mirror of
https://github.com/xmrig/xmrig.git
synced 2025-03-12 09:37:35 +00:00
451 lines
23 KiB
C++
451 lines
23 KiB
C++
/* XMRig
|
|
* Copyright 2018 Lee Clagett <https://github.com/vtnerd>
|
|
* Copyright 2018-2021 SChernykh <https://github.com/SChernykh>
|
|
* Copyright 2016-2021 XMRig <https://github.com/xmrig>, <support@xmrig.com>
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "crypto/cn/CnHash.h"
|
|
#include "backend/cpu/Cpu.h"
|
|
#include "base/tools/cryptonote/umul128.h"
|
|
#include "crypto/common/VirtualMemory.h"
|
|
|
|
|
|
#if defined(XMRIG_ARM)
|
|
# include "crypto/cn/CryptoNight_arm.h"
|
|
#else
|
|
# include "crypto/cn/CryptoNight_x86.h"
|
|
#endif
|
|
|
|
|
|
#ifdef XMRIG_ALGO_ARGON2
|
|
# include "crypto/argon2/Hash.h"
|
|
#endif
|
|
|
|
|
|
#ifdef XMRIG_ALGO_ASTROBWT
|
|
# include "crypto/astrobwt/AstroBWT.h"
|
|
#endif
|
|
|
|
|
|
#define ADD_FN(algo) do { \
|
|
m_map[algo] = new cn_hash_fun_array{}; \
|
|
m_map[algo]->data[AV_SINGLE][Assembly::NONE] = cryptonight_single_hash<algo, false, 0>; \
|
|
m_map[algo]->data[AV_SINGLE_SOFT][Assembly::NONE] = cryptonight_single_hash<algo, true, 0>; \
|
|
m_map[algo]->data[AV_DOUBLE][Assembly::NONE] = cryptonight_double_hash<algo, false>; \
|
|
m_map[algo]->data[AV_DOUBLE_SOFT][Assembly::NONE] = cryptonight_double_hash<algo, true>; \
|
|
m_map[algo]->data[AV_TRIPLE][Assembly::NONE] = cryptonight_triple_hash<algo, false>; \
|
|
m_map[algo]->data[AV_TRIPLE_SOFT][Assembly::NONE] = cryptonight_triple_hash<algo, true>; \
|
|
m_map[algo]->data[AV_QUAD][Assembly::NONE] = cryptonight_quad_hash<algo, false>; \
|
|
m_map[algo]->data[AV_QUAD_SOFT][Assembly::NONE] = cryptonight_quad_hash<algo, true>; \
|
|
m_map[algo]->data[AV_PENTA][Assembly::NONE] = cryptonight_penta_hash<algo, false>; \
|
|
m_map[algo]->data[AV_PENTA_SOFT][Assembly::NONE] = cryptonight_penta_hash<algo, true>; \
|
|
} while (0)
|
|
|
|
|
|
bool cn_sse41_enabled = false;
|
|
bool cn_vaes_enabled = false;
|
|
|
|
|
|
#ifdef XMRIG_FEATURE_ASM
|
|
# define ADD_FN_ASM(algo) do { \
|
|
m_map[algo]->data[AV_SINGLE][Assembly::INTEL] = cryptonight_single_hash_asm<algo, Assembly::INTEL>; \
|
|
m_map[algo]->data[AV_SINGLE][Assembly::RYZEN] = cryptonight_single_hash_asm<algo, Assembly::RYZEN>; \
|
|
m_map[algo]->data[AV_SINGLE][Assembly::BULLDOZER] = cryptonight_single_hash_asm<algo, Assembly::BULLDOZER>; \
|
|
m_map[algo]->data[AV_DOUBLE][Assembly::INTEL] = cryptonight_double_hash_asm<algo, Assembly::INTEL>; \
|
|
m_map[algo]->data[AV_DOUBLE][Assembly::RYZEN] = cryptonight_double_hash_asm<algo, Assembly::RYZEN>; \
|
|
m_map[algo]->data[AV_DOUBLE][Assembly::BULLDOZER] = cryptonight_double_hash_asm<algo, Assembly::BULLDOZER>; \
|
|
} while (0)
|
|
|
|
|
|
namespace xmrig {
|
|
|
|
|
|
cn_mainloop_fun cn_half_mainloop_ivybridge_asm = nullptr;
|
|
cn_mainloop_fun cn_half_mainloop_ryzen_asm = nullptr;
|
|
cn_mainloop_fun cn_half_mainloop_bulldozer_asm = nullptr;
|
|
cn_mainloop_fun cn_half_double_mainloop_sandybridge_asm = nullptr;
|
|
|
|
cn_mainloop_fun cn_trtl_mainloop_ivybridge_asm = nullptr;
|
|
cn_mainloop_fun cn_trtl_mainloop_ryzen_asm = nullptr;
|
|
cn_mainloop_fun cn_trtl_mainloop_bulldozer_asm = nullptr;
|
|
cn_mainloop_fun cn_trtl_double_mainloop_sandybridge_asm = nullptr;
|
|
|
|
cn_mainloop_fun cn_tlo_mainloop_ivybridge_asm = nullptr;
|
|
cn_mainloop_fun cn_tlo_mainloop_ryzen_asm = nullptr;
|
|
cn_mainloop_fun cn_tlo_mainloop_bulldozer_asm = nullptr;
|
|
cn_mainloop_fun cn_tlo_double_mainloop_sandybridge_asm = nullptr;
|
|
|
|
cn_mainloop_fun cn_zls_mainloop_ivybridge_asm = nullptr;
|
|
cn_mainloop_fun cn_zls_mainloop_ryzen_asm = nullptr;
|
|
cn_mainloop_fun cn_zls_mainloop_bulldozer_asm = nullptr;
|
|
cn_mainloop_fun cn_zls_double_mainloop_sandybridge_asm = nullptr;
|
|
|
|
cn_mainloop_fun cn_double_mainloop_ivybridge_asm = nullptr;
|
|
cn_mainloop_fun cn_double_mainloop_ryzen_asm = nullptr;
|
|
cn_mainloop_fun cn_double_mainloop_bulldozer_asm = nullptr;
|
|
cn_mainloop_fun cn_double_double_mainloop_sandybridge_asm = nullptr;
|
|
|
|
cn_mainloop_fun cn_upx2_mainloop_asm = nullptr;
|
|
cn_mainloop_fun cn_upx2_double_mainloop_asm = nullptr;
|
|
|
|
cn_mainloop_fun cn_gr0_single_mainloop_asm = nullptr;
|
|
cn_mainloop_fun cn_gr1_single_mainloop_asm = nullptr;
|
|
cn_mainloop_fun cn_gr2_single_mainloop_asm = nullptr;
|
|
cn_mainloop_fun cn_gr3_single_mainloop_asm = nullptr;
|
|
cn_mainloop_fun cn_gr4_single_mainloop_asm = nullptr;
|
|
cn_mainloop_fun cn_gr5_single_mainloop_asm = nullptr;
|
|
|
|
cn_mainloop_fun cn_gr0_double_mainloop_asm = nullptr;
|
|
cn_mainloop_fun cn_gr1_double_mainloop_asm = nullptr;
|
|
cn_mainloop_fun cn_gr2_double_mainloop_asm = nullptr;
|
|
cn_mainloop_fun cn_gr3_double_mainloop_asm = nullptr;
|
|
cn_mainloop_fun cn_gr4_double_mainloop_asm = nullptr;
|
|
cn_mainloop_fun cn_gr5_double_mainloop_asm = nullptr;
|
|
|
|
cn_mainloop_fun cn_gr0_quad_mainloop_asm = nullptr;
|
|
cn_mainloop_fun cn_gr1_quad_mainloop_asm = nullptr;
|
|
cn_mainloop_fun cn_gr2_quad_mainloop_asm = nullptr;
|
|
cn_mainloop_fun cn_gr3_quad_mainloop_asm = nullptr;
|
|
cn_mainloop_fun cn_gr4_quad_mainloop_asm = nullptr;
|
|
cn_mainloop_fun cn_gr5_quad_mainloop_asm = nullptr;
|
|
|
|
|
|
template<Algorithm::Id SOURCE_ALGO = Algorithm::CN_2, typename T, typename U>
|
|
static void patchCode(T dst, U src, const uint32_t iterations, const uint32_t mask = CnAlgo<Algorithm::CN_HALF>().mask())
|
|
{
|
|
auto p = reinterpret_cast<const uint8_t*>(src);
|
|
|
|
// Workaround for Visual Studio placing trampoline in debug builds.
|
|
# if defined(_MSC_VER)
|
|
if (p[0] == 0xE9) {
|
|
p += *(int32_t*)(p + 1) + 5;
|
|
}
|
|
# endif
|
|
|
|
size_t size = 0;
|
|
while (*(uint32_t*)(p + size) != 0xDEADC0DE) {
|
|
++size;
|
|
}
|
|
|
|
size += sizeof(uint32_t);
|
|
|
|
memcpy((void*) dst, (const void*) src, size);
|
|
|
|
auto patched_data = reinterpret_cast<uint8_t*>(dst);
|
|
for (size_t i = 0; i + sizeof(uint32_t) <= size; ++i) {
|
|
switch (*(uint32_t*)(patched_data + i)) {
|
|
case CnAlgo<SOURCE_ALGO>().iterations():
|
|
*(uint32_t*)(patched_data + i) = iterations;
|
|
break;
|
|
|
|
case CnAlgo<SOURCE_ALGO>().mask():
|
|
*(uint32_t*)(patched_data + i) = mask;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void patchAsmVariants()
|
|
{
|
|
constexpr size_t allocation_size = 0x20000;
|
|
auto base = static_cast<uint8_t *>(VirtualMemory::allocateExecutableMemory(allocation_size, false));
|
|
|
|
cn_half_mainloop_ivybridge_asm = reinterpret_cast<cn_mainloop_fun> (base + 0x0000);
|
|
cn_half_mainloop_ryzen_asm = reinterpret_cast<cn_mainloop_fun> (base + 0x1000);
|
|
cn_half_mainloop_bulldozer_asm = reinterpret_cast<cn_mainloop_fun> (base + 0x2000);
|
|
cn_half_double_mainloop_sandybridge_asm = reinterpret_cast<cn_mainloop_fun> (base + 0x3000);
|
|
|
|
# ifdef XMRIG_ALGO_CN_PICO
|
|
cn_trtl_mainloop_ivybridge_asm = reinterpret_cast<cn_mainloop_fun> (base + 0x4000);
|
|
cn_trtl_mainloop_ryzen_asm = reinterpret_cast<cn_mainloop_fun> (base + 0x5000);
|
|
cn_trtl_mainloop_bulldozer_asm = reinterpret_cast<cn_mainloop_fun> (base + 0x6000);
|
|
cn_trtl_double_mainloop_sandybridge_asm = reinterpret_cast<cn_mainloop_fun> (base + 0x7000);
|
|
# endif
|
|
|
|
cn_zls_mainloop_ivybridge_asm = reinterpret_cast<cn_mainloop_fun> (base + 0x8000);
|
|
cn_zls_mainloop_ryzen_asm = reinterpret_cast<cn_mainloop_fun> (base + 0x9000);
|
|
cn_zls_mainloop_bulldozer_asm = reinterpret_cast<cn_mainloop_fun> (base + 0xA000);
|
|
cn_zls_double_mainloop_sandybridge_asm = reinterpret_cast<cn_mainloop_fun> (base + 0xB000);
|
|
|
|
cn_double_mainloop_ivybridge_asm = reinterpret_cast<cn_mainloop_fun> (base + 0xC000);
|
|
cn_double_mainloop_ryzen_asm = reinterpret_cast<cn_mainloop_fun> (base + 0xD000);
|
|
cn_double_mainloop_bulldozer_asm = reinterpret_cast<cn_mainloop_fun> (base + 0xE000);
|
|
cn_double_double_mainloop_sandybridge_asm = reinterpret_cast<cn_mainloop_fun> (base + 0xF000);
|
|
|
|
# ifdef XMRIG_ALGO_CN_PICO
|
|
cn_tlo_mainloop_ivybridge_asm = reinterpret_cast<cn_mainloop_fun> (base + 0x10000);
|
|
cn_tlo_mainloop_ryzen_asm = reinterpret_cast<cn_mainloop_fun> (base + 0x11000);
|
|
cn_tlo_mainloop_bulldozer_asm = reinterpret_cast<cn_mainloop_fun> (base + 0x12000);
|
|
cn_tlo_double_mainloop_sandybridge_asm = reinterpret_cast<cn_mainloop_fun> (base + 0x13000);
|
|
# endif
|
|
|
|
# ifdef XMRIG_ALGO_CN_FEMTO
|
|
cn_upx2_mainloop_asm = reinterpret_cast<cn_mainloop_fun> (base + 0x14000);
|
|
cn_upx2_double_mainloop_asm = reinterpret_cast<cn_mainloop_fun> (base + 0x15000);
|
|
# endif
|
|
|
|
# ifdef XMRIG_ALGO_GHOSTRIDER
|
|
cn_gr0_single_mainloop_asm = reinterpret_cast<cn_mainloop_fun> (base + 0x16000);
|
|
cn_gr1_single_mainloop_asm = reinterpret_cast<cn_mainloop_fun> (base + 0x16800);
|
|
cn_gr2_single_mainloop_asm = reinterpret_cast<cn_mainloop_fun> (base + 0x17000);
|
|
cn_gr3_single_mainloop_asm = reinterpret_cast<cn_mainloop_fun> (base + 0x17800);
|
|
cn_gr4_single_mainloop_asm = reinterpret_cast<cn_mainloop_fun> (base + 0x18000);
|
|
cn_gr5_single_mainloop_asm = reinterpret_cast<cn_mainloop_fun> (base + 0x18800);
|
|
|
|
cn_gr0_double_mainloop_asm = reinterpret_cast<cn_mainloop_fun> (base + 0x19000);
|
|
cn_gr1_double_mainloop_asm = reinterpret_cast<cn_mainloop_fun> (base + 0x19800);
|
|
cn_gr2_double_mainloop_asm = reinterpret_cast<cn_mainloop_fun> (base + 0x1A000);
|
|
cn_gr3_double_mainloop_asm = reinterpret_cast<cn_mainloop_fun> (base + 0x1A800);
|
|
cn_gr4_double_mainloop_asm = reinterpret_cast<cn_mainloop_fun> (base + 0x1B000);
|
|
cn_gr5_double_mainloop_asm = reinterpret_cast<cn_mainloop_fun> (base + 0x1B800);
|
|
|
|
cn_gr0_quad_mainloop_asm = reinterpret_cast<cn_mainloop_fun> (base + 0x1C000);
|
|
cn_gr1_quad_mainloop_asm = reinterpret_cast<cn_mainloop_fun> (base + 0x1C800);
|
|
cn_gr2_quad_mainloop_asm = reinterpret_cast<cn_mainloop_fun> (base + 0x1D000);
|
|
cn_gr3_quad_mainloop_asm = reinterpret_cast<cn_mainloop_fun> (base + 0x1D800);
|
|
cn_gr4_quad_mainloop_asm = reinterpret_cast<cn_mainloop_fun> (base + 0x1E000);
|
|
cn_gr5_quad_mainloop_asm = reinterpret_cast<cn_mainloop_fun> (base + 0x1E800);
|
|
# endif
|
|
|
|
{
|
|
constexpr uint32_t ITER = CnAlgo<Algorithm::CN_HALF>().iterations();
|
|
|
|
patchCode(cn_half_mainloop_ivybridge_asm, cnv2_mainloop_ivybridge_asm, ITER);
|
|
patchCode(cn_half_mainloop_ryzen_asm, cnv2_mainloop_ryzen_asm, ITER);
|
|
patchCode(cn_half_mainloop_bulldozer_asm, cnv2_mainloop_bulldozer_asm, ITER);
|
|
patchCode(cn_half_double_mainloop_sandybridge_asm, cnv2_double_mainloop_sandybridge_asm, ITER);
|
|
}
|
|
|
|
# ifdef XMRIG_ALGO_CN_PICO
|
|
{
|
|
constexpr uint32_t ITER = CnAlgo<Algorithm::CN_PICO_0>().iterations();
|
|
constexpr uint32_t MASK = CnAlgo<Algorithm::CN_PICO_0>().mask();
|
|
|
|
patchCode(cn_trtl_mainloop_ivybridge_asm, cnv2_mainloop_ivybridge_asm, ITER, MASK);
|
|
patchCode(cn_trtl_mainloop_ryzen_asm, cnv2_mainloop_ryzen_asm, ITER, MASK);
|
|
patchCode(cn_trtl_mainloop_bulldozer_asm, cnv2_mainloop_bulldozer_asm, ITER, MASK);
|
|
patchCode(cn_trtl_double_mainloop_sandybridge_asm, cnv2_double_mainloop_sandybridge_asm, ITER, MASK);
|
|
}
|
|
|
|
{
|
|
constexpr uint32_t ITER = CnAlgo<Algorithm::CN_PICO_TLO>().iterations();
|
|
constexpr uint32_t MASK = CnAlgo<Algorithm::CN_PICO_TLO>().mask();
|
|
|
|
patchCode(cn_tlo_mainloop_ivybridge_asm, cnv2_mainloop_ivybridge_asm, ITER, MASK);
|
|
patchCode(cn_tlo_mainloop_ryzen_asm, cnv2_mainloop_ryzen_asm, ITER, MASK);
|
|
patchCode(cn_tlo_mainloop_bulldozer_asm, cnv2_mainloop_bulldozer_asm, ITER, MASK);
|
|
patchCode(cn_tlo_double_mainloop_sandybridge_asm, cnv2_double_mainloop_sandybridge_asm, ITER, MASK);
|
|
}
|
|
# endif
|
|
|
|
{
|
|
constexpr uint32_t ITER = CnAlgo<Algorithm::CN_ZLS>().iterations();
|
|
|
|
patchCode(cn_zls_mainloop_ivybridge_asm, cnv2_mainloop_ivybridge_asm, ITER);
|
|
patchCode(cn_zls_mainloop_ryzen_asm, cnv2_mainloop_ryzen_asm, ITER);
|
|
patchCode(cn_zls_mainloop_bulldozer_asm, cnv2_mainloop_bulldozer_asm, ITER);
|
|
patchCode(cn_zls_double_mainloop_sandybridge_asm, cnv2_double_mainloop_sandybridge_asm, ITER);
|
|
}
|
|
|
|
{
|
|
constexpr uint32_t ITER = CnAlgo<Algorithm::CN_DOUBLE>().iterations();
|
|
|
|
patchCode(cn_double_mainloop_ivybridge_asm, cnv2_mainloop_ivybridge_asm, ITER);
|
|
patchCode(cn_double_mainloop_ryzen_asm, cnv2_mainloop_ryzen_asm, ITER);
|
|
patchCode(cn_double_mainloop_bulldozer_asm, cnv2_mainloop_bulldozer_asm, ITER);
|
|
patchCode(cn_double_double_mainloop_sandybridge_asm, cnv2_double_mainloop_sandybridge_asm, ITER);
|
|
}
|
|
|
|
# ifdef XMRIG_ALGO_CN_FEMTO
|
|
{
|
|
constexpr uint32_t ITER = CnAlgo<Algorithm::CN_UPX2>().iterations();
|
|
constexpr uint32_t MASK = CnAlgo<Algorithm::CN_UPX2>().mask();
|
|
|
|
patchCode<Algorithm::CN_RWZ>(cn_upx2_mainloop_asm, cnv2_rwz_mainloop_asm, ITER, MASK);
|
|
patchCode<Algorithm::CN_RWZ>(cn_upx2_double_mainloop_asm, cnv2_rwz_double_mainloop_asm, ITER, MASK);
|
|
}
|
|
# endif
|
|
|
|
# ifdef XMRIG_ALGO_GHOSTRIDER
|
|
patchCode<Algorithm::CN_1>(cn_gr0_single_mainloop_asm, cnv1_single_mainloop_asm, CnAlgo<Algorithm::CN_GR_0>().iterations(), CnAlgo<Algorithm::CN_GR_0>().mask());
|
|
patchCode<Algorithm::CN_1>(cn_gr1_single_mainloop_asm, cnv1_single_mainloop_asm, CnAlgo<Algorithm::CN_GR_1>().iterations(), CnAlgo<Algorithm::CN_GR_1>().mask());
|
|
patchCode<Algorithm::CN_1>(cn_gr2_single_mainloop_asm, cnv1_single_mainloop_asm, CnAlgo<Algorithm::CN_GR_2>().iterations(), CnAlgo<Algorithm::CN_GR_2>().mask());
|
|
patchCode<Algorithm::CN_1>(cn_gr3_single_mainloop_asm, cnv1_single_mainloop_asm, CnAlgo<Algorithm::CN_GR_3>().iterations(), CnAlgo<Algorithm::CN_GR_3>().mask());
|
|
patchCode<Algorithm::CN_1>(cn_gr4_single_mainloop_asm, cnv1_single_mainloop_asm, CnAlgo<Algorithm::CN_GR_4>().iterations(), CnAlgo<Algorithm::CN_GR_4>().mask());
|
|
patchCode<Algorithm::CN_1>(cn_gr5_single_mainloop_asm, cnv1_single_mainloop_asm, CnAlgo<Algorithm::CN_GR_5>().iterations(), CnAlgo<Algorithm::CN_GR_5>().mask());
|
|
|
|
patchCode<Algorithm::CN_1>(cn_gr0_double_mainloop_asm, cnv1_double_mainloop_asm, CnAlgo<Algorithm::CN_GR_0>().iterations(), CnAlgo<Algorithm::CN_GR_0>().mask());
|
|
patchCode<Algorithm::CN_1>(cn_gr1_double_mainloop_asm, cnv1_double_mainloop_asm, CnAlgo<Algorithm::CN_GR_1>().iterations(), CnAlgo<Algorithm::CN_GR_1>().mask());
|
|
patchCode<Algorithm::CN_1>(cn_gr2_double_mainloop_asm, cnv1_double_mainloop_asm, CnAlgo<Algorithm::CN_GR_2>().iterations(), CnAlgo<Algorithm::CN_GR_2>().mask());
|
|
patchCode<Algorithm::CN_1>(cn_gr3_double_mainloop_asm, cnv1_double_mainloop_asm, CnAlgo<Algorithm::CN_GR_3>().iterations(), CnAlgo<Algorithm::CN_GR_3>().mask());
|
|
patchCode<Algorithm::CN_1>(cn_gr4_double_mainloop_asm, cnv1_double_mainloop_asm, CnAlgo<Algorithm::CN_GR_4>().iterations(), CnAlgo<Algorithm::CN_GR_4>().mask());
|
|
patchCode<Algorithm::CN_1>(cn_gr5_double_mainloop_asm, cnv1_double_mainloop_asm, CnAlgo<Algorithm::CN_GR_5>().iterations(), CnAlgo<Algorithm::CN_GR_5>().mask());
|
|
|
|
patchCode<Algorithm::CN_1>(cn_gr0_quad_mainloop_asm, cnv1_quad_mainloop_asm, CnAlgo<Algorithm::CN_GR_0>().iterations(), CnAlgo<Algorithm::CN_GR_0>().mask());
|
|
patchCode<Algorithm::CN_1>(cn_gr1_quad_mainloop_asm, cnv1_quad_mainloop_asm, CnAlgo<Algorithm::CN_GR_1>().iterations(), CnAlgo<Algorithm::CN_GR_1>().mask());
|
|
patchCode<Algorithm::CN_1>(cn_gr2_quad_mainloop_asm, cnv1_quad_mainloop_asm, CnAlgo<Algorithm::CN_GR_2>().iterations(), CnAlgo<Algorithm::CN_GR_2>().mask());
|
|
patchCode<Algorithm::CN_1>(cn_gr3_quad_mainloop_asm, cnv1_quad_mainloop_asm, CnAlgo<Algorithm::CN_GR_3>().iterations(), CnAlgo<Algorithm::CN_GR_3>().mask());
|
|
patchCode<Algorithm::CN_1>(cn_gr4_quad_mainloop_asm, cnv1_quad_mainloop_asm, CnAlgo<Algorithm::CN_GR_4>().iterations(), CnAlgo<Algorithm::CN_GR_4>().mask());
|
|
patchCode<Algorithm::CN_1>(cn_gr5_quad_mainloop_asm, cnv1_quad_mainloop_asm, CnAlgo<Algorithm::CN_GR_5>().iterations(), CnAlgo<Algorithm::CN_GR_5>().mask());
|
|
# endif
|
|
|
|
VirtualMemory::protectRX(base, allocation_size);
|
|
VirtualMemory::flushInstructionCache(base, allocation_size);
|
|
}
|
|
} // namespace xmrig
|
|
#else
|
|
# define ADD_FN_ASM(algo)
|
|
#endif
|
|
|
|
|
|
static const xmrig::CnHash cnHash;
|
|
|
|
|
|
xmrig::CnHash::CnHash()
|
|
{
|
|
ADD_FN(Algorithm::CN_0);
|
|
ADD_FN(Algorithm::CN_1);
|
|
ADD_FN(Algorithm::CN_2);
|
|
ADD_FN(Algorithm::CN_R);
|
|
ADD_FN(Algorithm::CN_FAST);
|
|
ADD_FN(Algorithm::CN_HALF);
|
|
ADD_FN(Algorithm::CN_XAO);
|
|
ADD_FN(Algorithm::CN_RTO);
|
|
ADD_FN(Algorithm::CN_RWZ);
|
|
ADD_FN(Algorithm::CN_ZLS);
|
|
ADD_FN(Algorithm::CN_DOUBLE);
|
|
|
|
ADD_FN_ASM(Algorithm::CN_2);
|
|
ADD_FN_ASM(Algorithm::CN_HALF);
|
|
ADD_FN_ASM(Algorithm::CN_R);
|
|
ADD_FN_ASM(Algorithm::CN_RWZ);
|
|
ADD_FN_ASM(Algorithm::CN_ZLS);
|
|
ADD_FN_ASM(Algorithm::CN_DOUBLE);
|
|
|
|
# ifdef XMRIG_ALGO_CN_LITE
|
|
ADD_FN(Algorithm::CN_LITE_0);
|
|
ADD_FN(Algorithm::CN_LITE_1);
|
|
# endif
|
|
|
|
# ifdef XMRIG_ALGO_CN_HEAVY
|
|
ADD_FN(Algorithm::CN_HEAVY_0);
|
|
ADD_FN(Algorithm::CN_HEAVY_TUBE);
|
|
ADD_FN(Algorithm::CN_HEAVY_XHV);
|
|
# endif
|
|
|
|
# ifdef XMRIG_ALGO_CN_PICO
|
|
ADD_FN(Algorithm::CN_PICO_0);
|
|
ADD_FN_ASM(Algorithm::CN_PICO_0);
|
|
ADD_FN(Algorithm::CN_PICO_TLO);
|
|
ADD_FN_ASM(Algorithm::CN_PICO_TLO);
|
|
# endif
|
|
|
|
ADD_FN(Algorithm::CN_CCX);
|
|
|
|
# ifdef XMRIG_ALGO_CN_FEMTO
|
|
ADD_FN(Algorithm::CN_UPX2);
|
|
ADD_FN_ASM(Algorithm::CN_UPX2);
|
|
# endif
|
|
|
|
# ifdef XMRIG_ALGO_ARGON2
|
|
m_map[Algorithm::AR2_CHUKWA] = new cn_hash_fun_array{};
|
|
m_map[Algorithm::AR2_CHUKWA]->data[AV_SINGLE][Assembly::NONE] = argon2::single_hash<Algorithm::AR2_CHUKWA>;
|
|
m_map[Algorithm::AR2_CHUKWA]->data[AV_SINGLE_SOFT][Assembly::NONE] = argon2::single_hash<Algorithm::AR2_CHUKWA>;
|
|
|
|
m_map[Algorithm::AR2_CHUKWA_V2] = new cn_hash_fun_array{};
|
|
m_map[Algorithm::AR2_CHUKWA_V2]->data[AV_SINGLE][Assembly::NONE] = argon2::single_hash<Algorithm::AR2_CHUKWA_V2>;
|
|
m_map[Algorithm::AR2_CHUKWA_V2]->data[AV_SINGLE_SOFT][Assembly::NONE] = argon2::single_hash<Algorithm::AR2_CHUKWA_V2>;
|
|
|
|
m_map[Algorithm::AR2_WRKZ] = new cn_hash_fun_array{};
|
|
m_map[Algorithm::AR2_WRKZ]->data[AV_SINGLE][Assembly::NONE] = argon2::single_hash<Algorithm::AR2_WRKZ>;
|
|
m_map[Algorithm::AR2_WRKZ]->data[AV_SINGLE_SOFT][Assembly::NONE] = argon2::single_hash<Algorithm::AR2_WRKZ>;
|
|
# endif
|
|
|
|
# ifdef XMRIG_ALGO_ASTROBWT
|
|
m_map[Algorithm::ASTROBWT_DERO] = new cn_hash_fun_array{};
|
|
m_map[Algorithm::ASTROBWT_DERO]->data[AV_SINGLE][Assembly::NONE] = astrobwt::single_hash<Algorithm::ASTROBWT_DERO>;
|
|
m_map[Algorithm::ASTROBWT_DERO]->data[AV_SINGLE_SOFT][Assembly::NONE] = astrobwt::single_hash<Algorithm::ASTROBWT_DERO>;
|
|
|
|
m_map[Algorithm::ASTROBWT_DERO_2] = new cn_hash_fun_array{};
|
|
m_map[Algorithm::ASTROBWT_DERO_2]->data[AV_SINGLE][Assembly::NONE] = astrobwt::single_hash<Algorithm::ASTROBWT_DERO_2>;
|
|
m_map[Algorithm::ASTROBWT_DERO_2]->data[AV_SINGLE_SOFT][Assembly::NONE] = astrobwt::single_hash<Algorithm::ASTROBWT_DERO_2>;
|
|
# endif
|
|
|
|
# ifdef XMRIG_ALGO_GHOSTRIDER
|
|
ADD_FN(Algorithm::CN_GR_0);
|
|
ADD_FN(Algorithm::CN_GR_1);
|
|
ADD_FN(Algorithm::CN_GR_2);
|
|
ADD_FN(Algorithm::CN_GR_3);
|
|
ADD_FN(Algorithm::CN_GR_4);
|
|
ADD_FN(Algorithm::CN_GR_5);
|
|
# endif
|
|
|
|
# ifdef XMRIG_FEATURE_ASM
|
|
patchAsmVariants();
|
|
# endif
|
|
}
|
|
|
|
|
|
xmrig::CnHash::~CnHash()
|
|
{
|
|
for (auto const& x : m_map) {
|
|
delete m_map[x.first];
|
|
}
|
|
}
|
|
|
|
|
|
xmrig::cn_hash_fun xmrig::CnHash::fn(const Algorithm &algorithm, AlgoVariant av, Assembly::Id assembly)
|
|
{
|
|
assert(cnHash.m_map.count(algorithm));
|
|
|
|
if (!algorithm.isValid()) {
|
|
return nullptr;
|
|
}
|
|
|
|
const auto it = cnHash.m_map.find(algorithm);
|
|
if (it == cnHash.m_map.end()) {
|
|
return nullptr;
|
|
}
|
|
|
|
# ifdef XMRIG_ALGO_CN_HEAVY
|
|
// cn-heavy optimization for Zen3 CPUs
|
|
if ((av == AV_SINGLE) && (assembly != Assembly::NONE) && (Cpu::info()->arch() == ICpuInfo::ARCH_ZEN3) && (Cpu::info()->model() == 0x21)) {
|
|
switch (algorithm.id()) {
|
|
case Algorithm::CN_HEAVY_0:
|
|
return cryptonight_single_hash<Algorithm::CN_HEAVY_0, false, 3>;
|
|
|
|
case Algorithm::CN_HEAVY_TUBE:
|
|
return cryptonight_single_hash<Algorithm::CN_HEAVY_TUBE, false, 3>;
|
|
|
|
case Algorithm::CN_HEAVY_XHV:
|
|
return cryptonight_single_hash<Algorithm::CN_HEAVY_XHV, false, 3>;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
# endif
|
|
|
|
# ifdef XMRIG_FEATURE_ASM
|
|
cn_hash_fun fun = it->second->data[av][Cpu::assembly(assembly)];
|
|
if (fun) {
|
|
return fun;
|
|
}
|
|
# endif
|
|
|
|
return it->second->data[av][Assembly::NONE];
|
|
}
|