monero/tests/gtest/src/gtest.cc

4910 lines
176 KiB
C++
Raw Normal View History

2014-03-03 22:07:58 +00:00
// Copyright 2005, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: wan@google.com (Zhanyong Wan)
//
// The Google C++ Testing Framework (Google Test)
#include "gtest/gtest.h"
#include "gtest/gtest-spi.h"
#include <ctype.h>
#include <math.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <wchar.h>
#include <wctype.h>
#include <algorithm>
#include <ostream> // NOLINT
#include <sstream>
#include <vector>
#if GTEST_OS_LINUX
// TODO(kenton@google.com): Use autoconf to detect availability of
// gettimeofday().
# define GTEST_HAS_GETTIMEOFDAY_ 1
# include <fcntl.h> // NOLINT
# include <limits.h> // NOLINT
# include <sched.h> // NOLINT
// Declares vsnprintf(). This header is not available on Windows.
# include <strings.h> // NOLINT
# include <sys/mman.h> // NOLINT
# include <sys/time.h> // NOLINT
# include <unistd.h> // NOLINT
# include <string>
#elif GTEST_OS_SYMBIAN
# define GTEST_HAS_GETTIMEOFDAY_ 1
# include <sys/time.h> // NOLINT
#elif GTEST_OS_ZOS
# define GTEST_HAS_GETTIMEOFDAY_ 1
# include <sys/time.h> // NOLINT
// On z/OS we additionally need strings.h for strcasecmp.
# include <strings.h> // NOLINT
#elif GTEST_OS_WINDOWS_MOBILE // We are on Windows CE.
# include <windows.h> // NOLINT
#elif GTEST_OS_WINDOWS // We are on Windows proper.
# include <io.h> // NOLINT
# include <sys/timeb.h> // NOLINT
# include <sys/types.h> // NOLINT
# include <sys/stat.h> // NOLINT
# if GTEST_OS_WINDOWS_MINGW
// MinGW has gettimeofday() but not _ftime64().
// TODO(kenton@google.com): Use autoconf to detect availability of
// gettimeofday().
// TODO(kenton@google.com): There are other ways to get the time on
// Windows, like GetTickCount() or GetSystemTimeAsFileTime(). MinGW
// supports these. consider using them instead.
# define GTEST_HAS_GETTIMEOFDAY_ 1
# include <sys/time.h> // NOLINT
# endif // GTEST_OS_WINDOWS_MINGW
// cpplint thinks that the header is already included, so we want to
// silence it.
# include <windows.h> // NOLINT
#else
// Assume other platforms have gettimeofday().
// TODO(kenton@google.com): Use autoconf to detect availability of
// gettimeofday().
# define GTEST_HAS_GETTIMEOFDAY_ 1
// cpplint thinks that the header is already included, so we want to
// silence it.
# include <sys/time.h> // NOLINT
# include <unistd.h> // NOLINT
#endif // GTEST_OS_LINUX
#if GTEST_HAS_EXCEPTIONS
# include <stdexcept>
#endif
#if GTEST_CAN_STREAM_RESULTS_
# include <arpa/inet.h> // NOLINT
# include <netdb.h> // NOLINT
#endif
// Indicates that this translation unit is part of Google Test's
// implementation. It must come before gtest-internal-inl.h is
// included, or there will be a compiler error. This trick is to
// prevent a user from accidentally including gtest-internal-inl.h in
// his code.
#define GTEST_IMPLEMENTATION_ 1
#include "src/gtest-internal-inl.h"
#undef GTEST_IMPLEMENTATION_
#if GTEST_OS_WINDOWS
# define vsnprintf _vsnprintf
#endif // GTEST_OS_WINDOWS
namespace testing {
using internal::CountIf;
using internal::ForEach;
using internal::GetElementOr;
using internal::Shuffle;
// Constants.
// A test whose test case name or test name matches this filter is
// disabled and not run.
static const char kDisableTestFilter[] = "DISABLED_*:*/DISABLED_*";
// A test case whose name matches this filter is considered a death
// test case and will be run before test cases whose name doesn't
// match this filter.
static const char kDeathTestCaseFilter[] = "*DeathTest:*DeathTest/*";
// A test filter that matches everything.
static const char kUniversalFilter[] = "*";
// The default output file for XML output.
static const char kDefaultOutputFile[] = "test_detail.xml";
// The environment variable name for the test shard index.
static const char kTestShardIndex[] = "GTEST_SHARD_INDEX";
// The environment variable name for the total number of test shards.
static const char kTestTotalShards[] = "GTEST_TOTAL_SHARDS";
// The environment variable name for the test shard status file.
static const char kTestShardStatusFile[] = "GTEST_SHARD_STATUS_FILE";
namespace internal {
// The text used in failure messages to indicate the start of the
// stack trace.
const char kStackTraceMarker[] = "\nStack trace:\n";
// g_help_flag is true iff the --help flag or an equivalent form is
// specified on the command line.
bool g_help_flag = false;
} // namespace internal
GTEST_DEFINE_bool_(
also_run_disabled_tests,
internal::BoolFromGTestEnv("also_run_disabled_tests", false),
"Run disabled tests too, in addition to the tests normally being run.");
GTEST_DEFINE_bool_(
break_on_failure,
internal::BoolFromGTestEnv("break_on_failure", false),
"True iff a failed assertion should be a debugger break-point.");
GTEST_DEFINE_bool_(
catch_exceptions,
internal::BoolFromGTestEnv("catch_exceptions", true),
"True iff " GTEST_NAME_
" should catch exceptions and treat them as test failures.");
GTEST_DEFINE_string_(
color,
internal::StringFromGTestEnv("color", "auto"),
"Whether to use colors in the output. Valid values: yes, no, "
"and auto. 'auto' means to use colors if the output is "
"being sent to a terminal and the TERM environment variable "
"is set to xterm, xterm-color, xterm-256color, linux or cygwin.");
GTEST_DEFINE_string_(
filter,
internal::StringFromGTestEnv("filter", kUniversalFilter),
"A colon-separated list of glob (not regex) patterns "
"for filtering the tests to run, optionally followed by a "
"'-' and a : separated list of negative patterns (tests to "
"exclude). A test is run if it matches one of the positive "
"patterns and does not match any of the negative patterns.");
GTEST_DEFINE_bool_(list_tests, false,
"List all tests without running them.");
GTEST_DEFINE_string_(
output,
internal::StringFromGTestEnv("output", ""),
"A format (currently must be \"xml\"), optionally followed "
"by a colon and an output file name or directory. A directory "
"is indicated by a trailing pathname separator. "
"Examples: \"xml:filename.xml\", \"xml::directoryname/\". "
"If a directory is specified, output files will be created "
"within that directory, with file-names based on the test "
"executable's name and, if necessary, made unique by adding "
"digits.");
GTEST_DEFINE_bool_(
print_time,
internal::BoolFromGTestEnv("print_time", true),
"True iff " GTEST_NAME_
" should display elapsed time in text output.");
GTEST_DEFINE_int32_(
random_seed,
internal::Int32FromGTestEnv("random_seed", 0),
"Random number seed to use when shuffling test orders. Must be in range "
"[1, 99999], or 0 to use a seed based on the current time.");
GTEST_DEFINE_int32_(
repeat,
internal::Int32FromGTestEnv("repeat", 1),
"How many times to repeat each test. Specify a negative number "
"for repeating forever. Useful for shaking out flaky tests.");
GTEST_DEFINE_bool_(
show_internal_stack_frames, false,
"True iff " GTEST_NAME_ " should include internal stack frames when "
"printing test failure stack traces.");
GTEST_DEFINE_bool_(
shuffle,
internal::BoolFromGTestEnv("shuffle", false),
"True iff " GTEST_NAME_
" should randomize tests' order on every run.");
GTEST_DEFINE_int32_(
stack_trace_depth,
internal::Int32FromGTestEnv("stack_trace_depth", kMaxStackTraceDepth),
"The maximum number of stack frames to print when an "
"assertion fails. The valid range is 0 through 100, inclusive.");
GTEST_DEFINE_string_(
stream_result_to,
internal::StringFromGTestEnv("stream_result_to", ""),
"This flag specifies the host name and the port number on which to stream "
"test results. Example: \"localhost:555\". The flag is effective only on "
"Linux.");
GTEST_DEFINE_bool_(
throw_on_failure,
internal::BoolFromGTestEnv("throw_on_failure", false),
"When this flag is specified, a failed assertion will throw an exception "
"if exceptions are enabled or exit the program with a non-zero code "
"otherwise.");
namespace internal {
// Generates a random number from [0, range), using a Linear
// Congruential Generator (LCG). Crashes if 'range' is 0 or greater
// than kMaxRange.
UInt32 Random::Generate(UInt32 range) {
// These constants are the same as are used in glibc's rand(3).
state_ = (1103515245U*state_ + 12345U) % kMaxRange;
GTEST_CHECK_(range > 0)
<< "Cannot generate a number in the range [0, 0).";
GTEST_CHECK_(range <= kMaxRange)
<< "Generation of a number in [0, " << range << ") was requested, "
<< "but this can only generate numbers in [0, " << kMaxRange << ").";
// Converting via modulus introduces a bit of downward bias, but
// it's simple, and a linear congruential generator isn't too good
// to begin with.
return state_ % range;
}
// GTestIsInitialized() returns true iff the user has initialized
// Google Test. Useful for catching the user mistake of not initializing
// Google Test before calling RUN_ALL_TESTS().
//
// A user must call testing::InitGoogleTest() to initialize Google
// Test. g_init_gtest_count is set to the number of times
// InitGoogleTest() has been called. We don't protect this variable
// under a mutex as it is only accessed in the main thread.
int g_init_gtest_count = 0;
static bool GTestIsInitialized() { return g_init_gtest_count != 0; }
// Iterates over a vector of TestCases, keeping a running sum of the
// results of calling a given int-returning method on each.
// Returns the sum.
static int SumOverTestCaseList(const std::vector<TestCase*>& case_list,
int (TestCase::*method)() const) {
int sum = 0;
for (size_t i = 0; i < case_list.size(); i++) {
sum += (case_list[i]->*method)();
}
return sum;
}
// Returns true iff the test case passed.
static bool TestCasePassed(const TestCase* test_case) {
return test_case->should_run() && test_case->Passed();
}
// Returns true iff the test case failed.
static bool TestCaseFailed(const TestCase* test_case) {
return test_case->should_run() && test_case->Failed();
}
// Returns true iff test_case contains at least one test that should
// run.
static bool ShouldRunTestCase(const TestCase* test_case) {
return test_case->should_run();
}
// AssertHelper constructor.
AssertHelper::AssertHelper(TestPartResult::Type type,
const char* file,
int line,
const char* message)
: data_(new AssertHelperData(type, file, line, message)) {
}
AssertHelper::~AssertHelper() {
delete data_;
}
// Message assignment, for assertion streaming support.
void AssertHelper::operator=(const Message& message) const {
UnitTest::GetInstance()->
AddTestPartResult(data_->type, data_->file, data_->line,
AppendUserMessage(data_->message, message),
UnitTest::GetInstance()->impl()
->CurrentOsStackTraceExceptTop(1)
// Skips the stack frame for this function itself.
); // NOLINT
}
// Mutex for linked pointers.
GTEST_DEFINE_STATIC_MUTEX_(g_linked_ptr_mutex);
// Application pathname gotten in InitGoogleTest.
String g_executable_path;
// Returns the current application's name, removing directory path if that
// is present.
FilePath GetCurrentExecutableName() {
FilePath result;
#if GTEST_OS_WINDOWS
result.Set(FilePath(g_executable_path).RemoveExtension("exe"));
#else
result.Set(FilePath(g_executable_path));
#endif // GTEST_OS_WINDOWS
return result.RemoveDirectoryName();
}
// Functions for processing the gtest_output flag.
// Returns the output format, or "" for normal printed output.
String UnitTestOptions::GetOutputFormat() {
const char* const gtest_output_flag = GTEST_FLAG(output).c_str();
if (gtest_output_flag == NULL) return String("");
const char* const colon = strchr(gtest_output_flag, ':');
return (colon == NULL) ?
String(gtest_output_flag) :
String(gtest_output_flag, colon - gtest_output_flag);
}
// Returns the name of the requested output file, or the default if none
// was explicitly specified.
String UnitTestOptions::GetAbsolutePathToOutputFile() {
const char* const gtest_output_flag = GTEST_FLAG(output).c_str();
if (gtest_output_flag == NULL)
return String("");
const char* const colon = strchr(gtest_output_flag, ':');
if (colon == NULL)
return String(internal::FilePath::ConcatPaths(
internal::FilePath(
UnitTest::GetInstance()->original_working_dir()),
internal::FilePath(kDefaultOutputFile)).ToString() );
internal::FilePath output_name(colon + 1);
if (!output_name.IsAbsolutePath())
// TODO(wan@google.com): on Windows \some\path is not an absolute
// path (as its meaning depends on the current drive), yet the
// following logic for turning it into an absolute path is wrong.
// Fix it.
output_name = internal::FilePath::ConcatPaths(
internal::FilePath(UnitTest::GetInstance()->original_working_dir()),
internal::FilePath(colon + 1));
if (!output_name.IsDirectory())
return output_name.ToString();
internal::FilePath result(internal::FilePath::GenerateUniqueFileName(
output_name, internal::GetCurrentExecutableName(),
GetOutputFormat().c_str()));
return result.ToString();
}
// Returns true iff the wildcard pattern matches the string. The
// first ':' or '\0' character in pattern marks the end of it.
//
// This recursive algorithm isn't very efficient, but is clear and
// works well enough for matching test names, which are short.
bool UnitTestOptions::PatternMatchesString(const char *pattern,
const char *str) {
switch (*pattern) {
case '\0':
case ':': // Either ':' or '\0' marks the end of the pattern.
return *str == '\0';
case '?': // Matches any single character.
return *str != '\0' && PatternMatchesString(pattern + 1, str + 1);
case '*': // Matches any string (possibly empty) of characters.
return (*str != '\0' && PatternMatchesString(pattern, str + 1)) ||
PatternMatchesString(pattern + 1, str);
default: // Non-special character. Matches itself.
return *pattern == *str &&
PatternMatchesString(pattern + 1, str + 1);
}
}
bool UnitTestOptions::MatchesFilter(const String& name, const char* filter) {
const char *cur_pattern = filter;
for (;;) {
if (PatternMatchesString(cur_pattern, name.c_str())) {
return true;
}
// Finds the next pattern in the filter.
cur_pattern = strchr(cur_pattern, ':');
// Returns if no more pattern can be found.
if (cur_pattern == NULL) {
return false;
}
// Skips the pattern separater (the ':' character).
cur_pattern++;
}
}
// TODO(keithray): move String function implementations to gtest-string.cc.
// Returns true iff the user-specified filter matches the test case
// name and the test name.
bool UnitTestOptions::FilterMatchesTest(const String &test_case_name,
const String &test_name) {
const String& full_name = String::Format("%s.%s",
test_case_name.c_str(),
test_name.c_str());
// Split --gtest_filter at '-', if there is one, to separate into
// positive filter and negative filter portions
const char* const p = GTEST_FLAG(filter).c_str();
const char* const dash = strchr(p, '-');
String positive;
String negative;
if (dash == NULL) {
positive = GTEST_FLAG(filter).c_str(); // Whole string is a positive filter
negative = String("");
} else {
positive = String(p, dash - p); // Everything up to the dash
negative = String(dash+1); // Everything after the dash
if (positive.empty()) {
// Treat '-test1' as the same as '*-test1'
positive = kUniversalFilter;
}
}
// A filter is a colon-separated list of patterns. It matches a
// test if any pattern in it matches the test.
return (MatchesFilter(full_name, positive.c_str()) &&
!MatchesFilter(full_name, negative.c_str()));
}
#if GTEST_HAS_SEH
// Returns EXCEPTION_EXECUTE_HANDLER if Google Test should handle the
// given SEH exception, or EXCEPTION_CONTINUE_SEARCH otherwise.
// This function is useful as an __except condition.
int UnitTestOptions::GTestShouldProcessSEH(DWORD exception_code) {
// Google Test should handle a SEH exception if:
// 1. the user wants it to, AND
// 2. this is not a breakpoint exception, AND
// 3. this is not a C++ exception (VC++ implements them via SEH,
// apparently).
//
// SEH exception code for C++ exceptions.
// (see http://support.microsoft.com/kb/185294 for more information).
const DWORD kCxxExceptionCode = 0xe06d7363;
bool should_handle = true;
if (!GTEST_FLAG(catch_exceptions))
should_handle = false;
else if (exception_code == EXCEPTION_BREAKPOINT)
should_handle = false;
else if (exception_code == kCxxExceptionCode)
should_handle = false;
return should_handle ? EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH;
}
#endif // GTEST_HAS_SEH
} // namespace internal
// The c'tor sets this object as the test part result reporter used by
// Google Test. The 'result' parameter specifies where to report the
// results. Intercepts only failures from the current thread.
ScopedFakeTestPartResultReporter::ScopedFakeTestPartResultReporter(
TestPartResultArray* result)
: intercept_mode_(INTERCEPT_ONLY_CURRENT_THREAD),
result_(result) {
Init();
}
// The c'tor sets this object as the test part result reporter used by
// Google Test. The 'result' parameter specifies where to report the
// results.
ScopedFakeTestPartResultReporter::ScopedFakeTestPartResultReporter(
InterceptMode intercept_mode, TestPartResultArray* result)
: intercept_mode_(intercept_mode),
result_(result) {
Init();
}
void ScopedFakeTestPartResultReporter::Init() {
internal::UnitTestImpl* const impl = internal::GetUnitTestImpl();
if (intercept_mode_ == INTERCEPT_ALL_THREADS) {
old_reporter_ = impl->GetGlobalTestPartResultReporter();
impl->SetGlobalTestPartResultReporter(this);
} else {
old_reporter_ = impl->GetTestPartResultReporterForCurrentThread();
impl->SetTestPartResultReporterForCurrentThread(this);
}
}
// The d'tor restores the test part result reporter used by Google Test
// before.
ScopedFakeTestPartResultReporter::~ScopedFakeTestPartResultReporter() {
internal::UnitTestImpl* const impl = internal::GetUnitTestImpl();
if (intercept_mode_ == INTERCEPT_ALL_THREADS) {
impl->SetGlobalTestPartResultReporter(old_reporter_);
} else {
impl->SetTestPartResultReporterForCurrentThread(old_reporter_);
}
}
// Increments the test part result count and remembers the result.
// This method is from the TestPartResultReporterInterface interface.
void ScopedFakeTestPartResultReporter::ReportTestPartResult(
const TestPartResult& result) {
result_->Append(result);
}
namespace internal {
// Returns the type ID of ::testing::Test. We should always call this
// instead of GetTypeId< ::testing::Test>() to get the type ID of
// testing::Test. This is to work around a suspected linker bug when
// using Google Test as a framework on Mac OS X. The bug causes
// GetTypeId< ::testing::Test>() to return different values depending
// on whether the call is from the Google Test framework itself or
// from user test code. GetTestTypeId() is guaranteed to always
// return the same value, as it always calls GetTypeId<>() from the
// gtest.cc, which is within the Google Test framework.
TypeId GetTestTypeId() {
return GetTypeId<Test>();
}
// The value of GetTestTypeId() as seen from within the Google Test
// library. This is solely for testing GetTestTypeId().
extern const TypeId kTestTypeIdInGoogleTest = GetTestTypeId();
// This predicate-formatter checks that 'results' contains a test part
// failure of the given type and that the failure message contains the
// given substring.
AssertionResult HasOneFailure(const char* /* results_expr */,
const char* /* type_expr */,
const char* /* substr_expr */,
const TestPartResultArray& results,
TestPartResult::Type type,
const string& substr) {
const String expected(type == TestPartResult::kFatalFailure ?
"1 fatal failure" :
"1 non-fatal failure");
Message msg;
if (results.size() != 1) {
msg << "Expected: " << expected << "\n"
<< " Actual: " << results.size() << " failures";
for (int i = 0; i < results.size(); i++) {
msg << "\n" << results.GetTestPartResult(i);
}
return AssertionFailure() << msg;
}
const TestPartResult& r = results.GetTestPartResult(0);
if (r.type() != type) {
return AssertionFailure() << "Expected: " << expected << "\n"
<< " Actual:\n"
<< r;
}
if (strstr(r.message(), substr.c_str()) == NULL) {
return AssertionFailure() << "Expected: " << expected << " containing \""
<< substr << "\"\n"
<< " Actual:\n"
<< r;
}
return AssertionSuccess();
}
// The constructor of SingleFailureChecker remembers where to look up
// test part results, what type of failure we expect, and what
// substring the failure message should contain.
SingleFailureChecker:: SingleFailureChecker(
const TestPartResultArray* results,
TestPartResult::Type type,
const string& substr)
: results_(results),
type_(type),
substr_(substr) {}
// The destructor of SingleFailureChecker verifies that the given
// TestPartResultArray contains exactly one failure that has the given
// type and contains the given substring. If that's not the case, a
// non-fatal failure will be generated.
SingleFailureChecker::~SingleFailureChecker() {
EXPECT_PRED_FORMAT3(HasOneFailure, *results_, type_, substr_);
}
DefaultGlobalTestPartResultReporter::DefaultGlobalTestPartResultReporter(
UnitTestImpl* unit_test) : unit_test_(unit_test) {}
void DefaultGlobalTestPartResultReporter::ReportTestPartResult(
const TestPartResult& result) {
unit_test_->current_test_result()->AddTestPartResult(result);
unit_test_->listeners()->repeater()->OnTestPartResult(result);
}
DefaultPerThreadTestPartResultReporter::DefaultPerThreadTestPartResultReporter(
UnitTestImpl* unit_test) : unit_test_(unit_test) {}
void DefaultPerThreadTestPartResultReporter::ReportTestPartResult(
const TestPartResult& result) {
unit_test_->GetGlobalTestPartResultReporter()->ReportTestPartResult(result);
}
// Returns the global test part result reporter.
TestPartResultReporterInterface*
UnitTestImpl::GetGlobalTestPartResultReporter() {
internal::MutexLock lock(&global_test_part_result_reporter_mutex_);
return global_test_part_result_repoter_;
}
// Sets the global test part result reporter.
void UnitTestImpl::SetGlobalTestPartResultReporter(
TestPartResultReporterInterface* reporter) {
internal::MutexLock lock(&global_test_part_result_reporter_mutex_);
global_test_part_result_repoter_ = reporter;
}
// Returns the test part result reporter for the current thread.
TestPartResultReporterInterface*
UnitTestImpl::GetTestPartResultReporterForCurrentThread() {
return per_thread_test_part_result_reporter_.get();
}
// Sets the test part result reporter for the current thread.
void UnitTestImpl::SetTestPartResultReporterForCurrentThread(
TestPartResultReporterInterface* reporter) {
per_thread_test_part_result_reporter_.set(reporter);
}
// Gets the number of successful test cases.
int UnitTestImpl::successful_test_case_count() const {
return CountIf(test_cases_, TestCasePassed);
}
// Gets the number of failed test cases.
int UnitTestImpl::failed_test_case_count() const {
return CountIf(test_cases_, TestCaseFailed);
}
// Gets the number of all test cases.
int UnitTestImpl::total_test_case_count() const {
return static_cast<int>(test_cases_.size());
}
// Gets the number of all test cases that contain at least one test
// that should run.
int UnitTestImpl::test_case_to_run_count() const {
return CountIf(test_cases_, ShouldRunTestCase);
}
// Gets the number of successful tests.
int UnitTestImpl::successful_test_count() const {
return SumOverTestCaseList(test_cases_, &TestCase::successful_test_count);
}
// Gets the number of failed tests.
int UnitTestImpl::failed_test_count() const {
return SumOverTestCaseList(test_cases_, &TestCase::failed_test_count);
}
// Gets the number of disabled tests.
int UnitTestImpl::disabled_test_count() const {
return SumOverTestCaseList(test_cases_, &TestCase::disabled_test_count);
}
// Gets the number of all tests.
int UnitTestImpl::total_test_count() const {
return SumOverTestCaseList(test_cases_, &TestCase::total_test_count);
}
// Gets the number of tests that should run.
int UnitTestImpl::test_to_run_count() const {
return SumOverTestCaseList(test_cases_, &TestCase::test_to_run_count);
}
// Returns the current OS stack trace as a String.
//
// The maximum number of stack frames to be included is specified by
// the gtest_stack_trace_depth flag. The skip_count parameter
// specifies the number of top frames to be skipped, which doesn't
// count against the number of frames to be included.
//
// For example, if Foo() calls Bar(), which in turn calls
// CurrentOsStackTraceExceptTop(1), Foo() will be included in the
// trace but Bar() and CurrentOsStackTraceExceptTop() won't.
String UnitTestImpl::CurrentOsStackTraceExceptTop(int skip_count) {
(void)skip_count;
return String("");
}
// Returns the current time in milliseconds.
TimeInMillis GetTimeInMillis() {
#if GTEST_OS_WINDOWS_MOBILE || defined(__BORLANDC__)
// Difference between 1970-01-01 and 1601-01-01 in milliseconds.
// http://analogous.blogspot.com/2005/04/epoch.html
const TimeInMillis kJavaEpochToWinFileTimeDelta =
static_cast<TimeInMillis>(116444736UL) * 100000UL;
const DWORD kTenthMicrosInMilliSecond = 10000;
SYSTEMTIME now_systime;
FILETIME now_filetime;
ULARGE_INTEGER now_int64;
// TODO(kenton@google.com): Shouldn't this just use
// GetSystemTimeAsFileTime()?
GetSystemTime(&now_systime);
if (SystemTimeToFileTime(&now_systime, &now_filetime)) {
now_int64.LowPart = now_filetime.dwLowDateTime;
now_int64.HighPart = now_filetime.dwHighDateTime;
now_int64.QuadPart = (now_int64.QuadPart / kTenthMicrosInMilliSecond) -
kJavaEpochToWinFileTimeDelta;
return now_int64.QuadPart;
}
return 0;
#elif GTEST_OS_WINDOWS && !GTEST_HAS_GETTIMEOFDAY_
__timeb64 now;
# ifdef _MSC_VER
// MSVC 8 deprecates _ftime64(), so we want to suppress warning 4996
// (deprecated function) there.
// TODO(kenton@google.com): Use GetTickCount()? Or use
// SystemTimeToFileTime()
# pragma warning(push) // Saves the current warning state.
# pragma warning(disable:4996) // Temporarily disables warning 4996.
_ftime64(&now);
# pragma warning(pop) // Restores the warning state.
# else
_ftime64(&now);
# endif // _MSC_VER
return static_cast<TimeInMillis>(now.time) * 1000 + now.millitm;
#elif GTEST_HAS_GETTIMEOFDAY_
struct timeval now;
gettimeofday(&now, NULL);
return static_cast<TimeInMillis>(now.tv_sec) * 1000 + now.tv_usec / 1000;
#else
# error "Don't know how to get the current time on your system."
#endif
}
// Utilities
// class String
// Returns the input enclosed in double quotes if it's not NULL;
// otherwise returns "(null)". For example, "\"Hello\"" is returned
// for input "Hello".
//
// This is useful for printing a C string in the syntax of a literal.
//
// Known issue: escape sequences are not handled yet.
String String::ShowCStringQuoted(const char* c_str) {
return c_str ? String::Format("\"%s\"", c_str) : String("(null)");
}
// Copies at most length characters from str into a newly-allocated
// piece of memory of size length+1. The memory is allocated with new[].
// A terminating null byte is written to the memory, and a pointer to it
// is returned. If str is NULL, NULL is returned.
static char* CloneString(const char* str, size_t length) {
if (str == NULL) {
return NULL;
} else {
char* const clone = new char[length + 1];
posix::StrNCpy(clone, str, length);
clone[length] = '\0';
return clone;
}
}
// Clones a 0-terminated C string, allocating memory using new. The
// caller is responsible for deleting[] the return value. Returns the
// cloned string, or NULL if the input is NULL.
const char * String::CloneCString(const char* c_str) {
return (c_str == NULL) ?
NULL : CloneString(c_str, strlen(c_str));
}
#if GTEST_OS_WINDOWS_MOBILE
// Creates a UTF-16 wide string from the given ANSI string, allocating
// memory using new. The caller is responsible for deleting the return
// value using delete[]. Returns the wide string, or NULL if the
// input is NULL.
LPCWSTR String::AnsiToUtf16(const char* ansi) {
if (!ansi) return NULL;
const int length = strlen(ansi);
const int unicode_length =
MultiByteToWideChar(CP_ACP, 0, ansi, length,
NULL, 0);
WCHAR* unicode = new WCHAR[unicode_length + 1];
MultiByteToWideChar(CP_ACP, 0, ansi, length,
unicode, unicode_length);
unicode[unicode_length] = 0;
return unicode;
}
// Creates an ANSI string from the given wide string, allocating
// memory using new. The caller is responsible for deleting the return
// value using delete[]. Returns the ANSI string, or NULL if the
// input is NULL.
const char* String::Utf16ToAnsi(LPCWSTR utf16_str) {
if (!utf16_str) return NULL;
const int ansi_length =
WideCharToMultiByte(CP_ACP, 0, utf16_str, -1,
NULL, 0, NULL, NULL);
char* ansi = new char[ansi_length + 1];
WideCharToMultiByte(CP_ACP, 0, utf16_str, -1,
ansi, ansi_length, NULL, NULL);
ansi[ansi_length] = 0;
return ansi;
}
#endif // GTEST_OS_WINDOWS_MOBILE
// Compares two C strings. Returns true iff they have the same content.
//
// Unlike strcmp(), this function can handle NULL argument(s). A NULL
// C string is considered different to any non-NULL C string,
// including the empty string.
bool String::CStringEquals(const char * lhs, const char * rhs) {
if ( lhs == NULL ) return rhs == NULL;
if ( rhs == NULL ) return false;
return strcmp(lhs, rhs) == 0;
}
#if GTEST_HAS_STD_WSTRING || GTEST_HAS_GLOBAL_WSTRING
// Converts an array of wide chars to a narrow string using the UTF-8
// encoding, and streams the result to the given Message object.
static void StreamWideCharsToMessage(const wchar_t* wstr, size_t length,
Message* msg) {
// TODO(wan): consider allowing a testing::String object to
// contain '\0'. This will make it behave more like std::string,
// and will allow ToUtf8String() to return the correct encoding
// for '\0' s.t. we can get rid of the conditional here (and in
// several other places).
for (size_t i = 0; i != length; ) { // NOLINT
if (wstr[i] != L'\0') {
*msg << WideStringToUtf8(wstr + i, static_cast<int>(length - i));
while (i != length && wstr[i] != L'\0')
i++;
} else {
*msg << '\0';
i++;
}
}
}
#endif // GTEST_HAS_STD_WSTRING || GTEST_HAS_GLOBAL_WSTRING
} // namespace internal
#if GTEST_HAS_STD_WSTRING
// Converts the given wide string to a narrow string using the UTF-8
// encoding, and streams the result to this Message object.
Message& Message::operator <<(const ::std::wstring& wstr) {
internal::StreamWideCharsToMessage(wstr.c_str(), wstr.length(), this);
return *this;
}
#endif // GTEST_HAS_STD_WSTRING
#if GTEST_HAS_GLOBAL_WSTRING
// Converts the given wide string to a narrow string using the UTF-8
// encoding, and streams the result to this Message object.
Message& Message::operator <<(const ::wstring& wstr) {
internal::StreamWideCharsToMessage(wstr.c_str(), wstr.length(), this);
return *this;
}
#endif // GTEST_HAS_GLOBAL_WSTRING
// AssertionResult constructors.
// Used in EXPECT_TRUE/FALSE(assertion_result).
AssertionResult::AssertionResult(const AssertionResult& other)
: success_(other.success_),
message_(other.message_.get() != NULL ?
new ::std::string(*other.message_) :
static_cast< ::std::string*>(NULL)) {
}
// Returns the assertion's negation. Used with EXPECT/ASSERT_FALSE.
AssertionResult AssertionResult::operator!() const {
AssertionResult negation(!success_);
if (message_.get() != NULL)
negation << *message_;
return negation;
}
// Makes a successful assertion result.
AssertionResult AssertionSuccess() {
return AssertionResult(true);
}
// Makes a failed assertion result.
AssertionResult AssertionFailure() {
return AssertionResult(false);
}
// Makes a failed assertion result with the given failure message.
// Deprecated; use AssertionFailure() << message.
AssertionResult AssertionFailure(const Message& message) {
return AssertionFailure() << message;
}
namespace internal {
// Constructs and returns the message for an equality assertion
// (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
//
// The first four parameters are the expressions used in the assertion
// and their values, as strings. For example, for ASSERT_EQ(foo, bar)
// where foo is 5 and bar is 6, we have:
//
// expected_expression: "foo"
// actual_expression: "bar"
// expected_value: "5"
// actual_value: "6"
//
// The ignoring_case parameter is true iff the assertion is a
// *_STRCASEEQ*. When it's true, the string " (ignoring case)" will
// be inserted into the message.
AssertionResult EqFailure(const char* expected_expression,
const char* actual_expression,
const String& expected_value,
const String& actual_value,
bool ignoring_case) {
Message msg;
msg << "Value of: " << actual_expression;
if (actual_value != actual_expression) {
msg << "\n Actual: " << actual_value;
}
msg << "\nExpected: " << expected_expression;
if (ignoring_case) {
msg << " (ignoring case)";
}
if (expected_value != expected_expression) {
msg << "\nWhich is: " << expected_value;
}
return AssertionFailure() << msg;
}
// Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
String GetBoolAssertionFailureMessage(const AssertionResult& assertion_result,
const char* expression_text,
const char* actual_predicate_value,
const char* expected_predicate_value) {
const char* actual_message = assertion_result.message();
Message msg;
msg << "Value of: " << expression_text
<< "\n Actual: " << actual_predicate_value;
if (actual_message[0] != '\0')
msg << " (" << actual_message << ")";
msg << "\nExpected: " << expected_predicate_value;
return msg.GetString();
}
// Helper function for implementing ASSERT_NEAR.
AssertionResult DoubleNearPredFormat(const char* expr1,
const char* expr2,
const char* abs_error_expr,
double val1,
double val2,
double abs_error) {
const double diff = fabs(val1 - val2);
if (diff <= abs_error) return AssertionSuccess();
// TODO(wan): do not print the value of an expression if it's
// already a literal.
return AssertionFailure()
<< "The difference between " << expr1 << " and " << expr2
<< " is " << diff << ", which exceeds " << abs_error_expr << ", where\n"
<< expr1 << " evaluates to " << val1 << ",\n"
<< expr2 << " evaluates to " << val2 << ", and\n"
<< abs_error_expr << " evaluates to " << abs_error << ".";
}
// Helper template for implementing FloatLE() and DoubleLE().
template <typename RawType>
AssertionResult FloatingPointLE(const char* expr1,
const char* expr2,
RawType val1,
RawType val2) {
// Returns success if val1 is less than val2,
if (val1 < val2) {
return AssertionSuccess();
}
// or if val1 is almost equal to val2.
const FloatingPoint<RawType> lhs(val1), rhs(val2);
if (lhs.AlmostEquals(rhs)) {
return AssertionSuccess();
}
// Note that the above two checks will both fail if either val1 or
// val2 is NaN, as the IEEE floating-point standard requires that
// any predicate involving a NaN must return false.
::std::stringstream val1_ss;
val1_ss << std::setprecision(std::numeric_limits<RawType>::digits10 + 2)
<< val1;
::std::stringstream val2_ss;
val2_ss << std::setprecision(std::numeric_limits<RawType>::digits10 + 2)
<< val2;
return AssertionFailure()
<< "Expected: (" << expr1 << ") <= (" << expr2 << ")\n"
<< " Actual: " << StringStreamToString(&val1_ss) << " vs "
<< StringStreamToString(&val2_ss);
}
} // namespace internal
// Asserts that val1 is less than, or almost equal to, val2. Fails
// otherwise. In particular, it fails if either val1 or val2 is NaN.
AssertionResult FloatLE(const char* expr1, const char* expr2,
float val1, float val2) {
return internal::FloatingPointLE<float>(expr1, expr2, val1, val2);
}
// Asserts that val1 is less than, or almost equal to, val2. Fails
// otherwise. In particular, it fails if either val1 or val2 is NaN.
AssertionResult DoubleLE(const char* expr1, const char* expr2,
double val1, double val2) {
return internal::FloatingPointLE<double>(expr1, expr2, val1, val2);
}
namespace internal {
// The helper function for {ASSERT|EXPECT}_EQ with int or enum
// arguments.
AssertionResult CmpHelperEQ(const char* expected_expression,
const char* actual_expression,
BiggestInt expected,
BiggestInt actual) {
if (expected == actual) {
return AssertionSuccess();
}
return EqFailure(expected_expression,
actual_expression,
FormatForComparisonFailureMessage(expected, actual),
FormatForComparisonFailureMessage(actual, expected),
false);
}
// A macro for implementing the helper functions needed to implement
// ASSERT_?? and EXPECT_?? with integer or enum arguments. It is here
// just to avoid copy-and-paste of similar code.
#define GTEST_IMPL_CMP_HELPER_(op_name, op)\
AssertionResult CmpHelper##op_name(const char* expr1, const char* expr2, \
BiggestInt val1, BiggestInt val2) {\
if (val1 op val2) {\
return AssertionSuccess();\
} else {\
return AssertionFailure() \
<< "Expected: (" << expr1 << ") " #op " (" << expr2\
<< "), actual: " << FormatForComparisonFailureMessage(val1, val2)\
<< " vs " << FormatForComparisonFailureMessage(val2, val1);\
}\
}
// Implements the helper function for {ASSERT|EXPECT}_NE with int or
// enum arguments.
GTEST_IMPL_CMP_HELPER_(NE, !=)
// Implements the helper function for {ASSERT|EXPECT}_LE with int or
// enum arguments.
GTEST_IMPL_CMP_HELPER_(LE, <=)
// Implements the helper function for {ASSERT|EXPECT}_LT with int or
// enum arguments.
GTEST_IMPL_CMP_HELPER_(LT, < )
// Implements the helper function for {ASSERT|EXPECT}_GE with int or
// enum arguments.
GTEST_IMPL_CMP_HELPER_(GE, >=)
// Implements the helper function for {ASSERT|EXPECT}_GT with int or
// enum arguments.
GTEST_IMPL_CMP_HELPER_(GT, > )
#undef GTEST_IMPL_CMP_HELPER_
// The helper function for {ASSERT|EXPECT}_STREQ.
AssertionResult CmpHelperSTREQ(const char* expected_expression,
const char* actual_expression,
const char* expected,
const char* actual) {
if (String::CStringEquals(expected, actual)) {
return AssertionSuccess();
}
return EqFailure(expected_expression,
actual_expression,
String::ShowCStringQuoted(expected),
String::ShowCStringQuoted(actual),
false);
}
// The helper function for {ASSERT|EXPECT}_STRCASEEQ.
AssertionResult CmpHelperSTRCASEEQ(const char* expected_expression,
const char* actual_expression,
const char* expected,
const char* actual) {
if (String::CaseInsensitiveCStringEquals(expected, actual)) {
return AssertionSuccess();
}
return EqFailure(expected_expression,
actual_expression,
String::ShowCStringQuoted(expected),
String::ShowCStringQuoted(actual),
true);
}
// The helper function for {ASSERT|EXPECT}_STRNE.
AssertionResult CmpHelperSTRNE(const char* s1_expression,
const char* s2_expression,
const char* s1,
const char* s2) {
if (!String::CStringEquals(s1, s2)) {
return AssertionSuccess();
} else {
return AssertionFailure() << "Expected: (" << s1_expression << ") != ("
<< s2_expression << "), actual: \""
<< s1 << "\" vs \"" << s2 << "\"";
}
}
// The helper function for {ASSERT|EXPECT}_STRCASENE.
AssertionResult CmpHelperSTRCASENE(const char* s1_expression,
const char* s2_expression,
const char* s1,
const char* s2) {
if (!String::CaseInsensitiveCStringEquals(s1, s2)) {
return AssertionSuccess();
} else {
return AssertionFailure()
<< "Expected: (" << s1_expression << ") != ("
<< s2_expression << ") (ignoring case), actual: \""
<< s1 << "\" vs \"" << s2 << "\"";
}
}
} // namespace internal
namespace {
// Helper functions for implementing IsSubString() and IsNotSubstring().
// This group of overloaded functions return true iff needle is a
// substring of haystack. NULL is considered a substring of itself
// only.
bool IsSubstringPred(const char* needle, const char* haystack) {
if (needle == NULL || haystack == NULL)
return needle == haystack;
return strstr(haystack, needle) != NULL;
}
bool IsSubstringPred(const wchar_t* needle, const wchar_t* haystack) {
if (needle == NULL || haystack == NULL)
return needle == haystack;
return wcsstr(haystack, needle) != NULL;
}
// StringType here can be either ::std::string or ::std::wstring.
template <typename StringType>
bool IsSubstringPred(const StringType& needle,
const StringType& haystack) {
return haystack.find(needle) != StringType::npos;
}
// This function implements either IsSubstring() or IsNotSubstring(),
// depending on the value of the expected_to_be_substring parameter.
// StringType here can be const char*, const wchar_t*, ::std::string,
// or ::std::wstring.
template <typename StringType>
AssertionResult IsSubstringImpl(
bool expected_to_be_substring,
const char* needle_expr, const char* haystack_expr,
const StringType& needle, const StringType& haystack) {
if (IsSubstringPred(needle, haystack) == expected_to_be_substring)
return AssertionSuccess();
const bool is_wide_string = sizeof(needle[0]) > 1;
const char* const begin_string_quote = is_wide_string ? "L\"" : "\"";
return AssertionFailure()
<< "Value of: " << needle_expr << "\n"
<< " Actual: " << begin_string_quote << needle << "\"\n"
<< "Expected: " << (expected_to_be_substring ? "" : "not ")
<< "a substring of " << haystack_expr << "\n"
<< "Which is: " << begin_string_quote << haystack << "\"";
}
} // namespace
// IsSubstring() and IsNotSubstring() check whether needle is a
// substring of haystack (NULL is considered a substring of itself
// only), and return an appropriate error message when they fail.
AssertionResult IsSubstring(
const char* needle_expr, const char* haystack_expr,
const char* needle, const char* haystack) {
return IsSubstringImpl(true, needle_expr, haystack_expr, needle, haystack);
}
AssertionResult IsSubstring(
const char* needle_expr, const char* haystack_expr,
const wchar_t* needle, const wchar_t* haystack) {
return IsSubstringImpl(true, needle_expr, haystack_expr, needle, haystack);
}
AssertionResult IsNotSubstring(
const char* needle_expr, const char* haystack_expr,
const char* needle, const char* haystack) {
return IsSubstringImpl(false, needle_expr, haystack_expr, needle, haystack);
}
AssertionResult IsNotSubstring(
const char* needle_expr, const char* haystack_expr,
const wchar_t* needle, const wchar_t* haystack) {
return IsSubstringImpl(false, needle_expr, haystack_expr, needle, haystack);
}
AssertionResult IsSubstring(
const char* needle_expr, const char* haystack_expr,
const ::std::string& needle, const ::std::string& haystack) {
return IsSubstringImpl(true, needle_expr, haystack_expr, needle, haystack);
}
AssertionResult IsNotSubstring(
const char* needle_expr, const char* haystack_expr,
const ::std::string& needle, const ::std::string& haystack) {
return IsSubstringImpl(false, needle_expr, haystack_expr, needle, haystack);
}
#if GTEST_HAS_STD_WSTRING
AssertionResult IsSubstring(
const char* needle_expr, const char* haystack_expr,
const ::std::wstring& needle, const ::std::wstring& haystack) {
return IsSubstringImpl(true, needle_expr, haystack_expr, needle, haystack);
}
AssertionResult IsNotSubstring(
const char* needle_expr, const char* haystack_expr,
const ::std::wstring& needle, const ::std::wstring& haystack) {
return IsSubstringImpl(false, needle_expr, haystack_expr, needle, haystack);
}
#endif // GTEST_HAS_STD_WSTRING
namespace internal {
#if GTEST_OS_WINDOWS
namespace {
// Helper function for IsHRESULT{SuccessFailure} predicates
AssertionResult HRESULTFailureHelper(const char* expr,
const char* expected,
long hr) { // NOLINT
# if GTEST_OS_WINDOWS_MOBILE
// Windows CE doesn't support FormatMessage.
const char error_text[] = "";
# else
// Looks up the human-readable system message for the HRESULT code
// and since we're not passing any params to FormatMessage, we don't
// want inserts expanded.
const DWORD kFlags = FORMAT_MESSAGE_FROM_SYSTEM |
FORMAT_MESSAGE_IGNORE_INSERTS;
const DWORD kBufSize = 4096; // String::Format can't exceed this length.
// Gets the system's human readable message string for this HRESULT.
char error_text[kBufSize] = { '\0' };
DWORD message_length = ::FormatMessageA(kFlags,
0, // no source, we're asking system
hr, // the error
0, // no line width restrictions
error_text, // output buffer
kBufSize, // buf size
NULL); // no arguments for inserts
// Trims tailing white space (FormatMessage leaves a trailing cr-lf)
for (; message_length && IsSpace(error_text[message_length - 1]);
--message_length) {
error_text[message_length - 1] = '\0';
}
# endif // GTEST_OS_WINDOWS_MOBILE
const String error_hex(String::Format("0x%08X ", hr));
return ::testing::AssertionFailure()
<< "Expected: " << expr << " " << expected << ".\n"
<< " Actual: " << error_hex << error_text << "\n";
}
} // namespace
AssertionResult IsHRESULTSuccess(const char* expr, long hr) { // NOLINT
if (SUCCEEDED(hr)) {
return AssertionSuccess();
}
return HRESULTFailureHelper(expr, "succeeds", hr);
}
AssertionResult IsHRESULTFailure(const char* expr, long hr) { // NOLINT
if (FAILED(hr)) {
return AssertionSuccess();
}
return HRESULTFailureHelper(expr, "fails", hr);
}
#endif // GTEST_OS_WINDOWS
// Utility functions for encoding Unicode text (wide strings) in
// UTF-8.
// A Unicode code-point can have upto 21 bits, and is encoded in UTF-8
// like this:
//
// Code-point length Encoding
// 0 - 7 bits 0xxxxxxx
// 8 - 11 bits 110xxxxx 10xxxxxx
// 12 - 16 bits 1110xxxx 10xxxxxx 10xxxxxx
// 17 - 21 bits 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
// The maximum code-point a one-byte UTF-8 sequence can represent.
const UInt32 kMaxCodePoint1 = (static_cast<UInt32>(1) << 7) - 1;
// The maximum code-point a two-byte UTF-8 sequence can represent.
const UInt32 kMaxCodePoint2 = (static_cast<UInt32>(1) << (5 + 6)) - 1;
// The maximum code-point a three-byte UTF-8 sequence can represent.
const UInt32 kMaxCodePoint3 = (static_cast<UInt32>(1) << (4 + 2*6)) - 1;
// The maximum code-point a four-byte UTF-8 sequence can represent.
const UInt32 kMaxCodePoint4 = (static_cast<UInt32>(1) << (3 + 3*6)) - 1;
// Chops off the n lowest bits from a bit pattern. Returns the n
// lowest bits. As a side effect, the original bit pattern will be
// shifted to the right by n bits.
inline UInt32 ChopLowBits(UInt32* bits, int n) {
const UInt32 low_bits = *bits & ((static_cast<UInt32>(1) << n) - 1);
*bits >>= n;
return low_bits;
}
// Converts a Unicode code point to a narrow string in UTF-8 encoding.
// code_point parameter is of type UInt32 because wchar_t may not be
// wide enough to contain a code point.
// The output buffer str must containt at least 32 characters.
// The function returns the address of the output buffer.
// If the code_point is not a valid Unicode code point
// (i.e. outside of Unicode range U+0 to U+10FFFF) it will be output
// as '(Invalid Unicode 0xXXXXXXXX)'.
char* CodePointToUtf8(UInt32 code_point, char* str) {
if (code_point <= kMaxCodePoint1) {
str[1] = '\0';
str[0] = static_cast<char>(code_point); // 0xxxxxxx
} else if (code_point <= kMaxCodePoint2) {
str[2] = '\0';
str[1] = static_cast<char>(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx
str[0] = static_cast<char>(0xC0 | code_point); // 110xxxxx
} else if (code_point <= kMaxCodePoint3) {
str[3] = '\0';
str[2] = static_cast<char>(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx
str[1] = static_cast<char>(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx
str[0] = static_cast<char>(0xE0 | code_point); // 1110xxxx
} else if (code_point <= kMaxCodePoint4) {
str[4] = '\0';
str[3] = static_cast<char>(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx
str[2] = static_cast<char>(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx
str[1] = static_cast<char>(0x80 | ChopLowBits(&code_point, 6)); // 10xxxxxx
str[0] = static_cast<char>(0xF0 | code_point); // 11110xxx
} else {
// The longest string String::Format can produce when invoked
// with these parameters is 28 character long (not including
// the terminating nul character). We are asking for 32 character
// buffer just in case. This is also enough for strncpy to
// null-terminate the destination string.
posix::StrNCpy(
str, String::Format("(Invalid Unicode 0x%X)", code_point).c_str(), 32);
str[31] = '\0'; // Makes sure no change in the format to strncpy leaves
// the result unterminated.
}
return str;
}
// The following two functions only make sense if the the system
// uses UTF-16 for wide string encoding. All supported systems
// with 16 bit wchar_t (Windows, Cygwin, Symbian OS) do use UTF-16.
// Determines if the arguments constitute UTF-16 surrogate pair
// and thus should be combined into a single Unicode code point
// using CreateCodePointFromUtf16SurrogatePair.
inline bool IsUtf16SurrogatePair(wchar_t first, wchar_t second) {
return sizeof(wchar_t) == 2 &&
(first & 0xFC00) == 0xD800 && (second & 0xFC00) == 0xDC00;
}
// Creates a Unicode code point from UTF16 surrogate pair.
inline UInt32 CreateCodePointFromUtf16SurrogatePair(wchar_t first,
wchar_t second) {
const UInt32 mask = (1 << 10) - 1;
return (sizeof(wchar_t) == 2) ?
(((first & mask) << 10) | (second & mask)) + 0x10000 :
// This function should not be called when the condition is
// false, but we provide a sensible default in case it is.
static_cast<UInt32>(first);
}
// Converts a wide string to a narrow string in UTF-8 encoding.
// The wide string is assumed to have the following encoding:
// UTF-16 if sizeof(wchar_t) == 2 (on Windows, Cygwin, Symbian OS)
// UTF-32 if sizeof(wchar_t) == 4 (on Linux)
// Parameter str points to a null-terminated wide string.
// Parameter num_chars may additionally limit the number
// of wchar_t characters processed. -1 is used when the entire string
// should be processed.
// If the string contains code points that are not valid Unicode code points
// (i.e. outside of Unicode range U+0 to U+10FFFF) they will be output
// as '(Invalid Unicode 0xXXXXXXXX)'. If the string is in UTF16 encoding
// and contains invalid UTF-16 surrogate pairs, values in those pairs
// will be encoded as individual Unicode characters from Basic Normal Plane.
String WideStringToUtf8(const wchar_t* str, int num_chars) {
if (num_chars == -1)
num_chars = static_cast<int>(wcslen(str));
::std::stringstream stream;
for (int i = 0; i < num_chars; ++i) {
UInt32 unicode_code_point;
if (str[i] == L'\0') {
break;
} else if (i + 1 < num_chars && IsUtf16SurrogatePair(str[i], str[i + 1])) {
unicode_code_point = CreateCodePointFromUtf16SurrogatePair(str[i],
str[i + 1]);
i++;
} else {
unicode_code_point = static_cast<UInt32>(str[i]);
}
char buffer[32]; // CodePointToUtf8 requires a buffer this big.
stream << CodePointToUtf8(unicode_code_point, buffer);
}
return StringStreamToString(&stream);
}
// Converts a wide C string to a String using the UTF-8 encoding.
// NULL will be converted to "(null)".
String String::ShowWideCString(const wchar_t * wide_c_str) {
if (wide_c_str == NULL) return String("(null)");
return String(internal::WideStringToUtf8(wide_c_str, -1).c_str());
}
// Similar to ShowWideCString(), except that this function encloses
// the converted string in double quotes.
String String::ShowWideCStringQuoted(const wchar_t* wide_c_str) {
if (wide_c_str == NULL) return String("(null)");
return String::Format("L\"%s\"",
String::ShowWideCString(wide_c_str).c_str());
}
// Compares two wide C strings. Returns true iff they have the same
// content.
//
// Unlike wcscmp(), this function can handle NULL argument(s). A NULL
// C string is considered different to any non-NULL C string,
// including the empty string.
bool String::WideCStringEquals(const wchar_t * lhs, const wchar_t * rhs) {
if (lhs == NULL) return rhs == NULL;
if (rhs == NULL) return false;
return wcscmp(lhs, rhs) == 0;
}
// Helper function for *_STREQ on wide strings.
AssertionResult CmpHelperSTREQ(const char* expected_expression,
const char* actual_expression,
const wchar_t* expected,
const wchar_t* actual) {
if (String::WideCStringEquals(expected, actual)) {
return AssertionSuccess();
}
return EqFailure(expected_expression,
actual_expression,
String::ShowWideCStringQuoted(expected),
String::ShowWideCStringQuoted(actual),
false);
}
// Helper function for *_STRNE on wide strings.
AssertionResult CmpHelperSTRNE(const char* s1_expression,
const char* s2_expression,
const wchar_t* s1,
const wchar_t* s2) {
if (!String::WideCStringEquals(s1, s2)) {
return AssertionSuccess();
}
return AssertionFailure() << "Expected: (" << s1_expression << ") != ("
<< s2_expression << "), actual: "
<< String::ShowWideCStringQuoted(s1)
<< " vs " << String::ShowWideCStringQuoted(s2);
}
// Compares two C strings, ignoring case. Returns true iff they have
// the same content.
//
// Unlike strcasecmp(), this function can handle NULL argument(s). A
// NULL C string is considered different to any non-NULL C string,
// including the empty string.
bool String::CaseInsensitiveCStringEquals(const char * lhs, const char * rhs) {
if (lhs == NULL)
return rhs == NULL;
if (rhs == NULL)
return false;
return posix::StrCaseCmp(lhs, rhs) == 0;
}
// Compares two wide C strings, ignoring case. Returns true iff they
// have the same content.
//
// Unlike wcscasecmp(), this function can handle NULL argument(s).
// A NULL C string is considered different to any non-NULL wide C string,
// including the empty string.
// NB: The implementations on different platforms slightly differ.
// On windows, this method uses _wcsicmp which compares according to LC_CTYPE
// environment variable. On GNU platform this method uses wcscasecmp
// which compares according to LC_CTYPE category of the current locale.
// On MacOS X, it uses towlower, which also uses LC_CTYPE category of the
// current locale.
bool String::CaseInsensitiveWideCStringEquals(const wchar_t* lhs,
const wchar_t* rhs) {
if (lhs == NULL) return rhs == NULL;
if (rhs == NULL) return false;
#if GTEST_OS_WINDOWS
return _wcsicmp(lhs, rhs) == 0;
#elif GTEST_OS_LINUX && !GTEST_OS_LINUX_ANDROID
return wcscasecmp(lhs, rhs) == 0;
#else
// Android, Mac OS X and Cygwin don't define wcscasecmp.
// Other unknown OSes may not define it either.
wint_t left, right;
do {
left = towlower(*lhs++);
right = towlower(*rhs++);
} while (left && left == right);
return left == right;
#endif // OS selector
}
// Compares this with another String.
// Returns < 0 if this is less than rhs, 0 if this is equal to rhs, or > 0
// if this is greater than rhs.
int String::Compare(const String & rhs) const {
const char* const lhs_c_str = c_str();
const char* const rhs_c_str = rhs.c_str();
if (lhs_c_str == NULL) {
return rhs_c_str == NULL ? 0 : -1; // NULL < anything except NULL
} else if (rhs_c_str == NULL) {
return 1;
}
const size_t shorter_str_len =
length() <= rhs.length() ? length() : rhs.length();
for (size_t i = 0; i != shorter_str_len; i++) {
if (lhs_c_str[i] < rhs_c_str[i]) {
return -1;
} else if (lhs_c_str[i] > rhs_c_str[i]) {
return 1;
}
}
return (length() < rhs.length()) ? -1 :
(length() > rhs.length()) ? 1 : 0;
}
// Returns true iff this String ends with the given suffix. *Any*
// String is considered to end with a NULL or empty suffix.
bool String::EndsWith(const char* suffix) const {
if (suffix == NULL || CStringEquals(suffix, "")) return true;
if (c_str() == NULL) return false;
const size_t this_len = strlen(c_str());
const size_t suffix_len = strlen(suffix);
return (this_len >= suffix_len) &&
CStringEquals(c_str() + this_len - suffix_len, suffix);
}
// Returns true iff this String ends with the given suffix, ignoring case.
// Any String is considered to end with a NULL or empty suffix.
bool String::EndsWithCaseInsensitive(const char* suffix) const {
if (suffix == NULL || CStringEquals(suffix, "")) return true;
if (c_str() == NULL) return false;
const size_t this_len = strlen(c_str());
const size_t suffix_len = strlen(suffix);
return (this_len >= suffix_len) &&
CaseInsensitiveCStringEquals(c_str() + this_len - suffix_len, suffix);
}
// Formats a list of arguments to a String, using the same format
// spec string as for printf.
//
// We do not use the StringPrintf class as it is not universally
// available.
//
// The result is limited to 4096 characters (including the tailing 0).
// If 4096 characters are not enough to format the input, or if
// there's an error, "<formatting error or buffer exceeded>" is
// returned.
String String::Format(const char * format, ...) {
va_list args;
va_start(args, format);
char buffer[4096];
const int kBufferSize = sizeof(buffer)/sizeof(buffer[0]);
// MSVC 8 deprecates vsnprintf(), so we want to suppress warning
// 4996 (deprecated function) there.
#ifdef _MSC_VER // We are using MSVC.
# pragma warning(push) // Saves the current warning state.
# pragma warning(disable:4996) // Temporarily disables warning 4996.
const int size = vsnprintf(buffer, kBufferSize, format, args);
# pragma warning(pop) // Restores the warning state.
#else // We are not using MSVC.
const int size = vsnprintf(buffer, kBufferSize, format, args);
#endif // _MSC_VER
va_end(args);
// vsnprintf()'s behavior is not portable. When the buffer is not
// big enough, it returns a negative value in MSVC, and returns the
// needed buffer size on Linux. When there is an output error, it
// always returns a negative value. For simplicity, we lump the two
// error cases together.
if (size < 0 || size >= kBufferSize) {
return String("<formatting error or buffer exceeded>");
} else {
return String(buffer, size);
}
}
// Converts the buffer in a stringstream to a String, converting NUL
// bytes to "\\0" along the way.
String StringStreamToString(::std::stringstream* ss) {
const ::std::string& str = ss->str();
const char* const start = str.c_str();
const char* const end = start + str.length();
// We need to use a helper stringstream to do this transformation
// because String doesn't support push_back().
::std::stringstream helper;
for (const char* ch = start; ch != end; ++ch) {
if (*ch == '\0') {
helper << "\\0"; // Replaces NUL with "\\0";
} else {
helper.put(*ch);
}
}
return String(helper.str().c_str());
}
// Appends the user-supplied message to the Google-Test-generated message.
String AppendUserMessage(const String& gtest_msg,
const Message& user_msg) {
// Appends the user message if it's non-empty.
const String user_msg_string = user_msg.GetString();
if (user_msg_string.empty()) {
return gtest_msg;
}
Message msg;
msg << gtest_msg << "\n" << user_msg_string;
return msg.GetString();
}
} // namespace internal
// class TestResult
// Creates an empty TestResult.
TestResult::TestResult()
: death_test_count_(0),
elapsed_time_(0) {
}
// D'tor.
TestResult::~TestResult() {
}
// Returns the i-th test part result among all the results. i can
// range from 0 to total_part_count() - 1. If i is not in that range,
// aborts the program.
const TestPartResult& TestResult::GetTestPartResult(int i) const {
if (i < 0 || i >= total_part_count())
internal::posix::Abort();
return test_part_results_.at(i);
}
// Returns the i-th test property. i can range from 0 to
// test_property_count() - 1. If i is not in that range, aborts the
// program.
const TestProperty& TestResult::GetTestProperty(int i) const {
if (i < 0 || i >= test_property_count())
internal::posix::Abort();
return test_properties_.at(i);
}
// Clears the test part results.
void TestResult::ClearTestPartResults() {
test_part_results_.clear();
}
// Adds a test part result to the list.
void TestResult::AddTestPartResult(const TestPartResult& test_part_result) {
test_part_results_.push_back(test_part_result);
}
// Adds a test property to the list. If a property with the same key as the
// supplied property is already represented, the value of this test_property
// replaces the old value for that key.
void TestResult::RecordProperty(const TestProperty& test_property) {
if (!ValidateTestProperty(test_property)) {
return;
}
internal::MutexLock lock(&test_properites_mutex_);
const std::vector<TestProperty>::iterator property_with_matching_key =
std::find_if(test_properties_.begin(), test_properties_.end(),
internal::TestPropertyKeyIs(test_property.key()));
if (property_with_matching_key == test_properties_.end()) {
test_properties_.push_back(test_property);
return;
}
property_with_matching_key->SetValue(test_property.value());
}
// Adds a failure if the key is a reserved attribute of Google Test
// testcase tags. Returns true if the property is valid.
bool TestResult::ValidateTestProperty(const TestProperty& test_property) {
internal::String key(test_property.key());
if (key == "name" || key == "status" || key == "time" || key == "classname") {
ADD_FAILURE()
<< "Reserved key used in RecordProperty(): "
<< key
<< " ('name', 'status', 'time', and 'classname' are reserved by "
<< GTEST_NAME_ << ")";
return false;
}
return true;
}
// Clears the object.
void TestResult::Clear() {
test_part_results_.clear();
test_properties_.clear();
death_test_count_ = 0;
elapsed_time_ = 0;
}
// Returns true iff the test failed.
bool TestResult::Failed() const {
for (int i = 0; i < total_part_count(); ++i) {
if (GetTestPartResult(i).failed())
return true;
}
return false;
}
// Returns true iff the test part fatally failed.
static bool TestPartFatallyFailed(const TestPartResult& result) {
return result.fatally_failed();
}
// Returns true iff the test fatally failed.
bool TestResult::HasFatalFailure() const {
return CountIf(test_part_results_, TestPartFatallyFailed) > 0;
}
// Returns true iff the test part non-fatally failed.
static bool TestPartNonfatallyFailed(const TestPartResult& result) {
return result.nonfatally_failed();
}
// Returns true iff the test has a non-fatal failure.
bool TestResult::HasNonfatalFailure() const {
return CountIf(test_part_results_, TestPartNonfatallyFailed) > 0;
}
// Gets the number of all test parts. This is the sum of the number
// of successful test parts and the number of failed test parts.
int TestResult::total_part_count() const {
return static_cast<int>(test_part_results_.size());
}
// Returns the number of the test properties.
int TestResult::test_property_count() const {
return static_cast<int>(test_properties_.size());
}
// class Test
// Creates a Test object.
// The c'tor saves the values of all Google Test flags.
Test::Test()
: gtest_flag_saver_(new internal::GTestFlagSaver) {
}
// The d'tor restores the values of all Google Test flags.
Test::~Test() {
delete gtest_flag_saver_;
}
// Sets up the test fixture.
//
// A sub-class may override this.
void Test::SetUp() {
}
// Tears down the test fixture.
//
// A sub-class may override this.
void Test::TearDown() {
}
// Allows user supplied key value pairs to be recorded for later output.
void Test::RecordProperty(const char* key, const char* value) {
UnitTest::GetInstance()->RecordPropertyForCurrentTest(key, value);
}
// Allows user supplied key value pairs to be recorded for later output.
void Test::RecordProperty(const char* key, int value) {
Message value_message;
value_message << value;
RecordProperty(key, value_message.GetString().c_str());
}
namespace internal {
void ReportFailureInUnknownLocation(TestPartResult::Type result_type,
const String& message) {
// This function is a friend of UnitTest and as such has access to
// AddTestPartResult.
UnitTest::GetInstance()->AddTestPartResult(
result_type,
NULL, // No info about the source file where the exception occurred.
-1, // We have no info on which line caused the exception.
message,
String()); // No stack trace, either.
}
} // namespace internal
// Google Test requires all tests in the same test case to use the same test
// fixture class. This function checks if the current test has the
// same fixture class as the first test in the current test case. If
// yes, it returns true; otherwise it generates a Google Test failure and
// returns false.
bool Test::HasSameFixtureClass() {
internal::UnitTestImpl* const impl = internal::GetUnitTestImpl();
const TestCase* const test_case = impl->current_test_case();
// Info about the first test in the current test case.
const TestInfo* const first_test_info = test_case->test_info_list()[0];
const internal::TypeId first_fixture_id = first_test_info->fixture_class_id_;
const char* const first_test_name = first_test_info->name();
// Info about the current test.
const TestInfo* const this_test_info = impl->current_test_info();
const internal::TypeId this_fixture_id = this_test_info->fixture_class_id_;
const char* const this_test_name = this_test_info->name();
if (this_fixture_id != first_fixture_id) {
// Is the first test defined using TEST?
const bool first_is_TEST = first_fixture_id == internal::GetTestTypeId();
// Is this test defined using TEST?
const bool this_is_TEST = this_fixture_id == internal::GetTestTypeId();
if (first_is_TEST || this_is_TEST) {
// The user mixed TEST and TEST_F in this test case - we'll tell
// him/her how to fix it.
// Gets the name of the TEST and the name of the TEST_F. Note
// that first_is_TEST and this_is_TEST cannot both be true, as
// the fixture IDs are different for the two tests.
const char* const TEST_name =
first_is_TEST ? first_test_name : this_test_name;
const char* const TEST_F_name =
first_is_TEST ? this_test_name : first_test_name;
ADD_FAILURE()
<< "All tests in the same test case must use the same test fixture\n"
<< "class, so mixing TEST_F and TEST in the same test case is\n"
<< "illegal. In test case " << this_test_info->test_case_name()
<< ",\n"
<< "test " << TEST_F_name << " is defined using TEST_F but\n"
<< "test " << TEST_name << " is defined using TEST. You probably\n"
<< "want to change the TEST to TEST_F or move it to another test\n"
<< "case.";
} else {
// The user defined two fixture classes with the same name in
// two namespaces - we'll tell him/her how to fix it.
ADD_FAILURE()
<< "All tests in the same test case must use the same test fixture\n"
<< "class. However, in test case "
<< this_test_info->test_case_name() << ",\n"
<< "you defined test " << first_test_name
<< " and test " << this_test_name << "\n"
<< "using two different test fixture classes. This can happen if\n"
<< "the two classes are from different namespaces or translation\n"
<< "units and have the same name. You should probably rename one\n"
<< "of the classes to put the tests into different test cases.";
}
return false;
}
return true;
}
#if GTEST_HAS_SEH
// Adds an "exception thrown" fatal failure to the current test. This
// function returns its result via an output parameter pointer because VC++
// prohibits creation of objects with destructors on stack in functions
// using __try (see error C2712).
static internal::String* FormatSehExceptionMessage(DWORD exception_code,
const char* location) {
Message message;
message << "SEH exception with code 0x" << std::setbase(16) <<
exception_code << std::setbase(10) << " thrown in " << location << ".";
return new internal::String(message.GetString());
}
#endif // GTEST_HAS_SEH
#if GTEST_HAS_EXCEPTIONS
// Adds an "exception thrown" fatal failure to the current test.
static internal::String FormatCxxExceptionMessage(const char* description,
const char* location) {
Message message;
if (description != NULL) {
message << "C++ exception with description \"" << description << "\"";
} else {
message << "Unknown C++ exception";
}
message << " thrown in " << location << ".";
return message.GetString();
}
static internal::String PrintTestPartResultToString(
const TestPartResult& test_part_result);
// A failed Google Test assertion will throw an exception of this type when
// GTEST_FLAG(throw_on_failure) is true (if exceptions are enabled). We
// derive it from std::runtime_error, which is for errors presumably
// detectable only at run time. Since std::runtime_error inherits from
// std::exception, many testing frameworks know how to extract and print the
// message inside it.
class GoogleTestFailureException : public ::std::runtime_error {
public:
explicit GoogleTestFailureException(const TestPartResult& failure)
: ::std::runtime_error(PrintTestPartResultToString(failure).c_str()) {}
};
#endif // GTEST_HAS_EXCEPTIONS
namespace internal {
// We put these helper functions in the internal namespace as IBM's xlC
// compiler rejects the code if they were declared static.
// Runs the given method and handles SEH exceptions it throws, when
// SEH is supported; returns the 0-value for type Result in case of an
// SEH exception. (Microsoft compilers cannot handle SEH and C++
// exceptions in the same function. Therefore, we provide a separate
// wrapper function for handling SEH exceptions.)
template <class T, typename Result>
Result HandleSehExceptionsInMethodIfSupported(
T* object, Result (T::*method)(), const char* location) {
#if GTEST_HAS_SEH
__try {
return (object->*method)();
} __except (internal::UnitTestOptions::GTestShouldProcessSEH( // NOLINT
GetExceptionCode())) {
// We create the exception message on the heap because VC++ prohibits
// creation of objects with destructors on stack in functions using __try
// (see error C2712).
internal::String* exception_message = FormatSehExceptionMessage(
GetExceptionCode(), location);
internal::ReportFailureInUnknownLocation(TestPartResult::kFatalFailure,
*exception_message);
delete exception_message;
return static_cast<Result>(0);
}
#else
(void)location;
return (object->*method)();
#endif // GTEST_HAS_SEH
}
// Runs the given method and catches and reports C++ and/or SEH-style
// exceptions, if they are supported; returns the 0-value for type
// Result in case of an SEH exception.
template <class T, typename Result>
Result HandleExceptionsInMethodIfSupported(
T* object, Result (T::*method)(), const char* location) {
// NOTE: The user code can affect the way in which Google Test handles
// exceptions by setting GTEST_FLAG(catch_exceptions), but only before
// RUN_ALL_TESTS() starts. It is technically possible to check the flag
// after the exception is caught and either report or re-throw the
// exception based on the flag's value:
//
// try {
// // Perform the test method.
// } catch (...) {
// if (GTEST_FLAG(catch_exceptions))
// // Report the exception as failure.
// else
// throw; // Re-throws the original exception.
// }
//
// However, the purpose of this flag is to allow the program to drop into
// the debugger when the exception is thrown. On most platforms, once the
// control enters the catch block, the exception origin information is
// lost and the debugger will stop the program at the point of the
// re-throw in this function -- instead of at the point of the original
// throw statement in the code under test. For this reason, we perform
// the check early, sacrificing the ability to affect Google Test's
// exception handling in the method where the exception is thrown.
if (internal::GetUnitTestImpl()->catch_exceptions()) {
#if GTEST_HAS_EXCEPTIONS
try {
return HandleSehExceptionsInMethodIfSupported(object, method, location);
} catch (const GoogleTestFailureException&) { // NOLINT
// This exception doesn't originate in code under test. It makes no
// sense to report it as a test failure.
throw;
} catch (const std::exception& e) { // NOLINT
internal::ReportFailureInUnknownLocation(
TestPartResult::kFatalFailure,
FormatCxxExceptionMessage(e.what(), location));
} catch (...) { // NOLINT
internal::ReportFailureInUnknownLocation(
TestPartResult::kFatalFailure,
FormatCxxExceptionMessage(NULL, location));
}
return static_cast<Result>(0);
#else
return HandleSehExceptionsInMethodIfSupported(object, method, location);
#endif // GTEST_HAS_EXCEPTIONS
} else {
return (object->*method)();
}
}
} // namespace internal
// Runs the test and updates the test result.
void Test::Run() {
if (!HasSameFixtureClass()) return;
internal::UnitTestImpl* const impl = internal::GetUnitTestImpl();
impl->os_stack_trace_getter()->UponLeavingGTest();
internal::HandleExceptionsInMethodIfSupported(this, &Test::SetUp, "SetUp()");
// We will run the test only if SetUp() was successful.
if (!HasFatalFailure()) {
impl->os_stack_trace_getter()->UponLeavingGTest();
internal::HandleExceptionsInMethodIfSupported(
this, &Test::TestBody, "the test body");
}
// However, we want to clean up as much as possible. Hence we will
// always call TearDown(), even if SetUp() or the test body has
// failed.
impl->os_stack_trace_getter()->UponLeavingGTest();
internal::HandleExceptionsInMethodIfSupported(
this, &Test::TearDown, "TearDown()");
}
// Returns true iff the current test has a fatal failure.
bool Test::HasFatalFailure() {
return internal::GetUnitTestImpl()->current_test_result()->HasFatalFailure();
}
// Returns true iff the current test has a non-fatal failure.
bool Test::HasNonfatalFailure() {
return internal::GetUnitTestImpl()->current_test_result()->
HasNonfatalFailure();
}
// class TestInfo
// Constructs a TestInfo object. It assumes ownership of the test factory
// object.
// TODO(vladl@google.com): Make a_test_case_name and a_name const string&'s
// to signify they cannot be NULLs.
TestInfo::TestInfo(const char* a_test_case_name,
const char* a_name,
const char* a_type_param,
const char* a_value_param,
internal::TypeId fixture_class_id,
internal::TestFactoryBase* factory)
: test_case_name_(a_test_case_name),
name_(a_name),
type_param_(a_type_param ? new std::string(a_type_param) : NULL),
value_param_(a_value_param ? new std::string(a_value_param) : NULL),
fixture_class_id_(fixture_class_id),
should_run_(false),
is_disabled_(false),
matches_filter_(false),
factory_(factory),
result_() {}
// Destructs a TestInfo object.
TestInfo::~TestInfo() { delete factory_; }
namespace internal {
// Creates a new TestInfo object and registers it with Google Test;
// returns the created object.
//
// Arguments:
//
// test_case_name: name of the test case
// name: name of the test
// type_param: the name of the test's type parameter, or NULL if
// this is not a typed or a type-parameterized test.
// value_param: text representation of the test's value parameter,
// or NULL if this is not a value-parameterized test.
// fixture_class_id: ID of the test fixture class
// set_up_tc: pointer to the function that sets up the test case
// tear_down_tc: pointer to the function that tears down the test case
// factory: pointer to the factory that creates a test object.
// The newly created TestInfo instance will assume
// ownership of the factory object.
TestInfo* MakeAndRegisterTestInfo(
const char* test_case_name, const char* name,
const char* type_param,
const char* value_param,
TypeId fixture_class_id,
SetUpTestCaseFunc set_up_tc,
TearDownTestCaseFunc tear_down_tc,
TestFactoryBase* factory) {
TestInfo* const test_info =
new TestInfo(test_case_name, name, type_param, value_param,
fixture_class_id, factory);
GetUnitTestImpl()->AddTestInfo(set_up_tc, tear_down_tc, test_info);
return test_info;
}
#if GTEST_HAS_PARAM_TEST
void ReportInvalidTestCaseType(const char* test_case_name,
const char* file, int line) {
Message errors;
errors
<< "Attempted redefinition of test case " << test_case_name << ".\n"
<< "All tests in the same test case must use the same test fixture\n"
<< "class. However, in test case " << test_case_name << ", you tried\n"
<< "to define a test using a fixture class different from the one\n"
<< "used earlier. This can happen if the two fixture classes are\n"
<< "from different namespaces and have the same name. You should\n"
<< "probably rename one of the classes to put the tests into different\n"
<< "test cases.";
fprintf(stderr, "%s %s", FormatFileLocation(file, line).c_str(),
errors.GetString().c_str());
}
#endif // GTEST_HAS_PARAM_TEST
} // namespace internal
namespace {
// A predicate that checks the test name of a TestInfo against a known
// value.
//
// This is used for implementation of the TestCase class only. We put
// it in the anonymous namespace to prevent polluting the outer
// namespace.
//
// TestNameIs is copyable.
class TestNameIs {
public:
// Constructor.
//
// TestNameIs has NO default constructor.
explicit TestNameIs(const char* name)
: name_(name) {}
// Returns true iff the test name of test_info matches name_.
bool operator()(const TestInfo * test_info) const {
return test_info && internal::String(test_info->name()).Compare(name_) == 0;
}
private:
internal::String name_;
};
} // namespace
namespace internal {
// This method expands all parameterized tests registered with macros TEST_P
// and INSTANTIATE_TEST_CASE_P into regular tests and registers those.
// This will be done just once during the program runtime.
void UnitTestImpl::RegisterParameterizedTests() {
#if GTEST_HAS_PARAM_TEST
if (!parameterized_tests_registered_) {
parameterized_test_registry_.RegisterTests();
parameterized_tests_registered_ = true;
}
#endif
}
} // namespace internal
// Creates the test object, runs it, records its result, and then
// deletes it.
void TestInfo::Run() {
if (!should_run_) return;
// Tells UnitTest where to store test result.
internal::UnitTestImpl* const impl = internal::GetUnitTestImpl();
impl->set_current_test_info(this);
TestEventListener* repeater = UnitTest::GetInstance()->listeners().repeater();
// Notifies the unit test event listeners that a test is about to start.
repeater->OnTestStart(*this);
const TimeInMillis start = internal::GetTimeInMillis();
impl->os_stack_trace_getter()->UponLeavingGTest();
// Creates the test object.
Test* const test = internal::HandleExceptionsInMethodIfSupported(
factory_, &internal::TestFactoryBase::CreateTest,
"the test fixture's constructor");
// Runs the test only if the test object was created and its
// constructor didn't generate a fatal failure.
if ((test != NULL) && !Test::HasFatalFailure()) {
// This doesn't throw as all user code that can throw are wrapped into
// exception handling code.
test->Run();
}
// Deletes the test object.
impl->os_stack_trace_getter()->UponLeavingGTest();
internal::HandleExceptionsInMethodIfSupported(
test, &Test::DeleteSelf_, "the test fixture's destructor");
result_.set_elapsed_time(internal::GetTimeInMillis() - start);
// Notifies the unit test event listener that a test has just finished.
repeater->OnTestEnd(*this);
// Tells UnitTest to stop associating assertion results to this
// test.
impl->set_current_test_info(NULL);
}
// class TestCase
// Gets the number of successful tests in this test case.
int TestCase::successful_test_count() const {
return CountIf(test_info_list_, TestPassed);
}
// Gets the number of failed tests in this test case.
int TestCase::failed_test_count() const {
return CountIf(test_info_list_, TestFailed);
}
int TestCase::disabled_test_count() const {
return CountIf(test_info_list_, TestDisabled);
}
// Get the number of tests in this test case that should run.
int TestCase::test_to_run_count() const {
return CountIf(test_info_list_, ShouldRunTest);
}
// Gets the number of all tests.
int TestCase::total_test_count() const {
return static_cast<int>(test_info_list_.size());
}
// Creates a TestCase with the given name.
//
// Arguments:
//
// name: name of the test case
// a_type_param: the name of the test case's type parameter, or NULL if
// this is not a typed or a type-parameterized test case.
// set_up_tc: pointer to the function that sets up the test case
// tear_down_tc: pointer to the function that tears down the test case
TestCase::TestCase(const char* a_name, const char* a_type_param,
Test::SetUpTestCaseFunc set_up_tc,
Test::TearDownTestCaseFunc tear_down_tc)
: name_(a_name),
type_param_(a_type_param ? new std::string(a_type_param) : NULL),
set_up_tc_(set_up_tc),
tear_down_tc_(tear_down_tc),
should_run_(false),
elapsed_time_(0) {
}
// Destructor of TestCase.
TestCase::~TestCase() {
// Deletes every Test in the collection.
ForEach(test_info_list_, internal::Delete<TestInfo>);
}
// Returns the i-th test among all the tests. i can range from 0 to
// total_test_count() - 1. If i is not in that range, returns NULL.
const TestInfo* TestCase::GetTestInfo(int i) const {
const int index = GetElementOr(test_indices_, i, -1);
return index < 0 ? NULL : test_info_list_[index];
}
// Returns the i-th test among all the tests. i can range from 0 to
// total_test_count() - 1. If i is not in that range, returns NULL.
TestInfo* TestCase::GetMutableTestInfo(int i) {
const int index = GetElementOr(test_indices_, i, -1);
return index < 0 ? NULL : test_info_list_[index];
}
// Adds a test to this test case. Will delete the test upon
// destruction of the TestCase object.
void TestCase::AddTestInfo(TestInfo * test_info) {
test_info_list_.push_back(test_info);
test_indices_.push_back(static_cast<int>(test_indices_.size()));
}
// Runs every test in this TestCase.
void TestCase::Run() {
if (!should_run_) return;
internal::UnitTestImpl* const impl = internal::GetUnitTestImpl();
impl->set_current_test_case(this);
TestEventListener* repeater = UnitTest::GetInstance()->listeners().repeater();
repeater->OnTestCaseStart(*this);
impl->os_stack_trace_getter()->UponLeavingGTest();
internal::HandleExceptionsInMethodIfSupported(
this, &TestCase::RunSetUpTestCase, "SetUpTestCase()");
const internal::TimeInMillis start = internal::GetTimeInMillis();
for (int i = 0; i < total_test_count(); i++) {
GetMutableTestInfo(i)->Run();
}
elapsed_time_ = internal::GetTimeInMillis() - start;
impl->os_stack_trace_getter()->UponLeavingGTest();
internal::HandleExceptionsInMethodIfSupported(
this, &TestCase::RunTearDownTestCase, "TearDownTestCase()");
repeater->OnTestCaseEnd(*this);
impl->set_current_test_case(NULL);
}
// Clears the results of all tests in this test case.
void TestCase::ClearResult() {
ForEach(test_info_list_, TestInfo::ClearTestResult);
}
// Shuffles the tests in this test case.
void TestCase::ShuffleTests(internal::Random* random) {
Shuffle(random, &test_indices_);
}
// Restores the test order to before the first shuffle.
void TestCase::UnshuffleTests() {
for (size_t i = 0; i < test_indices_.size(); i++) {
test_indices_[i] = static_cast<int>(i);
}
}
// Formats a countable noun. Depending on its quantity, either the
// singular form or the plural form is used. e.g.
//
// FormatCountableNoun(1, "formula", "formuli") returns "1 formula".
// FormatCountableNoun(5, "book", "books") returns "5 books".
static internal::String FormatCountableNoun(int count,
const char * singular_form,
const char * plural_form) {
return internal::String::Format("%d %s", count,
count == 1 ? singular_form : plural_form);
}
// Formats the count of tests.
static internal::String FormatTestCount(int test_count) {
return FormatCountableNoun(test_count, "test", "tests");
}
// Formats the count of test cases.
static internal::String FormatTestCaseCount(int test_case_count) {
return FormatCountableNoun(test_case_count, "test case", "test cases");
}
// Converts a TestPartResult::Type enum to human-friendly string
// representation. Both kNonFatalFailure and kFatalFailure are translated
// to "Failure", as the user usually doesn't care about the difference
// between the two when viewing the test result.
static const char * TestPartResultTypeToString(TestPartResult::Type type) {
switch (type) {
case TestPartResult::kSuccess:
return "Success";
case TestPartResult::kNonFatalFailure:
case TestPartResult::kFatalFailure:
#ifdef _MSC_VER
return "error: ";
#else
return "Failure\n";
#endif
default:
return "Unknown result type";
}
}
// Prints a TestPartResult to a String.
static internal::String PrintTestPartResultToString(
const TestPartResult& test_part_result) {
return (Message()
<< internal::FormatFileLocation(test_part_result.file_name(),
test_part_result.line_number())
<< " " << TestPartResultTypeToString(test_part_result.type())
<< test_part_result.message()).GetString();
}
// Prints a TestPartResult.
static void PrintTestPartResult(const TestPartResult& test_part_result) {
const internal::String& result =
PrintTestPartResultToString(test_part_result);
printf("%s\n", result.c_str());
fflush(stdout);
// If the test program runs in Visual Studio or a debugger, the
// following statements add the test part result message to the Output
// window such that the user can double-click on it to jump to the
// corresponding source code location; otherwise they do nothing.
#if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE
// We don't call OutputDebugString*() on Windows Mobile, as printing
// to stdout is done by OutputDebugString() there already - we don't
// want the same message printed twice.
::OutputDebugStringA(result.c_str());
::OutputDebugStringA("\n");
#endif
}
// class PrettyUnitTestResultPrinter
namespace internal {
enum GTestColor {
COLOR_DEFAULT,
COLOR_RED,
COLOR_GREEN,
COLOR_YELLOW
};
#if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE
// Returns the character attribute for the given color.
WORD GetColorAttribute(GTestColor color) {
switch (color) {
case COLOR_RED: return FOREGROUND_RED;
case COLOR_GREEN: return FOREGROUND_GREEN;
case COLOR_YELLOW: return FOREGROUND_RED | FOREGROUND_GREEN;
default: return 0;
}
}
#else
// Returns the ANSI color code for the given color. COLOR_DEFAULT is
// an invalid input.
const char* GetAnsiColorCode(GTestColor color) {
switch (color) {
case COLOR_RED: return "1";
case COLOR_GREEN: return "2";
case COLOR_YELLOW: return "3";
default: return NULL;
};
}
#endif // GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE
// Returns true iff Google Test should use colors in the output.
bool ShouldUseColor(bool stdout_is_tty) {
const char* const gtest_color = GTEST_FLAG(color).c_str();
if (String::CaseInsensitiveCStringEquals(gtest_color, "auto")) {
#if GTEST_OS_WINDOWS
// On Windows the TERM variable is usually not set, but the
// console there does support colors.
return stdout_is_tty;
#else
// On non-Windows platforms, we rely on the TERM variable.
const char* const term = posix::GetEnv("TERM");
const bool term_supports_color =
String::CStringEquals(term, "xterm") ||
String::CStringEquals(term, "xterm-color") ||
String::CStringEquals(term, "xterm-256color") ||
String::CStringEquals(term, "screen") ||
String::CStringEquals(term, "linux") ||
String::CStringEquals(term, "cygwin");
return stdout_is_tty && term_supports_color;
#endif // GTEST_OS_WINDOWS
}
return String::CaseInsensitiveCStringEquals(gtest_color, "yes") ||
String::CaseInsensitiveCStringEquals(gtest_color, "true") ||
String::CaseInsensitiveCStringEquals(gtest_color, "t") ||
String::CStringEquals(gtest_color, "1");
// We take "yes", "true", "t", and "1" as meaning "yes". If the
// value is neither one of these nor "auto", we treat it as "no" to
// be conservative.
}
// Helpers for printing colored strings to stdout. Note that on Windows, we
// cannot simply emit special characters and have the terminal change colors.
// This routine must actually emit the characters rather than return a string
// that would be colored when printed, as can be done on Linux.
void ColoredPrintf(GTestColor color, const char* fmt, ...) {
va_list args;
va_start(args, fmt);
#if GTEST_OS_WINDOWS_MOBILE || GTEST_OS_SYMBIAN || GTEST_OS_ZOS
const bool use_color = false;
#else
static const bool in_color_mode =
ShouldUseColor(posix::IsATTY(posix::FileNo(stdout)) != 0);
const bool use_color = in_color_mode && (color != COLOR_DEFAULT);
#endif // GTEST_OS_WINDOWS_MOBILE || GTEST_OS_SYMBIAN || GTEST_OS_ZOS
// The '!= 0' comparison is necessary to satisfy MSVC 7.1.
if (!use_color) {
vprintf(fmt, args);
va_end(args);
return;
}
#if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE
const HANDLE stdout_handle = GetStdHandle(STD_OUTPUT_HANDLE);
// Gets the current text color.
CONSOLE_SCREEN_BUFFER_INFO buffer_info;
GetConsoleScreenBufferInfo(stdout_handle, &buffer_info);
const WORD old_color_attrs = buffer_info.wAttributes;
// We need to flush the stream buffers into the console before each
// SetConsoleTextAttribute call lest it affect the text that is already
// printed but has not yet reached the console.
fflush(stdout);
SetConsoleTextAttribute(stdout_handle,
GetColorAttribute(color) | FOREGROUND_INTENSITY);
vprintf(fmt, args);
fflush(stdout);
// Restores the text color.
SetConsoleTextAttribute(stdout_handle, old_color_attrs);
#else
printf("\033[0;3%sm", GetAnsiColorCode(color));
vprintf(fmt, args);
printf("\033[m"); // Resets the terminal to default.
#endif // GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MOBILE
va_end(args);
}
void PrintFullTestCommentIfPresent(const TestInfo& test_info) {
const char* const type_param = test_info.type_param();
const char* const value_param = test_info.value_param();
if (type_param != NULL || value_param != NULL) {
printf(", where ");
if (type_param != NULL) {
printf("TypeParam = %s", type_param);
if (value_param != NULL)
printf(" and ");
}
if (value_param != NULL) {
printf("GetParam() = %s", value_param);
}
}
}
// This class implements the TestEventListener interface.
//
// Class PrettyUnitTestResultPrinter is copyable.
class PrettyUnitTestResultPrinter : public TestEventListener {
public:
PrettyUnitTestResultPrinter() {}
static void PrintTestName(const char * test_case, const char * test) {
printf("%s.%s", test_case, test);
}
// The following methods override what's in the TestEventListener class.
virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) {}
virtual void OnTestIterationStart(const UnitTest& unit_test, int iteration);
virtual void OnEnvironmentsSetUpStart(const UnitTest& unit_test);
virtual void OnEnvironmentsSetUpEnd(const UnitTest& /*unit_test*/) {}
virtual void OnTestCaseStart(const TestCase& test_case);
virtual void OnTestStart(const TestInfo& test_info);
virtual void OnTestPartResult(const TestPartResult& result);
virtual void OnTestEnd(const TestInfo& test_info);
virtual void OnTestCaseEnd(const TestCase& test_case);
virtual void OnEnvironmentsTearDownStart(const UnitTest& unit_test);
virtual void OnEnvironmentsTearDownEnd(const UnitTest& /*unit_test*/) {}
virtual void OnTestIterationEnd(const UnitTest& unit_test, int iteration);
virtual void OnTestProgramEnd(const UnitTest& /*unit_test*/) {}
private:
static void PrintFailedTests(const UnitTest& unit_test);
internal::String test_case_name_;
};
// Fired before each iteration of tests starts.
void PrettyUnitTestResultPrinter::OnTestIterationStart(
const UnitTest& unit_test, int iteration) {
if (GTEST_FLAG(repeat) != 1)
printf("\nRepeating all tests (iteration %d) . . .\n\n", iteration + 1);
const char* const filter = GTEST_FLAG(filter).c_str();
// Prints the filter if it's not *. This reminds the user that some
// tests may be skipped.
if (!internal::String::CStringEquals(filter, kUniversalFilter)) {
ColoredPrintf(COLOR_YELLOW,
"Note: %s filter = %s\n", GTEST_NAME_, filter);
}
if (internal::ShouldShard(kTestTotalShards, kTestShardIndex, false)) {
const Int32 shard_index = Int32FromEnvOrDie(kTestShardIndex, -1);
ColoredPrintf(COLOR_YELLOW,
"Note: This is test shard %d of %s.\n",
static_cast<int>(shard_index) + 1,
internal::posix::GetEnv(kTestTotalShards));
}
if (GTEST_FLAG(shuffle)) {
ColoredPrintf(COLOR_YELLOW,
"Note: Randomizing tests' orders with a seed of %d .\n",
unit_test.random_seed());
}
ColoredPrintf(COLOR_GREEN, "[==========] ");
printf("Running %s from %s.\n",
FormatTestCount(unit_test.test_to_run_count()).c_str(),
FormatTestCaseCount(unit_test.test_case_to_run_count()).c_str());
fflush(stdout);
}
void PrettyUnitTestResultPrinter::OnEnvironmentsSetUpStart(
const UnitTest& /*unit_test*/) {
ColoredPrintf(COLOR_GREEN, "[----------] ");
printf("Global test environment set-up.\n");
fflush(stdout);
}
void PrettyUnitTestResultPrinter::OnTestCaseStart(const TestCase& test_case) {
test_case_name_ = test_case.name();
const internal::String counts =
FormatCountableNoun(test_case.test_to_run_count(), "test", "tests");
ColoredPrintf(COLOR_GREEN, "[----------] ");
printf("%s from %s", counts.c_str(), test_case_name_.c_str());
if (test_case.type_param() == NULL) {
printf("\n");
} else {
printf(", where TypeParam = %s\n", test_case.type_param());
}
fflush(stdout);
}
void PrettyUnitTestResultPrinter::OnTestStart(const TestInfo& test_info) {
ColoredPrintf(COLOR_GREEN, "[ RUN ] ");
PrintTestName(test_case_name_.c_str(), test_info.name());
printf("\n");
fflush(stdout);
}
// Called after an assertion failure.
void PrettyUnitTestResultPrinter::OnTestPartResult(
const TestPartResult& result) {
// If the test part succeeded, we don't need to do anything.
if (result.type() == TestPartResult::kSuccess)
return;
// Print failure message from the assertion (e.g. expected this and got that).
PrintTestPartResult(result);
fflush(stdout);
}
void PrettyUnitTestResultPrinter::OnTestEnd(const TestInfo& test_info) {
if (test_info.result()->Passed()) {
ColoredPrintf(COLOR_GREEN, "[ OK ] ");
} else {
ColoredPrintf(COLOR_RED, "[ FAILED ] ");
}
PrintTestName(test_case_name_.c_str(), test_info.name());
if (test_info.result()->Failed())
PrintFullTestCommentIfPresent(test_info);
if (GTEST_FLAG(print_time)) {
printf(" (%s ms)\n", internal::StreamableToString(
test_info.result()->elapsed_time()).c_str());
} else {
printf("\n");
}
fflush(stdout);
}
void PrettyUnitTestResultPrinter::OnTestCaseEnd(const TestCase& test_case) {
if (!GTEST_FLAG(print_time)) return;
test_case_name_ = test_case.name();
const internal::String counts =
FormatCountableNoun(test_case.test_to_run_count(), "test", "tests");
ColoredPrintf(COLOR_GREEN, "[----------] ");
printf("%s from %s (%s ms total)\n\n",
counts.c_str(), test_case_name_.c_str(),
internal::StreamableToString(test_case.elapsed_time()).c_str());
fflush(stdout);
}
void PrettyUnitTestResultPrinter::OnEnvironmentsTearDownStart(
const UnitTest& /*unit_test*/) {
ColoredPrintf(COLOR_GREEN, "[----------] ");
printf("Global test environment tear-down\n");
fflush(stdout);
}
// Internal helper for printing the list of failed tests.
void PrettyUnitTestResultPrinter::PrintFailedTests(const UnitTest& unit_test) {
const int failed_test_count = unit_test.failed_test_count();
if (failed_test_count == 0) {
return;
}
for (int i = 0; i < unit_test.total_test_case_count(); ++i) {
const TestCase& test_case = *unit_test.GetTestCase(i);
if (!test_case.should_run() || (test_case.failed_test_count() == 0)) {
continue;
}
for (int j = 0; j < test_case.total_test_count(); ++j) {
const TestInfo& test_info = *test_case.GetTestInfo(j);
if (!test_info.should_run() || test_info.result()->Passed()) {
continue;
}
ColoredPrintf(COLOR_RED, "[ FAILED ] ");
printf("%s.%s", test_case.name(), test_info.name());
PrintFullTestCommentIfPresent(test_info);
printf("\n");
}
}
}
void PrettyUnitTestResultPrinter::OnTestIterationEnd(const UnitTest& unit_test,
int /*iteration*/) {
ColoredPrintf(COLOR_GREEN, "[==========] ");
printf("%s from %s ran.",
FormatTestCount(unit_test.test_to_run_count()).c_str(),
FormatTestCaseCount(unit_test.test_case_to_run_count()).c_str());
if (GTEST_FLAG(print_time)) {
printf(" (%s ms total)",
internal::StreamableToString(unit_test.elapsed_time()).c_str());
}
printf("\n");
ColoredPrintf(COLOR_GREEN, "[ PASSED ] ");
printf("%s.\n", FormatTestCount(unit_test.successful_test_count()).c_str());
int num_failures = unit_test.failed_test_count();
if (!unit_test.Passed()) {
const int failed_test_count = unit_test.failed_test_count();
ColoredPrintf(COLOR_RED, "[ FAILED ] ");
printf("%s, listed below:\n", FormatTestCount(failed_test_count).c_str());
PrintFailedTests(unit_test);
printf("\n%2d FAILED %s\n", num_failures,
num_failures == 1 ? "TEST" : "TESTS");
}
int num_disabled = unit_test.disabled_test_count();
if (num_disabled && !GTEST_FLAG(also_run_disabled_tests)) {
if (!num_failures) {
printf("\n"); // Add a spacer if no FAILURE banner is displayed.
}
ColoredPrintf(COLOR_YELLOW,
" YOU HAVE %d DISABLED %s\n\n",
num_disabled,
num_disabled == 1 ? "TEST" : "TESTS");
}
// Ensure that Google Test output is printed before, e.g., heapchecker output.
fflush(stdout);
}
// End PrettyUnitTestResultPrinter
// class TestEventRepeater
//
// This class forwards events to other event listeners.
class TestEventRepeater : public TestEventListener {
public:
TestEventRepeater() : forwarding_enabled_(true) {}
virtual ~TestEventRepeater();
void Append(TestEventListener *listener);
TestEventListener* Release(TestEventListener* listener);
// Controls whether events will be forwarded to listeners_. Set to false
// in death test child processes.
bool forwarding_enabled() const { return forwarding_enabled_; }
void set_forwarding_enabled(bool enable) { forwarding_enabled_ = enable; }
virtual void OnTestProgramStart(const UnitTest& unit_test);
virtual void OnTestIterationStart(const UnitTest& unit_test, int iteration);
virtual void OnEnvironmentsSetUpStart(const UnitTest& unit_test);
virtual void OnEnvironmentsSetUpEnd(const UnitTest& unit_test);
virtual void OnTestCaseStart(const TestCase& test_case);
virtual void OnTestStart(const TestInfo& test_info);
virtual void OnTestPartResult(const TestPartResult& result);
virtual void OnTestEnd(const TestInfo& test_info);
virtual void OnTestCaseEnd(const TestCase& test_case);
virtual void OnEnvironmentsTearDownStart(const UnitTest& unit_test);
virtual void OnEnvironmentsTearDownEnd(const UnitTest& unit_test);
virtual void OnTestIterationEnd(const UnitTest& unit_test, int iteration);
virtual void OnTestProgramEnd(const UnitTest& unit_test);
private:
// Controls whether events will be forwarded to listeners_. Set to false
// in death test child processes.
bool forwarding_enabled_;
// The list of listeners that receive events.
std::vector<TestEventListener*> listeners_;
GTEST_DISALLOW_COPY_AND_ASSIGN_(TestEventRepeater);
};
TestEventRepeater::~TestEventRepeater() {
ForEach(listeners_, Delete<TestEventListener>);
}
void TestEventRepeater::Append(TestEventListener *listener) {
listeners_.push_back(listener);
}
// TODO(vladl@google.com): Factor the search functionality into Vector::Find.
TestEventListener* TestEventRepeater::Release(TestEventListener *listener) {
for (size_t i = 0; i < listeners_.size(); ++i) {
if (listeners_[i] == listener) {
listeners_.erase(listeners_.begin() + i);
return listener;
}
}
return NULL;
}
// Since most methods are very similar, use macros to reduce boilerplate.
// This defines a member that forwards the call to all listeners.
#define GTEST_REPEATER_METHOD_(Name, Type) \
void TestEventRepeater::Name(const Type& parameter) { \
if (forwarding_enabled_) { \
for (size_t i = 0; i < listeners_.size(); i++) { \
listeners_[i]->Name(parameter); \
} \
} \
}
// This defines a member that forwards the call to all listeners in reverse
// order.
#define GTEST_REVERSE_REPEATER_METHOD_(Name, Type) \
void TestEventRepeater::Name(const Type& parameter) { \
if (forwarding_enabled_) { \
for (int i = static_cast<int>(listeners_.size()) - 1; i >= 0; i--) { \
listeners_[i]->Name(parameter); \
} \
} \
}
GTEST_REPEATER_METHOD_(OnTestProgramStart, UnitTest)
GTEST_REPEATER_METHOD_(OnEnvironmentsSetUpStart, UnitTest)
GTEST_REPEATER_METHOD_(OnTestCaseStart, TestCase)
GTEST_REPEATER_METHOD_(OnTestStart, TestInfo)
GTEST_REPEATER_METHOD_(OnTestPartResult, TestPartResult)
GTEST_REPEATER_METHOD_(OnEnvironmentsTearDownStart, UnitTest)
GTEST_REVERSE_REPEATER_METHOD_(OnEnvironmentsSetUpEnd, UnitTest)
GTEST_REVERSE_REPEATER_METHOD_(OnEnvironmentsTearDownEnd, UnitTest)
GTEST_REVERSE_REPEATER_METHOD_(OnTestEnd, TestInfo)
GTEST_REVERSE_REPEATER_METHOD_(OnTestCaseEnd, TestCase)
GTEST_REVERSE_REPEATER_METHOD_(OnTestProgramEnd, UnitTest)
#undef GTEST_REPEATER_METHOD_
#undef GTEST_REVERSE_REPEATER_METHOD_
void TestEventRepeater::OnTestIterationStart(const UnitTest& unit_test,
int iteration) {
if (forwarding_enabled_) {
for (size_t i = 0; i < listeners_.size(); i++) {
listeners_[i]->OnTestIterationStart(unit_test, iteration);
}
}
}
void TestEventRepeater::OnTestIterationEnd(const UnitTest& unit_test,
int iteration) {
if (forwarding_enabled_) {
for (int i = static_cast<int>(listeners_.size()) - 1; i >= 0; i--) {
listeners_[i]->OnTestIterationEnd(unit_test, iteration);
}
}
}
// End TestEventRepeater
// This class generates an XML output file.
class XmlUnitTestResultPrinter : public EmptyTestEventListener {
public:
explicit XmlUnitTestResultPrinter(const char* output_file);
virtual void OnTestIterationEnd(const UnitTest& unit_test, int iteration);
private:
// Is c a whitespace character that is normalized to a space character
// when it appears in an XML attribute value?
static bool IsNormalizableWhitespace(char c) {
return c == 0x9 || c == 0xA || c == 0xD;
}
// May c appear in a well-formed XML document?
static bool IsValidXmlCharacter(char c) {
return IsNormalizableWhitespace(c) || c >= 0x20;
}
// Returns an XML-escaped copy of the input string str. If
// is_attribute is true, the text is meant to appear as an attribute
// value, and normalizable whitespace is preserved by replacing it
// with character references.
static String EscapeXml(const char* str, bool is_attribute);
// Returns the given string with all characters invalid in XML removed.
static string RemoveInvalidXmlCharacters(const string& str);
// Convenience wrapper around EscapeXml when str is an attribute value.
static String EscapeXmlAttribute(const char* str) {
return EscapeXml(str, true);
}
// Convenience wrapper around EscapeXml when str is not an attribute value.
static String EscapeXmlText(const char* str) { return EscapeXml(str, false); }
// Streams an XML CDATA section, escaping invalid CDATA sequences as needed.
static void OutputXmlCDataSection(::std::ostream* stream, const char* data);
// Streams an XML representation of a TestInfo object.
static void OutputXmlTestInfo(::std::ostream* stream,
const char* test_case_name,
const TestInfo& test_info);
// Prints an XML representation of a TestCase object
static void PrintXmlTestCase(FILE* out, const TestCase& test_case);
// Prints an XML summary of unit_test to output stream out.
static void PrintXmlUnitTest(FILE* out, const UnitTest& unit_test);
// Produces a string representing the test properties in a result as space
// delimited XML attributes based on the property key="value" pairs.
// When the String is not empty, it includes a space at the beginning,
// to delimit this attribute from prior attributes.
static String TestPropertiesAsXmlAttributes(const TestResult& result);
// The output file.
const String output_file_;
GTEST_DISALLOW_COPY_AND_ASSIGN_(XmlUnitTestResultPrinter);
};
// Creates a new XmlUnitTestResultPrinter.
XmlUnitTestResultPrinter::XmlUnitTestResultPrinter(const char* output_file)
: output_file_(output_file) {
if (output_file_.c_str() == NULL || output_file_.empty()) {
fprintf(stderr, "XML output file may not be null\n");
fflush(stderr);
exit(EXIT_FAILURE);
}
}
// Called after the unit test ends.
void XmlUnitTestResultPrinter::OnTestIterationEnd(const UnitTest& unit_test,
int /*iteration*/) {
FILE* xmlout = NULL;
FilePath output_file(output_file_);
FilePath output_dir(output_file.RemoveFileName());
if (output_dir.CreateDirectoriesRecursively()) {
xmlout = posix::FOpen(output_file_.c_str(), "w");
}
if (xmlout == NULL) {
// TODO(wan): report the reason of the failure.
//
// We don't do it for now as:
//
// 1. There is no urgent need for it.
// 2. It's a bit involved to make the errno variable thread-safe on
// all three operating systems (Linux, Windows, and Mac OS).
// 3. To interpret the meaning of errno in a thread-safe way,
// we need the strerror_r() function, which is not available on
// Windows.
fprintf(stderr,
"Unable to open file \"%s\"\n",
output_file_.c_str());
fflush(stderr);
exit(EXIT_FAILURE);
}
PrintXmlUnitTest(xmlout, unit_test);
fclose(xmlout);
}
// Returns an XML-escaped copy of the input string str. If is_attribute
// is true, the text is meant to appear as an attribute value, and
// normalizable whitespace is preserved by replacing it with character
// references.
//
// Invalid XML characters in str, if any, are stripped from the output.
// It is expected that most, if not all, of the text processed by this
// module will consist of ordinary English text.
// If this module is ever modified to produce version 1.1 XML output,
// most invalid characters can be retained using character references.
// TODO(wan): It might be nice to have a minimally invasive, human-readable
// escaping scheme for invalid characters, rather than dropping them.
String XmlUnitTestResultPrinter::EscapeXml(const char* str, bool is_attribute) {
Message m;
if (str != NULL) {
for (const char* src = str; *src; ++src) {
switch (*src) {
case '<':
m << "&lt;";
break;
case '>':
m << "&gt;";
break;
case '&':
m << "&amp;";
break;
case '\'':
if (is_attribute)
m << "&apos;";
else
m << '\'';
break;
case '"':
if (is_attribute)
m << "&quot;";
else
m << '"';
break;
default:
if (IsValidXmlCharacter(*src)) {
if (is_attribute && IsNormalizableWhitespace(*src))
m << String::Format("&#x%02X;", unsigned(*src));
else
m << *src;
}
break;
}
}
}
return m.GetString();
}
// Returns the given string with all characters invalid in XML removed.
// Currently invalid characters are dropped from the string. An
// alternative is to replace them with certain characters such as . or ?.
string XmlUnitTestResultPrinter::RemoveInvalidXmlCharacters(const string& str) {
string output;
output.reserve(str.size());
for (string::const_iterator it = str.begin(); it != str.end(); ++it)
if (IsValidXmlCharacter(*it))
output.push_back(*it);
return output;
}
// The following routines generate an XML representation of a UnitTest
// object.
//
// This is how Google Test concepts map to the DTD:
//
// <testsuites name="AllTests"> <-- corresponds to a UnitTest object
// <testsuite name="testcase-name"> <-- corresponds to a TestCase object
// <testcase name="test-name"> <-- corresponds to a TestInfo object
// <failure message="...">...</failure>
// <failure message="...">...</failure>
// <failure message="...">...</failure>
// <-- individual assertion failures
// </testcase>
// </testsuite>
// </testsuites>
// Formats the given time in milliseconds as seconds.
std::string FormatTimeInMillisAsSeconds(TimeInMillis ms) {
::std::stringstream ss;
ss << ms/1000.0;
return ss.str();
}
// Streams an XML CDATA section, escaping invalid CDATA sequences as needed.
void XmlUnitTestResultPrinter::OutputXmlCDataSection(::std::ostream* stream,
const char* data) {
const char* segment = data;
*stream << "<![CDATA[";
for (;;) {
const char* const next_segment = strstr(segment, "]]>");
if (next_segment != NULL) {
stream->write(
segment, static_cast<std::streamsize>(next_segment - segment));
*stream << "]]>]]&gt;<![CDATA[";
segment = next_segment + strlen("]]>");
} else {
*stream << segment;
break;
}
}
*stream << "]]>";
}
// Prints an XML representation of a TestInfo object.
// TODO(wan): There is also value in printing properties with the plain printer.
void XmlUnitTestResultPrinter::OutputXmlTestInfo(::std::ostream* stream,
const char* test_case_name,
const TestInfo& test_info) {
if (test_info.filtered_out ())
return;
const TestResult& result = *test_info.result();
*stream << " <testcase name=\""
<< EscapeXmlAttribute(test_info.name()).c_str() << "\"";
if (test_info.value_param() != NULL) {
*stream << " value_param=\"" << EscapeXmlAttribute(test_info.value_param())
<< "\"";
}
if (test_info.type_param() != NULL) {
*stream << " type_param=\"" << EscapeXmlAttribute(test_info.type_param())
<< "\"";
}
*stream << " status=\""
<< (test_info.should_run() ? "run" : "notrun")
<< "\" time=\""
<< FormatTimeInMillisAsSeconds(result.elapsed_time())
<< "\" classname=\"" << EscapeXmlAttribute(test_case_name).c_str()
<< "\"" << TestPropertiesAsXmlAttributes(result).c_str();
int failures = 0;
for (int i = 0; i < result.total_part_count(); ++i) {
const TestPartResult& part = result.GetTestPartResult(i);
if (part.failed()) {
if (++failures == 1)
*stream << ">\n";
*stream << " <failure message=\""
<< EscapeXmlAttribute(part.summary()).c_str()
<< "\" type=\"\">";
const string location = internal::FormatCompilerIndependentFileLocation(
part.file_name(), part.line_number());
const string message = location + "\n" + part.message();
OutputXmlCDataSection(stream,
RemoveInvalidXmlCharacters(message).c_str());
*stream << "</failure>\n";
}
}
if (failures == 0)
*stream << " />\n";
else
*stream << " </testcase>\n";
}
// Prints an XML representation of a TestCase object
void XmlUnitTestResultPrinter::PrintXmlTestCase(FILE* out,
const TestCase& test_case) {
if (test_case.should_skip_report ())
return;
fprintf(out,
" <testsuite name=\"%s\" tests=\"%d\" failures=\"%d\" "
"disabled=\"%d\" ",
EscapeXmlAttribute(test_case.name()).c_str(),
test_case.total_test_count(),
test_case.failed_test_count(),
test_case.disabled_test_count());
fprintf(out,
"errors=\"0\" time=\"%s\">\n",
FormatTimeInMillisAsSeconds(test_case.elapsed_time()).c_str());
for (int i = 0; i < test_case.total_test_count(); ++i) {
::std::stringstream stream;
OutputXmlTestInfo(&stream, test_case.name(), *test_case.GetTestInfo(i));
fprintf(out, "%s", StringStreamToString(&stream).c_str());
}
fprintf(out, " </testsuite>\n");
}
// Prints an XML summary of unit_test to output stream out.
void XmlUnitTestResultPrinter::PrintXmlUnitTest(FILE* out,
const UnitTest& unit_test) {
fprintf(out, "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n");
fprintf(out,
"<testsuites tests=\"%d\" failures=\"%d\" disabled=\"%d\" "
"errors=\"0\" time=\"%s\" ",
unit_test.total_test_count(),
unit_test.failed_test_count(),
unit_test.disabled_test_count(),
FormatTimeInMillisAsSeconds(unit_test.elapsed_time()).c_str());
if (GTEST_FLAG(shuffle)) {
fprintf(out, "random_seed=\"%d\" ", unit_test.random_seed());
}
fprintf(out, "name=\"AllTests\">\n");
for (int i = 0; i < unit_test.total_test_case_count(); ++i)
PrintXmlTestCase(out, *unit_test.GetTestCase(i));
fprintf(out, "</testsuites>\n");
}
// Produces a string representing the test properties in a result as space
// delimited XML attributes based on the property key="value" pairs.
String XmlUnitTestResultPrinter::TestPropertiesAsXmlAttributes(
const TestResult& result) {
Message attributes;
for (int i = 0; i < result.test_property_count(); ++i) {
const TestProperty& property = result.GetTestProperty(i);
attributes << " " << property.key() << "="
<< "\"" << EscapeXmlAttribute(property.value()) << "\"";
}
return attributes.GetString();
}
// End XmlUnitTestResultPrinter
#if GTEST_CAN_STREAM_RESULTS_
// Streams test results to the given port on the given host machine.
class StreamingListener : public EmptyTestEventListener {
public:
// Escapes '=', '&', '%', and '\n' characters in str as "%xx".
static string UrlEncode(const char* str);
StreamingListener(const string& host, const string& port)
: sockfd_(-1), host_name_(host), port_num_(port) {
MakeConnection();
Send("gtest_streaming_protocol_version=1.0\n");
}
virtual ~StreamingListener() {
if (sockfd_ != -1)
CloseConnection();
}
void OnTestProgramStart(const UnitTest& /* unit_test */) {
Send("event=TestProgramStart\n");
}
void OnTestProgramEnd(const UnitTest& unit_test) {
// Note that Google Test current only report elapsed time for each
// test iteration, not for the entire test program.
Send(String::Format("event=TestProgramEnd&passed=%d\n",
unit_test.Passed()));
// Notify the streaming server to stop.
CloseConnection();
}
void OnTestIterationStart(const UnitTest& /* unit_test */, int iteration) {
Send(String::Format("event=TestIterationStart&iteration=%d\n",
iteration));
}
void OnTestIterationEnd(const UnitTest& unit_test, int /* iteration */) {
Send(String::Format("event=TestIterationEnd&passed=%d&elapsed_time=%sms\n",
unit_test.Passed(),
StreamableToString(unit_test.elapsed_time()).c_str()));
}
void OnTestCaseStart(const TestCase& test_case) {
Send(String::Format("event=TestCaseStart&name=%s\n", test_case.name()));
}
void OnTestCaseEnd(const TestCase& test_case) {
Send(String::Format("event=TestCaseEnd&passed=%d&elapsed_time=%sms\n",
test_case.Passed(),
StreamableToString(test_case.elapsed_time()).c_str()));
}
void OnTestStart(const TestInfo& test_info) {
Send(String::Format("event=TestStart&name=%s\n", test_info.name()));
}
void OnTestEnd(const TestInfo& test_info) {
Send(String::Format(
"event=TestEnd&passed=%d&elapsed_time=%sms\n",
(test_info.result())->Passed(),
StreamableToString((test_info.result())->elapsed_time()).c_str()));
}
void OnTestPartResult(const TestPartResult& test_part_result) {
const char* file_name = test_part_result.file_name();
if (file_name == NULL)
file_name = "";
Send(String::Format("event=TestPartResult&file=%s&line=%d&message=",
UrlEncode(file_name).c_str(),
test_part_result.line_number()));
Send(UrlEncode(test_part_result.message()) + "\n");
}
private:
// Creates a client socket and connects to the server.
void MakeConnection();
// Closes the socket.
void CloseConnection() {
GTEST_CHECK_(sockfd_ != -1)
<< "CloseConnection() can be called only when there is a connection.";
close(sockfd_);
sockfd_ = -1;
}
// Sends a string to the socket.
void Send(const string& message) {
GTEST_CHECK_(sockfd_ != -1)
<< "Send() can be called only when there is a connection.";
const int len = static_cast<int>(message.length());
if (write(sockfd_, message.c_str(), len) != len) {
GTEST_LOG_(WARNING)
<< "stream_result_to: failed to stream to "
<< host_name_ << ":" << port_num_;
}
}
int sockfd_; // socket file descriptor
const string host_name_;
const string port_num_;
GTEST_DISALLOW_COPY_AND_ASSIGN_(StreamingListener);
}; // class StreamingListener
// Checks if str contains '=', '&', '%' or '\n' characters. If yes,
// replaces them by "%xx" where xx is their hexadecimal value. For
// example, replaces "=" with "%3D". This algorithm is O(strlen(str))
// in both time and space -- important as the input str may contain an
// arbitrarily long test failure message and stack trace.
string StreamingListener::UrlEncode(const char* str) {
string result;
result.reserve(strlen(str) + 1);
for (char ch = *str; ch != '\0'; ch = *++str) {
switch (ch) {
case '%':
case '=':
case '&':
case '\n':
result.append(String::Format("%%%02x", static_cast<unsigned char>(ch)));
break;
default:
result.push_back(ch);
break;
}
}
return result;
}
void StreamingListener::MakeConnection() {
GTEST_CHECK_(sockfd_ == -1)
<< "MakeConnection() can't be called when there is already a connection.";
addrinfo hints;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC; // To allow both IPv4 and IPv6 addresses.
hints.ai_socktype = SOCK_STREAM;
addrinfo* servinfo = NULL;
// Use the getaddrinfo() to get a linked list of IP addresses for
// the given host name.
const int error_num = getaddrinfo(
host_name_.c_str(), port_num_.c_str(), &hints, &servinfo);
if (error_num != 0) {
GTEST_LOG_(WARNING) << "stream_result_to: getaddrinfo() failed: "
<< gai_strerror(error_num);
}
// Loop through all the results and connect to the first we can.
for (addrinfo* cur_addr = servinfo; sockfd_ == -1 && cur_addr != NULL;
cur_addr = cur_addr->ai_next) {
sockfd_ = socket(
cur_addr->ai_family, cur_addr->ai_socktype, cur_addr->ai_protocol);
if (sockfd_ != -1) {
// Connect the client socket to the server socket.
if (connect(sockfd_, cur_addr->ai_addr, cur_addr->ai_addrlen) == -1) {
close(sockfd_);
sockfd_ = -1;
}
}
}
freeaddrinfo(servinfo); // all done with this structure
if (sockfd_ == -1) {
GTEST_LOG_(WARNING) << "stream_result_to: failed to connect to "
<< host_name_ << ":" << port_num_;
}
}
// End of class Streaming Listener
#endif // GTEST_CAN_STREAM_RESULTS__
// Class ScopedTrace
// Pushes the given source file location and message onto a per-thread
// trace stack maintained by Google Test.
// L < UnitTest::mutex_
ScopedTrace::ScopedTrace(const char* file, int line, const Message& message) {
TraceInfo trace;
trace.file = file;
trace.line = line;
trace.message = message.GetString();
UnitTest::GetInstance()->PushGTestTrace(trace);
}
// Pops the info pushed by the c'tor.
// L < UnitTest::mutex_
ScopedTrace::~ScopedTrace() {
UnitTest::GetInstance()->PopGTestTrace();
}
// class OsStackTraceGetter
// Returns the current OS stack trace as a String. Parameters:
//
// max_depth - the maximum number of stack frames to be included
// in the trace.
// skip_count - the number of top frames to be skipped; doesn't count
// against max_depth.
//
// L < mutex_
// We use "L < mutex_" to denote that the function may acquire mutex_.
String OsStackTraceGetter::CurrentStackTrace(int, int) {
return String("");
}
// L < mutex_
void OsStackTraceGetter::UponLeavingGTest() {
}
const char* const
OsStackTraceGetter::kElidedFramesMarker =
"... " GTEST_NAME_ " internal frames ...";
} // namespace internal
// class TestEventListeners
TestEventListeners::TestEventListeners()
: repeater_(new internal::TestEventRepeater()),
default_result_printer_(NULL),
default_xml_generator_(NULL) {
}
TestEventListeners::~TestEventListeners() { delete repeater_; }
// Returns the standard listener responsible for the default console
// output. Can be removed from the listeners list to shut down default
// console output. Note that removing this object from the listener list
// with Release transfers its ownership to the user.
void TestEventListeners::Append(TestEventListener* listener) {
repeater_->Append(listener);
}
// Removes the given event listener from the list and returns it. It then
// becomes the caller's responsibility to delete the listener. Returns
// NULL if the listener is not found in the list.
TestEventListener* TestEventListeners::Release(TestEventListener* listener) {
if (listener == default_result_printer_)
default_result_printer_ = NULL;
else if (listener == default_xml_generator_)
default_xml_generator_ = NULL;
return repeater_->Release(listener);
}
// Returns repeater that broadcasts the TestEventListener events to all
// subscribers.
TestEventListener* TestEventListeners::repeater() { return repeater_; }
// Sets the default_result_printer attribute to the provided listener.
// The listener is also added to the listener list and previous
// default_result_printer is removed from it and deleted. The listener can
// also be NULL in which case it will not be added to the list. Does
// nothing if the previous and the current listener objects are the same.
void TestEventListeners::SetDefaultResultPrinter(TestEventListener* listener) {
if (default_result_printer_ != listener) {
// It is an error to pass this method a listener that is already in the
// list.
delete Release(default_result_printer_);
default_result_printer_ = listener;
if (listener != NULL)
Append(listener);
}
}
// Sets the default_xml_generator attribute to the provided listener. The
// listener is also added to the listener list and previous
// default_xml_generator is removed from it and deleted. The listener can
// also be NULL in which case it will not be added to the list. Does
// nothing if the previous and the current listener objects are the same.
void TestEventListeners::SetDefaultXmlGenerator(TestEventListener* listener) {
if (default_xml_generator_ != listener) {
// It is an error to pass this method a listener that is already in the
// list.
delete Release(default_xml_generator_);
default_xml_generator_ = listener;
if (listener != NULL)
Append(listener);
}
}
// Controls whether events will be forwarded by the repeater to the
// listeners in the list.
bool TestEventListeners::EventForwardingEnabled() const {
return repeater_->forwarding_enabled();
}
void TestEventListeners::SuppressEventForwarding() {
repeater_->set_forwarding_enabled(false);
}
// class UnitTest
// Gets the singleton UnitTest object. The first time this method is
// called, a UnitTest object is constructed and returned. Consecutive
// calls will return the same object.
//
// We don't protect this under mutex_ as a user is not supposed to
// call this before main() starts, from which point on the return
// value will never change.
UnitTest * UnitTest::GetInstance() {
// When compiled with MSVC 7.1 in optimized mode, destroying the
// UnitTest object upon exiting the program messes up the exit code,
// causing successful tests to appear failed. We have to use a
// different implementation in this case to bypass the compiler bug.
// This implementation makes the compiler happy, at the cost of
// leaking the UnitTest object.
// CodeGear C++Builder insists on a public destructor for the
// default implementation. Use this implementation to keep good OO
// design with private destructor.
#if (_MSC_VER == 1310 && !defined(_DEBUG)) || defined(__BORLANDC__)
static UnitTest* const instance = new UnitTest;
return instance;
#else
static UnitTest instance;
return &instance;
#endif // (_MSC_VER == 1310 && !defined(_DEBUG)) || defined(__BORLANDC__)
}
// Gets the number of successful test cases.
int UnitTest::successful_test_case_count() const {
return impl()->successful_test_case_count();
}
// Gets the number of failed test cases.
int UnitTest::failed_test_case_count() const {
return impl()->failed_test_case_count();
}
// Gets the number of all test cases.
int UnitTest::total_test_case_count() const {
return impl()->total_test_case_count();
}
// Gets the number of all test cases that contain at least one test
// that should run.
int UnitTest::test_case_to_run_count() const {
return impl()->test_case_to_run_count();
}
// Gets the number of successful tests.
int UnitTest::successful_test_count() const {
return impl()->successful_test_count();
}
// Gets the number of failed tests.
int UnitTest::failed_test_count() const { return impl()->failed_test_count(); }
// Gets the number of disabled tests.
int UnitTest::disabled_test_count() const {
return impl()->disabled_test_count();
}
// Gets the number of all tests.
int UnitTest::total_test_count() const { return impl()->total_test_count(); }
// Gets the number of tests that should run.
int UnitTest::test_to_run_count() const { return impl()->test_to_run_count(); }
// Gets the elapsed time, in milliseconds.
internal::TimeInMillis UnitTest::elapsed_time() const {
return impl()->elapsed_time();
}
// Returns true iff the unit test passed (i.e. all test cases passed).
bool UnitTest::Passed() const { return impl()->Passed(); }
// Returns true iff the unit test failed (i.e. some test case failed
// or something outside of all tests failed).
bool UnitTest::Failed() const { return impl()->Failed(); }
// Gets the i-th test case among all the test cases. i can range from 0 to
// total_test_case_count() - 1. If i is not in that range, returns NULL.
const TestCase* UnitTest::GetTestCase(int i) const {
return impl()->GetTestCase(i);
}
// Gets the i-th test case among all the test cases. i can range from 0 to
// total_test_case_count() - 1. If i is not in that range, returns NULL.
TestCase* UnitTest::GetMutableTestCase(int i) {
return impl()->GetMutableTestCase(i);
}
// Returns the list of event listeners that can be used to track events
// inside Google Test.
TestEventListeners& UnitTest::listeners() {
return *impl()->listeners();
}
// Registers and returns a global test environment. When a test
// program is run, all global test environments will be set-up in the
// order they were registered. After all tests in the program have
// finished, all global test environments will be torn-down in the
// *reverse* order they were registered.
//
// The UnitTest object takes ownership of the given environment.
//
// We don't protect this under mutex_, as we only support calling it
// from the main thread.
Environment* UnitTest::AddEnvironment(Environment* env) {
if (env == NULL) {
return NULL;
}
impl_->environments().push_back(env);
return env;
}
// Adds a TestPartResult to the current TestResult object. All Google Test
// assertion macros (e.g. ASSERT_TRUE, EXPECT_EQ, etc) eventually call
// this to report their results. The user code should use the
// assertion macros instead of calling this directly.
// L < mutex_
void UnitTest::AddTestPartResult(TestPartResult::Type result_type,
const char* file_name,
int line_number,
const internal::String& message,
const internal::String& os_stack_trace) {
Message msg;
msg << message;
internal::MutexLock lock(&mutex_);
if (impl_->gtest_trace_stack().size() > 0) {
msg << "\n" << GTEST_NAME_ << " trace:";
for (int i = static_cast<int>(impl_->gtest_trace_stack().size());
i > 0; --i) {
const internal::TraceInfo& trace = impl_->gtest_trace_stack()[i - 1];
msg << "\n" << internal::FormatFileLocation(trace.file, trace.line)
<< " " << trace.message;
}
}
if (os_stack_trace.c_str() != NULL && !os_stack_trace.empty()) {
msg << internal::kStackTraceMarker << os_stack_trace;
}
const TestPartResult result =
TestPartResult(result_type, file_name, line_number,
msg.GetString().c_str());
impl_->GetTestPartResultReporterForCurrentThread()->
ReportTestPartResult(result);
if (result_type != TestPartResult::kSuccess) {
// gtest_break_on_failure takes precedence over
// gtest_throw_on_failure. This allows a user to set the latter
// in the code (perhaps in order to use Google Test assertions
// with another testing framework) and specify the former on the
// command line for debugging.
if (GTEST_FLAG(break_on_failure)) {
#if GTEST_OS_WINDOWS
// Using DebugBreak on Windows allows gtest to still break into a debugger
// when a failure happens and both the --gtest_break_on_failure and
// the --gtest_catch_exceptions flags are specified.
DebugBreak();
#else
// Dereference NULL through a volatile pointer to prevent the compiler
// from removing. We use this rather than abort() or __builtin_trap() for
// portability: Symbian doesn't implement abort() well, and some debuggers
// don't correctly trap abort().
*static_cast<volatile int*>(NULL) = 1;
#endif // GTEST_OS_WINDOWS
} else if (GTEST_FLAG(throw_on_failure)) {
#if GTEST_HAS_EXCEPTIONS
throw GoogleTestFailureException(result);
#else
// We cannot call abort() as it generates a pop-up in debug mode
// that cannot be suppressed in VC 7.1 or below.
exit(1);
#endif
}
}
}
// Creates and adds a property to the current TestResult. If a property matching
// the supplied value already exists, updates its value instead.
void UnitTest::RecordPropertyForCurrentTest(const char* key,
const char* value) {
const TestProperty test_property(key, value);
impl_->current_test_result()->RecordProperty(test_property);
}
// Runs all tests in this UnitTest object and prints the result.
// Returns 0 if successful, or 1 otherwise.
//
// We don't protect this under mutex_, as we only support calling it
// from the main thread.
int UnitTest::Run() {
// Captures the value of GTEST_FLAG(catch_exceptions). This value will be
// used for the duration of the program.
impl()->set_catch_exceptions(GTEST_FLAG(catch_exceptions));
#if GTEST_HAS_SEH
const bool in_death_test_child_process =
internal::GTEST_FLAG(internal_run_death_test).length() > 0;
// Either the user wants Google Test to catch exceptions thrown by the
// tests or this is executing in the context of death test child
// process. In either case the user does not want to see pop-up dialogs
// about crashes - they are expected.
if (impl()->catch_exceptions() || in_death_test_child_process) {
# if !GTEST_OS_WINDOWS_MOBILE
// SetErrorMode doesn't exist on CE.
SetErrorMode(SEM_FAILCRITICALERRORS | SEM_NOALIGNMENTFAULTEXCEPT |
SEM_NOGPFAULTERRORBOX | SEM_NOOPENFILEERRORBOX);
# endif // !GTEST_OS_WINDOWS_MOBILE
# if (defined(_MSC_VER) || GTEST_OS_WINDOWS_MINGW) && !GTEST_OS_WINDOWS_MOBILE
// Death test children can be terminated with _abort(). On Windows,
// _abort() can show a dialog with a warning message. This forces the
// abort message to go to stderr instead.
_set_error_mode(_OUT_TO_STDERR);
# endif
# if _MSC_VER >= 1400 && !GTEST_OS_WINDOWS_MOBILE
// In the debug version, Visual Studio pops up a separate dialog
// offering a choice to debug the aborted program. We need to suppress
// this dialog or it will pop up for every EXPECT/ASSERT_DEATH statement
// executed. Google Test will notify the user of any unexpected
// failure via stderr.
//
// VC++ doesn't define _set_abort_behavior() prior to the version 8.0.
// Users of prior VC versions shall suffer the agony and pain of
// clicking through the countless debug dialogs.
// TODO(vladl@google.com): find a way to suppress the abort dialog() in the
// debug mode when compiled with VC 7.1 or lower.
if (!GTEST_FLAG(break_on_failure))
_set_abort_behavior(
0x0, // Clear the following flags:
_WRITE_ABORT_MSG | _CALL_REPORTFAULT); // pop-up window, core dump.
# endif
}
#endif // GTEST_HAS_SEH
return internal::HandleExceptionsInMethodIfSupported(
impl(),
&internal::UnitTestImpl::RunAllTests,
"auxiliary test code (environments or event listeners)") ? 0 : 1;
}
// Returns the working directory when the first TEST() or TEST_F() was
// executed.
const char* UnitTest::original_working_dir() const {
return impl_->original_working_dir_.c_str();
}
// Returns the TestCase object for the test that's currently running,
// or NULL if no test is running.
// L < mutex_
const TestCase* UnitTest::current_test_case() const {
internal::MutexLock lock(&mutex_);
return impl_->current_test_case();
}
// Returns the TestInfo object for the test that's currently running,
// or NULL if no test is running.
// L < mutex_
const TestInfo* UnitTest::current_test_info() const {
internal::MutexLock lock(&mutex_);
return impl_->current_test_info();
}
// Returns the random seed used at the start of the current test run.
int UnitTest::random_seed() const { return impl_->random_seed(); }
#if GTEST_HAS_PARAM_TEST
// Returns ParameterizedTestCaseRegistry object used to keep track of
// value-parameterized tests and instantiate and register them.
// L < mutex_
internal::ParameterizedTestCaseRegistry&
UnitTest::parameterized_test_registry() {
return impl_->parameterized_test_registry();
}
#endif // GTEST_HAS_PARAM_TEST
// Creates an empty UnitTest.
UnitTest::UnitTest() {
impl_ = new internal::UnitTestImpl(this);
}
// Destructor of UnitTest.
UnitTest::~UnitTest() {
delete impl_;
}
// Pushes a trace defined by SCOPED_TRACE() on to the per-thread
// Google Test trace stack.
// L < mutex_
void UnitTest::PushGTestTrace(const internal::TraceInfo& trace) {
internal::MutexLock lock(&mutex_);
impl_->gtest_trace_stack().push_back(trace);
}
// Pops a trace from the per-thread Google Test trace stack.
// L < mutex_
void UnitTest::PopGTestTrace() {
internal::MutexLock lock(&mutex_);
impl_->gtest_trace_stack().pop_back();
}
namespace internal {
UnitTestImpl::UnitTestImpl(UnitTest* parent)
: parent_(parent),
#ifdef _MSC_VER
# pragma warning(push) // Saves the current warning state.
# pragma warning(disable:4355) // Temporarily disables warning 4355
// (using this in initializer).
default_global_test_part_result_reporter_(this),
default_per_thread_test_part_result_reporter_(this),
# pragma warning(pop) // Restores the warning state again.
#else
default_global_test_part_result_reporter_(this),
default_per_thread_test_part_result_reporter_(this),
#endif // _MSC_VER
global_test_part_result_repoter_(
&default_global_test_part_result_reporter_),
per_thread_test_part_result_reporter_(
&default_per_thread_test_part_result_reporter_),
#if GTEST_HAS_PARAM_TEST
parameterized_test_registry_(),
parameterized_tests_registered_(false),
#endif // GTEST_HAS_PARAM_TEST
last_death_test_case_(-1),
current_test_case_(NULL),
current_test_info_(NULL),
ad_hoc_test_result_(),
os_stack_trace_getter_(NULL),
post_flag_parse_init_performed_(false),
random_seed_(0), // Will be overridden by the flag before first use.
random_(0), // Will be reseeded before first use.
elapsed_time_(0),
#if GTEST_HAS_DEATH_TEST
internal_run_death_test_flag_(NULL),
death_test_factory_(new DefaultDeathTestFactory),
#endif
// Will be overridden by the flag before first use.
catch_exceptions_(false) {
listeners()->SetDefaultResultPrinter(new PrettyUnitTestResultPrinter);
}
UnitTestImpl::~UnitTestImpl() {
// Deletes every TestCase.
ForEach(test_cases_, internal::Delete<TestCase>);
// Deletes every Environment.
ForEach(environments_, internal::Delete<Environment>);
delete os_stack_trace_getter_;
}
#if GTEST_HAS_DEATH_TEST
// Disables event forwarding if the control is currently in a death test
// subprocess. Must not be called before InitGoogleTest.
void UnitTestImpl::SuppressTestEventsIfInSubprocess() {
if (internal_run_death_test_flag_.get() != NULL)
listeners()->SuppressEventForwarding();
}
#endif // GTEST_HAS_DEATH_TEST
// Initializes event listeners performing XML output as specified by
// UnitTestOptions. Must not be called before InitGoogleTest.
void UnitTestImpl::ConfigureXmlOutput() {
const String& output_format = UnitTestOptions::GetOutputFormat();
if (output_format == "xml") {
listeners()->SetDefaultXmlGenerator(new XmlUnitTestResultPrinter(
UnitTestOptions::GetAbsolutePathToOutputFile().c_str()));
} else if (output_format != "") {
printf("WARNING: unrecognized output format \"%s\" ignored.\n",
output_format.c_str());
fflush(stdout);
}
}
#if GTEST_CAN_STREAM_RESULTS_
// Initializes event listeners for streaming test results in String form.
// Must not be called before InitGoogleTest.
void UnitTestImpl::ConfigureStreamingOutput() {
const string& target = GTEST_FLAG(stream_result_to);
if (!target.empty()) {
const size_t pos = target.find(':');
if (pos != string::npos) {
listeners()->Append(new StreamingListener(target.substr(0, pos),
target.substr(pos+1)));
} else {
printf("WARNING: unrecognized streaming target \"%s\" ignored.\n",
target.c_str());
fflush(stdout);
}
}
}
#endif // GTEST_CAN_STREAM_RESULTS_
// Performs initialization dependent upon flag values obtained in
// ParseGoogleTestFlagsOnly. Is called from InitGoogleTest after the call to
// ParseGoogleTestFlagsOnly. In case a user neglects to call InitGoogleTest
// this function is also called from RunAllTests. Since this function can be
// called more than once, it has to be idempotent.
void UnitTestImpl::PostFlagParsingInit() {
// Ensures that this function does not execute more than once.
if (!post_flag_parse_init_performed_) {
post_flag_parse_init_performed_ = true;
#if GTEST_HAS_DEATH_TEST
InitDeathTestSubprocessControlInfo();
SuppressTestEventsIfInSubprocess();
#endif // GTEST_HAS_DEATH_TEST
// Registers parameterized tests. This makes parameterized tests
// available to the UnitTest reflection API without running
// RUN_ALL_TESTS.
RegisterParameterizedTests();
// Configures listeners for XML output. This makes it possible for users
// to shut down the default XML output before invoking RUN_ALL_TESTS.
ConfigureXmlOutput();
#if GTEST_CAN_STREAM_RESULTS_
// Configures listeners for streaming test results to the specified server.
ConfigureStreamingOutput();
#endif // GTEST_CAN_STREAM_RESULTS_
}
}
// A predicate that checks the name of a TestCase against a known
// value.
//
// This is used for implementation of the UnitTest class only. We put
// it in the anonymous namespace to prevent polluting the outer
// namespace.
//
// TestCaseNameIs is copyable.
class TestCaseNameIs {
public:
// Constructor.
explicit TestCaseNameIs(const String& name)
: name_(name) {}
// Returns true iff the name of test_case matches name_.
bool operator()(const TestCase* test_case) const {
return test_case != NULL && strcmp(test_case->name(), name_.c_str()) == 0;
}
private:
String name_;
};
// Finds and returns a TestCase with the given name. If one doesn't
// exist, creates one and returns it. It's the CALLER'S
// RESPONSIBILITY to ensure that this function is only called WHEN THE
// TESTS ARE NOT SHUFFLED.
//
// Arguments:
//
// test_case_name: name of the test case
// type_param: the name of the test case's type parameter, or NULL if
// this is not a typed or a type-parameterized test case.
// set_up_tc: pointer to the function that sets up the test case
// tear_down_tc: pointer to the function that tears down the test case
TestCase* UnitTestImpl::GetTestCase(const char* test_case_name,
const char* type_param,
Test::SetUpTestCaseFunc set_up_tc,
Test::TearDownTestCaseFunc tear_down_tc) {
// Can we find a TestCase with the given name?
const std::vector<TestCase*>::const_iterator test_case =
std::find_if(test_cases_.begin(), test_cases_.end(),
TestCaseNameIs(test_case_name));
if (test_case != test_cases_.end())
return *test_case;
// No. Let's create one.
TestCase* const new_test_case =
new TestCase(test_case_name, type_param, set_up_tc, tear_down_tc);
// Is this a death test case?
if (internal::UnitTestOptions::MatchesFilter(String(test_case_name),
kDeathTestCaseFilter)) {
// Yes. Inserts the test case after the last death test case
// defined so far. This only works when the test cases haven't
// been shuffled. Otherwise we may end up running a death test
// after a non-death test.
++last_death_test_case_;
test_cases_.insert(test_cases_.begin() + last_death_test_case_,
new_test_case);
} else {
// No. Appends to the end of the list.
test_cases_.push_back(new_test_case);
}
test_case_indices_.push_back(static_cast<int>(test_case_indices_.size()));
return new_test_case;
}
// Helpers for setting up / tearing down the given environment. They
// are for use in the ForEach() function.
static void SetUpEnvironment(Environment* env) { env->SetUp(); }
static void TearDownEnvironment(Environment* env) { env->TearDown(); }
// Runs all tests in this UnitTest object, prints the result, and
// returns true if all tests are successful. If any exception is
// thrown during a test, the test is considered to be failed, but the
// rest of the tests will still be run.
//
// When parameterized tests are enabled, it expands and registers
// parameterized tests first in RegisterParameterizedTests().
// All other functions called from RunAllTests() may safely assume that
// parameterized tests are ready to be counted and run.
bool UnitTestImpl::RunAllTests() {
// Makes sure InitGoogleTest() was called.
if (!GTestIsInitialized()) {
printf("%s",
"\nThis test program did NOT call ::testing::InitGoogleTest "
"before calling RUN_ALL_TESTS(). Please fix it.\n");
return false;
}
// Do not run any test if the --help flag was specified.
if (g_help_flag)
return true;
// Repeats the call to the post-flag parsing initialization in case the
// user didn't call InitGoogleTest.
PostFlagParsingInit();
// Even if sharding is not on, test runners may want to use the
// GTEST_SHARD_STATUS_FILE to query whether the test supports the sharding
// protocol.
internal::WriteToShardStatusFileIfNeeded();
// True iff we are in a subprocess for running a thread-safe-style
// death test.
bool in_subprocess_for_death_test = false;
#if GTEST_HAS_DEATH_TEST
in_subprocess_for_death_test = (internal_run_death_test_flag_.get() != NULL);
#endif // GTEST_HAS_DEATH_TEST
const bool should_shard = ShouldShard(kTestTotalShards, kTestShardIndex,
in_subprocess_for_death_test);
// Compares the full test names with the filter to decide which
// tests to run.
const bool has_tests_to_run = FilterTests(should_shard
? HONOR_SHARDING_PROTOCOL
: IGNORE_SHARDING_PROTOCOL) > 0;
// Lists the tests and exits if the --gtest_list_tests flag was specified.
if (GTEST_FLAG(list_tests)) {
// This must be called *after* FilterTests() has been called.
ListTestsMatchingFilter();
return true;
}
random_seed_ = GTEST_FLAG(shuffle) ?
GetRandomSeedFromFlag(GTEST_FLAG(random_seed)) : 0;
// True iff at least one test has failed.
bool failed = false;
TestEventListener* repeater = listeners()->repeater();
repeater->OnTestProgramStart(*parent_);
// How many times to repeat the tests? We don't want to repeat them
// when we are inside the subprocess of a death test.
const int repeat = in_subprocess_for_death_test ? 1 : GTEST_FLAG(repeat);
// Repeats forever if the repeat count is negative.
const bool forever = repeat < 0;
for (int i = 0; forever || i != repeat; i++) {
// We want to preserve failures generated by ad-hoc test
// assertions executed before RUN_ALL_TESTS().
ClearNonAdHocTestResult();
const TimeInMillis start = GetTimeInMillis();
// Shuffles test cases and tests if requested.
if (has_tests_to_run && GTEST_FLAG(shuffle)) {
random()->Reseed(random_seed_);
// This should be done before calling OnTestIterationStart(),
// such that a test event listener can see the actual test order
// in the event.
ShuffleTests();
}
// Tells the unit test event listeners that the tests are about to start.
repeater->OnTestIterationStart(*parent_, i);
// Runs each test case if there is at least one test to run.
if (has_tests_to_run) {
// Sets up all environments beforehand.
repeater->OnEnvironmentsSetUpStart(*parent_);
ForEach(environments_, SetUpEnvironment);
repeater->OnEnvironmentsSetUpEnd(*parent_);
// Runs the tests only if there was no fatal failure during global
// set-up.
if (!Test::HasFatalFailure()) {
for (int test_index = 0; test_index < total_test_case_count();
test_index++) {
GetMutableTestCase(test_index)->Run();
}
}
// Tears down all environments in reverse order afterwards.
repeater->OnEnvironmentsTearDownStart(*parent_);
std::for_each(environments_.rbegin(), environments_.rend(),
TearDownEnvironment);
repeater->OnEnvironmentsTearDownEnd(*parent_);
}
elapsed_time_ = GetTimeInMillis() - start;
// Tells the unit test event listener that the tests have just finished.
repeater->OnTestIterationEnd(*parent_, i);
// Gets the result and clears it.
if (!Passed()) {
failed = true;
}
// Restores the original test order after the iteration. This
// allows the user to quickly repro a failure that happens in the
// N-th iteration without repeating the first (N - 1) iterations.
// This is not enclosed in "if (GTEST_FLAG(shuffle)) { ... }", in
// case the user somehow changes the value of the flag somewhere
// (it's always safe to unshuffle the tests).
UnshuffleTests();
if (GTEST_FLAG(shuffle)) {
// Picks a new random seed for each iteration.
random_seed_ = GetNextRandomSeed(random_seed_);
}
}
repeater->OnTestProgramEnd(*parent_);
return !failed;
}
// Reads the GTEST_SHARD_STATUS_FILE environment variable, and creates the file
// if the variable is present. If a file already exists at this location, this
// function will write over it. If the variable is present, but the file cannot
// be created, prints an error and exits.
void WriteToShardStatusFileIfNeeded() {
const char* const test_shard_file = posix::GetEnv(kTestShardStatusFile);
if (test_shard_file != NULL) {
FILE* const file = posix::FOpen(test_shard_file, "w");
if (file == NULL) {
ColoredPrintf(COLOR_RED,
"Could not write to the test shard status file \"%s\" "
"specified by the %s environment variable.\n",
test_shard_file, kTestShardStatusFile);
fflush(stdout);
exit(EXIT_FAILURE);
}
fclose(file);
}
}
// Checks whether sharding is enabled by examining the relevant
// environment variable values. If the variables are present,
// but inconsistent (i.e., shard_index >= total_shards), prints
// an error and exits. If in_subprocess_for_death_test, sharding is
// disabled because it must only be applied to the original test
// process. Otherwise, we could filter out death tests we intended to execute.
bool ShouldShard(const char* total_shards_env,
const char* shard_index_env,
bool in_subprocess_for_death_test) {
if (in_subprocess_for_death_test) {
return false;
}
const Int32 total_shards = Int32FromEnvOrDie(total_shards_env, -1);
const Int32 shard_index = Int32FromEnvOrDie(shard_index_env, -1);
if (total_shards == -1 && shard_index == -1) {
return false;
} else if (total_shards == -1 && shard_index != -1) {
const Message msg = Message()
<< "Invalid environment variables: you have "
<< kTestShardIndex << " = " << shard_index
<< ", but have left " << kTestTotalShards << " unset.\n";
ColoredPrintf(COLOR_RED, msg.GetString().c_str());
fflush(stdout);
exit(EXIT_FAILURE);
} else if (total_shards != -1 && shard_index == -1) {
const Message msg = Message()
<< "Invalid environment variables: you have "
<< kTestTotalShards << " = " << total_shards
<< ", but have left " << kTestShardIndex << " unset.\n";
ColoredPrintf(COLOR_RED, msg.GetString().c_str());
fflush(stdout);
exit(EXIT_FAILURE);
} else if (shard_index < 0 || shard_index >= total_shards) {
const Message msg = Message()
<< "Invalid environment variables: we require 0 <= "
<< kTestShardIndex << " < " << kTestTotalShards
<< ", but you have " << kTestShardIndex << "=" << shard_index
<< ", " << kTestTotalShards << "=" << total_shards << ".\n";
ColoredPrintf(COLOR_RED, msg.GetString().c_str());
fflush(stdout);
exit(EXIT_FAILURE);
}
return total_shards > 1;
}
// Parses the environment variable var as an Int32. If it is unset,
// returns default_val. If it is not an Int32, prints an error
// and aborts.
Int32 Int32FromEnvOrDie(const char* var, Int32 default_val) {
const char* str_val = posix::GetEnv(var);
if (str_val == NULL) {
return default_val;
}
Int32 result;
if (!ParseInt32(Message() << "The value of environment variable " << var,
str_val, &result)) {
exit(EXIT_FAILURE);
}
return result;
}
// Given the total number of shards, the shard index, and the test id,
// returns true iff the test should be run on this shard. The test id is
// some arbitrary but unique non-negative integer assigned to each test
// method. Assumes that 0 <= shard_index < total_shards.
bool ShouldRunTestOnShard(int total_shards, int shard_index, int test_id) {
return (test_id % total_shards) == shard_index;
}
// Compares the name of each test with the user-specified filter to
// decide whether the test should be run, then records the result in
// each TestCase and TestInfo object.
// If shard_tests == true, further filters tests based on sharding
// variables in the environment - see
// http://code.google.com/p/googletest/wiki/GoogleTestAdvancedGuide.
// Returns the number of tests that should run.
int UnitTestImpl::FilterTests(ReactionToSharding shard_tests) {
const Int32 total_shards = shard_tests == HONOR_SHARDING_PROTOCOL ?
Int32FromEnvOrDie(kTestTotalShards, -1) : -1;
const Int32 shard_index = shard_tests == HONOR_SHARDING_PROTOCOL ?
Int32FromEnvOrDie(kTestShardIndex, -1) : -1;
// num_runnable_tests are the number of tests that will
// run across all shards (i.e., match filter and are not disabled).
// num_selected_tests are the number of tests to be run on
// this shard.
int num_runnable_tests = 0;
int num_selected_tests = 0;
for (size_t i = 0; i < test_cases_.size(); i++) {
TestCase* const test_case = test_cases_[i];
const String &test_case_name = test_case->name();
test_case->set_should_run(false);
bool any_matched_filter = false;
for (size_t j = 0; j < test_case->test_info_list().size(); j++) {
TestInfo* const test_info = test_case->test_info_list()[j];
const String test_name(test_info->name());
// A test is disabled if test case name or test name matches
// kDisableTestFilter.
const bool is_disabled =
internal::UnitTestOptions::MatchesFilter(test_case_name,
kDisableTestFilter) ||
internal::UnitTestOptions::MatchesFilter(test_name,
kDisableTestFilter);
test_info->is_disabled_ = is_disabled;
const bool matches_filter =
internal::UnitTestOptions::FilterMatchesTest(test_case_name,
test_name);
test_info->matches_filter_ = matches_filter;
any_matched_filter |= matches_filter;
const bool is_runnable =
(GTEST_FLAG(also_run_disabled_tests) || !is_disabled) &&
matches_filter;
const bool is_selected = is_runnable &&
(shard_tests == IGNORE_SHARDING_PROTOCOL ||
ShouldRunTestOnShard(total_shards, shard_index,
num_runnable_tests));
num_runnable_tests += is_runnable;
num_selected_tests += is_selected;
test_info->should_run_ = is_selected;
test_case->set_should_run(test_case->should_run() || is_selected);
}
test_case->set_should_skip_report(!any_matched_filter);
}
return num_selected_tests;
}
// Prints the names of the tests matching the user-specified filter flag.
void UnitTestImpl::ListTestsMatchingFilter() {
for (size_t i = 0; i < test_cases_.size(); i++) {
const TestCase* const test_case = test_cases_[i];
bool printed_test_case_name = false;
for (size_t j = 0; j < test_case->test_info_list().size(); j++) {
const TestInfo* const test_info =
test_case->test_info_list()[j];
if (test_info->matches_filter_) {
if (!printed_test_case_name) {
printed_test_case_name = true;
printf("%s.\n", test_case->name());
}
printf(" %s\n", test_info->name());
}
}
}
fflush(stdout);
}
// Sets the OS stack trace getter.
//
// Does nothing if the input and the current OS stack trace getter are
// the same; otherwise, deletes the old getter and makes the input the
// current getter.
void UnitTestImpl::set_os_stack_trace_getter(
OsStackTraceGetterInterface* getter) {
if (os_stack_trace_getter_ != getter) {
delete os_stack_trace_getter_;
os_stack_trace_getter_ = getter;
}
}
// Returns the current OS stack trace getter if it is not NULL;
// otherwise, creates an OsStackTraceGetter, makes it the current
// getter, and returns it.
OsStackTraceGetterInterface* UnitTestImpl::os_stack_trace_getter() {
if (os_stack_trace_getter_ == NULL) {
os_stack_trace_getter_ = new OsStackTraceGetter;
}
return os_stack_trace_getter_;
}
// Returns the TestResult for the test that's currently running, or
// the TestResult for the ad hoc test if no test is running.
TestResult* UnitTestImpl::current_test_result() {
return current_test_info_ ?
&(current_test_info_->result_) : &ad_hoc_test_result_;
}
// Shuffles all test cases, and the tests within each test case,
// making sure that death tests are still run first.
void UnitTestImpl::ShuffleTests() {
// Shuffles the death test cases.
ShuffleRange(random(), 0, last_death_test_case_ + 1, &test_case_indices_);
// Shuffles the non-death test cases.
ShuffleRange(random(), last_death_test_case_ + 1,
static_cast<int>(test_cases_.size()), &test_case_indices_);
// Shuffles the tests inside each test case.
for (size_t i = 0; i < test_cases_.size(); i++) {
test_cases_[i]->ShuffleTests(random());
}
}
// Restores the test cases and tests to their order before the first shuffle.
void UnitTestImpl::UnshuffleTests() {
for (size_t i = 0; i < test_cases_.size(); i++) {
// Unshuffles the tests in each test case.
test_cases_[i]->UnshuffleTests();
// Resets the index of each test case.
test_case_indices_[i] = static_cast<int>(i);
}
}
// Returns the current OS stack trace as a String.
//
// The maximum number of stack frames to be included is specified by
// the gtest_stack_trace_depth flag. The skip_count parameter
// specifies the number of top frames to be skipped, which doesn't
// count against the number of frames to be included.
//
// For example, if Foo() calls Bar(), which in turn calls
// GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
// the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
String GetCurrentOsStackTraceExceptTop(UnitTest* /*unit_test*/,
int skip_count) {
// We pass skip_count + 1 to skip this wrapper function in addition
// to what the user really wants to skip.
return GetUnitTestImpl()->CurrentOsStackTraceExceptTop(skip_count + 1);
}
// Used by the GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_ macro to
// suppress unreachable code warnings.
namespace {
class ClassUniqueToAlwaysTrue {};
}
bool IsTrue(bool condition) { return condition; }
bool AlwaysTrue() {
#if GTEST_HAS_EXCEPTIONS
// This condition is always false so AlwaysTrue() never actually throws,
// but it makes the compiler think that it may throw.
if (IsTrue(false))
throw ClassUniqueToAlwaysTrue();
#endif // GTEST_HAS_EXCEPTIONS
return true;
}
// If *pstr starts with the given prefix, modifies *pstr to be right
// past the prefix and returns true; otherwise leaves *pstr unchanged
// and returns false. None of pstr, *pstr, and prefix can be NULL.
bool SkipPrefix(const char* prefix, const char** pstr) {
const size_t prefix_len = strlen(prefix);
if (strncmp(*pstr, prefix, prefix_len) == 0) {
*pstr += prefix_len;
return true;
}
return false;
}
// Parses a string as a command line flag. The string should have
// the format "--flag=value". When def_optional is true, the "=value"
// part can be omitted.
//
// Returns the value of the flag, or NULL if the parsing failed.
const char* ParseFlagValue(const char* str,
const char* flag,
bool def_optional) {
// str and flag must not be NULL.
if (str == NULL || flag == NULL) return NULL;
// The flag must start with "--" followed by GTEST_FLAG_PREFIX_.
const String flag_str = String::Format("--%s%s", GTEST_FLAG_PREFIX_, flag);
const size_t flag_len = flag_str.length();
if (strncmp(str, flag_str.c_str(), flag_len) != 0) return NULL;
// Skips the flag name.
const char* flag_end = str + flag_len;
// When def_optional is true, it's OK to not have a "=value" part.
if (def_optional && (flag_end[0] == '\0')) {
return flag_end;
}
// If def_optional is true and there are more characters after the
// flag name, or if def_optional is false, there must be a '=' after
// the flag name.
if (flag_end[0] != '=') return NULL;
// Returns the string after "=".
return flag_end + 1;
}
// Parses a string for a bool flag, in the form of either
// "--flag=value" or "--flag".
//
// In the former case, the value is taken as true as long as it does
// not start with '0', 'f', or 'F'.
//
// In the latter case, the value is taken as true.
//
// On success, stores the value of the flag in *value, and returns
// true. On failure, returns false without changing *value.
bool ParseBoolFlag(const char* str, const char* flag, bool* value) {
// Gets the value of the flag as a string.
const char* const value_str = ParseFlagValue(str, flag, true);
// Aborts if the parsing failed.
if (value_str == NULL) return false;
// Converts the string value to a bool.
*value = !(*value_str == '0' || *value_str == 'f' || *value_str == 'F');
return true;
}
// Parses a string for an Int32 flag, in the form of
// "--flag=value".
//
// On success, stores the value of the flag in *value, and returns
// true. On failure, returns false without changing *value.
bool ParseInt32Flag(const char* str, const char* flag, Int32* value) {
// Gets the value of the flag as a string.
const char* const value_str = ParseFlagValue(str, flag, false);
// Aborts if the parsing failed.
if (value_str == NULL) return false;
// Sets *value to the value of the flag.
return ParseInt32(Message() << "The value of flag --" << flag,
value_str, value);
}
// Parses a string for a string flag, in the form of
// "--flag=value".
//
// On success, stores the value of the flag in *value, and returns
// true. On failure, returns false without changing *value.
bool ParseStringFlag(const char* str, const char* flag, String* value) {
// Gets the value of the flag as a string.
const char* const value_str = ParseFlagValue(str, flag, false);
// Aborts if the parsing failed.
if (value_str == NULL) return false;
// Sets *value to the value of the flag.
*value = value_str;
return true;
}
// Determines whether a string has a prefix that Google Test uses for its
// flags, i.e., starts with GTEST_FLAG_PREFIX_ or GTEST_FLAG_PREFIX_DASH_.
// If Google Test detects that a command line flag has its prefix but is not
// recognized, it will print its help message. Flags starting with
// GTEST_INTERNAL_PREFIX_ followed by "internal_" are considered Google Test
// internal flags and do not trigger the help message.
static bool HasGoogleTestFlagPrefix(const char* str) {
return (SkipPrefix("--", &str) ||
SkipPrefix("-", &str) ||
SkipPrefix("/", &str)) &&
!SkipPrefix(GTEST_FLAG_PREFIX_ "internal_", &str) &&
(SkipPrefix(GTEST_FLAG_PREFIX_, &str) ||
SkipPrefix(GTEST_FLAG_PREFIX_DASH_, &str));
}
// Prints a string containing code-encoded text. The following escape
// sequences can be used in the string to control the text color:
//
// @@ prints a single '@' character.
// @R changes the color to red.
// @G changes the color to green.
// @Y changes the color to yellow.
// @D changes to the default terminal text color.
//
// TODO(wan@google.com): Write tests for this once we add stdout
// capturing to Google Test.
static void PrintColorEncoded(const char* str) {
GTestColor color = COLOR_DEFAULT; // The current color.
// Conceptually, we split the string into segments divided by escape
// sequences. Then we print one segment at a time. At the end of
// each iteration, the str pointer advances to the beginning of the
// next segment.
for (;;) {
const char* p = strchr(str, '@');
if (p == NULL) {
ColoredPrintf(color, "%s", str);
return;
}
ColoredPrintf(color, "%s", String(str, p - str).c_str());
const char ch = p[1];
str = p + 2;
if (ch == '@') {
ColoredPrintf(color, "@");
} else if (ch == 'D') {
color = COLOR_DEFAULT;
} else if (ch == 'R') {
color = COLOR_RED;
} else if (ch == 'G') {
color = COLOR_GREEN;
} else if (ch == 'Y') {
color = COLOR_YELLOW;
} else {
--str;
}
}
}
static const char kColorEncodedHelpMessage[] =
"This program contains tests written using " GTEST_NAME_ ". You can use the\n"
"following command line flags to control its behavior:\n"
"\n"
"Test Selection:\n"
" @G--" GTEST_FLAG_PREFIX_ "list_tests@D\n"
" List the names of all tests instead of running them. The name of\n"
" TEST(Foo, Bar) is \"Foo.Bar\".\n"
" @G--" GTEST_FLAG_PREFIX_ "filter=@YPOSTIVE_PATTERNS"
"[@G-@YNEGATIVE_PATTERNS]@D\n"
" Run only the tests whose name matches one of the positive patterns but\n"
" none of the negative patterns. '?' matches any single character; '*'\n"
" matches any substring; ':' separates two patterns.\n"
" @G--" GTEST_FLAG_PREFIX_ "also_run_disabled_tests@D\n"
" Run all disabled tests too.\n"
"\n"
"Test Execution:\n"
" @G--" GTEST_FLAG_PREFIX_ "repeat=@Y[COUNT]@D\n"
" Run the tests repeatedly; use a negative count to repeat forever.\n"
" @G--" GTEST_FLAG_PREFIX_ "shuffle@D\n"
" Randomize tests' orders on every iteration.\n"
" @G--" GTEST_FLAG_PREFIX_ "random_seed=@Y[NUMBER]@D\n"
" Random number seed to use for shuffling test orders (between 1 and\n"
" 99999, or 0 to use a seed based on the current time).\n"
"\n"
"Test Output:\n"
" @G--" GTEST_FLAG_PREFIX_ "color=@Y(@Gyes@Y|@Gno@Y|@Gauto@Y)@D\n"
" Enable/disable colored output. The default is @Gauto@D.\n"
" -@G-" GTEST_FLAG_PREFIX_ "print_time=0@D\n"
" Don't print the elapsed time of each test.\n"
" @G--" GTEST_FLAG_PREFIX_ "output=xml@Y[@G:@YDIRECTORY_PATH@G"
GTEST_PATH_SEP_ "@Y|@G:@YFILE_PATH]@D\n"
" Generate an XML report in the given directory or with the given file\n"
" name. @YFILE_PATH@D defaults to @Gtest_details.xml@D.\n"
#if GTEST_CAN_STREAM_RESULTS_
" @G--" GTEST_FLAG_PREFIX_ "stream_result_to=@YHOST@G:@YPORT@D\n"
" Stream test results to the given server.\n"
#endif // GTEST_CAN_STREAM_RESULTS_
"\n"
"Assertion Behavior:\n"
#if GTEST_HAS_DEATH_TEST && !GTEST_OS_WINDOWS
" @G--" GTEST_FLAG_PREFIX_ "death_test_style=@Y(@Gfast@Y|@Gthreadsafe@Y)@D\n"
" Set the default death test style.\n"
#endif // GTEST_HAS_DEATH_TEST && !GTEST_OS_WINDOWS
" @G--" GTEST_FLAG_PREFIX_ "break_on_failure@D\n"
" Turn assertion failures into debugger break-points.\n"
" @G--" GTEST_FLAG_PREFIX_ "throw_on_failure@D\n"
" Turn assertion failures into C++ exceptions.\n"
" @G--" GTEST_FLAG_PREFIX_ "catch_exceptions=0@D\n"
" Do not report exceptions as test failures. Instead, allow them\n"
" to crash the program or throw a pop-up (on Windows).\n"
"\n"
"Except for @G--" GTEST_FLAG_PREFIX_ "list_tests@D, you can alternatively set "
"the corresponding\n"
"environment variable of a flag (all letters in upper-case). For example, to\n"
"disable colored text output, you can either specify @G--" GTEST_FLAG_PREFIX_
"color=no@D or set\n"
"the @G" GTEST_FLAG_PREFIX_UPPER_ "COLOR@D environment variable to @Gno@D.\n"
"\n"
"For more information, please read the " GTEST_NAME_ " documentation at\n"
"@G" GTEST_PROJECT_URL_ "@D. If you find a bug in " GTEST_NAME_ "\n"
"(not one in your own code or tests), please report it to\n"
"@G<" GTEST_DEV_EMAIL_ ">@D.\n";
// Parses the command line for Google Test flags, without initializing
// other parts of Google Test. The type parameter CharType can be
// instantiated to either char or wchar_t.
template <typename CharType>
void ParseGoogleTestFlagsOnlyImpl(int* argc, CharType** argv) {
for (int i = 1; i < *argc; i++) {
const String arg_string = StreamableToString(argv[i]);
const char* const arg = arg_string.c_str();
using internal::ParseBoolFlag;
using internal::ParseInt32Flag;
using internal::ParseStringFlag;
// Do we see a Google Test flag?
if (ParseBoolFlag(arg, kAlsoRunDisabledTestsFlag,
&GTEST_FLAG(also_run_disabled_tests)) ||
ParseBoolFlag(arg, kBreakOnFailureFlag,
&GTEST_FLAG(break_on_failure)) ||
ParseBoolFlag(arg, kCatchExceptionsFlag,
&GTEST_FLAG(catch_exceptions)) ||
ParseStringFlag(arg, kColorFlag, &GTEST_FLAG(color)) ||
ParseStringFlag(arg, kDeathTestStyleFlag,
&GTEST_FLAG(death_test_style)) ||
ParseBoolFlag(arg, kDeathTestUseFork,
&GTEST_FLAG(death_test_use_fork)) ||
ParseStringFlag(arg, kFilterFlag, &GTEST_FLAG(filter)) ||
ParseStringFlag(arg, kInternalRunDeathTestFlag,
&GTEST_FLAG(internal_run_death_test)) ||
ParseBoolFlag(arg, kListTestsFlag, &GTEST_FLAG(list_tests)) ||
ParseStringFlag(arg, kOutputFlag, &GTEST_FLAG(output)) ||
ParseBoolFlag(arg, kPrintTimeFlag, &GTEST_FLAG(print_time)) ||
ParseInt32Flag(arg, kRandomSeedFlag, &GTEST_FLAG(random_seed)) ||
ParseInt32Flag(arg, kRepeatFlag, &GTEST_FLAG(repeat)) ||
ParseBoolFlag(arg, kShuffleFlag, &GTEST_FLAG(shuffle)) ||
ParseInt32Flag(arg, kStackTraceDepthFlag,
&GTEST_FLAG(stack_trace_depth)) ||
ParseStringFlag(arg, kStreamResultToFlag,
&GTEST_FLAG(stream_result_to)) ||
ParseBoolFlag(arg, kThrowOnFailureFlag,
&GTEST_FLAG(throw_on_failure))
) {
// Yes. Shift the remainder of the argv list left by one. Note
// that argv has (*argc + 1) elements, the last one always being
// NULL. The following loop moves the trailing NULL element as
// well.
for (int j = i; j != *argc; j++) {
argv[j] = argv[j + 1];
}
// Decrements the argument count.
(*argc)--;
// We also need to decrement the iterator as we just removed
// an element.
i--;
} else if (arg_string == "--help" || arg_string == "-h" ||
arg_string == "-?" || arg_string == "/?" ||
HasGoogleTestFlagPrefix(arg)) {
// Both help flag and unrecognized Google Test flags (excluding
// internal ones) trigger help display.
g_help_flag = true;
}
}
if (g_help_flag) {
// We print the help here instead of in RUN_ALL_TESTS(), as the
// latter may not be called at all if the user is using Google
// Test with another testing framework.
PrintColorEncoded(kColorEncodedHelpMessage);
}
}
// Parses the command line for Google Test flags, without initializing
// other parts of Google Test.
void ParseGoogleTestFlagsOnly(int* argc, char** argv) {
ParseGoogleTestFlagsOnlyImpl(argc, argv);
}
void ParseGoogleTestFlagsOnly(int* argc, wchar_t** argv) {
ParseGoogleTestFlagsOnlyImpl(argc, argv);
}
// The internal implementation of InitGoogleTest().
//
// The type parameter CharType can be instantiated to either char or
// wchar_t.
template <typename CharType>
void InitGoogleTestImpl(int* argc, CharType** argv) {
g_init_gtest_count++;
// We don't want to run the initialization code twice.
if (g_init_gtest_count != 1) return;
if (*argc <= 0) return;
internal::g_executable_path = internal::StreamableToString(argv[0]);
#if GTEST_HAS_DEATH_TEST
g_argvs.clear();
for (int i = 0; i != *argc; i++) {
g_argvs.push_back(StreamableToString(argv[i]));
}
#endif // GTEST_HAS_DEATH_TEST
ParseGoogleTestFlagsOnly(argc, argv);
GetUnitTestImpl()->PostFlagParsingInit();
}
} // namespace internal
// Initializes Google Test. This must be called before calling
// RUN_ALL_TESTS(). In particular, it parses a command line for the
// flags that Google Test recognizes. Whenever a Google Test flag is
// seen, it is removed from argv, and *argc is decremented.
//
// No value is returned. Instead, the Google Test flag variables are
// updated.
//
// Calling the function for the second time has no user-visible effect.
void InitGoogleTest(int* argc, char** argv) {
internal::InitGoogleTestImpl(argc, argv);
}
// This overloaded version can be used in Windows programs compiled in
// UNICODE mode.
void InitGoogleTest(int* argc, wchar_t** argv) {
internal::InitGoogleTestImpl(argc, argv);
}
} // namespace testing