_0(const void *data, size_t length, char *hash) {
|
static void cn_slow_hash_0(const void *data, size_t length, char *hash) {
|
||||||
return cn_slow_hash(data, length, hash, 0/*variant*/, 0/*prehashed*/);
|
return cn_slow_hash(data, length, hash, 0/*variant*/, 0/*prehashed*/, 0/*height*/);
|
||||||
}
|
}
|
||||||
static void cn_slow_hash_1(const void *data, size_t length, char *hash) {
|
static void cn_slow_hash_1(const void *data, size_t length, char *hash) {
|
||||||
return cn_slow_hash(data, length, hash, 1/*variant*/, 0/*prehashed*/);
|
return cn_slow_hash(data, length, hash, 1/*variant*/, 0/*prehashed*/, 0/*height*/);
|
||||||
}
|
}
|
||||||
static void cn_slow_hash_2(const void *data, size_t length, char *hash) {
|
static void cn_slow_hash_2(const void *data, size_t length, char *hash) {
|
||||||
return cn_slow_hash(data, length, hash, 2/*variant*/, 0/*prehashed*/);
|
return cn_slow_hash(data, length, hash, 2/*variant*/, 0/*prehashed*/, 0/*height*/);
|
||||||
|
}
|
||||||
|
static void cn_slow_hash_4(const void *data, size_t, char *hash) {
|
||||||
|
const V4_Data* p = reinterpret_cast<const V4_Data*>(data);
|
||||||
|
return cn_slow_hash(p->data, p->length, hash, 4/*variant*/, 0/*prehashed*/, p->height);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
POP_WARNINGS
|
POP_WARNINGS
|
||||||
|
@ -72,7 +83,7 @@ struct hash_func {
|
||||||
} hashes[] = {{"fast", cn_fast_hash}, {"slow", cn_slow_hash_0}, {"tree", hash_tree},
|
} hashes[] = {{"fast", cn_fast_hash}, {"slow", cn_slow_hash_0}, {"tree", hash_tree},
|
||||||
{"extra-blake", hash_extra_blake}, {"extra-groestl", hash_extra_groestl},
|
{"extra-blake", hash_extra_blake}, {"extra-groestl", hash_extra_groestl},
|
||||||
{"extra-jh", hash_extra_jh}, {"extra-skein", hash_extra_skein},
|
{"extra-jh", hash_extra_jh}, {"extra-skein", hash_extra_skein},
|
||||||
{"slow-1", cn_slow_hash_1}, {"slow-2", cn_slow_hash_2}};
|
{"slow-1", cn_slow_hash_1}, {"slow-2", cn_slow_hash_2}, {"slow-4", cn_slow_hash_4}};
|
||||||
|
|
||||||
int test_variant2_int_sqrt();
|
int test_variant2_int_sqrt();
|
||||||
int test_variant2_int_sqrt_ref();
|
int test_variant2_int_sqrt_ref();
|
||||||
|
@ -140,7 +151,15 @@ int main(int argc, char *argv[]) {
|
||||||
input.exceptions(ios_base::badbit | ios_base::failbit | ios_base::eofbit);
|
input.exceptions(ios_base::badbit | ios_base::failbit | ios_base::eofbit);
|
||||||
input.clear(input.rdstate());
|
input.clear(input.rdstate());
|
||||||
get(input, data);
|
get(input, data);
|
||||||
f(data.data(), data.size(), (char *) &actual);
|
if (f == cn_slow_hash_4) {
|
||||||
|
V4_Data d;
|
||||||
|
d.data = data.data();
|
||||||
|
d.length = data.size();
|
||||||
|
get(input, d.height);
|
||||||
|
f(&d, 0, (char *) &actual);
|
||||||
|
} else {
|
||||||
|
f(data.data(), data.size(), (char *) &actual);
|
||||||
|
}
|
||||||
if (expected != actual) {
|
if (expected != actual) {
|
||||||
size_t i;
|
size_t i;
|
||||||
cerr << "Hash mismatch on test " << test << endl << "Input: ";
|
cerr << "Hash mismatch on test " << test << endl << "Input: ";
|
||||||
|
|
10
tests/hash/tests-slow-4.txt
Normal file
10
tests/hash/tests-slow-4.txt
Normal file
|
@ -0,0 +1,10 @@
|
||||||
|
47c996e2d6aa453f50b15a6e829a8c6e5070500c08ba2426019510753e31af42 5468697320697320612074657374205468697320697320612074657374205468697320697320612074657374 1806260
|
||||||
|
eb17f755e8f394ff911603826b0e2a37c3f40a5990693a1be7e39cd5c178f0b4 4c6f72656d20697073756d20646f6c6f722073697420616d65742c20636f6e73656374657475722061646970697363696e67 1806261
|
||||||
|
f4de6adc61efa498fd4929ed00e88ed8e12caa2907f99cb42442567d3da9daec 656c69742c2073656420646f20656975736d6f642074656d706f7220696e6369646964756e74207574206c61626f7265 1806262
|
||||||
|
03004aaa1cdbda343fcbc835aaca191b8577c21267dadd0e4e86a57e68614a71 657420646f6c6f7265206d61676e6120616c697175612e20557420656e696d206164206d696e696d2076656e69616d2c 1806263
|
||||||
|
2081cb5646549b44356f5c81787c529367751bc1cdd5f1ea8c0a333b5e49e220 71756973206e6f737472756420657865726369746174696f6e20756c6c616d636f206c61626f726973206e697369 1806264
|
||||||
|
653c57f666f6fa1121b82f217485f6fda64ce58bf311d664e92da9119c7d5b95 757420616c697175697020657820656120636f6d6d6f646f20636f6e7365717561742e20447569732061757465 1806265
|
||||||
|
20c4b9f8ded7fd1e348341ce2b6297e5ac330e588e5f34985446fd20346b69e3 697275726520646f6c6f7220696e20726570726568656e646572697420696e20766f6c7570746174652076656c6974 1806266
|
||||||
|
82e35ae2f7258fb5cb6b53b332f898ac19c385b49fc35e32ae0c5ab56025f763 657373652063696c6c756d20646f6c6f726520657520667567696174206e756c6c612070617269617475722e 1806267
|
||||||
|
ddcf95b7d0066668a1d36d4115de1a2bc52dd1f95d94366ec34c8c3c7196e5dd 4578636570746575722073696e74206f6363616563617420637570696461746174206e6f6e2070726f6964656e742c 1806268
|
||||||
|
882c2bddf05736ab1072c678c3b75661813709a2ac1fd6e861f2dcc65d466b90 73756e7420696e2063756c706120717569206f666669636961206465736572756e74206d6f6c6c697420616e696d20696420657374206c61626f72756d2e 1806269
|
Loading…
Reference in a new issue