mirror of
https://github.com/xmrig/xmrig.git
synced 2025-01-27 13:06:03 +00:00
171 lines
4.3 KiB
C++
171 lines
4.3 KiB
C++
/* XMRig
|
|
* Copyright 2010 Jeff Garzik <jgarzik@pobox.com>
|
|
* Copyright 2012-2014 pooler <pooler@litecoinpool.org>
|
|
* Copyright 2014 Lucas Jones <https://github.com/lucasjones>
|
|
* Copyright 2014-2016 Wolf9466 <https://github.com/OhGodAPet>
|
|
* Copyright 2016 Jay D Dee <jayddee246@gmail.com>
|
|
* Copyright 2017-2018 XMR-Stak <https://github.com/fireice-uk>, <https://github.com/psychocrypt>
|
|
* Copyright 2018 Lee Clagett <https://github.com/vtnerd>
|
|
* Copyright 2018-2019 SChernykh <https://github.com/SChernykh>
|
|
* Copyright 2016-2019 XMRig <https://github.com/xmrig>, <support@xmrig.com>
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
|
|
#include "backend/cuda/CudaWorker.h"
|
|
#include "backend/common/Tags.h"
|
|
#include "backend/cuda/runners/CudaCnRunner.h"
|
|
#include "base/io/log/Log.h"
|
|
#include "base/tools/Chrono.h"
|
|
#include "core/Miner.h"
|
|
#include "crypto/common/Nonce.h"
|
|
#include "net/JobResults.h"
|
|
|
|
|
|
#ifdef XMRIG_ALGO_RANDOMX
|
|
# include "backend/cuda/runners/CudaRxRunner.h"
|
|
#endif
|
|
|
|
|
|
#include <cassert>
|
|
#include <thread>
|
|
|
|
|
|
namespace xmrig {
|
|
|
|
|
|
static constexpr uint32_t kReserveCount = 32768;
|
|
std::atomic<bool> CudaWorker::ready;
|
|
|
|
|
|
static inline bool isReady() { return !Nonce::isPaused() && CudaWorker::ready; }
|
|
static inline uint32_t roundSize(uint32_t intensity) { return kReserveCount / intensity + 1; }
|
|
|
|
|
|
} // namespace xmrig
|
|
|
|
|
|
|
|
xmrig::CudaWorker::CudaWorker(size_t id, const CudaLaunchData &data) :
|
|
Worker(id, data.thread.affinity(), -1),
|
|
m_algorithm(data.algorithm),
|
|
m_miner(data.miner)
|
|
{
|
|
switch (m_algorithm.family()) {
|
|
case Algorithm::RANDOM_X:
|
|
# ifdef XMRIG_ALGO_RANDOMX
|
|
m_runner = new CudaRxRunner(id, data);
|
|
# endif
|
|
break;
|
|
|
|
case Algorithm::ARGON2:
|
|
break;
|
|
|
|
default:
|
|
m_runner = new CudaCnRunner(id, data);
|
|
break;
|
|
}
|
|
|
|
if (!m_runner || !m_runner->init()) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
|
|
xmrig::CudaWorker::~CudaWorker()
|
|
{
|
|
delete m_runner;
|
|
}
|
|
|
|
|
|
bool xmrig::CudaWorker::selfTest()
|
|
{
|
|
return m_runner != nullptr;
|
|
}
|
|
|
|
|
|
size_t xmrig::CudaWorker::intensity() const
|
|
{
|
|
return m_runner ? m_runner->intensity() : 0;
|
|
}
|
|
|
|
|
|
void xmrig::CudaWorker::start()
|
|
{
|
|
while (Nonce::sequence(Nonce::CUDA) > 0) {
|
|
if (!isReady()) {
|
|
do {
|
|
std::this_thread::sleep_for(std::chrono::milliseconds(200));
|
|
}
|
|
while (!isReady() && Nonce::sequence(Nonce::CUDA) > 0);
|
|
|
|
if (Nonce::sequence(Nonce::CUDA) == 0) {
|
|
break;
|
|
}
|
|
|
|
if (!consumeJob()) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
while (!Nonce::isOutdated(Nonce::CUDA, m_job.sequence())) {
|
|
uint32_t foundNonce[10] = { 0 };
|
|
uint32_t foundCount = 0;
|
|
|
|
if (!m_runner->run(*m_job.nonce(), &foundCount, foundNonce)) {
|
|
return;
|
|
}
|
|
|
|
if (foundCount) {
|
|
JobResults::submit(m_job.currentJob(), foundNonce, foundCount);
|
|
}
|
|
|
|
const size_t batch_size = intensity();
|
|
m_job.nextRound(roundSize(batch_size), batch_size);
|
|
|
|
storeStats();
|
|
std::this_thread::yield();
|
|
}
|
|
|
|
if (!consumeJob()) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
bool xmrig::CudaWorker::consumeJob()
|
|
{
|
|
if (Nonce::sequence(Nonce::CUDA) == 0) {
|
|
return false;
|
|
}
|
|
|
|
const size_t batch_size = intensity();
|
|
m_job.add(m_miner->job(), roundSize(batch_size) * batch_size, Nonce::CUDA);
|
|
|
|
return m_runner->set(m_job.currentJob(), m_job.blob());;
|
|
}
|
|
|
|
|
|
void xmrig::CudaWorker::storeStats()
|
|
{
|
|
if (!isReady()) {
|
|
return;
|
|
}
|
|
|
|
m_count += intensity();
|
|
|
|
Worker::storeStats();
|
|
}
|