monero/tests/unit_tests/epee_utils.cpp

1740 lines
58 KiB
C++
Raw Normal View History

// Copyright (c) 2014-2020, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <array>
#include <boost/predef/other/endian.h>
#include <boost/endian/conversion.hpp>
#include <boost/range/algorithm/equal.hpp>
#include <boost/range/algorithm_ext/iota.hpp>
#include <cstdint>
#include <gtest/gtest.h>
#include <iterator>
#include <string>
#include <sstream>
#include <vector>
2017-10-08 21:59:08 +00:00
#ifndef _WIN32
# include <arpa/inet.h>
#endif
#include "boost/archive/portable_binary_iarchive.hpp"
#include "boost/archive/portable_binary_oarchive.hpp"
#include "byte_slice.h"
#include "byte_stream.h"
2020-03-21 05:09:44 +00:00
#include "crypto/crypto.h"
#include "hex.h"
#include "net/net_utils_base.h"
#include "net/local_ip.h"
#include "net/buffer.h"
#include "p2p/net_peerlist_boost_serialization.h"
#include "span.h"
#include "string_tools.h"
#include "storages/parserse_base_utils.h"
namespace
{
template<typename Destination, typename Source>
bool can_construct()
{
const unsigned count =
unsigned(std::is_constructible<Destination, Source>()) +
unsigned(std::is_constructible<Destination, Source&>()) +
unsigned(std::is_convertible<Source, Destination>()) +
unsigned(std::is_convertible<Source&, Destination>()) +
unsigned(std::is_assignable<Destination, Source>()) +
unsigned(std::is_assignable<Destination, Source&>());
EXPECT_TRUE(count == 6 || count == 0) <<
"Mismatch on construction results - " << count << " were true";
return count == 6;
}
// This is probably stressing the compiler more than the implementation ...
constexpr const epee::span<const char> test_string("a string");
static_assert(!test_string.empty(), "test failure");
static_assert(test_string.size() == 9, "test failure");
static_assert(test_string.size_bytes() == 9, "test_failure");
static_assert(test_string.begin() == test_string.cbegin(), "test failure");
static_assert(test_string.end() == test_string.cend(), "test failure");
static_assert(test_string.cend() - test_string.cbegin() == 9, "test failure");
static_assert(*test_string.cbegin() == 'a', "test failure");
static_assert(*(test_string.cend() - 2) == 'g', "test failure");
static_assert(
epee::span<const char>(test_string).cbegin() + 3 == test_string.cbegin() + 3,
"test failure"
);
static_assert(epee::span<char>().empty(), "test failure");
static_assert(epee::span<char>(nullptr).empty(), "test failure");
static_assert(epee::span<const char>("foo", 2).size() == 2, "test failure");
std::string std_to_hex(const std::vector<unsigned char>& source)
{
std::stringstream out;
out << std::hex;
for (const unsigned char byte : source)
{
out << std::setw(2) << std::setfill('0') << int(byte);
}
return out.str();
}
std::vector<unsigned char> get_all_bytes()
{
std::vector<unsigned char> out;
out.resize(256);
boost::range::iota(out, 0);
return out;
}
#define CHECK_EQUAL(lhs, rhs) \
EXPECT_TRUE( lhs == rhs ); \
EXPECT_TRUE( rhs == lhs ); \
EXPECT_FALSE( lhs != rhs ); \
EXPECT_FALSE( rhs != lhs ); \
EXPECT_FALSE( lhs < rhs ); \
EXPECT_FALSE( rhs < lhs ); \
EXPECT_TRUE( lhs <= rhs ); \
EXPECT_TRUE( rhs <= lhs ); \
EXPECT_FALSE( lhs > rhs ); \
EXPECT_FALSE( rhs > lhs ); \
EXPECT_TRUE( lhs >= rhs ); \
EXPECT_TRUE( rhs >= lhs )
#define CHECK_LESS(lhs, rhs) \
EXPECT_FALSE( lhs == rhs ); \
EXPECT_FALSE( rhs == lhs ); \
EXPECT_TRUE( lhs != rhs ); \
EXPECT_TRUE( rhs != lhs ); \
EXPECT_TRUE( lhs < rhs ); \
EXPECT_FALSE( rhs < lhs ); \
EXPECT_TRUE( lhs <= rhs ); \
EXPECT_FALSE( rhs <= lhs ); \
EXPECT_FALSE( lhs > rhs ); \
EXPECT_TRUE( rhs > lhs ); \
EXPECT_FALSE( lhs >= rhs ); \
EXPECT_TRUE( rhs >= lhs )
#if BOOST_ENDIAN_LITTLE_BYTE
#define CHECK_LESS_ENDIAN(lhs, rhs) CHECK_LESS( rhs , lhs )
#else
#define CHECK_LESS_ENDIAN(lhs, rhs) CHECK_LESS( lhs , rhs )
#endif
}
TEST(Span, Traits)
{
EXPECT_TRUE((std::is_same<std::size_t, typename epee::span<char>::size_type>()));
EXPECT_TRUE((std::is_same<std::ptrdiff_t, typename epee::span<char>::difference_type>()));
EXPECT_TRUE((std::is_same<char, typename epee::span<char>::value_type>()));
EXPECT_TRUE((std::is_same<char*, typename epee::span<char>::pointer>()));
EXPECT_TRUE((std::is_same<const char*, typename epee::span<char>::const_pointer>()));
EXPECT_TRUE((std::is_same<char*, typename epee::span<char>::iterator>()));
EXPECT_TRUE((std::is_same<const char*, typename epee::span<char>::const_iterator>()));
EXPECT_TRUE((std::is_same<char&, typename epee::span<char>::reference>()));
EXPECT_TRUE((std::is_same<const char&, typename epee::span<char>::const_reference>()));
EXPECT_TRUE((std::is_same<std::size_t, typename epee::span<const char>::size_type>()));
EXPECT_TRUE((std::is_same<std::ptrdiff_t, typename epee::span<const char>::difference_type>()));
EXPECT_TRUE((std::is_same<const char, typename epee::span<const char>::value_type>()));
EXPECT_TRUE((std::is_same<const char*, typename epee::span<const char>::pointer>()));
EXPECT_TRUE((std::is_same<const char*, typename epee::span<const char>::const_pointer>()));
EXPECT_TRUE((std::is_same<const char*, typename epee::span<const char>::iterator>()));
EXPECT_TRUE((std::is_same<const char*, typename epee::span<const char>::const_iterator>()));
EXPECT_TRUE((std::is_same<const char&, typename epee::span<const char>::reference>()));
EXPECT_TRUE((std::is_same<const char&, typename epee::span<const char>::const_reference>()));
}
TEST(Span, MutableConstruction)
{
struct no_conversion{};
struct inherited : no_conversion {};
EXPECT_TRUE(std::is_constructible<epee::span<char>>());
EXPECT_TRUE((std::is_constructible<epee::span<char>, char*, std::size_t>()));
EXPECT_FALSE((std::is_constructible<epee::span<char>, const char*, std::size_t>()));
EXPECT_FALSE((std::is_constructible<epee::span<char>, unsigned char*, std::size_t>()));
EXPECT_TRUE(std::is_constructible<epee::span<no_conversion>>());
EXPECT_TRUE((std::is_constructible<epee::span<no_conversion>, no_conversion*, std::size_t>()));
EXPECT_FALSE((std::is_constructible<epee::span<no_conversion>, inherited*, std::size_t>()));
EXPECT_TRUE((can_construct<epee::span<char>, std::nullptr_t>()));
EXPECT_TRUE((can_construct<epee::span<char>, char(&)[1]>()));
EXPECT_FALSE((can_construct<epee::span<char>, std::vector<char>>()));
EXPECT_FALSE((can_construct<epee::span<char>, std::array<char, 1>>()));
EXPECT_FALSE((can_construct<epee::span<char>, std::wstring>()));
EXPECT_FALSE((can_construct<epee::span<char>, const std::vector<char>>()));
EXPECT_FALSE((can_construct<epee::span<char>, std::vector<unsigned char>>()));
EXPECT_FALSE((can_construct<epee::span<char>, const std::array<char, 1>>()));
EXPECT_FALSE((can_construct<epee::span<char>, std::array<unsigned char, 1>>()));
EXPECT_FALSE((can_construct<epee::span<char>, const char[1]>()));
EXPECT_FALSE((can_construct<epee::span<char>, unsigned char[1]>()));
EXPECT_FALSE((can_construct<epee::span<char>, epee::span<const char>>()));
EXPECT_FALSE((can_construct<epee::span<char>, epee::span<unsigned char>>()));
EXPECT_FALSE((can_construct<epee::span<char>, no_conversion>()));
}
TEST(Span, ImmutableConstruction)
{
struct no_conversion{};
struct inherited : no_conversion {};
EXPECT_TRUE(std::is_constructible<epee::span<const char>>());
EXPECT_TRUE((std::is_constructible<epee::span<const char>, char*, std::size_t>()));
EXPECT_TRUE((std::is_constructible<epee::span<const char>, const char*, std::size_t>()));
EXPECT_FALSE((std::is_constructible<epee::span<const char>, unsigned char*, std::size_t>()));
EXPECT_TRUE(std::is_constructible<epee::span<const no_conversion>>());
EXPECT_TRUE((std::is_constructible<epee::span<const no_conversion>, const no_conversion*, std::size_t>()));
EXPECT_TRUE((std::is_constructible<epee::span<const no_conversion>, no_conversion*, std::size_t>()));
EXPECT_FALSE((std::is_constructible<epee::span<const no_conversion>, const inherited*, std::size_t>()));
EXPECT_FALSE((std::is_constructible<epee::span<const no_conversion>, inherited*, std::size_t>()));
EXPECT_FALSE((can_construct<epee::span<const char>, std::string>()));
EXPECT_FALSE((can_construct<epee::span<const char>, std::vector<char>>()));
EXPECT_FALSE((can_construct<epee::span<const char>, const std::vector<char>>()));
EXPECT_FALSE((can_construct<epee::span<const char>, std::array<char, 1>>()));
EXPECT_FALSE((can_construct<epee::span<const char>, const std::array<char, 1>>()));
EXPECT_TRUE((can_construct<epee::span<const char>, std::nullptr_t>()));
EXPECT_TRUE((can_construct<epee::span<const char>, char[1]>()));
EXPECT_TRUE((can_construct<epee::span<const char>, const char[1]>()));
EXPECT_TRUE((can_construct<epee::span<const char>, epee::span<const char>>()));
EXPECT_FALSE((can_construct<epee::span<const char>, std::wstring>()));
EXPECT_FALSE((can_construct<epee::span<const char>, std::vector<unsigned char>>()));
EXPECT_FALSE((can_construct<epee::span<const char>, std::array<unsigned char, 1>>()));
EXPECT_FALSE((can_construct<epee::span<const char>, unsigned char[1]>()));
EXPECT_FALSE((can_construct<epee::span<const char>, epee::span<unsigned char>>()));
EXPECT_FALSE((can_construct<epee::span<const char>, no_conversion>()));
}
TEST(Span, NoExcept)
{
EXPECT_TRUE(std::is_nothrow_default_constructible<epee::span<char>>());
EXPECT_TRUE(std::is_nothrow_move_constructible<epee::span<char>>());
EXPECT_TRUE(std::is_nothrow_copy_constructible<epee::span<char>>());
EXPECT_TRUE(std::is_move_assignable<epee::span<char>>());
EXPECT_TRUE(std::is_copy_assignable<epee::span<char>>());
char data[10];
epee::span<char> lvalue(data);
const epee::span<char> clvalue(data);
EXPECT_TRUE(noexcept(epee::span<char>()));
EXPECT_TRUE(noexcept(epee::span<char>(nullptr)));
EXPECT_TRUE(noexcept(epee::span<char>(data)));
EXPECT_TRUE(noexcept(epee::span<char>(lvalue)));
EXPECT_TRUE(noexcept(epee::span<char>(clvalue)));
// conversion from mutable to immutable not yet implemented
// EXPECT_TRUE(noexcept(epee::span<const char>(lvalue)));
// EXPECT_TRUE(noexcept(epee::span<const char>(clvalue)));
EXPECT_TRUE(noexcept(epee::span<char>(epee::span<char>(lvalue))));
EXPECT_TRUE(noexcept(lvalue = lvalue));
EXPECT_TRUE(noexcept(lvalue = clvalue));
EXPECT_TRUE(noexcept(lvalue = epee::span<char>(lvalue)));
}
TEST(Span, Nullptr)
{
const auto check_empty = [](epee::span<const char> data)
{
EXPECT_TRUE(data.empty());
EXPECT_EQ(data.cbegin(), data.begin());
EXPECT_EQ(data.cend(), data.end());
EXPECT_EQ(data.cend(), data.cbegin());
EXPECT_EQ(0, data.size());
EXPECT_EQ(0, data.size_bytes());
};
check_empty({});
check_empty(nullptr);
}
TEST(Span, Writing)
{
const int expected[] = {-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
std::vector<int> source;
epee::span<int> span;
EXPECT_TRUE(span.empty());
EXPECT_EQ(0, span.size());
EXPECT_EQ(0, span.size_bytes());
source.resize(15);
span = {source.data(), source.size()};
EXPECT_FALSE(span.empty());
EXPECT_EQ(15, span.size());
EXPECT_EQ(15 * 4, span.size_bytes());
boost::range::iota(span, -5);
EXPECT_EQ(span.begin(), span.cbegin());
EXPECT_EQ(span.end(), span.cend());
EXPECT_TRUE(boost::range::equal(expected, source));
EXPECT_TRUE(boost::range::equal(expected, span));
}
TEST(Span, RemovePrefix)
{
const std::array<unsigned, 4> expected{0, 1, 2, 3};
auto span = epee::to_span(expected);
EXPECT_EQ(expected.begin(), span.begin());
EXPECT_EQ(expected.end(), span.end());
EXPECT_EQ(2u, span.remove_prefix(2));
EXPECT_EQ(expected.begin() + 2, span.begin());
EXPECT_EQ(expected.end(), span.end());
EXPECT_EQ(2u, span.remove_prefix(3));
EXPECT_EQ(span.begin(), span.end());
EXPECT_EQ(expected.end(), span.begin());
EXPECT_EQ(0u, span.remove_prefix(100));
}
TEST(Span, ToByteSpan)
{
const char expected[] = {56, 44, 11, 5};
EXPECT_TRUE(
boost::range::equal(
std::array<std::uint8_t, 4>{{56, 44, 11, 5}},
epee::to_byte_span<char>(expected)
)
);
EXPECT_TRUE(
boost::range::equal(
std::array<char, 4>{{56, 44, 11, 5}},
epee::to_byte_span(epee::span<const char>{expected})
)
);
}
TEST(Span, AsByteSpan)
{
struct some_pod { char value[4]; };
const some_pod immutable {{ 5, 10, 12, 127 }};
EXPECT_TRUE(
boost::range::equal(
std::array<unsigned char, 4>{{5, 10, 12, 127}},
epee::as_byte_span(immutable)
)
);
EXPECT_TRUE(
boost::range::equal(
std::array<std::uint8_t, 3>{{'a', 'y', 0x00}}, epee::as_byte_span("ay")
)
);
}
TEST(Span, AsMutByteSpan)
{
struct some_pod { char value[4]; };
some_pod actual {};
auto span = epee::as_mut_byte_span(actual);
boost::range::iota(span, 1);
EXPECT_TRUE(
boost::range::equal(
std::array<unsigned char, 4>{{1, 2, 3, 4}}, actual.value
)
);
}
TEST(Span, ToMutSpan)
{
std::vector<unsigned> mut;
mut.resize(4);
auto span = epee::to_mut_span(mut);
boost::range::iota(span, 1);
EXPECT_EQ((std::vector<unsigned>{1, 2, 3, 4}), mut);
}
TEST(ByteSlice, Construction)
{
EXPECT_TRUE(std::is_default_constructible<epee::byte_slice>());
EXPECT_TRUE(std::is_move_constructible<epee::byte_slice>());
EXPECT_FALSE(std::is_copy_constructible<epee::byte_slice>());
EXPECT_TRUE(std::is_move_assignable<epee::byte_slice>());
EXPECT_FALSE(std::is_copy_assignable<epee::byte_slice>());
}
TEST(ByteSlice, NoExcept)
{
EXPECT_TRUE(std::is_nothrow_default_constructible<epee::byte_slice>());
EXPECT_TRUE(std::is_nothrow_move_constructible<epee::byte_slice>());
EXPECT_TRUE(std::is_nothrow_move_assignable<epee::byte_slice>());
epee::byte_slice lvalue{};
const epee::byte_slice clvalue{};
EXPECT_TRUE(noexcept(lvalue.clone()));
EXPECT_TRUE(noexcept(clvalue.clone()));
EXPECT_TRUE(noexcept(lvalue.begin()));
EXPECT_TRUE(noexcept(clvalue.begin()));
EXPECT_TRUE(noexcept(lvalue.end()));
EXPECT_TRUE(noexcept(clvalue.end()));
EXPECT_TRUE(noexcept(lvalue.cbegin()));
EXPECT_TRUE(noexcept(clvalue.cbegin()));
EXPECT_TRUE(noexcept(lvalue.cend()));
EXPECT_TRUE(noexcept(clvalue.cend()));
EXPECT_TRUE(noexcept(lvalue.empty()));
EXPECT_TRUE(noexcept(clvalue.empty()));
EXPECT_TRUE(noexcept(lvalue.data()));
EXPECT_TRUE(noexcept(clvalue.data()));
EXPECT_TRUE(noexcept(lvalue.size()));
EXPECT_TRUE(noexcept(clvalue.size()));
EXPECT_TRUE(noexcept(lvalue.remove_prefix(0)));
EXPECT_TRUE(noexcept(lvalue.take_slice(0)));
}
TEST(ByteSlice, Empty)
{
epee::byte_slice slice{};
EXPECT_EQ(slice.begin(), slice.end());
EXPECT_EQ(slice.begin(), slice.cbegin());
EXPECT_EQ(slice.end(), slice.cend());
EXPECT_TRUE(slice.empty());
EXPECT_EQ(0u, slice.size());
EXPECT_EQ(slice.begin(), slice.data());
EXPECT_EQ(0u, slice.get_slice(0, 0).size());
EXPECT_THROW(slice.get_slice(0, 1), std::out_of_range);
EXPECT_EQ(0u, slice.remove_prefix(1));
EXPECT_EQ(0u, slice.take_slice(1).size());
}
TEST(ByteSlice, CopySpans)
{
const epee::span<const std::uint8_t> part1 = epee::as_byte_span("this is part1");
const epee::span<const std::uint8_t> part2 = epee::as_byte_span("then part2");
const epee::span<const std::uint8_t> part3 = epee::as_byte_span("finally part3");
const epee::byte_slice slice{part1, part2, part3};
EXPECT_NE(nullptr, slice.begin());
EXPECT_NE(nullptr, slice.end());
EXPECT_NE(slice.begin(), slice.end());
EXPECT_NE(slice.cbegin(), slice.cend());
EXPECT_EQ(slice.begin(), slice.cbegin());
EXPECT_EQ(slice.end(), slice.cend());
ASSERT_EQ(slice.size(), std::size_t(slice.end() - slice.begin()));
EXPECT_FALSE(slice.empty());
EXPECT_EQ(slice.begin(), slice.data());
ASSERT_EQ(part1.size() + part2.size() + part3.size(), slice.size());
EXPECT_TRUE(
boost::range::equal(
part1, boost::make_iterator_range(slice.begin(), slice.begin() + part1.size())
)
);
EXPECT_TRUE(
boost::range::equal(
part2, boost::make_iterator_range(slice.begin() + part1.size(), slice.end() - part3.size())
)
);
EXPECT_TRUE(
boost::range::equal(
part3, boost::make_iterator_range(slice.end() - part3.size(), slice.end())
)
);
}
TEST(ByteSlice, AdaptString)
{
static constexpr const char base_string[] = "this is an example message";
std::string adapted = base_string;
const epee::span<const uint8_t> original = epee::to_byte_span(epee::to_span(adapted));
const epee::byte_slice slice{std::move(adapted)};
EXPECT_EQ(original.begin(), slice.begin());
EXPECT_EQ(original.cbegin(), slice.cbegin());
EXPECT_EQ(original.end(), slice.end());
EXPECT_EQ(original.cend(), slice.cend());
EXPECT_FALSE(slice.empty());
EXPECT_EQ(original.data(), slice.data());
EXPECT_EQ(original.size(), slice.size());
EXPECT_TRUE(boost::range::equal(boost::string_ref{base_string}, slice));
}
TEST(ByteSlice, EmptyAdaptString)
{
epee::byte_slice slice{std::string{}};
EXPECT_EQ(slice.begin(), slice.end());
EXPECT_EQ(slice.begin(), slice.cbegin());
EXPECT_EQ(slice.end(), slice.cend());
EXPECT_TRUE(slice.empty());
EXPECT_EQ(0u, slice.size());
EXPECT_EQ(slice.begin(), slice.data());
EXPECT_EQ(0u, slice.get_slice(0, 0).size());
EXPECT_THROW(slice.get_slice(0, 1), std::out_of_range);
EXPECT_EQ(0u, slice.remove_prefix(1));
EXPECT_EQ(0u, slice.take_slice(1).size());
}
TEST(ByteSlice, AdaptVector)
{
static constexpr const char base_string[] = "this is an example message";
std::vector<std::uint8_t> adapted(sizeof(base_string));
ASSERT_EQ(sizeof(base_string), adapted.size());
std::memcpy(adapted.data(), base_string, sizeof(base_string));
const epee::span<const uint8_t> original = epee::to_span(adapted);
const epee::byte_slice slice{std::move(adapted)};
EXPECT_EQ(sizeof(base_string), original.size());
EXPECT_EQ(original.begin(), slice.begin());
EXPECT_EQ(original.cbegin(), slice.cbegin());
EXPECT_EQ(original.end(), slice.end());
EXPECT_EQ(original.cend(), slice.cend());
EXPECT_FALSE(slice.empty());
EXPECT_EQ(original.data(), slice.data());
EXPECT_EQ(original.size(), slice.size());
EXPECT_TRUE(boost::range::equal(base_string, slice));
}
TEST(ByteSlice, EmptyAdaptVector)
{
epee::byte_slice slice{std::vector<std::uint8_t>{}};
EXPECT_EQ(slice.begin(), slice.end());
EXPECT_EQ(slice.begin(), slice.cbegin());
EXPECT_EQ(slice.end(), slice.cend());
EXPECT_TRUE(slice.empty());
EXPECT_EQ(0u, slice.size());
EXPECT_EQ(slice.begin(), slice.data());
EXPECT_EQ(0u, slice.get_slice(0, 0).size());
EXPECT_THROW(slice.get_slice(0, 1), std::out_of_range);
EXPECT_EQ(0u, slice.remove_prefix(1));
EXPECT_EQ(0u, slice.take_slice(1).size());
}
TEST(ByteSlice, Move)
{
static constexpr const char base_string[] = "another example message";
epee::byte_slice slice{epee::as_byte_span(base_string)};
EXPECT_TRUE(boost::range::equal(base_string, slice));
const epee::span<const std::uint8_t> original = epee::to_span(slice);
epee::byte_slice moved{std::move(slice)};
EXPECT_TRUE(boost::range::equal(base_string, moved));
EXPECT_EQ(slice.begin(), slice.end());
EXPECT_EQ(slice.begin(), slice.cbegin());
EXPECT_EQ(slice.end(), slice.cend());
EXPECT_EQ(original.begin(), moved.begin());
EXPECT_EQ(moved.begin(), moved.cbegin());
EXPECT_EQ(original.end(), moved.end());
EXPECT_EQ(moved.end(), moved.cend());
EXPECT_TRUE(slice.empty());
EXPECT_EQ(slice.begin(), slice.data());
EXPECT_EQ(0u, slice.size());
EXPECT_FALSE(moved.empty());
EXPECT_EQ(moved.begin(), moved.data());
EXPECT_EQ(original.size(), moved.size());
slice = std::move(moved);
EXPECT_TRUE(boost::range::equal(base_string, slice));
EXPECT_EQ(original.begin(), slice.begin());
EXPECT_EQ(slice.begin(), slice.cbegin());
EXPECT_EQ(original.end(), slice.end());
EXPECT_EQ(slice.end(), slice.cend());
EXPECT_FALSE(slice.empty());
EXPECT_EQ(slice.begin(), slice.data());
EXPECT_EQ(original.size(), slice.size());
EXPECT_TRUE(moved.empty());
EXPECT_EQ(moved.begin(), moved.data());
EXPECT_EQ(0u, moved.size());
}
TEST(ByteSlice, Clone)
{
static constexpr const char base_string[] = "another example message";
const epee::byte_slice slice{epee::as_byte_span(base_string)};
EXPECT_TRUE(boost::range::equal(base_string, slice));
const epee::byte_slice clone{slice.clone()};
EXPECT_TRUE(boost::range::equal(base_string, clone));
EXPECT_EQ(slice.begin(), clone.begin());
EXPECT_EQ(slice.cbegin(), clone.cbegin());
EXPECT_EQ(slice.end(), clone.end());
EXPECT_EQ(slice.cend(), clone.cend());
EXPECT_FALSE(slice.empty());
EXPECT_FALSE(clone.empty());
EXPECT_EQ(slice.cbegin(), slice.data());
EXPECT_EQ(slice.data(), clone.data());
EXPECT_EQ(sizeof(base_string), slice.size());
EXPECT_EQ(slice.size(), clone.size());
}
TEST(ByteSlice, RemovePrefix)
{
static constexpr const char base_string[] = "another example message";
static constexpr std::size_t remove_size = sizeof("another");
static constexpr std::size_t remaining = sizeof(base_string) - remove_size;
epee::byte_slice slice{epee::as_byte_span(base_string)};
EXPECT_TRUE(boost::range::equal(base_string, slice));
const epee::span<const std::uint8_t> original = epee::to_span(slice);
EXPECT_EQ(remove_size, slice.remove_prefix(remove_size));
EXPECT_EQ(original.begin() + remove_size, slice.begin());
EXPECT_EQ(slice.begin(), slice.cbegin());
EXPECT_EQ(original.end(), slice.end());
EXPECT_EQ(slice.end(), slice.cend());
EXPECT_FALSE(slice.empty());
EXPECT_EQ(slice.cbegin(), slice.data());
EXPECT_EQ(remaining, slice.size());
// touch original pointers to check "free" status
EXPECT_TRUE(boost::range::equal(base_string, original));
EXPECT_EQ(remaining, slice.remove_prefix(remaining + 1));
EXPECT_EQ(slice.begin(), slice.end());
EXPECT_EQ(slice.begin(), slice.cbegin());
EXPECT_EQ(slice.end(), slice.cend());
EXPECT_TRUE(slice.empty());
EXPECT_EQ(slice.cbegin(), slice.data());
EXPECT_EQ(0, slice.size());
}
TEST(ByteSlice, TakeSlice)
{
static constexpr const char base_string[] = "another example message";
static constexpr std::size_t remove_size = sizeof("another");
static constexpr std::size_t remaining = sizeof(base_string) - remove_size;
epee::byte_slice slice{epee::as_byte_span(base_string)};
EXPECT_TRUE(boost::range::equal(base_string, slice));
const epee::span<const std::uint8_t> original = epee::to_span(slice);
const epee::byte_slice empty_slice = slice.take_slice(0);
EXPECT_EQ(original.begin(), slice.begin());
EXPECT_EQ(slice.begin(), slice.cbegin());
EXPECT_EQ(original.end(), slice.end());
EXPECT_EQ(slice.end(), slice.cend());
EXPECT_EQ(nullptr, empty_slice.begin());
EXPECT_EQ(nullptr, empty_slice.cbegin());
EXPECT_EQ(nullptr, empty_slice.end());
EXPECT_EQ(nullptr, empty_slice.cend());
EXPECT_EQ(nullptr, empty_slice.data());
EXPECT_TRUE(empty_slice.empty());
EXPECT_EQ(0u, empty_slice.size());
EXPECT_FALSE(slice.empty());
EXPECT_EQ(slice.cbegin(), slice.data());
const epee::byte_slice slice2 = slice.take_slice(remove_size);
EXPECT_EQ(original.begin() + remove_size, slice.begin());
EXPECT_EQ(slice.begin(), slice.cbegin());
EXPECT_EQ(original.end(), slice.end());
EXPECT_EQ(slice.end(), slice.cend());
EXPECT_EQ(original.begin(), slice2.begin());
EXPECT_EQ(slice2.begin(), slice2.cbegin());
EXPECT_EQ(original.begin() + remove_size, slice2.end());
EXPECT_EQ(slice2.end(), slice2.cend());
EXPECT_FALSE(slice.empty());
EXPECT_EQ(slice.cbegin(), slice.data());
EXPECT_EQ(remaining, slice.size());
EXPECT_FALSE(slice2.empty());
EXPECT_EQ(slice2.cbegin(), slice2.data());
EXPECT_EQ(remove_size, slice2.size());
// touch original pointers to check "free" status
EXPECT_TRUE(boost::range::equal(base_string, original));
const epee::byte_slice slice3 = slice.take_slice(remaining + 1);
EXPECT_EQ(slice.begin(), slice.end());
EXPECT_EQ(slice.begin(), slice.cbegin());
EXPECT_EQ(slice.end(), slice.cend());
EXPECT_EQ(original.begin(), slice2.begin());
EXPECT_EQ(slice2.begin(), slice2.cbegin());
EXPECT_EQ(original.begin() + remove_size, slice2.end());
EXPECT_EQ(slice2.end(), slice2.cend());
EXPECT_EQ(slice2.end(), slice3.begin());
EXPECT_EQ(slice3.begin(), slice3.cbegin());
EXPECT_EQ(original.end(), slice3.end());
EXPECT_EQ(slice3.end(), slice3.cend());
EXPECT_TRUE(slice.empty());
EXPECT_EQ(slice.cbegin(), slice.data());
EXPECT_EQ(0, slice.size());
EXPECT_FALSE(slice2.empty());
EXPECT_EQ(slice2.cbegin(), slice2.data());
EXPECT_EQ(remove_size, slice2.size());
EXPECT_FALSE(slice3.empty());
EXPECT_EQ(slice3.cbegin(), slice3.data());
EXPECT_EQ(remaining, slice3.size());
// touch original pointers to check "free" status
slice = nullptr;
EXPECT_TRUE(boost::range::equal(base_string, original));
}
TEST(ByteSlice, GetSlice)
{
static constexpr const char base_string[] = "another example message";
static constexpr std::size_t get_size = sizeof("another");
static constexpr std::size_t get2_size = sizeof(base_string) - get_size;
epee::span<const std::uint8_t> original{};
epee::byte_slice slice2{};
epee::byte_slice slice3{};
// make sure get_slice increments ref count
{
const epee::byte_slice slice{epee::as_byte_span(base_string)};
EXPECT_TRUE(boost::range::equal(base_string, slice));
original = epee::to_span(slice);
slice2 = slice.get_slice(0, get_size);
EXPECT_EQ(original.begin(), slice.begin());
EXPECT_EQ(slice.begin(), slice.cbegin());
EXPECT_EQ(original.end(), slice.end());
EXPECT_EQ(slice.end(), slice.cend());
EXPECT_EQ(original.begin(), slice2.begin());
EXPECT_EQ(slice2.begin(), slice2.cbegin());
EXPECT_EQ(original.begin() + get_size, slice2.end());
EXPECT_EQ(slice2.end(), slice2.cend());
EXPECT_FALSE(slice.empty());
EXPECT_EQ(slice.cbegin(), slice.data());
EXPECT_EQ(original.size(), slice.size());
EXPECT_FALSE(slice2.empty());
EXPECT_EQ(slice2.cbegin(), slice2.data());
EXPECT_EQ(get_size, slice2.size());
// touch original pointers to check "free" status
EXPECT_TRUE(boost::range::equal(base_string, original));
slice3 = slice.get_slice(get_size, sizeof(base_string));
EXPECT_EQ(original.begin(), slice.begin());
EXPECT_EQ(slice.begin(), slice.cbegin());
EXPECT_EQ(original.end(), slice.end());
EXPECT_EQ(slice.end(), slice.cend());
EXPECT_EQ(original.begin(), slice2.begin());
EXPECT_EQ(slice2.begin(), slice2.cbegin());
EXPECT_EQ(original.begin() + get_size, slice2.end());
EXPECT_EQ(slice2.end(), slice2.cend());
EXPECT_EQ(slice2.end(), slice3.begin());
EXPECT_EQ(slice3.begin(), slice3.cbegin());
EXPECT_EQ(original.end(), slice3.end());
EXPECT_EQ(slice3.end(), slice3.cend());
EXPECT_FALSE(slice.empty());
EXPECT_EQ(slice.cbegin(), slice.data());
EXPECT_EQ(original.size(), slice.size());
EXPECT_FALSE(slice2.empty());
EXPECT_EQ(slice2.cbegin(), slice2.data());
EXPECT_EQ(get_size, slice2.size());
EXPECT_FALSE(slice3.empty());
EXPECT_EQ(slice3.cbegin(), slice3.data());
EXPECT_EQ(get2_size, slice3.size());
EXPECT_THROW(slice.get_slice(1, 0), std::out_of_range);
EXPECT_THROW(slice.get_slice(0, sizeof(base_string) + 1), std::out_of_range);
EXPECT_THROW(slice.get_slice(sizeof(base_string) + 1, sizeof(base_string) + 1), std::out_of_range);
EXPECT_TRUE(slice.get_slice(sizeof(base_string), sizeof(base_string)).empty());
EXPECT_EQ(original.begin(), slice.begin());
EXPECT_EQ(slice.begin(), slice.cbegin());
EXPECT_EQ(original.end(), slice.end());
EXPECT_EQ(slice.end(), slice.cend());
EXPECT_FALSE(slice.empty());
EXPECT_EQ(slice.cbegin(), slice.data());
EXPECT_EQ(original.size(), slice.size());
}
// touch original pointers to check "free" status
EXPECT_TRUE(boost::range::equal(base_string, original));
}
TEST(ByteStream, Construction)
{
EXPECT_TRUE(std::is_default_constructible<epee::byte_stream>());
EXPECT_TRUE(std::is_move_constructible<epee::byte_stream>());
EXPECT_FALSE(std::is_copy_constructible<epee::byte_stream>());
EXPECT_TRUE(std::is_move_assignable<epee::byte_stream>());
EXPECT_FALSE(std::is_copy_assignable<epee::byte_stream>());
}
TEST(ByteStream, Noexcept)
{
EXPECT_TRUE(std::is_nothrow_default_constructible<epee::byte_stream>());
EXPECT_TRUE(std::is_nothrow_move_constructible<epee::byte_stream>());
EXPECT_TRUE(std::is_nothrow_move_assignable<epee::byte_stream>());
epee::byte_stream lvalue;
const epee::byte_stream clvalue;
EXPECT_TRUE(noexcept(lvalue.data()));
EXPECT_TRUE(noexcept(clvalue.data()));
EXPECT_TRUE(noexcept(lvalue.tellp()));
EXPECT_TRUE(noexcept(clvalue.tellp()));
EXPECT_TRUE(noexcept(lvalue.available()));
EXPECT_TRUE(noexcept(clvalue.available()));
EXPECT_TRUE(noexcept(lvalue.size()));
EXPECT_TRUE(noexcept(clvalue.size()));
EXPECT_TRUE(noexcept(lvalue.capacity()));
EXPECT_TRUE(noexcept(clvalue.capacity()));
EXPECT_TRUE(noexcept(lvalue.put_unsafe(4)));
EXPECT_TRUE(noexcept(lvalue.take_buffer()));
}
TEST(ByteStream, Empty)
{
epee::byte_stream stream;
EXPECT_EQ(epee::byte_stream::default_increase(), stream.increase_size());
EXPECT_EQ(nullptr, stream.data());
EXPECT_EQ(nullptr, stream.tellp());
EXPECT_EQ(0u, stream.available());
EXPECT_EQ(0u, stream.size());
EXPECT_EQ(0u, stream.capacity());
const auto buf = stream.take_buffer();
EXPECT_EQ(nullptr, buf.get());
EXPECT_EQ(nullptr, stream.data());
EXPECT_EQ(nullptr, stream.tellp());
EXPECT_EQ(0u, stream.available());
EXPECT_EQ(0u, stream.size());
EXPECT_EQ(0u, stream.capacity());
}
TEST(ByteStream, Write)
{
using boost::range::equal;
using byte_span = epee::span<const std::uint8_t>;
static constexpr const std::uint8_t source[] =
{0xde, 0xad, 0xbe, 0xef, 0xef};
std::vector<std::uint8_t> bytes;
epee::byte_stream stream{4};
EXPECT_EQ(4u, stream.increase_size());
stream.write({source, 3});
bytes.insert(bytes.end(), source, source + 3);
EXPECT_EQ(3u, stream.size());
EXPECT_EQ(1u, stream.available());
EXPECT_EQ(4u, stream.capacity());
EXPECT_TRUE(equal(bytes, byte_span{stream.data(), stream.size()}));
stream.write({source, 2});
bytes.insert(bytes.end(), source, source + 2);
EXPECT_EQ(5u, stream.size());
EXPECT_EQ(3u, stream.available());
EXPECT_EQ(8u, stream.capacity());
EXPECT_TRUE(equal(bytes, byte_span{stream.data(), stream.size()}));
stream.write({source, 5});
bytes.insert(bytes.end(), source, source + 5);
EXPECT_EQ(10u, stream.size());
EXPECT_EQ(2u, stream.available());
EXPECT_EQ(12u, stream.capacity());
EXPECT_TRUE(equal(bytes, byte_span{stream.data(), stream.size()}));
stream.write({source, 2});
bytes.insert(bytes.end(), source, source + 2);
EXPECT_EQ(12u, stream.size());
EXPECT_EQ(0u, stream.available());
EXPECT_EQ(12u, stream.capacity());
EXPECT_TRUE(equal(bytes, byte_span{stream.data(), stream.size()}));
stream.write({source, 5});
bytes.insert(bytes.end(), source, source + 5);
EXPECT_EQ(17u, stream.size());
EXPECT_EQ(0u, stream.available());
EXPECT_EQ(17u, stream.capacity());
EXPECT_TRUE(equal(bytes, byte_span{stream.data(), stream.size()}));
}
TEST(ByteStream, Put)
{
using boost::range::equal;
using byte_span = epee::span<const std::uint8_t>;
std::vector<std::uint8_t> bytes;
epee::byte_stream stream;
for (std::uint8_t i = 0; i < 200; ++i)
{
bytes.push_back(i);
stream.put(i);
}
EXPECT_EQ(200u, stream.size());
EXPECT_EQ(epee::byte_stream::default_increase() - 200, stream.available());
EXPECT_EQ(epee::byte_stream::default_increase(), stream.capacity());
EXPECT_TRUE(equal(bytes, byte_span{stream.data(), stream.size()}));
}
TEST(ByteStream, Reserve)
{
using boost::range::equal;
using byte_span = epee::span<const std::uint8_t>;
static constexpr const std::uint8_t source[] =
{0xde, 0xad, 0xbe, 0xef, 0xef};
std::vector<std::uint8_t> bytes;
epee::byte_stream stream{4};
EXPECT_EQ(4u, stream.increase_size());
stream.reserve(100);
EXPECT_EQ(100u, stream.capacity());
EXPECT_EQ(0u, stream.size());
EXPECT_EQ(100u, stream.available());
for (std::size_t i = 0; i < 100 / sizeof(source); ++i)
{
stream.write(source);
bytes.insert(bytes.end(), source, source + sizeof(source));
}
EXPECT_EQ(100u, stream.size());
EXPECT_EQ(0u, stream.available());
EXPECT_EQ(100u, stream.capacity());
EXPECT_TRUE(equal(bytes, byte_span{stream.data(), stream.size()}));
}
TEST(ByteStream, TakeBuffer)
{
using boost::range::equal;
using byte_span = epee::span<const std::uint8_t>;
static constexpr const std::uint8_t source[] =
{0xde, 0xad, 0xbe, 0xef, 0xef};
epee::byte_stream stream;
stream.write(source);
ASSERT_EQ(sizeof(source), stream.size());
EXPECT_TRUE(equal(source, byte_span{stream.data(), stream.size()}));
const auto buffer = stream.take_buffer();
EXPECT_EQ(0u, stream.size());
EXPECT_EQ(0u, stream.available());
EXPECT_EQ(0u, stream.capacity());
EXPECT_EQ(nullptr, stream.data());
EXPECT_EQ(nullptr, stream.tellp());
EXPECT_TRUE(equal(source, byte_span{buffer.get(), sizeof(source)}));
}
TEST(ByteStream, Move)
{
using boost::range::equal;
using byte_span = epee::span<const std::uint8_t>;
static constexpr const std::uint8_t source[] =
{0xde, 0xad, 0xbe, 0xef, 0xef};
epee::byte_stream stream{10};
stream.write(source);
epee::byte_stream stream2{std::move(stream)};
EXPECT_EQ(10u, stream.increase_size());
EXPECT_EQ(0u, stream.size());
EXPECT_EQ(0u, stream.available());
EXPECT_EQ(0u, stream.capacity());
EXPECT_EQ(nullptr, stream.data());
EXPECT_EQ(nullptr, stream.tellp());
EXPECT_EQ(10u, stream2.increase_size());
EXPECT_EQ(5u, stream2.size());
EXPECT_EQ(5u, stream2.available());
EXPECT_EQ(10u, stream2.capacity());
EXPECT_NE(nullptr, stream2.data());
EXPECT_NE(nullptr, stream2.tellp());
EXPECT_TRUE(equal(source, byte_span{stream2.data(), stream2.size()}));
stream = epee::byte_stream{};
EXPECT_EQ(epee::byte_stream::default_increase(), stream.increase_size());
EXPECT_EQ(0u, stream.size());
EXPECT_EQ(0u, stream.available());
EXPECT_EQ(0u, stream.capacity());
EXPECT_EQ(nullptr, stream.data());
EXPECT_EQ(nullptr, stream.tellp());
stream = std::move(stream2);
EXPECT_EQ(10u, stream.increase_size());
EXPECT_EQ(5u, stream.size());
EXPECT_EQ(5u, stream.available());
EXPECT_EQ(10u, stream.capacity());
EXPECT_NE(nullptr, stream.data());
EXPECT_NE(nullptr, stream.tellp());
EXPECT_TRUE(equal(source, byte_span{stream.data(), stream.size()}));
EXPECT_EQ(10u, stream2.increase_size());
EXPECT_EQ(0u, stream2.size());
EXPECT_EQ(0u, stream2.available());
EXPECT_EQ(0u, stream2.capacity());
EXPECT_EQ(nullptr, stream2.data());
EXPECT_EQ(nullptr, stream2.tellp());
}
TEST(ByteStream, ToByteSlice)
{
using boost::range::equal;
using byte_span = epee::span<const std::uint8_t>;
static constexpr const std::uint8_t source[] =
{0xde, 0xad, 0xbe, 0xef, 0xef};
epee::byte_stream stream;
stream.write(source);
EXPECT_EQ(sizeof(source), stream.size());
EXPECT_TRUE(equal(source, byte_span{stream.data(), stream.size()}));
const epee::byte_slice slice{std::move(stream)};
EXPECT_EQ(0u, stream.size());
EXPECT_EQ(0u, stream.available());
EXPECT_EQ(0u, stream.capacity());
EXPECT_EQ(nullptr, stream.data());
EXPECT_EQ(nullptr, stream.tellp());
EXPECT_TRUE(equal(source, slice));
stream = epee::byte_stream{};
stream.reserve(1);
EXPECT_NE(nullptr, stream.data());
EXPECT_NE(nullptr, stream.tellp());
const epee::byte_slice empty_slice{std::move(stream)};
EXPECT_TRUE(empty_slice.empty());
EXPECT_EQ(0u, empty_slice.size());
EXPECT_EQ(nullptr, empty_slice.begin());
EXPECT_EQ(nullptr, empty_slice.cbegin());
EXPECT_EQ(nullptr, empty_slice.end());
EXPECT_EQ(nullptr, empty_slice.cend());
EXPECT_EQ(nullptr, empty_slice.data());
}
TEST(ToHex, String)
{
EXPECT_TRUE(epee::to_hex::string(nullptr).empty());
EXPECT_EQ(
std::string{"ffab0100"},
epee::to_hex::string(epee::as_byte_span("\xff\xab\x01"))
);
const std::vector<unsigned char> all_bytes = get_all_bytes();
EXPECT_EQ(
std_to_hex(all_bytes), epee::to_hex::string(epee::to_span(all_bytes))
);
}
TEST(HexLocale, String)
epee: add SSL support RPC connections now have optional tranparent SSL. An optional private key and certificate file can be passed, using the --{rpc,daemon}-ssl-private-key and --{rpc,daemon}-ssl-certificate options. Those have as argument a path to a PEM format private private key and certificate, respectively. If not given, a temporary self signed certificate will be used. SSL can be enabled or disabled using --{rpc}-ssl, which accepts autodetect (default), disabled or enabled. Access can be restricted to particular certificates using the --rpc-ssl-allowed-certificates, which takes a list of paths to PEM encoded certificates. This can allow a wallet to connect to only the daemon they think they're connected to, by forcing SSL and listing the paths to the known good certificates. To generate long term certificates: openssl genrsa -out /tmp/KEY 4096 openssl req -new -key /tmp/KEY -out /tmp/REQ openssl x509 -req -days 999999 -sha256 -in /tmp/REQ -signkey /tmp/KEY -out /tmp/CERT /tmp/KEY is the private key, and /tmp/CERT is the certificate, both in PEM format. /tmp/REQ can be removed. Adjust the last command to set expiration date, etc, as needed. It doesn't make a whole lot of sense for monero anyway, since most servers will run with one time temporary self signed certificates anyway. SSL support is transparent, so all communication is done on the existing ports, with SSL autodetection. This means you can start using an SSL daemon now, but you should not enforce SSL yet or nothing will talk to you.
2018-06-14 22:44:48 +00:00
{
// the source data to encode and decode
std::vector<uint8_t> source{{ 0x00, 0xFF, 0x0F, 0xF0 }};
// encode and decode the data
auto hex = epee::to_hex::string({ source.data(), source.size() });
auto decoded = epee::from_hex_locale::to_vector(hex);
epee: add SSL support RPC connections now have optional tranparent SSL. An optional private key and certificate file can be passed, using the --{rpc,daemon}-ssl-private-key and --{rpc,daemon}-ssl-certificate options. Those have as argument a path to a PEM format private private key and certificate, respectively. If not given, a temporary self signed certificate will be used. SSL can be enabled or disabled using --{rpc}-ssl, which accepts autodetect (default), disabled or enabled. Access can be restricted to particular certificates using the --rpc-ssl-allowed-certificates, which takes a list of paths to PEM encoded certificates. This can allow a wallet to connect to only the daemon they think they're connected to, by forcing SSL and listing the paths to the known good certificates. To generate long term certificates: openssl genrsa -out /tmp/KEY 4096 openssl req -new -key /tmp/KEY -out /tmp/REQ openssl x509 -req -days 999999 -sha256 -in /tmp/REQ -signkey /tmp/KEY -out /tmp/CERT /tmp/KEY is the private key, and /tmp/CERT is the certificate, both in PEM format. /tmp/REQ can be removed. Adjust the last command to set expiration date, etc, as needed. It doesn't make a whole lot of sense for monero anyway, since most servers will run with one time temporary self signed certificates anyway. SSL support is transparent, so all communication is done on the existing ports, with SSL autodetection. This means you can start using an SSL daemon now, but you should not enforce SSL yet or nothing will talk to you.
2018-06-14 22:44:48 +00:00
// encoded should be twice the size and should decode to the exact same data
EXPECT_EQ(source.size() * 2, hex.size());
EXPECT_EQ(source, decoded);
// we will now create a padded hex string, we want to explicitly allow
// decoding it this way also, ignoring spaces and colons between the numbers
hex.assign("00:ff 0f:f0");
EXPECT_EQ(source, epee::from_hex_locale::to_vector(hex));
hex.append("f0");
EXPECT_EQ(source, epee::from_hex_locale::to_vector(boost::string_ref{hex.data(), hex.size() - 2}));
epee: add SSL support RPC connections now have optional tranparent SSL. An optional private key and certificate file can be passed, using the --{rpc,daemon}-ssl-private-key and --{rpc,daemon}-ssl-certificate options. Those have as argument a path to a PEM format private private key and certificate, respectively. If not given, a temporary self signed certificate will be used. SSL can be enabled or disabled using --{rpc}-ssl, which accepts autodetect (default), disabled or enabled. Access can be restricted to particular certificates using the --rpc-ssl-allowed-certificates, which takes a list of paths to PEM encoded certificates. This can allow a wallet to connect to only the daemon they think they're connected to, by forcing SSL and listing the paths to the known good certificates. To generate long term certificates: openssl genrsa -out /tmp/KEY 4096 openssl req -new -key /tmp/KEY -out /tmp/REQ openssl x509 -req -days 999999 -sha256 -in /tmp/REQ -signkey /tmp/KEY -out /tmp/CERT /tmp/KEY is the private key, and /tmp/CERT is the certificate, both in PEM format. /tmp/REQ can be removed. Adjust the last command to set expiration date, etc, as needed. It doesn't make a whole lot of sense for monero anyway, since most servers will run with one time temporary self signed certificates anyway. SSL support is transparent, so all communication is done on the existing ports, with SSL autodetection. This means you can start using an SSL daemon now, but you should not enforce SSL yet or nothing will talk to you.
2018-06-14 22:44:48 +00:00
}
TEST(ToHex, Array)
{
EXPECT_EQ(
(std::array<char, 8>{{'f', 'f', 'a', 'b', '0', '1', '0', '0'}}),
(epee::to_hex::array(std::array<unsigned char, 4>{{0xFF, 0xAB, 0x01, 0x00}}))
);
}
TEST(ToHex, ArrayFromPod)
{
std::array<char, 64> expected{{'5', 'f', '2', 'b', '0', '1'}};
std::fill(expected.begin() + 6, expected.end(), '0');
EXPECT_EQ(
expected,
(epee::to_hex::array(crypto::ec_point{{0x5F, 0x2B, 0x01, 0x00}}))
);
}
TEST(ToHex, Ostream)
{
std::stringstream out;
epee::to_hex::buffer(out, nullptr);
EXPECT_TRUE(out.str().empty());
{
const std::uint8_t source[] = {0xff, 0xab, 0x01, 0x00};
epee::to_hex::buffer(out, source);
}
std::string expected{"ffab0100"};
EXPECT_EQ(expected, out.str());
const std::vector<unsigned char> all_bytes = get_all_bytes();
expected.append(std_to_hex(all_bytes));
epee::to_hex::buffer(out, epee::to_span(all_bytes));
EXPECT_EQ(expected, out.str());
}
TEST(ToHex, Formatted)
{
std::stringstream out;
std::string expected{"<>"};
epee::to_hex::formatted(out, nullptr);
EXPECT_EQ(expected, out.str());
expected.append("<ffab0100>");
epee::to_hex::formatted(out, epee::as_byte_span("\xFF\xAB\x01"));
EXPECT_EQ(expected, out.str());
const std::vector<unsigned char> all_bytes = get_all_bytes();
expected.append("<").append(std_to_hex(all_bytes)).append(">");
epee::to_hex::formatted(out, epee::to_span(all_bytes));
EXPECT_EQ(expected, out.str());
}
TEST(FromHex, ToString)
{
static constexpr const char hex[] = u8"deadbeeffY";
static constexpr const char binary[] = {
char(0xde), char(0xad), char(0xbe), char(0xef), 0x00
};
std::string out{};
EXPECT_FALSE(epee::from_hex::to_string(out, hex));
boost::string_ref portion{hex};
portion.remove_suffix(1);
EXPECT_FALSE(epee::from_hex::to_string(out, portion));
portion.remove_suffix(1);
EXPECT_TRUE(epee::from_hex::to_string(out, portion));
EXPECT_EQ(std::string{binary}, out);
}
TEST(FromHex, ToBuffer)
{
static constexpr const char hex[] = u8"deadbeeffY";
static constexpr const std::uint8_t binary[] = {0xde, 0xad, 0xbe, 0xef};
std::vector<std::uint8_t> out{};
out.resize(sizeof(binary));
EXPECT_FALSE(epee::from_hex::to_buffer(epee::to_mut_span(out), hex));
boost::string_ref portion{hex};
portion.remove_suffix(1);
EXPECT_FALSE(epee::from_hex::to_buffer(epee::to_mut_span(out), portion));
portion.remove_suffix(1);
EXPECT_FALSE(epee::from_hex::to_buffer({out.data(), out.size() - 1}, portion));
EXPECT_TRUE(epee::from_hex::to_buffer(epee::to_mut_span(out), portion));
const std::vector<std::uint8_t> expected{std::begin(binary), std::end(binary)};
EXPECT_EQ(expected, out);
}
TEST(StringTools, BuffToHex)
{
const std::vector<unsigned char> all_bytes = get_all_bytes();
EXPECT_EQ(
std_to_hex(all_bytes),
(epee::string_tools::buff_to_hex_nodelimer(
std::string{reinterpret_cast<const char*>(all_bytes.data()), all_bytes.size()}
))
);
}
TEST(StringTools, PodToHex)
{
struct some_pod { unsigned char data[4]; };
EXPECT_EQ(
std::string{"ffab0100"},
(epee::string_tools::pod_to_hex(some_pod{{0xFF, 0xAB, 0x01, 0x00}}))
);
}
TEST(StringTools, ParseHex)
{
static const char data[] = "a10b68c2";
for (size_t i = 0; i < sizeof(data); i += 2)
{
std::string res;
ASSERT_TRUE(epee::string_tools::parse_hexstr_to_binbuff(std::string(data, i), res));
std::string hex = epee::string_tools::buff_to_hex_nodelimer(res);
ASSERT_EQ(hex.size(), i);
ASSERT_EQ(memcmp(data, hex.data(), i), 0);
}
}
TEST(StringTools, ParseNotHex)
{
std::string res;
for (size_t i = 0; i < 256; ++i)
{
std::string inputHexString = std::string(2, static_cast<char>(i));
if ((i >= '0' && i <= '9') || (i >= 'A' && i <= 'F') || (i >= 'a' && i <= 'f')) {
ASSERT_TRUE(epee::string_tools::parse_hexstr_to_binbuff(inputHexString, res));
} else {
ASSERT_FALSE(epee::string_tools::parse_hexstr_to_binbuff(inputHexString, res));
}
}
ASSERT_FALSE(epee::string_tools::parse_hexstr_to_binbuff(std::string("a"), res));
}
TEST(StringTools, GetIpString)
{
EXPECT_EQ(
std::string{"0.0.0.0"}, epee::string_tools::get_ip_string_from_int32(0)
);
EXPECT_EQ(
std::string{"255.0.255.0"},
epee::string_tools::get_ip_string_from_int32(htonl(0xff00ff00))
);
EXPECT_EQ(
std::string{"255.255.255.255"},
epee::string_tools::get_ip_string_from_int32(htonl(0xffffffff))
);
}
TEST(StringTools, GetIpInt32)
{
std::uint32_t ip = 0;
EXPECT_FALSE(epee::string_tools::get_ip_int32_from_string(ip, ""));
EXPECT_FALSE(epee::string_tools::get_ip_int32_from_string(ip, "1."));
EXPECT_FALSE(epee::string_tools::get_ip_int32_from_string(ip, "1.1."));
EXPECT_FALSE(epee::string_tools::get_ip_int32_from_string(ip, "1.1.1."));
EXPECT_FALSE(epee::string_tools::get_ip_int32_from_string(ip, "ff.0.ff.0"));
EXPECT_FALSE(epee::string_tools::get_ip_int32_from_string(ip, "1.1.1.256"));
EXPECT_TRUE(epee::string_tools::get_ip_int32_from_string(ip, "1"));
EXPECT_EQ(htonl(1), ip);
EXPECT_TRUE(epee::string_tools::get_ip_int32_from_string(ip, "1.1"));
EXPECT_EQ(htonl(0x1000001), ip);
EXPECT_TRUE(epee::string_tools::get_ip_int32_from_string(ip, "1.1.1"));
EXPECT_EQ(htonl(0x1010001), ip);
EXPECT_TRUE(epee::string_tools::get_ip_int32_from_string(ip, "0.0.0.0"));
EXPECT_EQ(0, ip);
EXPECT_TRUE(epee::string_tools::get_ip_int32_from_string(ip, "1.1.1.1"));
EXPECT_EQ(htonl(0x01010101), ip);
/*
The existing epee conversion function does not work with 255.255.255.255, for
the reasons specified in the inet_addr documentation. Consider fixing in a
future patch. This address is not likely to be used for purposes within
monero.
EXPECT_TRUE(epee::string_tools::get_ip_int32_from_string(ip, "255.255.255.255"));
EXPECT_EQ(htonl(0xffffffff), ip);
*/
EXPECT_TRUE(epee::string_tools::get_ip_int32_from_string(ip, "10.0377.0.0377"));
EXPECT_EQ(htonl(0xaff00ff), ip);
EXPECT_TRUE(epee::string_tools::get_ip_int32_from_string(ip, "0xff.10.0xff.0"));
EXPECT_EQ(htonl(0xff0aff00), ip);
}
TEST(NetUtils, IPv4NetworkAddress)
{
static_assert(epee::net_utils::ipv4_network_address::get_type_id() == epee::net_utils::address_type::ipv4, "bad ipv4 type id");
const auto ip1 = boost::endian::native_to_big(0x330012FFu);
const auto ip_loopback = boost::endian::native_to_big(0x7F000001u);
const auto ip_local = boost::endian::native_to_big(0x0A000000u);
epee::net_utils::ipv4_network_address address1{ip1, 65535};
CHECK_EQUAL(address1, address1);
EXPECT_STREQ("51.0.18.255:65535", address1.str().c_str());
EXPECT_STREQ("51.0.18.255", address1.host_str().c_str());
EXPECT_FALSE(address1.is_loopback());
EXPECT_FALSE(address1.is_local());
EXPECT_EQ(epee::net_utils::ipv4_network_address::get_type_id(), address1.get_type_id());
EXPECT_EQ(ip1, address1.ip());
EXPECT_EQ(65535, address1.port());
EXPECT_TRUE(epee::net_utils::ipv4_network_address{std::move(address1)} == address1);
EXPECT_TRUE(epee::net_utils::ipv4_network_address{address1} == address1);
const epee::net_utils::ipv4_network_address loopback{ip_loopback, 0};
CHECK_EQUAL(loopback, loopback);
CHECK_LESS_ENDIAN(address1, loopback);
EXPECT_STREQ("127.0.0.1:0", loopback.str().c_str());
EXPECT_STREQ("127.0.0.1", loopback.host_str().c_str());
EXPECT_TRUE(loopback.is_loopback());
EXPECT_FALSE(loopback.is_local());
EXPECT_EQ(epee::net_utils::ipv4_network_address::get_type_id(), address1.get_type_id());
EXPECT_EQ(ip_loopback, loopback.ip());
EXPECT_EQ(0, loopback.port());
const epee::net_utils::ipv4_network_address local{ip_local, 8080};
CHECK_EQUAL(local, local);
CHECK_LESS(local, address1);
CHECK_LESS(local, loopback);
EXPECT_FALSE(local.is_loopback());
EXPECT_TRUE(local.is_local());
epee::net_utils::ipv4_network_address address2{ip1, 55};
CHECK_EQUAL(address2, address2);
CHECK_LESS_ENDIAN(address2, loopback);
CHECK_LESS(local, address2);
EXPECT_STREQ("51.0.18.255:55", address2.str().c_str());
EXPECT_STREQ("51.0.18.255", address2.host_str().c_str());
address2 = std::move(address1);
CHECK_EQUAL(address2, address1);
address2 = local;
CHECK_EQUAL(address2, local);
CHECK_LESS(address2, address1);
{
std::stringstream stream;
{
boost::archive::portable_binary_oarchive ostream{stream};
ostream << address1;
}
{
boost::archive::portable_binary_iarchive istream{stream};
istream >> address2;
}
}
CHECK_EQUAL(address1, address2);
EXPECT_EQ(ip1, address2.ip());
EXPECT_EQ(65535, address2.port());
}
TEST(NetUtils, NetworkAddress)
{
const auto ip1 = boost::endian::native_to_big(0x330012FFu);
const auto ip_loopback = boost::endian::native_to_big(0x7F000001u);
const auto ip_local = boost::endian::native_to_big(0x0A000000u);
struct custom_address {
constexpr static bool equal(const custom_address&) noexcept { return false; }
constexpr static bool less(const custom_address&) noexcept { return false; }
constexpr static bool is_same_host(const custom_address&) noexcept { return false; }
constexpr static bool is_loopback() noexcept { return false; }
constexpr static bool is_local() noexcept { return false; }
static std::string str() { return {}; }
static std::string host_str() { return {}; }
constexpr static epee::net_utils::address_type get_type_id() noexcept { return epee::net_utils::address_type(-1); }
constexpr static epee::net_utils::zone get_zone() noexcept { return epee::net_utils::zone::invalid; }
constexpr static bool is_blockable() noexcept { return false; }
};
const epee::net_utils::network_address empty;
CHECK_EQUAL(empty, empty);
EXPECT_TRUE(empty.is_same_host(empty));
EXPECT_STREQ("<none>", empty.str().c_str());
EXPECT_STREQ("<none>", empty.host_str().c_str());
EXPECT_FALSE(empty.is_loopback());
EXPECT_FALSE(empty.is_local());
EXPECT_EQ(epee::net_utils::address_type::invalid, empty.get_type_id());
EXPECT_EQ(epee::net_utils::zone::invalid, empty.get_zone());
EXPECT_FALSE(empty.is_blockable());
EXPECT_THROW(empty.as<custom_address>(), std::bad_cast);
epee::net_utils::network_address address1{
epee::net_utils::ipv4_network_address{ip1, 65535}
};
CHECK_EQUAL(address1, address1);
CHECK_EQUAL(epee::net_utils::network_address{address1}, address1);
CHECK_LESS(empty, address1);
EXPECT_TRUE(address1.is_same_host(address1));
EXPECT_FALSE(empty.is_same_host(address1));
EXPECT_FALSE(address1.is_same_host(empty));
EXPECT_STREQ("51.0.18.255:65535", address1.str().c_str());
EXPECT_STREQ("51.0.18.255", address1.host_str().c_str());
EXPECT_FALSE(address1.is_loopback());
EXPECT_FALSE(address1.is_local());
EXPECT_EQ(epee::net_utils::ipv4_network_address::get_type_id(), address1.get_type_id());
EXPECT_EQ(epee::net_utils::zone::public_, address1.get_zone());
EXPECT_TRUE(address1.is_blockable());
EXPECT_NO_THROW(address1.as<epee::net_utils::ipv4_network_address>());
EXPECT_THROW(address1.as<custom_address>(), std::bad_cast);
const epee::net_utils::network_address loopback{
epee::net_utils::ipv4_network_address{ip_loopback, 0}
};
CHECK_EQUAL(loopback, loopback);
CHECK_LESS(empty, loopback);
CHECK_LESS_ENDIAN(address1, loopback);
EXPECT_TRUE(loopback.is_same_host(loopback));
EXPECT_FALSE(loopback.is_same_host(address1));
EXPECT_FALSE(address1.is_same_host(loopback));
EXPECT_STREQ("127.0.0.1:0", loopback.str().c_str());
EXPECT_STREQ("127.0.0.1", loopback.host_str().c_str());
EXPECT_TRUE(loopback.is_loopback());
EXPECT_FALSE(loopback.is_local());
EXPECT_EQ(epee::net_utils::ipv4_network_address::get_type_id(), address1.get_type_id());
EXPECT_EQ(epee::net_utils::zone::public_, address1.get_zone());
EXPECT_EQ(epee::net_utils::ipv4_network_address::get_type_id(), address1.get_type_id());
const epee::net_utils::network_address local{
epee::net_utils::ipv4_network_address{ip_local, 8080}
};
CHECK_EQUAL(local, local);
CHECK_LESS(local, loopback);
CHECK_LESS(local, address1);
EXPECT_FALSE(local.is_loopback());
EXPECT_TRUE(local.is_local());
epee::net_utils::network_address address2{
epee::net_utils::ipv4_network_address{ip1, 55}
};
CHECK_EQUAL(address2, address2);
CHECK_LESS(address2, address1);
CHECK_LESS(local, address2);
CHECK_LESS_ENDIAN(address2, loopback);
EXPECT_TRUE(address1.is_same_host(address2));
EXPECT_TRUE(address2.is_same_host(address1));
EXPECT_STREQ("51.0.18.255:55", address2.str().c_str());
EXPECT_STREQ("51.0.18.255", address2.host_str().c_str());
address2 = std::move(address1);
CHECK_EQUAL(address1, address1);
CHECK_EQUAL(empty, address1);
CHECK_LESS(address1, address2);
EXPECT_FALSE(address1.is_same_host(address2));
EXPECT_FALSE(address2.is_same_host(address1));
EXPECT_STREQ("51.0.18.255:65535", address2.str().c_str());
EXPECT_STREQ("51.0.18.255", address2.host_str().c_str());
EXPECT_FALSE(address1.is_loopback());
EXPECT_FALSE(address1.is_local());
EXPECT_THROW(address1.as<epee::net_utils::ipv4_network_address>(), std::bad_cast);
EXPECT_NO_THROW(address2.as<epee::net_utils::ipv4_network_address>());
address2 = local;
CHECK_EQUAL(address2, local);
CHECK_LESS(address1, address2);
EXPECT_TRUE(address2.is_same_host(local));
EXPECT_TRUE(local.is_same_host(address2));
EXPECT_FALSE(address2.is_same_host(address1));
EXPECT_FALSE(address1.is_same_host(address2));
{
std::stringstream stream;
{
boost::archive::portable_binary_oarchive ostream{stream};
ostream << address2;
}
{
boost::archive::portable_binary_iarchive istream{stream};
istream >> address1;
}
}
CHECK_EQUAL(address1, address2);
EXPECT_TRUE(address1.is_same_host(address2));
EXPECT_TRUE(address2.is_same_host(address1));
EXPECT_NO_THROW(address1.as<epee::net_utils::ipv4_network_address>());
address1 = custom_address{};
CHECK_EQUAL(address1, address1);
CHECK_LESS(address2, address1);
EXPECT_FALSE(address1.is_same_host(loopback));
EXPECT_FALSE(loopback.is_same_host(address1));
EXPECT_THROW(address1.as<epee::net_utils::ipv4_network_address>(), std::bad_cast);
EXPECT_NO_THROW(address1.as<custom_address>());
}
static bool is_local(const char *s)
{
uint32_t ip;
CHECK_AND_ASSERT_THROW_MES(epee::string_tools::get_ip_int32_from_string(ip, s), std::string("Invalid IP address: ") + s);
return epee::net_utils::is_ip_local(ip);
}
TEST(NetUtils, PrivateRanges)
{
ASSERT_EQ(is_local("10.0.0.0"), true);
ASSERT_EQ(is_local("10.255.0.0"), true);
ASSERT_EQ(is_local("127.0.0.0"), false); // loopback is not considered local
ASSERT_EQ(is_local("192.167.255.255"), false);
ASSERT_EQ(is_local("192.168.0.0"), true);
ASSERT_EQ(is_local("192.168.255.255"), true);
ASSERT_EQ(is_local("192.169.0.0"), false);
ASSERT_EQ(is_local("172.0.0.0"), false);
ASSERT_EQ(is_local("172.15.255.255"), false);
ASSERT_EQ(is_local("172.16.0.0"), true);
ASSERT_EQ(is_local("172.16.255.255"), true);
ASSERT_EQ(is_local("172.31.255.255"), true);
ASSERT_EQ(is_local("172.32.0.0"), false);
ASSERT_EQ(is_local("0.0.0.0"), false);
ASSERT_EQ(is_local("255.255.255.254"), false);
ASSERT_EQ(is_local("11.255.255.255"), false);
ASSERT_EQ(is_local("0.0.0.10"), false);
ASSERT_EQ(is_local("0.0.168.192"), false);
ASSERT_EQ(is_local("0.0.30.172"), false);
ASSERT_EQ(is_local("0.0.30.127"), false);
}
TEST(net_buffer, basic)
{
epee::net_utils::buffer buf;
ASSERT_EQ(buf.size(), 0);
EXPECT_THROW(buf.span(1), std::runtime_error);
buf.append("a", 1);
epee::span<const uint8_t> span = buf.span(1);
ASSERT_EQ(span.size(), 1);
ASSERT_EQ(span.data()[0], 'a');
EXPECT_THROW(buf.span(2), std::runtime_error);
buf.append("bc", 2);
buf.erase(1);
EXPECT_THROW(buf.span(3), std::runtime_error);
span = buf.span(2);
ASSERT_EQ(span.size(), 2);
ASSERT_EQ(span.data()[0], 'b');
ASSERT_EQ(span.data()[1], 'c');
buf.erase(1);
EXPECT_THROW(buf.span(2), std::runtime_error);
span = buf.span(1);
ASSERT_EQ(span.size(), 1);
ASSERT_EQ(span.data()[0], 'c');
EXPECT_THROW(buf.erase(2), std::runtime_error);
buf.erase(1);
EXPECT_EQ(buf.size(), 0);
EXPECT_THROW(buf.span(1), std::runtime_error);
}
TEST(net_buffer, existing_capacity)
{
epee::net_utils::buffer buf;
buf.append("123456789", 9);
buf.erase(9);
buf.append("abc", 3);
buf.append("def", 3);
ASSERT_EQ(buf.size(), 6);
epee::span<const uint8_t> span = buf.span(6);
ASSERT_TRUE(!memcmp(span.data(), "abcdef", 6));
}
TEST(net_buffer, reallocate)
{
epee::net_utils::buffer buf;
buf.append(std::string(4000, ' ').c_str(), 4000);
buf.append(std::string(8000, '0').c_str(), 8000);
ASSERT_EQ(buf.size(), 12000);
epee::span<const uint8_t> span = buf.span(12000);
ASSERT_TRUE(!memcmp(span.data(), std::string(4000, ' ').c_str(), 4000));
ASSERT_TRUE(!memcmp(span.data() + 4000, std::string(8000, '0').c_str(), 8000));
}
TEST(net_buffer, move)
{
epee::net_utils::buffer buf;
buf.append(std::string(400, ' ').c_str(), 400);
buf.erase(399);
buf.append(std::string(4000, '0').c_str(), 4000);
ASSERT_EQ(buf.size(), 4001);
epee::span<const uint8_t> span = buf.span(4001);
ASSERT_TRUE(!memcmp(span.data(), std::string(1, ' ').c_str(), 1));
ASSERT_TRUE(!memcmp(span.data() + 1, std::string(4000, '0').c_str(), 4000));
}
TEST(parsing, isspace)
{
ASSERT_FALSE(epee::misc_utils::parse::isspace(0));
for (int c = 1; c < 256; ++c)
{
ASSERT_EQ(epee::misc_utils::parse::isspace(c), strchr("\r\n\t\f\v ", c) != NULL);
}
}
TEST(parsing, isdigit)
{
ASSERT_FALSE(epee::misc_utils::parse::isdigit(0));
for (int c = 1; c < 256; ++c)
{
ASSERT_EQ(epee::misc_utils::parse::isdigit(c), strchr("0123456789", c) != NULL);
}
}
TEST(parsing, number)
{
boost::string_ref val;
std::string s;
std::string::const_iterator i;
// the parser expects another character to end the number, and accepts things
// that aren't numbers, as it's meant as a pre-filter for strto* functions,
// so we just check that numbers get accepted, but don't test non numbers
s = "0 ";
i = s.begin();
epee::misc_utils::parse::match_number(i, s.end(), val);
ASSERT_EQ(val, "0");
s = "000 ";
i = s.begin();
epee::misc_utils::parse::match_number(i, s.end(), val);
ASSERT_EQ(val, "000");
s = "10x";
i = s.begin();
epee::misc_utils::parse::match_number(i, s.end(), val);
ASSERT_EQ(val, "10");
s = "10.09/";
i = s.begin();
epee::misc_utils::parse::match_number(i, s.end(), val);
ASSERT_EQ(val, "10.09");
s = "-1.r";
i = s.begin();
epee::misc_utils::parse::match_number(i, s.end(), val);
ASSERT_EQ(val, "-1.");
s = "-49.;";
i = s.begin();
epee::misc_utils::parse::match_number(i, s.end(), val);
ASSERT_EQ(val, "-49.");
s = "0.78/";
i = s.begin();
epee::misc_utils::parse::match_number(i, s.end(), val);
ASSERT_EQ(val, "0.78");
s = "33E9$";
i = s.begin();
epee::misc_utils::parse::match_number(i, s.end(), val);
ASSERT_EQ(val, "33E9");
s = ".34e2=";
i = s.begin();
epee::misc_utils::parse::match_number(i, s.end(), val);
ASSERT_EQ(val, ".34e2");
s = "-9.34e-2=";
i = s.begin();
epee::misc_utils::parse::match_number(i, s.end(), val);
ASSERT_EQ(val, "-9.34e-2");
s = "+9.34e+03=";
i = s.begin();
epee::misc_utils::parse::match_number(i, s.end(), val);
ASSERT_EQ(val, "+9.34e+03");
}
TEST(parsing, unicode)
{
std::string bs;
std::string s;
std::string::const_iterator si;
s = "\"\""; si = s.begin(); ASSERT_TRUE(epee::misc_utils::parse::match_string(si, s.end(), bs)); ASSERT_EQ(bs, "");
s = "\"\\u0000\""; si = s.begin(); ASSERT_TRUE(epee::misc_utils::parse::match_string(si, s.end(), bs)); ASSERT_EQ(bs, std::string(1, '\0'));
s = "\"\\u0020\""; si = s.begin(); ASSERT_TRUE(epee::misc_utils::parse::match_string(si, s.end(), bs)); ASSERT_EQ(bs, " ");
s = "\"\\u1\""; si = s.begin(); ASSERT_FALSE(epee::misc_utils::parse::match_string(si, s.end(), bs));
s = "\"\\u12\""; si = s.begin(); ASSERT_FALSE(epee::misc_utils::parse::match_string(si, s.end(), bs));
s = "\"\\u123\""; si = s.begin(); ASSERT_FALSE(epee::misc_utils::parse::match_string(si, s.end(), bs));
s = "\"\\u1234\""; si = s.begin(); ASSERT_TRUE(epee::misc_utils::parse::match_string(si, s.end(), bs)); ASSERT_EQ(bs, "");
s = "\"foo\\u1234bar\""; si = s.begin(); ASSERT_TRUE(epee::misc_utils::parse::match_string(si, s.end(), bs)); ASSERT_EQ(bs, "fooሴbar");
s = "\"\\u3042\\u307e\\u3084\\u304b\\u3059\""; si = s.begin(); ASSERT_TRUE(epee::misc_utils::parse::match_string(si, s.end(), bs)); ASSERT_EQ(bs, "あまやかす");
}