dandelion-tower: improve API (#257)

* init

* reduce the jobs handled by the dandelion pool

* fix docs

* resolve todo

* review changes

* Update p2p/dandelion-tower/src/pool/incoming_tx.rs

Co-authored-by: hinto-janai <hinto.janai@protonmail.com>

* Update p2p/dandelion-tower/src/pool/incoming_tx.rs

Co-authored-by: hinto-janai <hinto.janai@protonmail.com>

* `PId` -> `PeerId`

---------

Co-authored-by: hinto-janai <hinto.janai@protonmail.com>
This commit is contained in:
Boog900 2024-08-22 00:18:44 +00:00 committed by GitHub
parent ccff75057e
commit 8655a3f5e5
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
9 changed files with 595 additions and 599 deletions

View file

@ -2,17 +2,17 @@
//!
//! This crate implements [dandelion++](https://arxiv.org/pdf/1805.11060.pdf), using [`tower`].
//!
//! This crate provides 2 [`tower::Service`]s, a [`DandelionRouter`] and a [`DandelionPool`](pool::DandelionPool).
//! This crate provides 2 [`tower::Service`]s, a [`DandelionRouter`] and a [`DandelionPoolManager`](pool::DandelionPoolManager).
//! The router is pretty minimal and only handles the absolute necessary data to route transactions, whereas the
//! pool keeps track of all data necessary for dandelion++ but requires you to provide a backing tx-pool.
//!
//! This split was done not because the [`DandelionPool`](pool::DandelionPool) is unnecessary but because it is hard
//! to cover a wide range of projects when abstracting over the tx-pool. Not using the [`DandelionPool`](pool::DandelionPool)
//! This split was done not because the [`DandelionPoolManager`](pool::DandelionPoolManager) is unnecessary but because it is hard
//! to cover a wide range of projects when abstracting over the tx-pool. Not using the [`DandelionPoolManager`](pool::DandelionPoolManager)
//! requires you to implement part of the paper yourself.
//!
//! # Features
//!
//! This crate only has one feature `txpool` which enables [`DandelionPool`](pool::DandelionPool).
//! This crate only has one feature `txpool` which enables [`DandelionPoolManager`](pool::DandelionPoolManager).
//!
//! # Needed Services
//!
@ -45,7 +45,7 @@
//!
//! ## Backing Pool
//!
//! ([`DandelionPool`](pool::DandelionPool) only)
//! ([`DandelionPoolManager`](pool::DandelionPoolManager) only)
//!
//! This service is a backing tx-pool, in memory or on disk.
//! The backing pool should have a request of [`TxStoreRequest`](traits::TxStoreRequest) and a response of

View file

@ -1,509 +0,0 @@
//! # Dandelion++ Pool
//!
//! This module contains [`DandelionPool`] which is a thin wrapper around a backing transaction store,
//! which fully implements the dandelion++ protocol.
//!
//! ### How To Get Txs From [`DandelionPool`].
//!
//! [`DandelionPool`] does not provide a full tx-pool API. You cannot retrieve transactions from it or
//! check what transactions are in it, to do this you must keep a handle to the backing transaction store
//! yourself.
//!
//! The reason for this is, the [`DandelionPool`] will only itself be passing these requests onto the backing
//! pool, so it makes sense to remove the "middle man".
//!
//! ### Keep Stem Transactions Hidden
//!
//! When using your handle to the backing store it must be remembered to keep transactions in the stem pool hidden.
//! So handle any requests to the tx-pool like the stem side of the pool does not exist.
use std::{
collections::{HashMap, HashSet},
future::Future,
hash::Hash,
marker::PhantomData,
pin::Pin,
task::{Context, Poll},
time::Duration,
};
use futures::{FutureExt, StreamExt};
use rand::prelude::*;
use rand_distr::Exp;
use tokio::{
sync::{mpsc, oneshot},
task::JoinSet,
};
use tokio_util::{sync::PollSender, time::DelayQueue};
use tower::{Service, ServiceExt};
use tracing::Instrument;
use crate::{
traits::{TxStoreRequest, TxStoreResponse},
DandelionConfig, DandelionRouteReq, DandelionRouterError, State, TxState,
};
/// Start the [`DandelionPool`].
///
/// This function spawns the [`DandelionPool`] and returns [`DandelionPoolService`] which can be used to send
/// requests to the pool.
///
/// ### Args
///
/// - `buffer_size` is the size of the channel's buffer between the [`DandelionPoolService`] and [`DandelionPool`].
/// - `dandelion_router` is the router service, kept generic instead of [`DandelionRouter`](crate::DandelionRouter) to allow
/// user to customise routing functionality.
/// - `backing_pool` is the backing transaction storage service
/// - `config` is [`DandelionConfig`].
pub fn start_dandelion_pool<P, R, Tx, TxID, PID>(
buffer_size: usize,
dandelion_router: R,
backing_pool: P,
config: DandelionConfig,
) -> DandelionPoolService<Tx, TxID, PID>
where
Tx: Clone + Send + 'static,
TxID: Hash + Eq + Clone + Send + 'static,
PID: Hash + Eq + Clone + Send + 'static,
P: Service<
TxStoreRequest<Tx, TxID>,
Response = TxStoreResponse<Tx, TxID>,
Error = tower::BoxError,
> + Send
+ 'static,
P::Future: Send + 'static,
R: Service<DandelionRouteReq<Tx, PID>, Response = State, Error = DandelionRouterError>
+ Send
+ 'static,
R::Future: Send + 'static,
{
let (tx, rx) = mpsc::channel(buffer_size);
let pool = DandelionPool {
dandelion_router,
backing_pool,
routing_set: JoinSet::new(),
stem_origins: HashMap::new(),
embargo_timers: DelayQueue::new(),
embargo_dist: Exp::new(1.0 / config.average_embargo_timeout().as_secs_f64()).unwrap(),
config,
_tx: PhantomData,
};
let span = tracing::debug_span!("dandelion_pool");
tokio::spawn(pool.run(rx).instrument(span));
DandelionPoolService {
tx: PollSender::new(tx),
}
}
#[derive(Copy, Clone, Debug, thiserror::Error)]
#[error("The dandelion pool was shutdown")]
pub struct DandelionPoolShutDown;
/// An incoming transaction for the [`DandelionPool`] to handle.
///
/// Users may notice there is no way to check if the dandelion-pool wants a tx according to an inventory message like seen
/// in Bitcoin, only having a request for a full tx. Users should look in the *public* backing pool to handle inv messages,
/// and request txs even if they are in the stem pool.
pub struct IncomingTx<Tx, TxID, PID> {
/// The transaction.
///
/// It is recommended to put this in an [`Arc`](std::sync::Arc) as it needs to be cloned to send to the backing
/// tx pool and [`DandelionRouter`](crate::DandelionRouter)
pub tx: Tx,
/// The transaction ID.
pub tx_id: TxID,
/// The routing state of this transaction.
pub tx_state: TxState<PID>,
}
/// The dandelion tx pool service.
#[derive(Clone)]
pub struct DandelionPoolService<Tx, TxID, PID> {
/// The channel to [`DandelionPool`].
tx: PollSender<(IncomingTx<Tx, TxID, PID>, oneshot::Sender<()>)>,
}
impl<Tx, TxID, PID> Service<IncomingTx<Tx, TxID, PID>> for DandelionPoolService<Tx, TxID, PID>
where
Tx: Clone + Send,
TxID: Hash + Eq + Clone + Send + 'static,
PID: Hash + Eq + Clone + Send + 'static,
{
type Response = ();
type Error = DandelionPoolShutDown;
type Future =
Pin<Box<dyn Future<Output = Result<Self::Response, Self::Error>> + Send + 'static>>;
fn poll_ready(&mut self, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
self.tx.poll_reserve(cx).map_err(|_| DandelionPoolShutDown)
}
fn call(&mut self, req: IncomingTx<Tx, TxID, PID>) -> Self::Future {
// although the channel isn't sending anything we want to wait for the request to be handled before continuing.
let (tx, rx) = oneshot::channel();
let res = self
.tx
.send_item((req, tx))
.map_err(|_| DandelionPoolShutDown);
async move {
res?;
rx.await.expect("Oneshot dropped before response!");
Ok(())
}
.boxed()
}
}
/// The dandelion++ tx pool.
///
/// See the [module docs](self) for more.
pub struct DandelionPool<P, R, Tx, TxID, PID> {
/// The dandelion++ router
dandelion_router: R,
/// The backing tx storage.
backing_pool: P,
/// The set of tasks that are running the future returned from `dandelion_router`.
routing_set: JoinSet<(TxID, Result<State, TxState<PID>>)>,
/// The origin of stem transactions.
stem_origins: HashMap<TxID, HashSet<PID>>,
/// Current stem pool embargo timers.
embargo_timers: DelayQueue<TxID>,
/// The distrobution to sample to get embargo timers.
embargo_dist: Exp<f64>,
/// The d++ config.
config: DandelionConfig,
_tx: PhantomData<Tx>,
}
impl<P, R, Tx, TxID, PID> DandelionPool<P, R, Tx, TxID, PID>
where
Tx: Clone + Send,
TxID: Hash + Eq + Clone + Send + 'static,
PID: Hash + Eq + Clone + Send + 'static,
P: Service<
TxStoreRequest<Tx, TxID>,
Response = TxStoreResponse<Tx, TxID>,
Error = tower::BoxError,
>,
P::Future: Send + 'static,
R: Service<DandelionRouteReq<Tx, PID>, Response = State, Error = DandelionRouterError>,
R::Future: Send + 'static,
{
/// Stores the tx in the backing pools stem pool, setting the embargo timer, stem origin and steming the tx.
async fn store_tx_and_stem(
&mut self,
tx: Tx,
tx_id: TxID,
from: Option<PID>,
) -> Result<(), tower::BoxError> {
self.backing_pool
.ready()
.await?
.call(TxStoreRequest::Store(
tx.clone(),
tx_id.clone(),
State::Stem,
))
.await?;
let embargo_timer = self.embargo_dist.sample(&mut thread_rng());
tracing::debug!(
"Setting embargo timer for stem tx: {} seconds.",
embargo_timer
);
self.embargo_timers
.insert(tx_id.clone(), Duration::from_secs_f64(embargo_timer));
self.stem_tx(tx, tx_id, from).await
}
/// Stems the tx, setting the stem origin, if it wasn't already set.
///
/// This function does not add the tx to the backing pool.
async fn stem_tx(
&mut self,
tx: Tx,
tx_id: TxID,
from: Option<PID>,
) -> Result<(), tower::BoxError> {
if let Some(peer) = &from {
self.stem_origins
.entry(tx_id.clone())
.or_default()
.insert(peer.clone());
}
let state = from
.map(|from| TxState::Stem { from })
.unwrap_or(TxState::Local);
let fut = self
.dandelion_router
.ready()
.await?
.call(DandelionRouteReq {
tx,
state: state.clone(),
});
self.routing_set
.spawn(fut.map(|res| (tx_id, res.map_err(|_| state))));
Ok(())
}
/// Stores the tx in the backing pool and fluffs the tx, removing the stem data for this tx.
async fn store_and_fluff_tx(&mut self, tx: Tx, tx_id: TxID) -> Result<(), tower::BoxError> {
// fluffs the tx first to prevent timing attacks where we could fluff at different average times
// depending on if the tx was in the stem pool already or not.
// Massively overkill but this is a minimal change.
self.fluff_tx(tx.clone(), tx_id.clone()).await?;
// Remove the tx from the maps used during the stem phase.
self.stem_origins.remove(&tx_id);
self.backing_pool
.ready()
.await?
.call(TxStoreRequest::Store(tx, tx_id, State::Fluff))
.await?;
// The key for this is *Not* the tx_id, it is given on insert, so just keep the timer in the
// map. These timers should be relatively short, so it shouldn't be a problem.
//self.embargo_timers.try_remove(&tx_id);
Ok(())
}
/// Fluffs a tx, does not add the tx to the tx pool.
async fn fluff_tx(&mut self, tx: Tx, tx_id: TxID) -> Result<(), tower::BoxError> {
let fut = self
.dandelion_router
.ready()
.await?
.call(DandelionRouteReq {
tx,
state: TxState::Fluff,
});
self.routing_set
.spawn(fut.map(|res| (tx_id, res.map_err(|_| TxState::Fluff))));
Ok(())
}
/// Function to handle an incoming [`DandelionPoolRequest::IncomingTx`].
async fn handle_incoming_tx(
&mut self,
tx: Tx,
tx_state: TxState<PID>,
tx_id: TxID,
) -> Result<(), tower::BoxError> {
let TxStoreResponse::Contains(have_tx) = self
.backing_pool
.ready()
.await?
.call(TxStoreRequest::Contains(tx_id.clone()))
.await?
else {
panic!("Backing tx pool responded with wrong response for request.");
};
// If we have already fluffed this tx then we don't need to do anything.
if have_tx == Some(State::Fluff) {
tracing::debug!("Already fluffed incoming tx, ignoring.");
return Ok(());
}
match tx_state {
TxState::Stem { from } => {
if self
.stem_origins
.get(&tx_id)
.is_some_and(|peers| peers.contains(&from))
{
tracing::debug!("Received stem tx twice from same peer, fluffing it");
// The same peer sent us a tx twice, fluff it.
self.promote_and_fluff_tx(tx_id).await
} else {
// This could be a new tx or it could have already been stemed, but we still stem it again
// unless the same peer sends us a tx twice.
tracing::debug!("Steming incoming tx");
self.store_tx_and_stem(tx, tx_id, Some(from)).await
}
}
TxState::Fluff => {
tracing::debug!("Fluffing incoming tx");
self.store_and_fluff_tx(tx, tx_id).await
}
TxState::Local => {
// If we have already stemed this tx then nothing to do.
if have_tx.is_some() {
tracing::debug!("Received a local tx that we already have, skipping");
return Ok(());
}
tracing::debug!("Steming local transaction");
self.store_tx_and_stem(tx, tx_id, None).await
}
}
}
/// Promotes a tx to the clear pool.
async fn promote_tx(&mut self, tx_id: TxID) -> Result<(), tower::BoxError> {
// Remove the tx from the maps used during the stem phase.
self.stem_origins.remove(&tx_id);
// The key for this is *Not* the tx_id, it is given on insert, so just keep the timer in the
// map. These timers should be relatively short, so it shouldn't be a problem.
//self.embargo_timers.try_remove(&tx_id);
self.backing_pool
.ready()
.await?
.call(TxStoreRequest::Promote(tx_id))
.await?;
Ok(())
}
/// Promotes a tx to the public fluff pool and fluffs the tx.
async fn promote_and_fluff_tx(&mut self, tx_id: TxID) -> Result<(), tower::BoxError> {
tracing::debug!("Promoting transaction to public pool and fluffing it.");
let TxStoreResponse::Transaction(tx) = self
.backing_pool
.ready()
.await?
.call(TxStoreRequest::Get(tx_id.clone()))
.await?
else {
panic!("Backing tx pool responded with wrong response for request.");
};
let Some((tx, state)) = tx else {
tracing::debug!("Could not find tx, skipping.");
return Ok(());
};
if state == State::Fluff {
tracing::debug!("Transaction already fluffed, skipping.");
return Ok(());
}
self.promote_tx(tx_id.clone()).await?;
self.fluff_tx(tx, tx_id).await
}
/// Returns a tx stored in the fluff _OR_ stem pool.
async fn get_tx_from_pool(&mut self, tx_id: TxID) -> Result<Option<Tx>, tower::BoxError> {
let TxStoreResponse::Transaction(tx) = self
.backing_pool
.ready()
.await?
.call(TxStoreRequest::Get(tx_id))
.await?
else {
panic!("Backing tx pool responded with wrong response for request.");
};
Ok(tx.map(|tx| tx.0))
}
/// Starts the [`DandelionPool`].
async fn run(
mut self,
mut rx: mpsc::Receiver<(IncomingTx<Tx, TxID, PID>, oneshot::Sender<()>)>,
) {
tracing::debug!("Starting dandelion++ tx-pool, config: {:?}", self.config);
// On start up we just fluff all txs left in the stem pool.
let Ok(TxStoreResponse::IDs(ids)) = (&mut self.backing_pool)
.oneshot(TxStoreRequest::IDsInStemPool)
.await
else {
tracing::error!("Failed to get transactions in stem pool.");
return;
};
tracing::debug!(
"Fluffing {} txs that are currently in the stem pool",
ids.len()
);
for id in ids {
if let Err(e) = self.promote_and_fluff_tx(id).await {
tracing::error!("Failed to fluff tx in the stem pool at start up, {e}.");
return;
}
}
loop {
tracing::trace!("Waiting for next event.");
tokio::select! {
// biased to handle current txs before routing new ones.
biased;
Some(fired) = self.embargo_timers.next() => {
tracing::debug!("Embargo timer fired, did not see stem tx in time.");
let tx_id = fired.into_inner();
if let Err(e) = self.promote_and_fluff_tx(tx_id).await {
tracing::error!("Error handling fired embargo timer: {e}");
return;
}
}
Some(Ok((tx_id, res))) = self.routing_set.join_next() => {
tracing::trace!("Received d++ routing result.");
let res = match res {
Ok(State::Fluff) => {
tracing::debug!("Transaction was fluffed upgrading it to the public pool.");
self.promote_tx(tx_id).await
}
Err(tx_state) => {
tracing::debug!("Error routing transaction, trying again.");
match self.get_tx_from_pool(tx_id.clone()).await {
Ok(Some(tx)) => match tx_state {
TxState::Fluff => self.fluff_tx(tx, tx_id).await,
TxState::Stem { from } => self.stem_tx(tx, tx_id, Some(from)).await,
TxState::Local => self.stem_tx(tx, tx_id, None).await,
}
Err(e) => Err(e),
_ => continue,
}
}
Ok(State::Stem) => continue,
};
if let Err(e) = res {
tracing::error!("Error handling transaction routing return: {e}");
return;
}
}
req = rx.recv() => {
tracing::debug!("Received new tx to route.");
let Some((IncomingTx { tx, tx_state, tx_id }, res_tx)) = req else {
return;
};
if let Err(e) = self.handle_incoming_tx(tx, tx_state, tx_id).await {
let _ = res_tx.send(());
tracing::error!("Error handling transaction in dandelion pool: {e}");
return;
}
let _ = res_tx.send(());
}
}
}
}
}

View file

@ -0,0 +1,113 @@
//! Contains [`IncomingTx`] and [`IncomingTxBuilder`]
use crate::{State, TxState};
/// An incoming transaction that has gone through the preprocessing stage.
pub struct IncomingTx<Tx, TxId, PeerId> {
/// The transaction.
pub(crate) tx: Tx,
/// The transaction ID.
pub(crate) tx_id: TxId,
/// The routing state of the transaction.
pub(crate) routing_state: TxState<PeerId>,
}
/// An [`IncomingTx`] builder.
///
/// The const generics here are used to restrict what methods can be called.
///
/// - `RS`: routing state; a `bool` for if the routing state is set
/// - `DBS`: database state; a `bool` for if the state in the DB is set
pub struct IncomingTxBuilder<const RS: bool, const DBS: bool, Tx, TxId, PeerId> {
/// The transaction.
tx: Tx,
/// The transaction ID.
tx_id: TxId,
/// The routing state of the transaction.
routing_state: Option<TxState<PeerId>>,
/// The state of this transaction in the DB.
state_in_db: Option<State>,
}
impl<Tx, TxId, PeerId> IncomingTxBuilder<false, false, Tx, TxId, PeerId> {
/// Creates a new [`IncomingTxBuilder`].
pub fn new(tx: Tx, tx_id: TxId) -> Self {
Self {
tx,
tx_id,
routing_state: None,
state_in_db: None,
}
}
}
impl<const DBS: bool, Tx, TxId, PeerId> IncomingTxBuilder<false, DBS, Tx, TxId, PeerId> {
/// Adds the routing state to the builder.
///
/// The routing state is the origin of this transaction from our perspective.
pub fn with_routing_state(
self,
state: TxState<PeerId>,
) -> IncomingTxBuilder<true, DBS, Tx, TxId, PeerId> {
IncomingTxBuilder {
tx: self.tx,
tx_id: self.tx_id,
routing_state: Some(state),
state_in_db: self.state_in_db,
}
}
}
impl<const RS: bool, Tx, TxId, PeerId> IncomingTxBuilder<RS, false, Tx, TxId, PeerId> {
/// Adds the database state to the builder.
///
/// If the transaction is not in the DB already then the state should be [`None`].
pub fn with_state_in_db(
self,
state: Option<State>,
) -> IncomingTxBuilder<RS, true, Tx, TxId, PeerId> {
IncomingTxBuilder {
tx: self.tx,
tx_id: self.tx_id,
routing_state: self.routing_state,
state_in_db: state,
}
}
}
impl<Tx, TxId, PeerId> IncomingTxBuilder<true, true, Tx, TxId, PeerId> {
/// Builds the [`IncomingTx`].
///
/// If this returns [`None`] then the transaction does not need to be given to the dandelion pool
/// manager.
pub fn build(self) -> Option<IncomingTx<Tx, TxId, PeerId>> {
let routing_state = self.routing_state.unwrap();
if self.state_in_db == Some(State::Fluff) {
return None;
}
Some(IncomingTx {
tx: self.tx,
tx_id: self.tx_id,
routing_state,
})
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_builder() {
IncomingTxBuilder::new(1, 2)
.with_routing_state(TxState::Stem { from: 3 })
.with_state_in_db(None)
.build();
IncomingTxBuilder::new(1, 2)
.with_state_in_db(None)
.with_routing_state(TxState::Stem { from: 3 })
.build();
}
}

View file

@ -0,0 +1,294 @@
use std::{
collections::{HashMap, HashSet},
hash::Hash,
marker::PhantomData,
time::Duration,
};
use futures::{FutureExt, StreamExt};
use rand::prelude::*;
use rand_distr::Exp;
use tokio::{
sync::{mpsc, oneshot},
task::JoinSet,
};
use tokio_util::time::DelayQueue;
use tower::{Service, ServiceExt};
use crate::{
pool::IncomingTx,
traits::{TxStoreRequest, TxStoreResponse},
DandelionConfig, DandelionRouteReq, DandelionRouterError, State, TxState,
};
#[derive(Copy, Clone, Debug, thiserror::Error)]
#[error("The dandelion pool was shutdown")]
pub struct DandelionPoolShutDown;
/// The dandelion++ pool manager.
///
/// See the [module docs](super) for more.
pub struct DandelionPoolManager<P, R, Tx, TxId, PeerId> {
/// The dandelion++ router
pub(crate) dandelion_router: R,
/// The backing tx storage.
pub(crate) backing_pool: P,
/// The set of tasks that are running the future returned from `dandelion_router`.
pub(crate) routing_set: JoinSet<(TxId, Result<State, TxState<PeerId>>)>,
/// The origin of stem transactions.
pub(crate) stem_origins: HashMap<TxId, HashSet<PeerId>>,
/// Current stem pool embargo timers.
pub(crate) embargo_timers: DelayQueue<TxId>,
/// The distrobution to sample to get embargo timers.
pub(crate) embargo_dist: Exp<f64>,
/// The d++ config.
pub(crate) config: DandelionConfig,
pub(crate) _tx: PhantomData<Tx>,
}
impl<P, R, Tx, TxId, PeerId> DandelionPoolManager<P, R, Tx, TxId, PeerId>
where
Tx: Clone + Send,
TxId: Hash + Eq + Clone + Send + 'static,
PeerId: Hash + Eq + Clone + Send + 'static,
P: Service<TxStoreRequest<TxId>, Response = TxStoreResponse<Tx>, Error = tower::BoxError>,
P::Future: Send + 'static,
R: Service<DandelionRouteReq<Tx, PeerId>, Response = State, Error = DandelionRouterError>,
R::Future: Send + 'static,
{
/// Adds a new embargo timer to the running timers, with a duration pulled from [`Self::embargo_dist`]
fn add_embargo_timer_for_tx(&mut self, tx_id: TxId) {
let embargo_timer = self.embargo_dist.sample(&mut thread_rng());
tracing::debug!(
"Setting embargo timer for stem tx: {} seconds.",
embargo_timer
);
self.embargo_timers
.insert(tx_id, Duration::from_secs_f64(embargo_timer));
}
/// Stems the tx, setting the stem origin, if it wasn't already set.
///
/// This function does not add the tx to the backing pool.
async fn stem_tx(
&mut self,
tx: Tx,
tx_id: TxId,
from: Option<PeerId>,
) -> Result<(), tower::BoxError> {
if let Some(peer) = &from {
self.stem_origins
.entry(tx_id.clone())
.or_default()
.insert(peer.clone());
}
let state = from
.map(|from| TxState::Stem { from })
.unwrap_or(TxState::Local);
let fut = self
.dandelion_router
.ready()
.await?
.call(DandelionRouteReq {
tx,
state: state.clone(),
});
self.routing_set
.spawn(fut.map(|res| (tx_id, res.map_err(|_| state))));
Ok(())
}
/// Fluffs a tx, does not add the tx to the tx pool.
async fn fluff_tx(&mut self, tx: Tx, tx_id: TxId) -> Result<(), tower::BoxError> {
let fut = self
.dandelion_router
.ready()
.await?
.call(DandelionRouteReq {
tx,
state: TxState::Fluff,
});
self.routing_set
.spawn(fut.map(|res| (tx_id, res.map_err(|_| TxState::Fluff))));
Ok(())
}
/// Function to handle an [`IncomingTx`].
async fn handle_incoming_tx(
&mut self,
tx: Tx,
tx_state: TxState<PeerId>,
tx_id: TxId,
) -> Result<(), tower::BoxError> {
match tx_state {
TxState::Stem { from } => {
if self
.stem_origins
.get(&tx_id)
.is_some_and(|peers| peers.contains(&from))
{
tracing::debug!("Received stem tx twice from same peer, fluffing it");
// The same peer sent us a tx twice, fluff it.
self.promote_and_fluff_tx(tx_id).await?;
} else {
// This could be a new tx or it could have already been stemed, but we still stem it again
// unless the same peer sends us a tx twice.
tracing::debug!("Steming incoming tx");
self.stem_tx(tx, tx_id.clone(), Some(from)).await?;
self.add_embargo_timer_for_tx(tx_id);
}
}
TxState::Fluff => {
tracing::debug!("Fluffing incoming tx");
self.fluff_tx(tx, tx_id).await?;
}
TxState::Local => {
tracing::debug!("Steming local transaction");
self.stem_tx(tx, tx_id.clone(), None).await?;
self.add_embargo_timer_for_tx(tx_id);
}
}
Ok(())
}
/// Promotes a tx to the clear pool.
async fn promote_tx(&mut self, tx_id: TxId) -> Result<(), tower::BoxError> {
// Remove the tx from the maps used during the stem phase.
self.stem_origins.remove(&tx_id);
// The key for this is *Not* the tx_id, it is given on insert, so just keep the timer in the
// map. These timers should be relatively short, so it shouldn't be a problem.
//self.embargo_timers.try_remove(&tx_id);
self.backing_pool
.ready()
.await?
.call(TxStoreRequest::Promote(tx_id))
.await?;
Ok(())
}
/// Promotes a tx to the public fluff pool and fluffs the tx.
async fn promote_and_fluff_tx(&mut self, tx_id: TxId) -> Result<(), tower::BoxError> {
tracing::debug!("Promoting transaction to public pool and fluffing it.");
let TxStoreResponse::Transaction(tx) = self
.backing_pool
.ready()
.await?
.call(TxStoreRequest::Get(tx_id.clone()))
.await?
else {
panic!("Backing tx pool responded with wrong response for request.");
};
let Some((tx, state)) = tx else {
tracing::debug!("Could not find tx, skipping.");
return Ok(());
};
if state == State::Fluff {
tracing::debug!("Transaction already fluffed, skipping.");
return Ok(());
}
self.promote_tx(tx_id.clone()).await?;
self.fluff_tx(tx, tx_id).await
}
/// Returns a tx stored in the fluff _OR_ stem pool.
async fn get_tx_from_pool(&mut self, tx_id: TxId) -> Result<Option<Tx>, tower::BoxError> {
let TxStoreResponse::Transaction(tx) = self
.backing_pool
.ready()
.await?
.call(TxStoreRequest::Get(tx_id))
.await?
else {
panic!("Backing tx pool responded with wrong response for request.");
};
Ok(tx.map(|tx| tx.0))
}
/// Starts the [`DandelionPoolManager`].
pub(crate) async fn run(
mut self,
mut rx: mpsc::Receiver<(IncomingTx<Tx, TxId, PeerId>, oneshot::Sender<()>)>,
) {
tracing::debug!("Starting dandelion++ tx-pool, config: {:?}", self.config);
loop {
tracing::trace!("Waiting for next event.");
tokio::select! {
// biased to handle current txs before routing new ones.
biased;
Some(fired) = self.embargo_timers.next() => {
tracing::debug!("Embargo timer fired, did not see stem tx in time.");
let tx_id = fired.into_inner();
if let Err(e) = self.promote_and_fluff_tx(tx_id).await {
tracing::error!("Error handling fired embargo timer: {e}");
return;
}
}
Some(Ok((tx_id, res))) = self.routing_set.join_next() => {
tracing::trace!("Received d++ routing result.");
let res = match res {
Ok(State::Fluff) => {
tracing::debug!("Transaction was fluffed upgrading it to the public pool.");
self.promote_tx(tx_id).await
}
Err(tx_state) => {
tracing::debug!("Error routing transaction, trying again.");
match self.get_tx_from_pool(tx_id.clone()).await {
Ok(Some(tx)) => match tx_state {
TxState::Fluff => self.fluff_tx(tx, tx_id).await,
TxState::Stem { from } => self.stem_tx(tx, tx_id, Some(from)).await,
TxState::Local => self.stem_tx(tx, tx_id, None).await,
}
Err(e) => Err(e),
_ => continue,
}
}
Ok(State::Stem) => continue,
};
if let Err(e) = res {
tracing::error!("Error handling transaction routing return: {e}");
return;
}
}
req = rx.recv() => {
tracing::debug!("Received new tx to route.");
let Some((IncomingTx { tx, tx_id, routing_state }, res_tx)) = req else {
return;
};
if let Err(e) = self.handle_incoming_tx(tx, routing_state, tx_id).await {
let _ = res_tx.send(());
tracing::error!("Error handling transaction in dandelion pool: {e}");
return;
}
let _ = res_tx.send(());
}
}
}
}
}

View file

@ -0,0 +1,145 @@
//! # Dandelion++ Pool
//!
//! This module contains [`DandelionPoolManager`] which is a wrapper around a backing transaction store,
//! which fully implements the dandelion++ protocol.
//!
//! The [`DandelionPoolManager`] is a middle man between a [preprocessing stage](#preprocessing-stage) and a dandelion router.
//! It handles promoting transactions in the stem state to the fluff state and setting embargo timers on stem state transactions.
//!
//! ### Preprocessing stage
//!
//! The preprocessing stage (not handled in this crate) before giving the transaction to the [`DandelionPoolManager`]
//! should handle:
//!
//! - verifying the tx.
//! - checking if we have the tx in the pool already and giving that information to the [`IncomingTxBuilder`].
//! - storing the tx in the pool, if it isn't there already.
//!
//! ### Keep Stem Transactions Hidden
//!
//! When using your handle to the backing store it must be remembered to keep transactions in the stem pool hidden.
//! So handle any requests to the tx-pool like the stem side of the pool does not exist.
use std::{
collections::HashMap,
hash::Hash,
marker::PhantomData,
task::{Context, Poll},
};
use futures::{future::BoxFuture, FutureExt};
use rand_distr::Exp;
use tokio::{
sync::{mpsc, oneshot},
task::JoinSet,
};
use tokio_util::{sync::PollSender, time::DelayQueue};
use tower::Service;
use tracing::Instrument;
use crate::{
pool::manager::DandelionPoolShutDown,
traits::{TxStoreRequest, TxStoreResponse},
DandelionConfig, DandelionRouteReq, DandelionRouterError, State,
};
mod incoming_tx;
mod manager;
pub use incoming_tx::{IncomingTx, IncomingTxBuilder};
pub use manager::DandelionPoolManager;
/// Start the [`DandelionPoolManager`].
///
/// This function spawns the [`DandelionPoolManager`] and returns [`DandelionPoolService`] which can be used to send
/// requests to the pool.
///
/// ### Args
///
/// - `buffer_size` is the size of the channel's buffer between the [`DandelionPoolService`] and [`DandelionPoolManager`].
/// - `dandelion_router` is the router service, kept generic instead of [`DandelionRouter`](crate::DandelionRouter) to allow
/// user to customise routing functionality.
/// - `backing_pool` is the backing transaction storage service
/// - `config` is [`DandelionConfig`].
pub fn start_dandelion_pool_manager<P, R, Tx, TxId, PeerId>(
buffer_size: usize,
dandelion_router: R,
backing_pool: P,
config: DandelionConfig,
) -> DandelionPoolService<Tx, TxId, PeerId>
where
Tx: Clone + Send + 'static,
TxId: Hash + Eq + Clone + Send + 'static,
PeerId: Hash + Eq + Clone + Send + 'static,
P: Service<TxStoreRequest<TxId>, Response = TxStoreResponse<Tx>, Error = tower::BoxError>
+ Send
+ 'static,
P::Future: Send + 'static,
R: Service<DandelionRouteReq<Tx, PeerId>, Response = State, Error = DandelionRouterError>
+ Send
+ 'static,
R::Future: Send + 'static,
{
let (tx, rx) = mpsc::channel(buffer_size);
let pool = DandelionPoolManager {
dandelion_router,
backing_pool,
routing_set: JoinSet::new(),
stem_origins: HashMap::new(),
embargo_timers: DelayQueue::new(),
embargo_dist: Exp::new(1.0 / config.average_embargo_timeout().as_secs_f64()).unwrap(),
config,
_tx: PhantomData,
};
let span = tracing::debug_span!("dandelion_pool");
tokio::spawn(pool.run(rx).instrument(span));
DandelionPoolService {
tx: PollSender::new(tx),
}
}
/// The dandelion pool manager service.
///
/// Used to send [`IncomingTx`]s to the [`DandelionPoolManager`]
#[derive(Clone)]
pub struct DandelionPoolService<Tx, TxId, PeerId> {
/// The channel to [`DandelionPoolManager`].
tx: PollSender<(IncomingTx<Tx, TxId, PeerId>, oneshot::Sender<()>)>,
}
impl<Tx, TxId, PeerId> Service<IncomingTx<Tx, TxId, PeerId>>
for DandelionPoolService<Tx, TxId, PeerId>
where
Tx: Clone + Send,
TxId: Hash + Eq + Clone + Send + 'static,
PeerId: Hash + Eq + Clone + Send + 'static,
{
type Response = ();
type Error = DandelionPoolShutDown;
type Future = BoxFuture<'static, Result<Self::Response, Self::Error>>;
fn poll_ready(&mut self, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
self.tx.poll_reserve(cx).map_err(|_| DandelionPoolShutDown)
}
fn call(&mut self, req: IncomingTx<Tx, TxId, PeerId>) -> Self::Future {
// although the channel isn't sending anything we want to wait for the request to be handled before continuing.
let (tx, rx) = oneshot::channel();
let res = self
.tx
.send_item((req, tx))
.map_err(|_| DandelionPoolShutDown);
async move {
res?;
rx.await.expect("Oneshot dropped before response!");
Ok(())
}
.boxed()
}
}

View file

@ -6,7 +6,7 @@
//! ### What The Router Does Not Do
//!
//! It does not handle anything to do with keeping transactions long term, i.e. embargo timers and handling
//! loops in the stem. It is up to implementers to do this if they decide not to use [`DandelionPool`](crate::pool::DandelionPool)
//! loops in the stem. It is up to implementers to do this if they decide not to use [`DandelionPool`](crate::pool::DandelionPoolManager)
use std::{
collections::HashMap,
hash::Hash,
@ -43,9 +43,9 @@ pub enum DandelionRouterError {
}
/// A response from an attempt to retrieve an outbound peer.
pub enum OutboundPeer<ID, T> {
pub enum OutboundPeer<Id, T> {
/// A peer.
Peer(ID, T),
Peer(Id, T),
/// The peer store is exhausted and has no more to return.
Exhausted,
}
@ -61,28 +61,28 @@ pub enum State {
/// The routing state of a transaction.
#[derive(Debug, Clone, Eq, PartialEq)]
pub enum TxState<ID> {
pub enum TxState<Id> {
/// Fluff state.
Fluff,
/// Stem state.
Stem {
/// The peer who sent us this transaction's ID.
from: ID,
/// The peer who sent us this transaction's Id.
from: Id,
},
/// Local - the transaction originated from our node.
Local,
}
/// A request to route a transaction.
pub struct DandelionRouteReq<Tx, ID> {
pub struct DandelionRouteReq<Tx, Id> {
/// The transaction.
pub tx: Tx,
/// The transaction state.
pub state: TxState<ID>,
pub state: TxState<Id>,
}
/// The dandelion router service.
pub struct DandelionRouter<P, B, ID, S, Tx> {
pub struct DandelionRouter<P, B, Id, S, Tx> {
// pub(crate) is for tests
/// A [`Discover`] where we can get outbound peers from.
outbound_peer_discover: Pin<Box<P>>,
@ -95,14 +95,14 @@ pub struct DandelionRouter<P, B, ID, S, Tx> {
epoch_start: Instant,
/// The stem our local transactions will be sent to.
local_route: Option<ID>,
/// A [`HashMap`] linking peer's IDs to IDs in `stem_peers`.
stem_routes: HashMap<ID, ID>,
local_route: Option<Id>,
/// A [`HashMap`] linking peer's Ids to Ids in `stem_peers`.
stem_routes: HashMap<Id, Id>,
/// Peers we are using for stemming.
///
/// This will contain peers, even in [`State::Fluff`] to allow us to stem [`TxState::Local`]
/// transactions.
pub(crate) stem_peers: HashMap<ID, S>,
pub(crate) stem_peers: HashMap<Id, S>,
/// The distribution to sample to get the [`State`], true is [`State::Fluff`].
state_dist: Bernoulli,
@ -116,10 +116,10 @@ pub struct DandelionRouter<P, B, ID, S, Tx> {
_tx: PhantomData<Tx>,
}
impl<Tx, ID, P, B, S> DandelionRouter<P, B, ID, S, Tx>
impl<Tx, Id, P, B, S> DandelionRouter<P, B, Id, S, Tx>
where
ID: Hash + Eq + Clone,
P: TryStream<Ok = OutboundPeer<ID, S>, Error = tower::BoxError>,
Id: Hash + Eq + Clone,
P: TryStream<Ok = OutboundPeer<Id, S>, Error = tower::BoxError>,
B: Service<DiffuseRequest<Tx>, Error = tower::BoxError>,
B::Future: Send + 'static,
S: Service<StemRequest<Tx>, Error = tower::BoxError>,
@ -198,7 +198,7 @@ where
fn stem_tx(
&mut self,
tx: Tx,
from: ID,
from: Id,
) -> BoxFuture<'static, Result<State, DandelionRouterError>> {
if self.stem_peers.is_empty() {
tracing::debug!("Stem peers are empty, fluffing stem transaction.");
@ -258,19 +258,10 @@ where
}
}
/*
## Generics ##
Tx: The tx type
ID: Peer Id type - unique identifier for nodes.
P: Peer Set discover - where we can get outbound peers from
B: Broadcast service - where we send txs to get diffused.
S: The Peer service - handles routing messages to a single node.
*/
impl<Tx, ID, P, B, S> Service<DandelionRouteReq<Tx, ID>> for DandelionRouter<P, B, ID, S, Tx>
impl<Tx, Id, P, B, S> Service<DandelionRouteReq<Tx, Id>> for DandelionRouter<P, B, Id, S, Tx>
where
ID: Hash + Eq + Clone,
P: TryStream<Ok = OutboundPeer<ID, S>, Error = tower::BoxError>,
Id: Hash + Eq + Clone,
P: TryStream<Ok = OutboundPeer<Id, S>, Error = tower::BoxError>,
B: Service<DiffuseRequest<Tx>, Error = tower::BoxError>,
B::Future: Send + 'static,
S: Service<StemRequest<Tx>, Error = tower::BoxError>,
@ -336,7 +327,7 @@ where
Poll::Ready(Ok(()))
}
fn call(&mut self, req: DandelionRouteReq<Tx, ID>) -> Self::Future {
fn call(&mut self, req: DandelionRouteReq<Tx, Id>) -> Self::Future {
tracing::trace!(parent: &self.span, "Handling route request.");
match req.state {

View file

@ -76,11 +76,9 @@ pub fn mock_in_memory_backing_pool<
TxID: Clone + Hash + Eq + Send + 'static,
>() -> (
impl Service<
TxStoreRequest<Tx, TxID>,
Response = TxStoreResponse<Tx, TxID>,
Future = impl Future<Output = Result<TxStoreResponse<Tx, TxID>, tower::BoxError>>
+ Send
+ 'static,
TxStoreRequest<TxID>,
Response = TxStoreResponse<Tx>,
Future = impl Future<Output = Result<TxStoreResponse<Tx>, tower::BoxError>> + Send + 'static,
Error = tower::BoxError,
> + Send
+ 'static,
@ -90,33 +88,14 @@ pub fn mock_in_memory_backing_pool<
let txs_2 = txs.clone();
(
service_fn(move |req: TxStoreRequest<Tx, TxID>| {
service_fn(move |req: TxStoreRequest<TxID>| {
let txs = txs.clone();
async move {
match req {
TxStoreRequest::Store(tx, tx_id, state) => {
txs.lock().unwrap().insert(tx_id, (tx, state));
Ok(TxStoreResponse::Ok)
}
TxStoreRequest::Get(tx_id) => {
let tx_state = txs.lock().unwrap().get(&tx_id).cloned();
Ok(TxStoreResponse::Transaction(tx_state))
}
TxStoreRequest::Contains(tx_id) => Ok(TxStoreResponse::Contains(
txs.lock().unwrap().get(&tx_id).map(|res| res.1),
)),
TxStoreRequest::IDsInStemPool => {
// horribly inefficient, but it's test code :)
let ids = txs
.lock()
.unwrap()
.iter()
.filter(|(_, (_, state))| matches!(state, State::Stem))
.map(|tx| tx.0.clone())
.collect::<Vec<_>>();
Ok(TxStoreResponse::IDs(ids))
}
TxStoreRequest::Promote(tx_id) => {
let _ = txs
.lock()

View file

@ -1,12 +1,11 @@
use std::time::Duration;
use super::*;
use crate::{
pool::{start_dandelion_pool, IncomingTx},
pool::{start_dandelion_pool_manager, IncomingTx},
DandelionConfig, DandelionRouter, Graph, TxState,
};
use super::*;
#[tokio::test]
async fn basic_functionality() {
let config = DandelionConfig {
@ -21,9 +20,9 @@ async fn basic_functionality() {
let router = DandelionRouter::new(broadcast_svc, outbound_peer_svc, config);
let (pool_svc, pool) = mock_in_memory_backing_pool();
let (pool_svc, _pool) = mock_in_memory_backing_pool();
let mut pool_svc = start_dandelion_pool(15, router, pool_svc, config);
let mut pool_svc = start_dandelion_pool_manager(15, router, pool_svc, config);
pool_svc
.ready()
@ -32,11 +31,13 @@ async fn basic_functionality() {
.call(IncomingTx {
tx: 0_usize,
tx_id: 1_usize,
tx_state: TxState::Fluff,
routing_state: TxState::Fluff,
})
.await
.unwrap();
assert!(pool.lock().unwrap().contains_key(&1));
// TODO: the DandelionPoolManager doesn't handle adding txs to the pool, add more tests here to test
// all functionality.
//assert!(pool.lock().unwrap().contains_key(&1));
assert!(broadcast_rx.try_recv().is_ok())
}

View file

@ -8,42 +8,24 @@ pub struct StemRequest<Tx>(pub Tx);
#[cfg(feature = "txpool")]
/// A request sent to the backing transaction pool storage.
pub enum TxStoreRequest<Tx, TxID> {
/// A request to store a transaction with the ID to store it under and the pool to store it in.
///
/// If the tx is already in the pool then do nothing, unless the tx is in the stem pool then move it
/// to the fluff pool, _if this request state is fluff_.
Store(Tx, TxID, crate::State),
/// A request to retrieve a `Tx` with the given ID from the pool, should not remove that tx from the pool.
pub enum TxStoreRequest<TxId> {
/// A request to retrieve a `Tx` with the given Id from the pool, should not remove that tx from the pool.
///
/// Must return [`TxStoreResponse::Transaction`]
Get(TxID),
Get(TxId),
/// Promote a transaction from the stem pool to the public pool.
///
/// If the tx is already in the fluff pool do nothing.
///
/// This should not error if the tx isn't in the pool at all.
Promote(TxID),
/// A request to check if a translation is in the pool.
///
/// Must return [`TxStoreResponse::Contains`]
Contains(TxID),
/// Returns the IDs of all the transaction in the stem pool.
///
/// Must return [`TxStoreResponse::IDs`]
IDsInStemPool,
Promote(TxId),
}
#[cfg(feature = "txpool")]
/// A response sent back from the backing transaction pool.
pub enum TxStoreResponse<Tx, TxID> {
pub enum TxStoreResponse<Tx> {
/// A generic ok response.
Ok,
/// A response containing a [`Option`] for if the transaction is in the pool (Some) or not (None) and in which pool
/// the tx is in.
Contains(Option<crate::State>),
/// A response containing a requested transaction.
Transaction(Option<(Tx, crate::State)>),
/// A list of transaction IDs.
IDs(Vec<TxID>),
}