xmrig/src/backend/cuda/CudaWorker.cpp
2019-10-29 15:43:13 +07:00

171 lines
4.3 KiB
C++

/* XMRig
* Copyright 2010 Jeff Garzik <jgarzik@pobox.com>
* Copyright 2012-2014 pooler <pooler@litecoinpool.org>
* Copyright 2014 Lucas Jones <https://github.com/lucasjones>
* Copyright 2014-2016 Wolf9466 <https://github.com/OhGodAPet>
* Copyright 2016 Jay D Dee <jayddee246@gmail.com>
* Copyright 2017-2018 XMR-Stak <https://github.com/fireice-uk>, <https://github.com/psychocrypt>
* Copyright 2018 Lee Clagett <https://github.com/vtnerd>
* Copyright 2018-2019 SChernykh <https://github.com/SChernykh>
* Copyright 2016-2019 XMRig <https://github.com/xmrig>, <support@xmrig.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "backend/cuda/CudaWorker.h"
#include "backend/common/Tags.h"
#include "backend/cuda/runners/CudaCnRunner.h"
#include "base/io/log/Log.h"
#include "base/tools/Chrono.h"
#include "core/Miner.h"
#include "crypto/common/Nonce.h"
#include "net/JobResults.h"
#ifdef XMRIG_ALGO_RANDOMX
# include "backend/cuda/runners/CudaRxRunner.h"
#endif
#include <cassert>
#include <thread>
namespace xmrig {
static constexpr uint32_t kReserveCount = 32768;
std::atomic<bool> CudaWorker::ready;
static inline bool isReady() { return !Nonce::isPaused() && CudaWorker::ready; }
static inline uint32_t roundSize(uint32_t intensity) { return kReserveCount / intensity + 1; }
} // namespace xmrig
xmrig::CudaWorker::CudaWorker(size_t id, const CudaLaunchData &data) :
Worker(id, data.thread.affinity(), -1),
m_algorithm(data.algorithm),
m_miner(data.miner)
{
switch (m_algorithm.family()) {
case Algorithm::RANDOM_X:
# ifdef XMRIG_ALGO_RANDOMX
m_runner = new CudaRxRunner(id, data);
# endif
break;
case Algorithm::ARGON2:
break;
default:
m_runner = new CudaCnRunner(id, data);
break;
}
if (!m_runner || !m_runner->init()) {
return;
}
}
xmrig::CudaWorker::~CudaWorker()
{
delete m_runner;
}
bool xmrig::CudaWorker::selfTest()
{
return m_runner != nullptr;
}
size_t xmrig::CudaWorker::intensity() const
{
return m_runner ? m_runner->intensity() : 0;
}
void xmrig::CudaWorker::start()
{
while (Nonce::sequence(Nonce::CUDA) > 0) {
if (!isReady()) {
do {
std::this_thread::sleep_for(std::chrono::milliseconds(200));
}
while (!isReady() && Nonce::sequence(Nonce::CUDA) > 0);
if (Nonce::sequence(Nonce::CUDA) == 0) {
break;
}
if (!consumeJob()) {
return;
}
}
while (!Nonce::isOutdated(Nonce::CUDA, m_job.sequence())) {
uint32_t foundNonce[10] = { 0 };
uint32_t foundCount = 0;
if (!m_runner->run(*m_job.nonce(), &foundCount, foundNonce)) {
return;
}
if (foundCount) {
JobResults::submit(m_job.currentJob(), foundNonce, foundCount);
}
const size_t batch_size = intensity();
m_job.nextRound(roundSize(batch_size), batch_size);
storeStats();
std::this_thread::yield();
}
if (!consumeJob()) {
return;
}
}
}
bool xmrig::CudaWorker::consumeJob()
{
if (Nonce::sequence(Nonce::CUDA) == 0) {
return false;
}
const size_t batch_size = intensity();
m_job.add(m_miner->job(), roundSize(batch_size) * batch_size, Nonce::CUDA);
return m_runner->set(m_job.currentJob(), m_job.blob());;
}
void xmrig::CudaWorker::storeStats()
{
if (!isReady()) {
return;
}
m_count += intensity();
Worker::storeStats();
}