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Abstract

We introduce an efficient linkable ring multisignature construction, compact linkable spontaneous

anonymous group (CLSAG) signatures. These admit d-dimensional keys with a specified linking coor-

dinate but do not have signature sizes directly proportional to d. Compared to existing constructions

used for signer-ambiguous confidential transactions without trusted setup, CLSAG signatures are smaller

and more efficient in terms of both proving and verification time. CLSAG signatures also satisfy some

rigorous security definitions: unforgeability depends upon the k-OMDL hardness assumption, linkability

depends on unforgeability as well as the collision resistance of key aggregation, and signer-ambiguity

depends on the DDH assumption. We demonstrate an application for CLSAG signatures for use in

transacting multiple assets over ring signature-based transaction protocols.

1 Introduction

First introduced in [20] in the RSA setting and in [13] in the discrete logarithm setting, ring signatures permit

a non-interactive signature on behalf of a set of public keys rather than a single public key. Ring signatures

see myriad applications ranging from lightweight anonymous authentication as in [25] to transaction protocols

like Monero in [16] and CryptoNote in [24]. A verifier is assured that the signer knows the private key of

at least one of these public keys, which are called ring members. Ring signatures are signer-ambiguous by

nature because the verifier does not learn additional information from the signature about which key is the

signer. We stress that methods of practical analysis such as those of [15, 19] can exploit metadata in real-life

applications of signer-ambiguous protocols to reduce ambiguity.

Group signature constructions preceding [20, 13] require some degree of interactivity, a fixed set of

participants, a trusted group manager (or some other trusted setup), or hardness assumptions not based on

the discrete logarithm problem. Since [20], ring signatures have enjoyed many improvements, expansions,

and modifications. An incomplete list of examples includes: ring signatures are constructed in the bilinear

pairing setting in [26], key structures are generalized in [1], security definitions are improved in [4], signature

size is improved in [7, 11], and traceability is introduced in [8].

Linkable ring signatures were first introduced in [13]; in the context of distributed ledgers like Monero,

linkable ring signatures are the basis for signer-ambiguous transaction authentication. Linkable ring sig-

natures guarantee that two signatures with the same ring on arbitrary messages can be publicly linked if

signed using the same key. An implementation is presented in [13] in the discrete logarithm setting; that

implementation functions for similar reasons as Schnorr signatures in [21].

The key images in [13] are unsuitable for applications where signatures must be linked key-by-key, not

ring-by-ring (such as for “double-signing” protection in a setting where users generate new keys over time
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and select ad hoc ring members). Resistance to double-spend attempts is ensured using key images as

described in [24]. More recent work of [16] extends the approach of [13] to enable a signer-ambiguous

confidential transaction model with ad hoc ring member selection. In [16], transaction amounts are replaced

with Pedersen commitments to amounts together with range proofs. Signatures are constructed from key

vectors including differences of amount commitments as one of the keys. However, the proofs in [16] are

informal and not based on rigorous security models.

Alternatives to ring signatures like more general zero-knowledge proving systems typically require a

trusted party to honestly perform a setup process (as in [9, 3, 10]) or lack practical efficiency for large

circuits (as in [6]), meaning that such systems may not be appropriate for distributed ledger applications.

However, more recent approaches such as [5, 12] show both improvements to the trust requirement as well

as improvements in efficiency.

1.1 Our contribution

We first introduce a formal definition of d-dimensional linkable ring signatures. We present an implementation

of a new signature scheme, d-CLSAG signatures. These have d-dimensional keys and are compact linkable

spontaneous anonymous group signatures in the sense that signature size scales with the sum of ring size

and the dimension d. Equivalent MLSAG signatures of [16] produce signatures that scale with the product

of ring size and d rather than the sum. Size efficiency comes from an aggregation of keys across components,

similar to the approach from [14, 18], resulting in d-CLSAG signatures that are about half the size of [16],

and can be generated and verified more quickly.

We present linkable ring signatures and some examples in Section 2. We present a compact d-LRS scheme

we call d-CLSAG in Section 3 and measure efficiency. We present an informal description of a transaction

protocol for confidentially transacting multiple asset types simultaneously, which we call a multi-asset ring

confidential transaction or MARCT in Section 4.2. We reserve discussion of security for the appendix, where

we make a new definition for unforgeability in linkable ring signatures that takes into account both insider

corruption and forgeries from partially-corrupted rings. We prove that d-CLSAG signatures are unforgeable

up to the hardness of the k-one-more discrete logarithm (k-OMDL) problem under this definition in the

random oracle model in Appendix A. We also make some comments on signer ambiguity and linkability in

Appendix B.

1.2 Notation

We denote algorithms with typefont majuscule English letters like A, B, or O, or typefont names like Setup,

KeyGen, and so on. For any prime p, denote the field with p elements as Fp := Z/pZ, and denote the non-zero

elements as F∗p.
Group parameters are denoted as a tuple (p,G, d,G) where G is an elliptic curve group with prime order

p, d is a dimension, and G is a generator of G. We denote integers, bits, indices, and scalars in Fp with

minuscule English letters x, y, z, b, c, i, j, k, etc. and we denote group elements with majuscule English letters,

G,X,W , and so on. We use miniscule Greek letters like σ to describe signatures and majuscule calligraphic

Latin letters like T when describing key images.

For these group parameters, the secret key space is F∗p and the public key space is G. For any non-zero

secret key sk ∈ F∗p, the corresponding public key pk is computed from the generator G through exponentiation

in G as usual. However, we use notation for a module over the field Zp to maintain consistency with, say

[24] and [16].
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We denote column vectors in boldface, e.g. (x1, . . . , xd)
> = x, and matrices in underlined boldface, e.g.

((x1,1, x1,2, . . . , x1,n), . . . , (xd,1, . . . , xd,n)) = (x1,x2, . . . ,xn) = x is a d×n matrix. We denote the Hadamard

product of two vectors with ◦, so for any x = (x1, x2, . . . , xd) = (xi)
d
i=1, and for any y = (yi)

d
i=1, we denote

the sequence (xi · yi)di=1 with x ◦ y. We denote bitwise concatenation with the symbol ||.
We distinguish oracles with calligraphic font, e.g. CO denotes a corruption oracle, SO denotes a signing

oracle. If the codomain of a random oracle is the field of scalars Fp, we denote this Hs (hash-to-scalar). If

the codomain is G, we denote this Hp (hash-to-point).

2 Linkable ring multisignatures

In this section, we recall linkable ring signature (LRS) schemes, definitions of correctness in verification and

linkability, and we provide two examples.

2.1 LRS schemes

Definition 2.1 (LRS). A linkable ring signature scheme is a tuple (Setup, KeyGen, Sign, Verify, Link)

satisfying the following.

• Setup(1λ)→ par. Setup takes as input a security parameter 1λ, produces some public parameters par.

• KeyGen(1λ, par)→ (sk, pk). KeyGen takes as input a security parameter 1λ and public parameters par.

KeyGen produces as output a private-public keypair (sk, pk).

• Sign
(
1λ, par, (m,pk, sk)

)
→
{
⊥Sign, σ

}
. Sign takes as input a security parameter 1λ, public parame-

ters par, an arbitrary message m ∈ {0, 1}∗, an ad hoc ring of public keys pk = {pk1, . . . , pkn}, and a

secret key sk. Sign produces as output either a distinguished failure symbol out = ⊥Sign or a signature

out = σ.

• Verify
(
1λ, par, (m,pk, σ)

)
→ {0, 1}. Verify takes as input a security parameter 1λ, public parameters

par, a message m, a ring of public keys pk, and a signature σ. Verify produces as output a bit

b ∈ {0, 1}; 0 indicates the signature is not verified, and 1 indicates the signature is verified.

• Link
(
1λ, par, (m,pk, σ), (m′,pk′, σ′)

)
. Link takes as input a security parameter 1λ, public parameters

par, and a pair of tuples (m,pk, σ), (m′,pk′, σ′) for messages m,m′, rings pk, pk′, and ring signatures

σ, σ′. Link produces as output a bit b ∈ {0, 1}; 0 indicates the signatures are not linked or invalid, and

1 indicates the signatures are valid and linked.§

In the sequel, we implicitly assume all algorithms in a LRS take 1λ as input, and all algorithms (except

Setup) takes par as input. We suppress this notation in the sequel. For example, we write par ← Setup

instead of par← Setup(1λ) and σ ← Sign(m,pk, sk) instead of σ ← Sign(1λ, par,m,pk, sk).

Note the dimension of keys in Definition 2.1 is not specified. If the keys from KeyGen have dimension

d > 1, we instead say the LRS is a d-LRS and use the vector notation introduced in Section 1.2 representing

keys in boldface (e.g. pk instead of pk) and rings in underlined boldface (pk instead of pk). We always

assume the first coordinate of a secret key is the linking coordinate, and linkability depends only on the

linking coordinate of the signing key vector. For ring confidential transactions, this is important since only

one such entry corresponds to an output public key for double-spend detection purposes and the rest of the

keys could have been adversarially generated.

§This is the opposite of the conventions in, say, [23], which outputs 0 to indicate two signatures are linked (i.e. rejected) and

outputs 1 to indicate two signatures are not linked (i.e. accepted).
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Definition 2.2 (Correctly verified). Let m be any message, sk be any secret key with corresponding public

key pk, and let pk be a multiset of public keys pk = {pk1, . . . , pkn}. If there exists an index 1 ≤ ` ≤ n

satisfying pk = pk`, then

Verify(m,pk, Sign(m,pk, sk)) = 1.

Soundness in verification is the property of unforgeability. See Appendix A.

Definition 2.3 (Correctly linkable). Let m,m′ be any messages, sk, sk′ be any secret keys with corresponding

public keys pk, pk′. Let pk, pk′ be multisets of public keys with indices `, `′, respectively, such that pk` = pk

and pk′`′ = pk′. Let sk, sk′ be the respective private keys for pk, pk′ with respective linking coordinates sk0

and sk′0. Correct linkability means being both positively and negatively linkable, in the following sense.

• Positively linkable: If the linking coordinates satisfy sk0 = sk′0, then

Link((m,pk, Sign(m,pk, sk)), (m′,pk′, Sign(m′,pk′, sk′))) = 1

except with negligible probability.

• Negatively linkable: If the linking coordinates satisfy sk0 6= sk′0, then

Link((m,pk, Sign(m,pk, sk)), (m′,pk′, Sign(m′,pk′, sk′))) = 0

except with negligible probability.

Soundness in linkability means informally that an adversarial algorithm can only produce tuples y =

(m,pk, σ) and y′ = (m′,pk′, σ′) such that Link(y, y′) = 1 by computing σ, σ′ from Sign using secret keys

sk, sk′ with matching linking coordinates. See Appendix B.

2.2 Examples

In the following examples, all verifiers must list the keys in pk in an agreed-upon order for the above

verification to work; either they should agree upon lexicographic or some other ordering. Linking occurs

merely by comparing key images: two valid signatures with the same key image were signed with the same

secret key (and, in transaction applications, would signal an attempt to double-spend funds).

Example 2.1. The signature scheme of [13] is an LRS; we present the key image variant from [24] with a

key image appropriate for linking signatures key-by-key. The signature scheme originally described in [13]

signs a message m with a ring of keys pk = {pk1, . . . , pkn} and a secret index-key pair (`, sk) corresponding

to some pk`, using the key image T := sk · Hp(pk).

Unfortunately, this key image is unsuitable for transaction applications, as changing ring members will

change the key image, allowing the same key to sign twice. For use in a transaction protocol and following

[24], we modify this key image from that of [13] to be T := sk · Hp(pk`), which is independent of the non-

signing ring members. This allows these key images to be used for double-spend protection, as discussed

previously.

Setup always deterministically sets d := 1 so we only use the linking key and there are no auxiliary keys.

Setup selects a generator G ∈ G to be a group generator for the group parameters (p,G, d,G), two crypto-

graphic hash functions Hs : {0, 1}∗ → Fp and Hp : {0, 1}∗ → G. Setup outputs par = (p,G, d,G,Hs,Hp).
KeyGen produces as output a secret key sk ∈ F∗p and the corresponding public key pk = sk ·G ∈ G.

Sign takes as input a (non-zero) private key sk ∈ F∗p, a message m, a ring pk = {pk1, . . . , pkn}, and

produces as output either a distinguished failure symbol ⊥Sign or a signature σ, computed as follows. First,
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the signer samples α, s`+1, s`+2, . . . , s`−1 ∈ Fp at random. Next, the signer computes basepoints Hi =

Hp(pki) and the key image T = sk · Hp(pk`), the first challenge

c`+1 = Hs(pk || m || αG || αH`)

and each subsequent challenge

ci+1 = Hs(pk || m || siG+ ci · pki || siHi + ciT)

for i = ` + 1, . . . , ` − 1, naturally identifying index 1 with index n + 1. The signer finishes by computing

s` = α− c` · sk and publishing the signature σ where σ = (c1, s1, . . . , sn,T).

Verify takes as input a message m, a ring pk, and a purported signature σ′. Verify parses the signature

(c1, s1, . . . , sn,T) ← σ. If c1 /∈ Fp or any si /∈ Fp or T /∈ G, then Verify outputs 0. Otherwise, the verifier

computes Hi := Hp(Xi) for each ring member, sets c′1 := c1, and computes the challenges

c′i+1 = Hs(pk || m || siG+ c′i · pki || siHi + c′iT)

for i = 1, 2, . . . , n. The verifier outputs 1 when c′n+1 = c1 and 0 otherwise.

Link checks the validity of both signatures. If both are valid, Link parses the key images T and T′. If

either are not in G, the linker outputs 0 and terminates. Otherwise, the linker outputs 1 when T = T′ and

0 otherwise.

Remark 2.1. The key image modification in Example 2.1 is due to the basepoint of the key image T. As

noted in [13], variations on key image formats may be desirable. How or whether the security properties of

LSAG signatures are retained in practical use given more flexible key image formats, while interesting, is

beyond the scope of this work.

Example 2.2. This example extends the LRS of the previous example to a so-called MLSAG scheme [16],

which is a 2-LRS for use in signer-ambiguous confidential transactions. Setup always deterministically sets

d := 2, so we use one linking key and one auxiliary key, but otherwise works as before.

KeyGen produces as output a secret key sk = (x, z) ∈ F∗p × F∗p and the corresponding public key pk :=

sk ◦G = (xG, zG) ∈ G2 where G = (G,G) ∈ G2. The key x is the linking key. The auxiliary key z is a

blinder that opens a Pedersen commitment to zero demonstrating transaction balance in ring confidential

transactions in the style of [16].

Sign takes as input a (non-zero) private key sk ∈ F∗p×F∗p, a message m, a ring pk ∈ G2×n, and produces

as output either a distinguished failure symbol ⊥Sign or a signature σ, computed as follows. First, the

signer samples rows of signature data α, α′, s`+1, s
′
`+1, s`+2, s

′
`+2, . . . , s`−1, s

′
`−1 ∈ Fp at random. Next, the

signer computes the basepoints Hi = Hp(Xi) from the linking keys Xi of each ring member pki = (Xi, Zi).

The linking key image T = xH` is computed from the linking key. An auxiliary key image with the same

basepoint but discrete logarithm z` is computed, D = z`H`. The signer computes the challenges

c`+1 = Hs(pk || m || αG || αH` || α′G || α′H`)

and

ci+1 = Hs(pk || m || siG+ ciXi || siHi + ciT || s′iG+ ciZi || s′iHi + ciD).

The values s` = α−c`x` and s′` = α′−c`z` are computed. The signature is set σ := (c1, s1, s
′
1, . . . , sn, s

′
n,T,D)

and is output.

Verify takes as input a message m, a ring pk, and a signature σ. The verifier parses the signature

(c1, s1, s
′
1, . . . , sn, s

′
n,T,D) ← σ. If this is not possible, or c1 /∈ Fp, or any si or s′i /∈ Fp, or if T /∈ G, then
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the verifier outputs 0. Otherwise, the verifier parses (pk1, . . . ,pkn′) ← pk. If any pki /∈ G2, or if n 6= n′,

the verifier outputs 0. Otherwise, the verifier parses each pki as (Xi, Zi), computes each Hi = Hp(Xi), sets

c′1 := c1, and computes the challenges

c′i+1 = Hs(pk || m || siG+ c′iXi || siHi + c′iT || s′iG+ c′iZi || s′iHi + c′iD)

for i = 1, 2, . . . , n. The verifier outputs 1 when c′n+1 = c1 and 0 otherwise.

Lastly, Link works as before, by checking key images.

3 A compact d-LRS scheme

We informally say that a d-LRS scheme is compact or concise if signature sizes are not directly proportional

to d. We present a multisignature variant of LSAG signatures that is asymptotically more compact than the

previous examples. We call this scheme d-CLSAG. We take a look at efficiency for usage in ring confidential

transactions by comparing 2-CLSAG signatures against equivalent MLSAG signatures.

3.1 Implementation

Definition 3.1 (d-CLSAG). The tuple (Setup, KeyGen, Sign, Verify, Link) satisfying the following is a

d-CLSAG signature scheme.

• Setup→ par. Setup selects a prime p, a group G with prime order p, selects a group generator G ∈ G
uniformly at random, selects d cryptographic hash functions Hs0, . . . ,Hsd−1 with codomain Fp, selects

a cryptographic hash function Hp with codomain G. Setup outputs the group parameter tuple and

the hash functions, par :=
(
p,G, d,G,

{
Hsj
}d−1
j=0

,Hp
)

.¶

• KeyGen→ (sk,pk). When queried for a new key, KeyGen samples a fresh secret key and computes the

associated public key:

sk =(x, z1, . . . , zd−1)← (F∗p)d

pk :=sk ◦G = (X,Z1, . . . , Zd−1) ∈ Gd

where G = (G, . . . , G) ∈ Gd. KeyGen outputs (sk,pk). We say x is the linking key and the remaining

keys {zj} are the auxiliary keys.

• Sign
(
m,pk, sk

)
→
{
⊥Sign, σ

}
. Sign takes as input a message m ∈ {0, 1}∗, a ring pk = (pk1, . . . ,pkn)

for ring members pki = (Xi, Zi,1, . . . , Zi,d−1) ∈ Gd, and a secret key sk = (x, z1, . . . , zd−1) ∈ (F∗p)d.
Sign does the following.

1. If pk /∈ Gd×n for some n, Sign outputs ⊥Sign and terminates.

2. Otherwise, Sign parses‖ pk to obtain each pki. If the public key associated with the input sk is

not a ring member in pk, then Sign outputs ⊥Sign and terminate.

3. Otherwise, Sign finds the signing index ` such that pk` = sk ◦ (G, . . . , G). Sign samples α ∈ Fp,
samples {si}i 6=` ∈ (Fp)n−1, and computes the points Hi = Hp(Xi) for each i. Sign computes the

¶Note that domain separation can be used here to take one Hs and construct each Hs
j by defining Hs

j(x) := Hs(j || x).
‖Note that this parsing always succeeds if Sign does not fail in the previous step.
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aggregation coefficients µX and {µj}d−1j=1 , the key image T, the auxiliary key images {Dj}d−1j=1 , the

aggregated public keys and their key images:

T :=xH` {Dj} :={zjH`}

µX :=Hs0(pk || T || {Dj}d−1j=1) µj :=Hsj(pk || T || {Dj}d−1j=1)

Wi :=µXXi +

d−1∑
j=1

µjZi,j W :=µXT +

d−1∑
j=1

µjDj

and the aggregated secret key w` := µXx +
∑d−1
j=1 µjzj . For i = `, ` + 1, . . . , ` − 1, (and by

identifying index n+ 1 with index 1), Sign computes

L` =αG R` =αH` c`+1 =Hs0(pk || m || L` || R`)

Li =siG+ ciWi Ri =siHi + ciW ci+1 =Hs0(pk || m || Li || Ri)

and lastly computes s` = α− c`w`.

4. Sign sets the signature σ = (c1, s1, . . . , sn,T, {Dj}d−1j=1) and publishes the signature σ.

• Verify
(
m,pk, σ

)
→ {0, 1}. Verify takes as input a message m, a matrix pk = (pk1, . . . ,pkn), and

a signature σ.

1. If pk /∈ Gd×n for some n, or if σ /∈ Fn′+1
p × Gd for some n′, Verify outputs 0 and terminates.

Otherwise, if n′ 6= n, Verify outputs 0 and terminates.

2. Verify parses∗∗ (pk1, . . . ,pkn)← pk for keys pki ∈ Gd for i = 1, . . . , n, and parses each public

key (Xi, Zi,1, . . . , Zi,d−1)← pki. Verify also parses (c1, s1, . . . , sn,T,D1, . . . ,Dd−1)← σ. Verify

computes each Hi = Hp(Xi), computes the aggregation coefficients, and computes aggregated

public keys and their images:

µX :=Hs0(pk || T || {Dj}d−1j=1) µj :=Hsj(pk || T || {Dj}d−1j=1)

Wi :=µXXi +

d−1∑
j=1

µjZi,j W :=µXT +

d−1∑
j=1

µjDj

3. Verify sets c′1 := c1 and, for i = 1, 2, . . . , n− 1, computes the following.

Li :=siG+ c′iWi, Ri :=siHi + c′iW, c′i+1 :=Hs0
(
pk || m || Li || Ri

)
4. If c′n+1 = c1, Verify outputs 1, and otherwise outputs 0.

• Link
(
(m,pk, σ), (m′,pk′, σ′)

)
→ {0, 1}. Link takes as input two message-ring-signature triples.

1. If Verify(m,pk, σ) = 0 or Verify(m′,pk′, σ′) = 0, Link outputs 0 and terminates.

2. Otherwise, Link parses†† the signatures to obtain

(c1, s1, . . . , sn,T,D1, . . . ,Dd−1)←σ and

(c′1, s
′
1, . . . , s

′
n,T

′,D′1, . . . ,D
′
d−1)←σ′.

Link outputs 1 if T = T′ and 0 otherwise.

Later, we discuss the security of this implementation.

∗∗This parsing is always successful if the previous step does not terminate Verify.
††As before with Verify, this parsing is always successful if the previous step does not terminate Link.
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3.2 Efficiency

Consider the space and time efficiency of Definition 3.1. We disregard additional information broadcast

alongside the signature, such as descriptions of the ring members.

A d-CLSAG signature with a ring size of n contains n+ 1 scalars and d group elements, so this scheme is

compact; signature size is ks(n+1)+kpd where ks describes the size of scalar field elements and kp describes

the size of points on the curve.

To examine the verification time complexity, instead let ks and kp be the time complexity of evaluating the

hash-to-scalar functionsHs and of evaluating the hash-to-point functionHp, respectively. Let k(i) be the time

complexity to evaluate a scalar-point linear combination of i terms; using specialized algorithms like Straus

[22] or Pippenger [17] multiexponentiation (or others, based on i), such a linear combination can be evaluated

much more quickly than a simple term-by-term computation. We note that it is also possible to cache

multiples of points that are reused within verification for faster linear combination evaluation, but we do not

differentiate this here. Using these, the time complexity of d-CLSAG verification is (n+d)ks+nkp+2nk(d+1).

To compare to the efficiency of an MLSAG implementation, note that 2-CLSAG has equivalent function-

ality to an MLSAG signature (which is a 2-LRS). An MLSAG signature used in this way requires 2n + 1

scalars and 1 group element.

We produced a test implementation in C++ and tested signing and verification for MLSAG and 2-CLSAG

on a 2.1 GHz Opteron processor. Table 1 shows the results for different ring sizes. In particular, we note

that for smaller anonymity sizes, CLSAG is uniformly faster than MLSAG. However, at very large ring sizes,

MLSAG is faster due to additional computations involved in computing aggregation coefficients and key

prefixing.

Verify Sign

Anonymity set MLSAG CLSAG MLSAG CLSAG

2 2.4 2.0 2.3 2.7

4 4.7 4.0 4.6 4.6

8 9.5 7.8 9.4 8.5

16 18.9 15.9 18.9 16.5

32 37.8 32.3 37.8 33.0

64 75.4 67.5 75.9 68.3

128 150 147 151 148

256 301 344 303 346

Table 1: Signing and verification times (ms) for MLSAG and 2-CLSAG

4 Applications

4.1 Single-asset ring confidential transactions

As mentioned above, it is possible to use 2-CLSAG as a replacement for MLSAG signatures in ledger appli-

cations (like Monero) for equivalent functionality. For example, Monero currently uses MLSAG signatures

for two different transaction types: full and simple.

Full transactions are only used when spending a single input. They leverage the fact that in a balanced

transaction, the difference between input and output commitments is a commitment to zero; the signer can
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therefore use such differences as the second component of key vectors in the signature and sign using the

known secret key at the signing index.

Simple transactions are used when spending multiple inputs. Each spent input requires a separate

signature, as a naive extension of full transactions presents an index linking issue. The signer first generates

auxiliary commitments for each spent input using the same value but a different blinder. This means it is

possible to use the difference between input and auxiliary commitments as a commitment to zero for the

purpose of signing. By choosing all blinders at random except one, the signer can construct the auxiliary

commitments such that the difference between auxiliary and output commitments is zero, proving balance.

Both transaction types can be constructed with 2-CLSAG signatures since linkability is not considered

for the second key component used in the transaction protocols.

4.2 Multi-asset ring confidential transactions (MARCTs)

It is possible to use a straightforward d-CLSAG construction to accommodate transactions spending d − 1

types or colors of assets separately within the same transaction and signature. To do so, transaction outputs

are extended to have a separate commitment to each asset type value. When spending an output, either a full

or simple transaction (discussed above) is used; we simply copy the method used to compute commitment

public keys in the signature to additional dimensions of the d-CLSAG signature, using only the commitments

for a particular asset type in each. This separation ensures that the transaction balances in each asset type

separately, while taking advantage of the scaling benefits of d-CLSAG compared to the equivalent MLSAG

signature construction.

4.3 Informal description of MARCTs with unmixable colors

We informally describe an example of MARCTs with two unmixable colors using 3-CLSAG. Let (Prove, Ver)

be a zero-knowledge sound range proving scheme, such as that described in [6], and let (Com, Open) be a

Pedersen commitment scheme such that Com(r, v) = rG+ vG′.

For the sake of this example, we define a public trading key to be a tuple (X,C,D, P ) where X,C,D ∈ G,

C and D are amount commitments and P is a batched range proof from Prove covering the values of both C

and D. Here, C and D play the role of the Zj points, and P is additional data required for the transaction

protocol.

We define a transaction key to be a tuple (m,Q,O, (fC , fD), σ, aux) where Q is a ring of n public trading

keys Q = {(Xi, Ci, Di, Pi)}ni=1, O is a set of n′ output public trading keys O = {(X ′i, C ′i, D′i, P ′i )}
n′

i=1, fC is a

plaintext list of fees to be paid from C, fD is a plaintext list of fees to be paid from D, and σ is a 3-CLSAG

signature. We say a transaction key is valid if the following are satisfied:

• every input ring member (Xi, Ci, Di, Pi) ∈ Q has a valid range proof Pi so Ver(Pi) = 1; and

• every output range proof P ′k is valid so Ver(P ′k) = 1; and

• for the ring

pk =

X1 X2 · · · Xn

Z1 Z2 · · · Zn

Z ′1 Z ′2 · · · Z ′n


where each Zi = Ci − fCG′ −

∑
k C
′
k and each Z ′i = Di − fDG′ −

∑
kD
′
k, Verify(m,pk, σ) = 1.

This 3-CLSAG signature demonstrates knowledge of the discrete logarithm of some x`, knowledge of the

opening information for the input and output commitments, and that the transaction amounts balance with
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the fees fC and fD. After all, when the amounts in C` and D` balance with the fees fC and fD together

with the sum of the amounts in each C ′k and D′k, and when the signer knows all the openers for all these

commitments, Z` and Z ′` can be regarded as usual public keys with basepoint G whose secret key is known

by the signer.

Unfortunately, this model does not allow for exchanging amounts of the first color with amounts of the

second color. In the next section, we present another toy model that allows for transferring between colors

at a fixed/pegged exchange rate.

4.3.1 Informal description of MARCTs with a fixed exchange rate

We modify the previous example to use a 2-CLSAG. Consider the canonical example of colored currency with

a fixed peg between two colors: dollars and pennies with a 100 : 1 exchange rate between them. Define an

exchange rate by determining a constant ξ and some constants γC , γD on
{

1, 2, . . . , 2ξ−1
}

, (in this example,

γC = 1 and γD = 100).

As before, we define a public trading key to be a tuple (X,C,D, P ) and a transaction key to be a tuple

(m,Q,O, (fC , fD), σ, aux). We interpret these identically as in the previous step, except using 2-CLSAG

signatures instead of 3-CLSAG signatures, and of course we compute them differently. We say a simple

transaction key is valid if the following are satisfied:

• every input ring member (Xi, Ci, Di, Pi) ∈ Q has a valid range proof Pi so Ver(Pi) = 1; and

• every output range proof P ′k is valid so Ver(P ′k) = 1; and

• for the modified ring

pk =

(
X1 X2 · · · Xn

Z1 Z2 · · · Zn

)
where each Zi = γC(Ci − fCG

′ −
∑
k C
′
k) + γD(Di − fDG

′ −
∑
kD
′
k), the signature σ passes the

2-CLSAG verification, Verify(m,pk, σ) = 1 .

Unlike the previous example, this example allows for the fixed exchange rate between colors determined

by γC and γD.

A Security: Unforgeability

We prove the unforgeability of our implementation in Definition 3.1. A good forgery game should grant the

adversary the power to persuade otherwise honest users to hand over their keys (modeled by a corruption

oracle) or sign adversarially selected messages with adversarially selected rings (modeled by a signing oracle),

and our algorithm is based on the random oracle model. Of course, any oracle queries made by a forgery

algorithm A being run in a black box must be handled by whatever algorithm is executing A, so we describe

how these are simulated in Section A.2.

A.1 Hardness Assumption

Unforgeability comes from the k-OMDL hardness assumption.

Definition A.1 (k-OMDL problem). Let k ∈ N. We say a PPT algorithm A is a (t, ε)-solver of the k-OMDL

problem if, within time at most t and with probability at least ε, A can succeed at the following.
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1. The challenger uses group parameters (p,G, G) and picks group elements G1, G2, . . . , Gk, Gk+1 ∈ G
(the targets) uniformly at random from G. The challenger sends the group parameters and {Gi} to A.

2. A is granted access to a corruption oracle CO that takes as input some Gi sent to A and produces as

output the discrete logarithm of Gi with respect to G, i.e. some xi ∈ F∗p such that Gi = xiG.

3. A produces as output a sequence of k + 1 scalars x1, . . . , xk+1 ∈ F∗p, counting as a success if:

(i) for each xi, there exists some index 1 ≤ j(i) ≤ k + 1 such that Gj(i) = xiG and

(ii) A made no more than k queries to CO.

A.2 The Oracles

Random oracle queries made by A are handled by looking to a random tape h available to the simulator to

generate hashes for new queries made to the oracle Hs. These are stored in a hash table for consistency

in later queries. We assume whatever algorithm is executing A in a black box has pre-generated a set of

private-public key pairs for use in simulating a corruption oracle CO for A. This leaves only the signing

oracle, which is simulated through back-patching in the following way.

The simulator reserves the next random oracle query on the random tape h to select c`+1 for back-

patching. The random signature data α and {si}i 6=` are sampled as usual, and each challenge ci+1 for i 6= `

is simulated from h as described before and stored in a hash table. After all challenges are computed, the

simulator compute the group points L`, R`, and back-patches their hash table to force Hs(pk || m || L` ||
R`)← c`+1.

A.3 Defining forgeries

We use a modified version of the definition of existential forgery with insider corruption for a ring signature

by Bender, Katz, and Morselli [4]. In contrast with the definition of unforgeability with respect to insider

corruption in [4], our modification allows for a forger to succeed at the forgery game with partially corrupted

rings.

Let n(−) be a positive polynomial. Let Hs : {0, 1}∗ → Fp be modeled as a random oracle. Let CO be a

corruption oracle that takes as input a public key pk from the list of challenge keys and produces as output

the corresponding secret key sk and the key image T. Let SO be a signing oracle that takes as input some

(m,pk′, `) such that pk′ is a matrix of challenge key vectors (i.e. each column is in pk) and produces as

output a signature σ such that Verify(m,pk′, σ) = 1 and such that the key image T ∈ σ is the key image

for the `th key in pk′.

Definition A.2 (Existential unforgeability of linkable ring signatures with respect to insider corruption).

We say a PPT algorithm A is a (t, ε, qh, qc, qs, n(−))-forger of a linkable ring signature scheme if, within time

at most t and with at most qh oracle queries to Hs, at most qc oracle queries to CO, and at most qs queries

to SO, A can succeed at the following game with probability at least ε.

1. Challenge keys {(ski,pki)}
n(λ)
i=1 ← KeyGen(1λ) are selected and the public keys pk = {pki}

n(λ)
i=1 are

sent to A.

2. A is granted access to a corruption oracle CO, random oracle Hs, and the signing oracle SO.

3. A outputs a message m, a ring of at most n public keys pk′, and a signature σ. This output is a success

if

11



(a) σ is not output from any query made to SO; and

(b) the key image T does not correspond to a corrupted ring member; and

(c) Verify(m,pk′, σ) = 1.

A forgery challenger can play the forgery game of Definition A.2 with A in a black box, can simulate SO
and CO, and can check whether the purported forgeries by A are successful; the challenger simply keeps a

history of all oracle queries, and computes key images of corrupted keys to check.

This definition allows the attacker to attempt a successful forgery by re-using messages, rings, or indices

from previous SO queries (but not by reusing queries per totum). It also allows key images that are

unrelated to the ring members and it allows key images found in previous SO queries. Hence, proving the

implementation of Definition 3.1 unforgeable under this definition implies these attempts will fail. A forger

gains no advantage by re-using messages (or rings or indices) that have already been used in SO. The forger

gains no advantage by including key images that are unrelated to the ring members, or by using the key

images from SO queries.

Moreover, consider some (m,pk′, σ) output by an alleged forger A. If the scheme is unforgeable, one of

the above conditions must fail. If the signature passes verification, one of the first two conditions must fail,

so any valid signature must violate one of these first two conditions. If the first condition is violated, the

forger is merely attempting to pass off an oracle signature or some previously computed signature as their

own. If the second condition is violated, then T corresponds to a corrupted ring member (in which case A

knows the key) or corresponds to none of the ring members.

That is to say: if A produces a valid signature, then either A knows the key or the key image does not

correspond to a ring member.

Moreover, presume that A produces a message m, a ring pk, and a signature σ that passes verification,

and yet such that the key image T ∈ σ does not correspond to any ring member. Under the random oracle

model, A cannot simultaneously satisfy the verification equations

c2 =Hs0(pk || m || s1G+ c1W1 || s1H1 + c1W)

...

cn =Hs0(pk || m || sn−1G+ cn−1Wn−1 || sn−1Hn−1 + cn−1W)

c1 =Hs0(pk || m || snG+ cnWn || snHn + cnW)

except with negligible probability, because the discrete logarithm of W cannot be written as xiHp(Xi) for any

i. We conclude that A must have known the discrete logarithm of the signing key to produce this signature.

Remark A.1. Note that if the corruption oracle merely acted by computing arbitrary discrete logarithms,

then an adversary could do the following: take some target pk from the challenge set, apply a permutation

to the coordinates of pk, pass the permuted key through CO, obtain the discrete logarithm of the first

(signing) key of pk, compute the key image for this signing key, and lastly produce a signature using Sign.

For example, to find the discrete logarithm of the linking key in pk = (A,B), the adversary may query CO
with (B,A), bypassing our definition.

Such a signature would pass validation and not be described as a forgery according to our definition. Our

definition avoids this problem by requiring the corruption oracle only be queried with challenge keys. This

has the added benefit that it is possible to simulate the corruption oracle for a the black box execution of A.
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A.4 The Forking Lemma

To prove that the existence of a forger implies that of a k-OMDL solver, we use the forking lemma. In

the following, we presume the bit length η is used to describe group elements in G and scalars in Fp, i.e.

η = O(|p|).

Lemma A.1 (General Forking Lemma). Let q, η ≥ 1. Let A be any PPT algorithm which takes as input

some xA = (x,h) where h = (h1, . . . , hq) is a sequence of oracle query responses (η-bit strings) and returns

as output yA either a distinguished failure symbol ⊥ or a pair (idx, y) where idx ∈ [q]2 and y is some output.

Let εA denote the probability that A does not output ⊥A (where this probability is taken over all random coins

of A, the distribution of x, all choices h). Let F = FA be the forking algorithm for A described below. The

accepting probability of F satisfies

εF ≥ εA
(
εA
q
− 1

2η

)
.

We describe the general forking algorithm below, and refer the reader to [2] for a proof of this lemma,

which demonstrates that if executing some A has non-negligible acceptance probability, then forking A does as

well. Since all queries before the (j∗)th query are identical in both transcripts, the input of the (j∗)th query

is also identical. Since oracle queries h′j∗ , h
′
j∗+1, . . . are newly sampled upon receiving the first output from

A, the queries hj∗ 6= h′j∗ except with negligible probability. All subsequent computations in the signature

that are common in both transcripts will have the same results only with negligible probability.

A.4.1 Using a forger in the Forking Lemma

Note that a forger according to Definition A.2 is not directly compatible with the forking lemma; the output

is some y = (m,pk, σ) and no idx is included. However, without loss of generality, we can execute A in a

black box that extracts from the transcript of A some idx = (i∗, j∗) for j∗ = j(i∗) in the following way.

For each query for any ci+1 that appears in the successful forgery, there exists a corresponding index j(i)

that satisfies ci+1 = hj(i). The black box executing A looks at the transcript and extracts the index pair

idx = (i∗, j∗) that indicates where in the random oracle transcript we can find the very first oracle query

made by A to Hs for some challenge used in signature verification

ci∗+1 = Hs0
(
pk || m || Li∗ || Ri∗

)
used in the successful forgery. Such a pair (i∗, j∗) can be found by merely inspecting the transcript, so the

algorithm wrapping A can output (idx, y) without harming its advantage.

Without loss of generality, we can assume that A has been appropriately wrapped so is compatible with

the forking lemma without impacting its advantage.

Forking the forger at this query preserves the input to the query (pk,m,Li∗ , Ri∗) but does not preserve

the challenge ci∗+1. Moreover, each ci+1 used in the signature verification is computed by A by querying Hs

in the transcript of A leading to a successful forgery; the outputs of these queries cannot be guessed except

with negligible probability, and so the oracle must have actually been queried (see, for example, [13]). Of

course, although the index i∗ may not have been decided by A when the query was made, but the index i∗

is assigned before the end of the transcript.

That is to say, a forked forger presents two forgeries with the same ring, message, and idx except with

negligible probability, with the pair of points Li∗ , Ri∗ common in both transcripts.

A forking algorithm FA satisfying Lemma A.1 works in the following way.

1. F takes as input some x and F selects the random tape for A.
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2. F selects some h = (h1, . . . , hq) at random by flipping coins, and F executes yA ← A(x,h).

3. If yA = ⊥A, then F outputs ⊥F and terminates. Otherwise, yA = (idx, y) for some idx = (i∗, j∗)

and some output y and F selects new oracle queries h′j∗ , h
′
j∗+1, . . . , h

′
q, and glues the hash challenges

together:

h′ = (h1, . . . , hj∗−1, h
′
j∗ , h

′
j∗+1, . . . , h

′
q)

4. If hj∗ = h′j∗ , then F outputs ⊥F and terminates. Otherwise, hj∗ 6= h′j∗ and F executes y′A ← A(x,h′).

5. If y′A = ⊥A, then F outputs ⊥F and terminates. Otherwise, y′A = (idx′, y′). If idx 6= idx′, F outputs ⊥F
and terminates. Otherwise, F outputs the tuple (idx, y,h, y′,h′).

We note that FA executed in a black box can be fed the oracle queries h and h′ and so these can be

assumed to be output as well without loss of generality or impacting acceptance probability. Of course, if A

runs in time at most t, FA runs in time at most 2t + s where s denotes the time it takes FA to select the

random tape for A, select the oracle query sequences h and h′, perform lookups in hash tables to maintain

oracle query consistency, and outputting the results. These times are all negligible, so FA runs in O(2t) time.

A.5 Playing k-OMDL

We now construct a master algorithm M that plays the k-OMDL game for k = 2d · qc + d− 1 that operates

in the following way. Recall that M is granted access to up to k queries at a discrete logarithm oracle.

1. M receives group parameters (p,G, G) and target group elements G1, . . . , Gk+1 from the k-OMDL

challenger.

2. M blocks (G1, . . . , Gk+1) into d-length blocks and reserve them for public keys using the following

equations.

pk1 =(G1, . . . , Gd)

pk2 =(Gd+1, . . . , G2d)

...

pk2qc+1 =(G2qcd+1, . . . , Gk+1)

M uses {pki}
2qc+1
i=1 as input for FA, responding to corruption oracle queries made by FA for a key pki

by querying CO directly with each coordinate and responding with the result. Denote Xi := G(i−1)d+1

and Zi,j := G(i−1)d+1+j for consistency with our earlier notation.

3. If FA outputs ⊥, so does M and M terminates. Otherwise, FA succeeds executing A twice, each time

taking no more than qc queries to corrupt d-dimensional keys, resulting in no more than 2 · d · qc
queries to the discrete logarithm oracle CO. FA produces (idx, y,h, y′,h′) where y = (m,pk, σ) and

y′ = (m,pk, σ′) are forgeries using oracle queries h and h′, respectively, and idx = (i∗, j∗) as described

in Section A.4.1.

The messages and rings are identical in these forgeries because they must have been selected before

the first challenge query, except with negligible probability. So M can parse

y =(m,pk, σ) σ =(c1, s1, . . . , sn,T, {Dj}j)

y′ =(m,pk, σ′) σ′ =(c′1, s
′
1, . . . , s

′
n,T

′,
{
D′j
}
j
)

except with negligible probability (in which case M outputs ⊥M and terminates).
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4. In the transcript of FA, M can find ci∗+1 = hj∗ and in the second transcript ci∗+1 = h′j∗ for some

hj∗ 6= h′j∗ , except with negligible probability (in which case M outputs ⊥M and terminates).

5. M parses the random oracle transcript to find the query yielding the signature challenge ci∗+1 ←
Hs(pk || m || Li∗ || Ri∗). Both transcripts match until this line, and the oracle responses stored in

ci∗+1 in these transcripts don’t match (i.e. hj∗ 6= h′j∗ except with negligible probability). The algorithm

M parses the first transcript to look for constants si∗ , ci∗ and the group point W = µXXi∗ +
∑
j µjZi∗,j

such that Li∗ = si∗G+ ci∗W . From the second transcript, and with the same Li∗ and W , M parses to

find constants s′i∗ , c
′
i∗ such that Li∗ = s′i∗G+ c′i∗W .

6. If µX = 0 then M outputs ⊥ and terminates. Otherwise, M computes the discrete logarithm

w =
s′i∗ − si∗
ci∗ − c′i∗

without querying CO.

7. M makes up to d− 1 queries to CO to find the discrete logarithms of the elements of any (d− 1)-subset

of {Xi∗ , Zi∗,1, . . . , Zi∗,d−1}.

8. M uses w to solve for the final discrete logarithm.

9. M outputs the 2 ·d ·qc corruptions queries and the d-vector (xi∗ , zi∗,1, . . . , zi∗,d−1), totaling k+1 discrete

logarithms.

Note that if M does not terminate and output ⊥, then M makes up to 2 · d · qc queries to CO for FA and

makes an an additional d− 1 queries to CO, and yet produces as output d · (qc + 1) > d · qc + d− 1 discrete

logarithms, i.e. M successfully plays the k-OMDL game for k = 2 · d · qc + d − 1. Furthermore, if M already

corrupted these discrete logarithms, even fewer queries could be made, tightening k and making M a more

powerful solver.

Also note that, as previously mentioned, since the map (x, z1, . . . , zd−1) 7→ w is collision resistant, M can

skip steps and guess w in step 7 only with negligible success.

Recall that FA takes time O(2t) to execute. M executes FA and then performs parsing of transcripts and

some additional computations, so M takes time O(2t+s′) for some s′ due to parsing and processing transcript

data.

The additional time s′ is due to:

• Lookup time in a hash table for each CO query, each random oracle query, and each extraction of a

value from the random tapes h, h′ by FA throughout the transcript.

• Parsing and constructing keys in step 2.

• Parsing purported forgeries in step 3.

• Parsing transcripts and computing multi-exponentiations to verify equations in step 5.

• Computing the discrete logarithm w using field arithmetic in Step 6.

• Computing the discrete logarithm of the challenge key using field arithmetic in step 8.

• Outputting the results.

All of these are negligible, so M also takes time O(2t).
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A.6 Proof

All that remains to prove the unforgeability of the d-CLSAG scheme from Section 3.1 is to show that M as

described has a non-negligible acceptance probability.

Theorem A.1. Let d, qh, qc, qs ∈ N and let (p,G, G) be some group parameters. If a (t, ε, qh, qc, qs, n(−))-

forger of the d-CLSAG implementation in Section 3.1 exists then a (2t, ε′)-solver of the k-OMDL problem in

G exists for k = d · qc + d− 1 where ε′ ≥ ε
(
ε
qc
− 1

2η

)
− p−1.

Proof. Let where d, qh, qc, qs satisfy the hypotheses and let A be a (t, ε, qh, qc, qs, n)-forger of the d-CLSAG

scheme of Section 3.1, let FA be the forking algorithm for A, and let M be the master algorithm previously

described. M terminates and outputs ⊥ in steps 3 and 6 only; otherwise, M succeeds at the k-OMDL game.

Hence, if E3 is the event that M outputs ⊥ in step 3 and E6 is the event that M outputs ⊥ in step 6, then

E3, E6 are disjoint and the acceptance probability for M is 1 − P(E3 ∪ E6) = 1 − P(E3) − P(E6). The

probability that M outputs ⊥ in step 6 is the probability that the hashed coefficient µX = 0, which occurs

with probability p−1. M outputs ⊥ in step 3 when FA produces ⊥, but the forking lemma gives us that the

acceptance probability of FA is bounded from below by ε
(
ε
qc
− 1

2η

)
. Hence, M succeeds with probability at

least
(
ε
(
ε
qc
− 1

2η

)
− p−1

)
.

Note that, as a corollary, we can conclude that if a signature passes verification, then the key image

corresponds to one of the ring members except with negligible probability. Indeed, these signatures soundly

prove knowledge of the discrete logarithm of the signing key as well as equality of the discrete logarithm

with the signing key and the key image, so constructing a signature that convinces the verifier of one but

not the other succeeds with at most negligible probability.

B Security: Definitions other than unforgeability

B.1 Linkability

Correctness in linkability for the implementation of Definition 3.1 is easily verified. We consider soundness

in linkability. Soundness relies upon the collision resistance of the map from a secret key to the key image

T and unforgeability (which, in turn, relies on the k-OMDL hardness assumption).

Soundly linkable: We say Definition 3.1 is soundly linkable or non-slanderable if it is infeasible for an

algorithm to produce messages m, m′, signatures σ, σ′, rings pk, pk′, and indices `, `′ such that the

key image T ∈ σ corresponds to the `th member of pk, the key image T′ ∈ σ′ corresponds to the

(`′)th member of pk′, the linking coordinate of pk` does not equal the linking coordinate of pk′`′ , and

Link((m,pk, σ), (m′,pk′, σ′)) = 1.

Assume an algorithm attempts to slander and generates a pair of tuples (m,pk, σ) and (m′,pk′, σ′) such

that Link((m,pk, σ), (m′,pk′, σ′)) = 1. Since Link outputs 1, both signatures pass verification and the

key image T is the same in both signatures, T = T′. Since both signatures pass verification and Definition

3.1 is unforgeable, the slanderer has, except with negligible probability, computed the signatures Sign, i.e.

σ ← Sign(m,pk, sk) and σ′ ← Sign(m′,pk′, sk′).

Since the map from sk to the key image T is collision-resistant, this implies that the linking coordinates

are equal, sk0 = sk′0, except with negligible probability, so no one is slandered.
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B.2 Signer ambiguity

B.2.1 Hardness

We show our scheme is computationally signer-ambiguous if the following DDH game is hard in G.

Definition B.1 (Decisional Diffie-Hellman). Let A be any PPT algorithm, (p,G, G) and let n ∈ N.

1. The challenger selects (ri,1, ri,2, ri,3) ∈ (Fp)3 uniformly and independently for i = 1, . . . , n. The

challenger computes the public keys Ri,1 = ri,1G, Ri,2 = ri,2G, R
(0)
i,3 = ri,1ri,2G, R

(1)
i,3 = ri,3G.

2. The challenger selects a bit b independently and uniformly from {0, 1} and sends
{

(Ri,1, Ri,2, R
(b)
i,3)
}n
i=1

to A.

3. A outputs a bit b′, succeeding if b = b′.

Note any algorithm can flip a coin and guess correctly half the time. We say the advantage of A is the

difference between the probability of success for A and 1/2. If A can solve this with an advantage at least ε

in time at most t, we say A is a (t, ε)-solver of the DDH problem in G.

We note that due to the random self-reducibility of the DDH game, in the sense that solving one instance

of the problem has complexity no worse than solving a sequence of random instances of the problem, the

classic DDH game is no harder than Definition B.1.

Definition B.2 (Signer Ambiguity). We say A is a (t, ε, n1, n2)-solver of the signer ambiguity game if it can

succeed with non-negligible advantage at the following game.

1. The challenger selects n1 secret keys {ski} ⊆ (F∗p)d, computes the corresponding public keys pki =

ski ◦G, and sends {pki} to A.

2. A outputs an arbitrary message m and a ring of n2 distinct members pk′ ⊆ {pki}.

3. The challenger selects a ring index 1 ≤ ` ≤ n2 uniformly at random, retrieves the private key sk, and

sends a valid signature σ ← Sign(m,pk′, sk) to A.

4. A outputs an index `′, succeeding if ` = `′.

Note that a simulator in place of A without any input can guess any index from {1, . . . , n2} with coin flips,

succeeding with probability at least 1/n2. We define the advantage of A as the difference in acceptance

probability and 1/n2.

Note that if the secret index ` is leaked in the signer ambiguity game, this is equivalent to leaking

information about the bit b used in the DDH game. Also note that the game could be generalized to allow A

repeated and adaptive access to a signing oracle, just so long as so-called ring intersection attacks are taken

into account when defining the advantage of A. However, such a generalization is equivalent to ours.

B.2.2 Proof of Signer Ambiguity

If G satisfies the DDH hardness assumption, then the distribution of the triple (r1G, r2G, r3G) is compu-

tationally indistinguishable from the triple (r1G, r2G, r1r2G), where the ri are independently uniform on

Fp. If Hp : {0, 1}∗ → G is modeled as a random oracle with output that is independent of its input, the

distribution of a tuple (r1G, r2G, r3G) is identical to the distribution of (r1G,Hp(r1G), r3G) where r1, r3 are

independently uniform on Fp. Hence, under the random oracle model and assuming G is DDH-hard, the
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distribution of triples (r1G,Hp(r1G), r1Hp(r1G)) where r1 is uniformly random from Fp is computationally

indistinguishable from the distribution of triples (r1G,Hp(r1G), r3G) where r1, r3 are uniformly random from

Fp.
Now note that a solver of the signer ambiguity game is given Xi and Hp(Xi) for each ring member and

the key image T = x`Hp(X`). The solver with a non-negligible advantage at guessing ` has a non-negligible

advantage in distinguishing whether a given triple (Xi,Hp(Xi),T) satisfies T = xiHp(Xi) or not.

Theorem B.1. If a (t, ε, n1, n2)-solver of the signer-ambiguity game exists, there exists a (t, ε2 )-solver of the

DDH game.

Proof. We assume A is an algorithm that can succeed at the game in Definition B.2 with non-negligible

advantage. We construct a master algorithm M that plays the game in Definition B.1 by executing A in a

black box such that M plays the role of the challenger in Definition B.2.

M receives a set of DDH challenge tuples
{

(Ri,1, Ri,2, R
(b)
i,3)
}n
i=1

. M keeps two internal hash tables to main-

tain consistency between oracle queries made toHp andHs, and flips coins to determine hash outcomes except

as specified below. M sets Xi := Ri,1, backpatches the key image basepoints Hp(Xi) := Ri,2, and sets the

purported key images Ti := R
(b)
i,3 . The algorithm selects Zi,j at random and sets pki := (Xi, Zi,1, . . . , Zi,d−1).

The algorithm M then operates in the following way:

1. M sends the public keys pk = {pki}
n
i=1 to A.

2. A outputs a message m and a ring pk′.

3. If pk′ 6⊆ pk, M outputs ⊥ and terminates. Otherwise, the algorithm M can find a one-to-one correspon-

dence between ring indices in pk′ and key indices in pk, so that for each ring index 1 ≤ ` ≤ n2 in pk′,

there exists some key index 1 ≤ i(`) ≤ n1 in pk such that the ring member is Xi(`) = Ri(`),1, has key

image basepoint Hp(Xi(`)) = Ri(`),2, and has key image Rbi(`),3.

4. M simulates a signature in the following way.

(a) M selects a random index 1 ≤ ` ≤ n2, selects a random scalar c`+1 ∈ Fp, and selects random scalars

s1, s2, . . . , sn ∈ Fp.

(b) For i = `+ 1, `+ 2, . . . , n− 1, n, 1, 2, . . . , `− 1, M computes

Li :=siG+ ci

µXXi +
∑
j

µjZi,j


Ri :=siHp(Xi) + ci

µXTi(`) +
∑
j

µjDj


ci+1 :=Hs

(
pk′ || m || Li || Ri

)
(c) M computes c`, L`, and R` as above. If Hs has been queried before with

(
pk′ || m || L` || R`

)
, M

outputs ⊥ and terminates. Otherwise, M backpatches Hs
(
pk′ || m || L` || R`

)
← c`+1.

(d) M sends to A the signature
(
σ,Ti(`)

)
where the signature σ = (c1, s1, . . . , sn, {Dj}j).

5. A outputs a signing index `′. If ` = `′, M outputs b′ = 0. Otherwise, M flips a coin and outputs a bit b′

selected uniformly at random.
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Note that M only terminates and outputs ⊥ if A asks for a signature with a ring containing a key that

is not a DDH challenge key or if Hs has been queried with
(
pk′ || m || L` || R`

)
before step 4c. We can

assume A never asks for a signature with a bad ring like this. Moreover, the points L` and R` are uniformly

distributed, so the probability that any algorithm can guess the input for backpatching is negligible. Hence,

M carries out the game in Definition B.1 except with negligible probability.

The law of total probability gives us that P [M wins] = 1
2P [1← M | b = 1] + 1

2P [0← M | b = 0]. Moreover,

the event that 1 ← M is exactly the event that `′ ← A and `′ 6= `, and the event that 0 ← M is exactly

the event that `′ ← A and `′ = `. If b = 1, then M received random points, not the DDH exchange key,

so the signature sent to A consists of uniformly random points and scalars. A can do no better than to

guess the index `′ uniformly at random. So P [1← M | b = 1] = P [`′ ← A, `′ 6= ` | b = 1] = n−1
n . On the other

hand, if b = 0, then M received the DDH exchange key. In this case, A has an advantage ε at guessing the

successful index, so P [`′ ← A, ` = `′ | b = 0] = 1
n + ε. Hence, M succeeds at the DDH game with probability

1
2

(
1− 1

n

)
+ 1

2

(
1
n + ε

)
= 1

2 + ε
2 .
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