mirror of
https://github.com/xmrig/xmrig.git
synced 2025-01-25 12:06:04 +00:00
274 lines
9.6 KiB
C
274 lines
9.6 KiB
C
/* XMRig
|
|
* Copyright 2010 Jeff Garzik <jgarzik@pobox.com>
|
|
* Copyright 2012-2014 pooler <pooler@litecoinpool.org>
|
|
* Copyright 2014 Lucas Jones <https://github.com/lucasjones>
|
|
* Copyright 2014-2016 Wolf9466 <https://github.com/OhGodAPet>
|
|
* Copyright 2016 Jay D Dee <jayddee246@gmail.com>
|
|
* Copyright 2017 fireice-uk <https://github.com/fireice-uk>
|
|
* Copyright 2016-2017 XMRig <support@xmrig.com>
|
|
*
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef XMRIG_CRYPTONIGHT_AESNI_H
|
|
#define XMRIG_CRYPTONIGHT_AESNI_H
|
|
|
|
|
|
#include <x86intrin.h>
|
|
#include <stdint.h>
|
|
|
|
|
|
#define aes_genkey_sub(imm8) \
|
|
__m128i xout1 = _mm_aeskeygenassist_si128(*xout2, (imm8)); \
|
|
xout1 = _mm_shuffle_epi32(xout1, 0xFF); \
|
|
*xout0 = sl_xor(*xout0); \
|
|
*xout0 = _mm_xor_si128(*xout0, xout1); \
|
|
xout1 = _mm_aeskeygenassist_si128(*xout0, 0x00);\
|
|
xout1 = _mm_shuffle_epi32(xout1, 0xAA); \
|
|
*xout2 = sl_xor(*xout2); \
|
|
*xout2 = _mm_xor_si128(*xout2, xout1); \
|
|
|
|
|
|
// This will shift and xor tmp1 into itself as 4 32-bit vals such as
|
|
// sl_xor(a1 a2 a3 a4) = a1 (a2^a1) (a3^a2^a1) (a4^a3^a2^a1)
|
|
static inline __m128i sl_xor(__m128i tmp1)
|
|
{
|
|
__m128i tmp4;
|
|
tmp4 = _mm_slli_si128(tmp1, 0x04);
|
|
tmp1 = _mm_xor_si128(tmp1, tmp4);
|
|
tmp4 = _mm_slli_si128(tmp4, 0x04);
|
|
tmp1 = _mm_xor_si128(tmp1, tmp4);
|
|
tmp4 = _mm_slli_si128(tmp4, 0x04);
|
|
tmp1 = _mm_xor_si128(tmp1, tmp4);
|
|
return tmp1;
|
|
}
|
|
|
|
|
|
static inline void aes_genkey_sub1(__m128i* xout0, __m128i* xout2)
|
|
{
|
|
aes_genkey_sub(0x1)
|
|
}
|
|
|
|
|
|
static inline void aes_genkey_sub2(__m128i* xout0, __m128i* xout2)
|
|
{
|
|
aes_genkey_sub(0x2)
|
|
}
|
|
|
|
|
|
static inline void aes_genkey_sub4(__m128i* xout0, __m128i* xout2)
|
|
{
|
|
aes_genkey_sub(0x4)
|
|
}
|
|
|
|
|
|
static inline void aes_genkey_sub8(__m128i* xout0, __m128i* xout2)
|
|
{
|
|
aes_genkey_sub(0x8)
|
|
}
|
|
|
|
|
|
static inline void aes_round(__m128i key, __m128i* x0, __m128i* x1, __m128i* x2, __m128i* x3, __m128i* x4, __m128i* x5, __m128i* x6, __m128i* x7)
|
|
{
|
|
*x0 = _mm_aesenc_si128(*x0, key);
|
|
*x1 = _mm_aesenc_si128(*x1, key);
|
|
*x2 = _mm_aesenc_si128(*x2, key);
|
|
*x3 = _mm_aesenc_si128(*x3, key);
|
|
*x4 = _mm_aesenc_si128(*x4, key);
|
|
*x5 = _mm_aesenc_si128(*x5, key);
|
|
*x6 = _mm_aesenc_si128(*x6, key);
|
|
*x7 = _mm_aesenc_si128(*x7, key);
|
|
}
|
|
|
|
|
|
static inline void aes_genkey(const __m128i* memory, __m128i* k0, __m128i* k1, __m128i* k2, __m128i* k3, __m128i* k4, __m128i* k5, __m128i* k6, __m128i* k7, __m128i* k8, __m128i* k9)
|
|
{
|
|
__m128i xout0 = _mm_load_si128(memory);
|
|
__m128i xout2 = _mm_load_si128(memory + 1);
|
|
*k0 = xout0;
|
|
*k1 = xout2;
|
|
|
|
aes_genkey_sub1(&xout0, &xout2);
|
|
*k2 = xout0;
|
|
*k3 = xout2;
|
|
|
|
aes_genkey_sub2(&xout0, &xout2);
|
|
*k4 = xout0;
|
|
*k5 = xout2;
|
|
|
|
aes_genkey_sub4(&xout0, &xout2);
|
|
*k6 = xout0;
|
|
*k7 = xout2;
|
|
|
|
aes_genkey_sub8(&xout0, &xout2);
|
|
*k8 = xout0;
|
|
*k9 = xout2;
|
|
}
|
|
|
|
|
|
static inline void cn_explode_scratchpad(const __m128i* input, __m128i* output)
|
|
{
|
|
// This is more than we have registers, compiler will assign 2 keys on the stack
|
|
__m128i xin0, xin1, xin2, xin3, xin4, xin5, xin6, xin7;
|
|
__m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9;
|
|
|
|
aes_genkey(input, &k0, &k1, &k2, &k3, &k4, &k5, &k6, &k7, &k8, &k9);
|
|
|
|
xin0 = _mm_load_si128(input + 4);
|
|
xin1 = _mm_load_si128(input + 5);
|
|
xin2 = _mm_load_si128(input + 6);
|
|
xin3 = _mm_load_si128(input + 7);
|
|
xin4 = _mm_load_si128(input + 8);
|
|
xin5 = _mm_load_si128(input + 9);
|
|
xin6 = _mm_load_si128(input + 10);
|
|
xin7 = _mm_load_si128(input + 11);
|
|
|
|
for (size_t i = 0; __builtin_expect(i < MEMORY / sizeof(__m128i), 1); i += 8) {
|
|
aes_round(k0, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
|
|
aes_round(k1, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
|
|
aes_round(k2, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
|
|
aes_round(k3, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
|
|
aes_round(k4, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
|
|
aes_round(k5, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
|
|
aes_round(k6, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
|
|
aes_round(k7, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
|
|
aes_round(k8, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
|
|
aes_round(k9, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
|
|
|
|
_mm_store_si128(output + i + 0, xin0);
|
|
_mm_store_si128(output + i + 1, xin1);
|
|
_mm_store_si128(output + i + 2, xin2);
|
|
_mm_store_si128(output + i + 3, xin3);
|
|
_mm_store_si128(output + i + 4, xin4);
|
|
_mm_store_si128(output + i + 5, xin5);
|
|
_mm_store_si128(output + i + 6, xin6);
|
|
_mm_store_si128(output + i + 7, xin7);
|
|
}
|
|
}
|
|
|
|
|
|
static inline void cn_implode_scratchpad(const __m128i* input, __m128i* output)
|
|
{
|
|
// This is more than we have registers, compiler will assign 2 keys on the stack
|
|
__m128i xout0, xout1, xout2, xout3, xout4, xout5, xout6, xout7;
|
|
__m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9;
|
|
|
|
aes_genkey(output + 2, &k0, &k1, &k2, &k3, &k4, &k5, &k6, &k7, &k8, &k9);
|
|
|
|
xout0 = _mm_load_si128(output + 4);
|
|
xout1 = _mm_load_si128(output + 5);
|
|
xout2 = _mm_load_si128(output + 6);
|
|
xout3 = _mm_load_si128(output + 7);
|
|
xout4 = _mm_load_si128(output + 8);
|
|
xout5 = _mm_load_si128(output + 9);
|
|
xout6 = _mm_load_si128(output + 10);
|
|
xout7 = _mm_load_si128(output + 11);
|
|
|
|
for (size_t i = 0; __builtin_expect(i < MEMORY / sizeof(__m128i), 1); i += 8)
|
|
{
|
|
xout0 = _mm_xor_si128(_mm_load_si128(input + i + 0), xout0);
|
|
xout1 = _mm_xor_si128(_mm_load_si128(input + i + 1), xout1);
|
|
xout2 = _mm_xor_si128(_mm_load_si128(input + i + 2), xout2);
|
|
xout3 = _mm_xor_si128(_mm_load_si128(input + i + 3), xout3);
|
|
xout4 = _mm_xor_si128(_mm_load_si128(input + i + 4), xout4);
|
|
xout5 = _mm_xor_si128(_mm_load_si128(input + i + 5), xout5);
|
|
xout6 = _mm_xor_si128(_mm_load_si128(input + i + 6), xout6);
|
|
xout7 = _mm_xor_si128(_mm_load_si128(input + i + 7), xout7);
|
|
|
|
aes_round(k0, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
aes_round(k1, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
aes_round(k2, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
aes_round(k3, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
aes_round(k4, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
aes_round(k5, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
aes_round(k6, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
aes_round(k7, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
aes_round(k8, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
aes_round(k9, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
}
|
|
|
|
_mm_store_si128(output + 4, xout0);
|
|
_mm_store_si128(output + 5, xout1);
|
|
_mm_store_si128(output + 6, xout2);
|
|
_mm_store_si128(output + 7, xout3);
|
|
_mm_store_si128(output + 8, xout4);
|
|
_mm_store_si128(output + 9, xout5);
|
|
_mm_store_si128(output + 10, xout6);
|
|
_mm_store_si128(output + 11, xout7);
|
|
}
|
|
|
|
|
|
#if defined(__x86_64__)
|
|
# define EXTRACT64(X) _mm_cvtsi128_si64(X)
|
|
|
|
static inline uint64_t _umul128(uint64_t a, uint64_t b, uint64_t* hi)
|
|
{
|
|
unsigned __int128 r = (unsigned __int128) a * (unsigned __int128) b;
|
|
*hi = r >> 64;
|
|
return (uint64_t) r;
|
|
}
|
|
#elif defined(__i386__)
|
|
# define HI32(X) \
|
|
_mm_srli_si128((X), 4)
|
|
|
|
|
|
# define EXTRACT64(X) \
|
|
((uint64_t)(uint32_t)_mm_cvtsi128_si32(X) | \
|
|
((uint64_t)(uint32_t)_mm_cvtsi128_si32(HI32(X)) << 32))
|
|
|
|
static inline uint64_t _umul128(uint64_t multiplier, uint64_t multiplicand, uint64_t *product_hi) {
|
|
// multiplier = ab = a * 2^32 + b
|
|
// multiplicand = cd = c * 2^32 + d
|
|
// ab * cd = a * c * 2^64 + (a * d + b * c) * 2^32 + b * d
|
|
uint64_t a = multiplier >> 32;
|
|
uint64_t b = multiplier & 0xFFFFFFFF;
|
|
uint64_t c = multiplicand >> 32;
|
|
uint64_t d = multiplicand & 0xFFFFFFFF;
|
|
|
|
//uint64_t ac = a * c;
|
|
uint64_t ad = a * d;
|
|
//uint64_t bc = b * c;
|
|
uint64_t bd = b * d;
|
|
|
|
uint64_t adbc = ad + (b * c);
|
|
uint64_t adbc_carry = adbc < ad ? 1 : 0;
|
|
|
|
// multiplier * multiplicand = product_hi * 2^64 + product_lo
|
|
uint64_t product_lo = bd + (adbc << 32);
|
|
uint64_t product_lo_carry = product_lo < bd ? 1 : 0;
|
|
*product_hi = (a * c) + (adbc >> 32) + (adbc_carry << 32) + product_lo_carry;
|
|
|
|
return product_lo;
|
|
}
|
|
#endif
|
|
|
|
|
|
static inline void cryptonight_monero_tweak(uint64_t* mem_out, __m128i tmp)
|
|
{
|
|
mem_out[0] = EXTRACT64(tmp);
|
|
|
|
tmp = _mm_castps_si128(_mm_movehl_ps(_mm_castsi128_ps(tmp), _mm_castsi128_ps(tmp)));
|
|
uint64_t vh = EXTRACT64(tmp);
|
|
|
|
uint8_t x = vh >> 24;
|
|
static const uint16_t table = 0x7531;
|
|
const uint8_t index = (((x >> 3) & 6) | (x & 1)) << 1;
|
|
vh ^= ((table >> index) & 0x3) << 28;
|
|
|
|
mem_out[1] = vh;
|
|
}
|
|
|
|
|
|
#endif /* XMRIG_CRYPTONIGHT_AESNI_H */
|