mirror of
https://github.com/xmrig/xmrig.git
synced 2024-11-18 18:11:05 +00:00
248 lines
9.1 KiB
C
248 lines
9.1 KiB
C
/* XMRig
|
|
* Copyright 2010 Jeff Garzik <jgarzik@pobox.com>
|
|
* Copyright 2012-2014 pooler <pooler@litecoinpool.org>
|
|
* Copyright 2014 Lucas Jones <https://github.com/lucasjones>
|
|
* Copyright 2014-2016 Wolf9466 <https://github.com/OhGodAPet>
|
|
* Copyright 2016 Jay D Dee <jayddee246@gmail.com>
|
|
* Copyright 2016-2017 XMRig <support@xmrig.com>
|
|
*
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <x86intrin.h>
|
|
#include <string.h>
|
|
|
|
#include "cryptonight.h"
|
|
#include "crypto/c_keccak.h"
|
|
|
|
|
|
static inline void ExpandAESKey256_sub1(__m128i *tmp1, __m128i *tmp2)
|
|
{
|
|
__m128i tmp4;
|
|
*tmp2 = _mm_shuffle_epi32(*tmp2, 0xFF);
|
|
tmp4 = _mm_slli_si128(*tmp1, 0x04);
|
|
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
|
|
tmp4 = _mm_slli_si128(tmp4, 0x04);
|
|
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
|
|
tmp4 = _mm_slli_si128(tmp4, 0x04);
|
|
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
|
|
*tmp1 = _mm_xor_si128(*tmp1, *tmp2);
|
|
}
|
|
|
|
static inline void ExpandAESKey256_sub2(__m128i *tmp1, __m128i *tmp3)
|
|
{
|
|
__m128i tmp2, tmp4;
|
|
|
|
tmp4 = _mm_aeskeygenassist_si128(*tmp1, 0x00);
|
|
tmp2 = _mm_shuffle_epi32(tmp4, 0xAA);
|
|
tmp4 = _mm_slli_si128(*tmp3, 0x04);
|
|
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
|
|
tmp4 = _mm_slli_si128(tmp4, 0x04);
|
|
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
|
|
tmp4 = _mm_slli_si128(tmp4, 0x04);
|
|
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
|
|
*tmp3 = _mm_xor_si128(*tmp3, tmp2);
|
|
}
|
|
|
|
// Special thanks to Intel for helping me
|
|
// with ExpandAESKey256() and its subroutines
|
|
static inline void ExpandAESKey256(char *keybuf)
|
|
{
|
|
__m128i tmp1, tmp2, tmp3, *keys;
|
|
|
|
keys = (__m128i *)keybuf;
|
|
|
|
tmp1 = _mm_load_si128((__m128i *)keybuf);
|
|
tmp3 = _mm_load_si128((__m128i *)(keybuf+0x10));
|
|
|
|
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x01);
|
|
ExpandAESKey256_sub1(&tmp1, &tmp2);
|
|
keys[2] = tmp1;
|
|
ExpandAESKey256_sub2(&tmp1, &tmp3);
|
|
keys[3] = tmp3;
|
|
|
|
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x02);
|
|
ExpandAESKey256_sub1(&tmp1, &tmp2);
|
|
keys[4] = tmp1;
|
|
ExpandAESKey256_sub2(&tmp1, &tmp3);
|
|
keys[5] = tmp3;
|
|
|
|
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x04);
|
|
ExpandAESKey256_sub1(&tmp1, &tmp2);
|
|
keys[6] = tmp1;
|
|
ExpandAESKey256_sub2(&tmp1, &tmp3);
|
|
keys[7] = tmp3;
|
|
|
|
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x08);
|
|
ExpandAESKey256_sub1(&tmp1, &tmp2);
|
|
keys[8] = tmp1;
|
|
ExpandAESKey256_sub2(&tmp1, &tmp3);
|
|
keys[9] = tmp3;
|
|
|
|
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x10);
|
|
ExpandAESKey256_sub1(&tmp1, &tmp2);
|
|
keys[10] = tmp1;
|
|
ExpandAESKey256_sub2(&tmp1, &tmp3);
|
|
keys[11] = tmp3;
|
|
|
|
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x20);
|
|
ExpandAESKey256_sub1(&tmp1, &tmp2);
|
|
keys[12] = tmp1;
|
|
ExpandAESKey256_sub2(&tmp1, &tmp3);
|
|
keys[13] = tmp3;
|
|
|
|
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x40);
|
|
ExpandAESKey256_sub1(&tmp1, &tmp2);
|
|
keys[14] = tmp1;
|
|
}
|
|
|
|
void cryptonight_av5_aesni_experimental(void *restrict output, const void *restrict input, const char *restrict memory, struct cryptonight_ctx *restrict ctx)
|
|
{
|
|
keccak((const uint8_t *)input, 76, (uint8_t *) &ctx->state.hs, 200);
|
|
uint8_t ExpandedKey[256];
|
|
size_t i, j;
|
|
|
|
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
|
|
memcpy(ExpandedKey, ctx->state.hs.b, AES_KEY_SIZE);
|
|
ExpandAESKey256(ExpandedKey);
|
|
|
|
__m128i *longoutput, *expkey, *xmminput;
|
|
longoutput = (__m128i *) memory;
|
|
expkey = (__m128i *) ExpandedKey;
|
|
xmminput = (__m128i *)ctx->text;
|
|
|
|
// prefetch expkey, all of xmminput and enough longoutput for 4 loops
|
|
_mm_prefetch(xmminput, _MM_HINT_T0 );
|
|
_mm_prefetch(xmminput + 4, _MM_HINT_T0 );
|
|
|
|
for (i = 0; i < 64; i += 16) {
|
|
_mm_prefetch(longoutput + i, _MM_HINT_T0);
|
|
_mm_prefetch(longoutput + i + 4, _MM_HINT_T0);
|
|
_mm_prefetch(longoutput + i + 8, _MM_HINT_T0);
|
|
_mm_prefetch(longoutput + i + 12, _MM_HINT_T0);
|
|
}
|
|
|
|
_mm_prefetch(expkey, _MM_HINT_T0);
|
|
_mm_prefetch(expkey + 4, _MM_HINT_T0);
|
|
_mm_prefetch(expkey + 8, _MM_HINT_T0);
|
|
|
|
for (i = 0; __builtin_expect(i < MEMORY_M128I, 1); i += INIT_SIZE_M128I) {
|
|
__builtin_prefetch(longoutput + i + 64, 1, 0);
|
|
__builtin_prefetch(longoutput + i + 68, 1, 0);
|
|
|
|
for(j = 0; j < 10; j++) {
|
|
xmminput[0] = _mm_aesenc_si128(xmminput[0], expkey[j]);
|
|
xmminput[1] = _mm_aesenc_si128(xmminput[1], expkey[j]);
|
|
xmminput[2] = _mm_aesenc_si128(xmminput[2], expkey[j]);
|
|
xmminput[3] = _mm_aesenc_si128(xmminput[3], expkey[j]);
|
|
xmminput[4] = _mm_aesenc_si128(xmminput[4], expkey[j]);
|
|
xmminput[5] = _mm_aesenc_si128(xmminput[5], expkey[j]);
|
|
xmminput[6] = _mm_aesenc_si128(xmminput[6], expkey[j]);
|
|
xmminput[7] = _mm_aesenc_si128(xmminput[7], expkey[j]);
|
|
}
|
|
|
|
_mm_store_si128(&(longoutput[i ]), xmminput[0]);
|
|
_mm_store_si128(&(longoutput[i + 1 ]), xmminput[1]);
|
|
_mm_store_si128(&(longoutput[i + 2 ]), xmminput[2]);
|
|
_mm_store_si128(&(longoutput[i + 3 ]), xmminput[3]);
|
|
_mm_store_si128(&(longoutput[i + 4 ]), xmminput[4]);
|
|
_mm_store_si128(&(longoutput[i + 5 ]), xmminput[5]);
|
|
_mm_store_si128(&(longoutput[i + 6 ]), xmminput[6]);
|
|
_mm_store_si128(&(longoutput[i + 7 ]), xmminput[7]);
|
|
}
|
|
|
|
ctx->a[0] = ((uint64_t *) ctx->state.k)[0] ^ ((uint64_t *) ctx->state.k)[4];
|
|
ctx->b[0] = ((uint64_t *) ctx->state.k)[2] ^ ((uint64_t *) ctx->state.k)[6];
|
|
ctx->a[1] = ((uint64_t *) ctx->state.k)[1] ^ ((uint64_t *) ctx->state.k)[5];
|
|
ctx->b[1] = ((uint64_t *) ctx->state.k)[3] ^ ((uint64_t *) ctx->state.k)[7];
|
|
|
|
__m128i a_x = _mm_load_si128((__m128i *) &memory[ctx->a[0] & 0x1FFFF0]);
|
|
__m128i b_x = _mm_load_si128((__m128i *) ctx->b);
|
|
|
|
uint64_t c[2] __attribute((aligned(16)));
|
|
uint64_t d[2] __attribute((aligned(16)));
|
|
|
|
for (i = 0; __builtin_expect(i < 0x80000, 1); i++) {
|
|
__m128i c_x = _mm_aesenc_si128(a_x, _mm_load_si128((__m128i *) ctx->a));
|
|
_mm_store_si128((__m128i *) c, c_x);
|
|
|
|
uint64_t *restrict d_ptr = (uint64_t *) &memory[c[0] & 0x1FFFF0];
|
|
_mm_store_si128((__m128i *) &memory[ctx->a[0] & 0x1FFFF0], _mm_xor_si128(b_x, c_x));
|
|
b_x = c_x;
|
|
|
|
d[0] = d_ptr[0];
|
|
d[1] = d_ptr[1];
|
|
|
|
{
|
|
unsigned __int128 res = (unsigned __int128) c[0] * d[0];
|
|
|
|
d_ptr[0] = ctx->a[0] += res >> 64;
|
|
d_ptr[1] = ctx->a[1] += (uint64_t) res;
|
|
}
|
|
|
|
ctx->a[0] ^= d[0];
|
|
ctx->a[1] ^= d[1];
|
|
|
|
a_x = _mm_load_si128((__m128i *) &memory[ctx->a[0] & 0x1FFFF0]);
|
|
}
|
|
|
|
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
|
|
memcpy(ExpandedKey, &ctx->state.hs.b[32], AES_KEY_SIZE);
|
|
ExpandAESKey256(ExpandedKey);
|
|
|
|
_mm_prefetch(xmminput, _MM_HINT_T0 );
|
|
_mm_prefetch(xmminput + 4, _MM_HINT_T0 );
|
|
|
|
for (i = 0; i < 64; i += 16) {
|
|
_mm_prefetch(longoutput + i, _MM_HINT_T0);
|
|
_mm_prefetch(longoutput + i + 4, _MM_HINT_T0);
|
|
_mm_prefetch(longoutput + i + 8, _MM_HINT_T0);
|
|
_mm_prefetch(longoutput + i + 12, _MM_HINT_T0);
|
|
}
|
|
|
|
_mm_prefetch(expkey, _MM_HINT_T0);
|
|
_mm_prefetch(expkey + 4, _MM_HINT_T0);
|
|
_mm_prefetch(expkey + 8, _MM_HINT_T0);
|
|
|
|
for (i = 0; __builtin_expect(i < MEMORY_M128I, 1); i += INIT_SIZE_M128I) {
|
|
_mm_prefetch(longoutput + i + 64, _MM_HINT_T0);
|
|
_mm_prefetch(longoutput + i + 68, _MM_HINT_T0);
|
|
|
|
xmminput[0] = _mm_xor_si128(longoutput[i ], xmminput[0]);
|
|
xmminput[1] = _mm_xor_si128(longoutput[i + 1], xmminput[1]);
|
|
xmminput[2] = _mm_xor_si128(longoutput[i + 2], xmminput[2]);
|
|
xmminput[3] = _mm_xor_si128(longoutput[i + 3], xmminput[3]);
|
|
xmminput[4] = _mm_xor_si128(longoutput[i + 4], xmminput[4]);
|
|
xmminput[5] = _mm_xor_si128(longoutput[i + 5], xmminput[5]);
|
|
xmminput[6] = _mm_xor_si128(longoutput[i + 6], xmminput[6]);
|
|
xmminput[7] = _mm_xor_si128(longoutput[i + 7], xmminput[7]);
|
|
|
|
for(j = 0; j < 10; j++) {
|
|
xmminput[0] = _mm_aesenc_si128(xmminput[0], expkey[j]);
|
|
xmminput[1] = _mm_aesenc_si128(xmminput[1], expkey[j]);
|
|
xmminput[2] = _mm_aesenc_si128(xmminput[2], expkey[j]);
|
|
xmminput[3] = _mm_aesenc_si128(xmminput[3], expkey[j]);
|
|
xmminput[4] = _mm_aesenc_si128(xmminput[4], expkey[j]);
|
|
xmminput[5] = _mm_aesenc_si128(xmminput[5], expkey[j]);
|
|
xmminput[6] = _mm_aesenc_si128(xmminput[6], expkey[j]);
|
|
xmminput[7] = _mm_aesenc_si128(xmminput[7], expkey[j]);
|
|
}
|
|
|
|
}
|
|
|
|
memcpy(ctx->state.init, ctx->text, INIT_SIZE_BYTE);
|
|
keccakf((uint64_t *) &ctx->state.hs, 24);
|
|
extra_hashes[ctx->state.hs.b[0] & 3](&ctx->state, 200, output);
|
|
}
|