mirror of
https://github.com/xmrig/xmrig.git
synced 2025-01-27 13:06:03 +00:00
467 lines
13 KiB
C++
467 lines
13 KiB
C++
/* XMRig
|
|
* Copyright 2010 Jeff Garzik <jgarzik@pobox.com>
|
|
* Copyright 2012-2014 pooler <pooler@litecoinpool.org>
|
|
* Copyright 2014 Lucas Jones <https://github.com/lucasjones>
|
|
* Copyright 2014-2016 Wolf9466 <https://github.com/OhGodAPet>
|
|
* Copyright 2016 Jay D Dee <jayddee246@gmail.com>
|
|
* Copyright 2017-2018 XMR-Stak <https://github.com/fireice-uk>, <https://github.com/psychocrypt>
|
|
* Copyright 2018-2019 SChernykh <https://github.com/SChernykh>
|
|
* Copyright 2016-2019 XMRig <https://github.com/xmrig>, <support@xmrig.com>
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
|
|
#include <mutex>
|
|
#include <string>
|
|
|
|
|
|
#include "backend/cuda/CudaBackend.h"
|
|
#include "backend/common/Hashrate.h"
|
|
#include "backend/common/interfaces/IWorker.h"
|
|
#include "backend/common/Tags.h"
|
|
#include "backend/common/Workers.h"
|
|
#include "backend/cuda/CudaConfig.h"
|
|
#include "backend/cuda/CudaThreads.h"
|
|
#include "backend/cuda/CudaWorker.h"
|
|
#include "backend/cuda/wrappers/CudaDevice.h"
|
|
#include "backend/cuda/wrappers/CudaLib.h"
|
|
#include "base/io/log/Log.h"
|
|
#include "base/net/stratum/Job.h"
|
|
#include "base/tools/Chrono.h"
|
|
#include "base/tools/String.h"
|
|
#include "core/config/Config.h"
|
|
#include "core/Controller.h"
|
|
#include "rapidjson/document.h"
|
|
|
|
|
|
#ifdef XMRIG_FEATURE_API
|
|
# include "base/api/interfaces/IApiRequest.h"
|
|
#endif
|
|
|
|
|
|
#ifdef XMRIG_FEATURE_NVML
|
|
#include "backend/cuda/wrappers/NvmlLib.h"
|
|
|
|
namespace xmrig { static const char *kNvmlLabel = "NVML"; }
|
|
#endif
|
|
|
|
|
|
namespace xmrig {
|
|
|
|
|
|
extern template class Threads<CudaThreads>;
|
|
|
|
|
|
constexpr const size_t oneMiB = 1024u * 1024u;
|
|
static const char *kLabel = "CUDA";
|
|
static const char *tag = GREEN_BG_BOLD(WHITE_BOLD_S " nv ");
|
|
static const String kType = "cuda";
|
|
static std::mutex mutex;
|
|
|
|
|
|
|
|
static void printDisabled(const char *label, const char *reason)
|
|
{
|
|
Log::print(GREEN_BOLD(" * ") WHITE_BOLD("%-13s") RED_BOLD("disabled") "%s", label, reason);
|
|
}
|
|
|
|
|
|
struct CudaLaunchStatus
|
|
{
|
|
public:
|
|
inline size_t threads() const { return m_threads; }
|
|
|
|
inline bool started(bool ready)
|
|
{
|
|
ready ? m_started++ : m_errors++;
|
|
|
|
return (m_started + m_errors) == m_threads;
|
|
}
|
|
|
|
inline void start(size_t threads)
|
|
{
|
|
m_started = 0;
|
|
m_errors = 0;
|
|
m_threads = threads;
|
|
m_ts = Chrono::steadyMSecs();
|
|
CudaWorker::ready = false;
|
|
}
|
|
|
|
inline void print() const
|
|
{
|
|
if (m_started == 0) {
|
|
LOG_ERR("%s " RED_BOLD("disabled") YELLOW(" (failed to start threads)"), tag);
|
|
|
|
return;
|
|
}
|
|
|
|
LOG_INFO("%s" GREEN_BOLD(" READY") " threads " "%s%zu/%zu" BLACK_BOLD(" (%" PRIu64 " ms)"),
|
|
tag,
|
|
m_errors == 0 ? CYAN_BOLD_S : YELLOW_BOLD_S,
|
|
m_started,
|
|
m_threads,
|
|
Chrono::steadyMSecs() - m_ts
|
|
);
|
|
}
|
|
|
|
private:
|
|
size_t m_errors = 0;
|
|
size_t m_started = 0;
|
|
size_t m_threads = 0;
|
|
uint64_t m_ts = 0;
|
|
};
|
|
|
|
|
|
class CudaBackendPrivate
|
|
{
|
|
public:
|
|
inline CudaBackendPrivate(Controller *controller) :
|
|
controller(controller)
|
|
{
|
|
init(controller->config()->cuda());
|
|
}
|
|
|
|
|
|
void init(const CudaConfig &cuda)
|
|
{
|
|
if (!cuda.isEnabled()) {
|
|
return printDisabled(kLabel, "");
|
|
}
|
|
|
|
if (!CudaLib::init(cuda.loader())) {
|
|
return printDisabled(kLabel, RED_S " (failed to load CUDA plugin)");
|
|
}
|
|
|
|
runtimeVersion = CudaLib::runtimeVersion();
|
|
driverVersion = CudaLib::driverVersion();
|
|
|
|
if (!runtimeVersion || !driverVersion || !CudaLib::deviceCount()) {
|
|
return printDisabled(kLabel, RED_S " (no devices)");
|
|
}
|
|
|
|
if (!devices.empty()) {
|
|
return;
|
|
}
|
|
|
|
Log::print(GREEN_BOLD(" * ") WHITE_BOLD("%-13s") WHITE_BOLD("%s") "/" WHITE_BOLD("%s") BLACK_BOLD("/%s"), kLabel,
|
|
CudaLib::version(runtimeVersion).c_str(), CudaLib::version(driverVersion).c_str(), CudaLib::pluginVersion());
|
|
|
|
devices = CudaLib::devices(cuda.bfactor(), cuda.bsleep());
|
|
|
|
# ifdef XMRIG_FEATURE_NVML
|
|
if (cuda.isNvmlEnabled()) {
|
|
if (NvmlLib::init(cuda.nvmlLoader())) {
|
|
NvmlLib::assign(devices);
|
|
|
|
Log::print(GREEN_BOLD(" * ") WHITE_BOLD("%-13s") WHITE_BOLD("%s") "/" GREEN_BOLD("%s"), kNvmlLabel,
|
|
NvmlLib::version(), NvmlLib::driverVersion());
|
|
}
|
|
else {
|
|
printDisabled(kLabel, RED_S " (failed to load NVML)");
|
|
}
|
|
}
|
|
else {
|
|
printDisabled(kNvmlLabel, "");
|
|
}
|
|
# endif
|
|
|
|
for (const CudaDevice &device : devices) {
|
|
Log::print(GREEN_BOLD(" * ") WHITE_BOLD("%-13s") CYAN_BOLD("#%zu") YELLOW(" %s") GREEN_BOLD(" %s ") WHITE_BOLD("%u/%u MHz") " smx:" WHITE_BOLD("%u") " arch:" WHITE_BOLD("%u%u") " mem:" CYAN("%zu/%zu") " MB",
|
|
"CUDA GPU",
|
|
device.index(),
|
|
device.topology().toString().data(),
|
|
device.name().data(),
|
|
device.clock(),
|
|
device.memoryClock(),
|
|
device.smx(),
|
|
device.computeCapability(true),
|
|
device.computeCapability(false),
|
|
device.freeMemSize() / oneMiB,
|
|
device.globalMemSize() / oneMiB);
|
|
}
|
|
}
|
|
|
|
|
|
inline void start(const Job &)
|
|
{
|
|
LOG_INFO("%s use profile " BLUE_BG(WHITE_BOLD_S " %s ") WHITE_BOLD_S " (" CYAN_BOLD("%zu") WHITE_BOLD(" thread%s)") " scratchpad " CYAN_BOLD("%zu KB"),
|
|
tag,
|
|
profileName.data(),
|
|
threads.size(),
|
|
threads.size() > 1 ? "s" : "",
|
|
algo.l3() / 1024
|
|
);
|
|
|
|
Log::print(WHITE_BOLD("| # | GPU | BUS ID | I | T | B | BF | BS | MEM | NAME"));
|
|
|
|
size_t i = 0;
|
|
for (const auto &data : threads) {
|
|
Log::print("|" CYAN_BOLD("%3zu") " |" CYAN_BOLD("%4u") " |" YELLOW(" %7s") " |" CYAN_BOLD("%5d") " |" CYAN_BOLD("%4d") " |"
|
|
CYAN_BOLD("%4d") " |" CYAN_BOLD("%3d") " |" CYAN_BOLD("%4d") " |" CYAN("%5zu") " | " GREEN("%s"),
|
|
i,
|
|
data.thread.index(),
|
|
data.device.topology().toString().data(),
|
|
data.thread.threads() * data.thread.blocks(),
|
|
data.thread.threads(),
|
|
data.thread.blocks(),
|
|
data.thread.bfactor(),
|
|
data.thread.bsleep(),
|
|
(data.thread.threads() * data.thread.blocks()) * algo.l3() / oneMiB,
|
|
data.device.name().data()
|
|
);
|
|
|
|
i++;
|
|
}
|
|
|
|
status.start(threads.size());
|
|
workers.start(threads);
|
|
}
|
|
|
|
|
|
Algorithm algo;
|
|
Controller *controller;
|
|
CudaLaunchStatus status;
|
|
std::vector<CudaDevice> devices;
|
|
std::vector<CudaLaunchData> threads;
|
|
String profileName;
|
|
uint32_t driverVersion = 0;
|
|
uint32_t runtimeVersion = 0;
|
|
Workers<CudaLaunchData> workers;
|
|
};
|
|
|
|
|
|
} // namespace xmrig
|
|
|
|
|
|
const char *xmrig::cuda_tag()
|
|
{
|
|
return tag;
|
|
}
|
|
|
|
|
|
xmrig::CudaBackend::CudaBackend(Controller *controller) :
|
|
d_ptr(new CudaBackendPrivate(controller))
|
|
{
|
|
d_ptr->workers.setBackend(this);
|
|
}
|
|
|
|
|
|
xmrig::CudaBackend::~CudaBackend()
|
|
{
|
|
delete d_ptr;
|
|
|
|
CudaLib::close();
|
|
|
|
# ifdef XMRIG_FEATURE_NVML
|
|
NvmlLib::close();
|
|
# endif
|
|
}
|
|
|
|
|
|
bool xmrig::CudaBackend::isEnabled() const
|
|
{
|
|
return d_ptr->controller->config()->cuda().isEnabled() && CudaLib::isInitialized() && !d_ptr->devices.empty();;
|
|
}
|
|
|
|
|
|
bool xmrig::CudaBackend::isEnabled(const Algorithm &algorithm) const
|
|
{
|
|
return !d_ptr->controller->config()->cuda().threads().get(algorithm).isEmpty();
|
|
}
|
|
|
|
|
|
const xmrig::Hashrate *xmrig::CudaBackend::hashrate() const
|
|
{
|
|
return d_ptr->workers.hashrate();
|
|
}
|
|
|
|
|
|
const xmrig::String &xmrig::CudaBackend::profileName() const
|
|
{
|
|
return d_ptr->profileName;
|
|
}
|
|
|
|
|
|
const xmrig::String &xmrig::CudaBackend::type() const
|
|
{
|
|
return kType;
|
|
}
|
|
|
|
|
|
void xmrig::CudaBackend::prepare(const Job &)
|
|
{
|
|
}
|
|
|
|
|
|
void xmrig::CudaBackend::printHashrate(bool details)
|
|
{
|
|
if (!details || !hashrate()) {
|
|
return;
|
|
}
|
|
|
|
char num[8 * 3] = { 0 };
|
|
|
|
Log::print(WHITE_BOLD_S "| CUDA # | AFFINITY | 10s H/s | 60s H/s | 15m H/s |");
|
|
|
|
size_t i = 0;
|
|
for (const auto &data : d_ptr->threads) {
|
|
Log::print("| %8zu | %8" PRId64 " | %7s | %7s | %7s |" CYAN_BOLD(" #%u") YELLOW(" %s") GREEN(" %s"),
|
|
i,
|
|
data.thread.affinity(),
|
|
Hashrate::format(hashrate()->calc(i, Hashrate::ShortInterval), num, sizeof num / 3),
|
|
Hashrate::format(hashrate()->calc(i, Hashrate::MediumInterval), num + 8, sizeof num / 3),
|
|
Hashrate::format(hashrate()->calc(i, Hashrate::LargeInterval), num + 8 * 2, sizeof num / 3),
|
|
data.device.index(),
|
|
data.device.topology().toString().data(),
|
|
data.device.name().data()
|
|
);
|
|
|
|
i++;
|
|
}
|
|
|
|
Log::print(WHITE_BOLD_S "| - | - | %7s | %7s | %7s |",
|
|
Hashrate::format(hashrate()->calc(Hashrate::ShortInterval), num, sizeof num / 3),
|
|
Hashrate::format(hashrate()->calc(Hashrate::MediumInterval), num + 8, sizeof num / 3),
|
|
Hashrate::format(hashrate()->calc(Hashrate::LargeInterval), num + 8 * 2, sizeof num / 3)
|
|
);
|
|
}
|
|
|
|
|
|
void xmrig::CudaBackend::setJob(const Job &job)
|
|
{
|
|
const auto &cuda = d_ptr->controller->config()->cuda();
|
|
if (cuda.isEnabled()) {
|
|
d_ptr->init(cuda);
|
|
}
|
|
|
|
if (!isEnabled()) {
|
|
return stop();
|
|
}
|
|
|
|
auto threads = cuda.get(d_ptr->controller->miner(), job.algorithm(), d_ptr->devices);
|
|
if (!d_ptr->threads.empty() && d_ptr->threads.size() == threads.size() && std::equal(d_ptr->threads.begin(), d_ptr->threads.end(), threads.begin())) {
|
|
return;
|
|
}
|
|
|
|
d_ptr->algo = job.algorithm();
|
|
d_ptr->profileName = cuda.threads().profileName(job.algorithm());
|
|
|
|
if (d_ptr->profileName.isNull() || threads.empty()) {
|
|
LOG_WARN("%s " RED_BOLD("disabled") YELLOW(" (no suitable configuration found)"), tag);
|
|
|
|
return stop();
|
|
}
|
|
|
|
stop();
|
|
|
|
d_ptr->threads = std::move(threads);
|
|
d_ptr->start(job);
|
|
}
|
|
|
|
|
|
void xmrig::CudaBackend::start(IWorker *worker, bool ready)
|
|
{
|
|
mutex.lock();
|
|
|
|
if (d_ptr->status.started(ready)) {
|
|
d_ptr->status.print();
|
|
|
|
CudaWorker::ready = true;
|
|
}
|
|
|
|
mutex.unlock();
|
|
|
|
if (ready) {
|
|
worker->start();
|
|
}
|
|
}
|
|
|
|
|
|
void xmrig::CudaBackend::stop()
|
|
{
|
|
if (d_ptr->threads.empty()) {
|
|
return;
|
|
}
|
|
|
|
const uint64_t ts = Chrono::steadyMSecs();
|
|
|
|
d_ptr->workers.stop();
|
|
d_ptr->threads.clear();
|
|
|
|
LOG_INFO("%s" YELLOW(" stopped") BLACK_BOLD(" (%" PRIu64 " ms)"), tag, Chrono::steadyMSecs() - ts);
|
|
}
|
|
|
|
|
|
void xmrig::CudaBackend::tick(uint64_t ticks)
|
|
{
|
|
d_ptr->workers.tick(ticks);
|
|
}
|
|
|
|
|
|
#ifdef XMRIG_FEATURE_API
|
|
rapidjson::Value xmrig::CudaBackend::toJSON(rapidjson::Document &doc) const
|
|
{
|
|
using namespace rapidjson;
|
|
auto &allocator = doc.GetAllocator();
|
|
|
|
Value out(kObjectType);
|
|
out.AddMember("type", type().toJSON(), allocator);
|
|
out.AddMember("enabled", isEnabled(), allocator);
|
|
out.AddMember("algo", d_ptr->algo.toJSON(), allocator);
|
|
out.AddMember("profile", profileName().toJSON(), allocator);
|
|
|
|
Value versions(kObjectType);
|
|
versions.AddMember("cuda-runtime", Value(CudaLib::version(d_ptr->runtimeVersion).c_str(), allocator), allocator);
|
|
versions.AddMember("cuda-driver", Value(CudaLib::version(d_ptr->driverVersion).c_str(), allocator), allocator);
|
|
versions.AddMember("plugin", String(CudaLib::pluginVersion()).toJSON(doc), allocator);
|
|
|
|
# ifdef XMRIG_FEATURE_NVML
|
|
if (NvmlLib::isReady()) {
|
|
versions.AddMember("nvml", StringRef(NvmlLib::version()), allocator);
|
|
versions.AddMember("driver", StringRef(NvmlLib::driverVersion()), allocator);
|
|
}
|
|
# endif
|
|
|
|
out.AddMember("versions", versions, allocator);
|
|
|
|
if (d_ptr->threads.empty() || !hashrate()) {
|
|
return out;
|
|
}
|
|
|
|
out.AddMember("hashrate", hashrate()->toJSON(doc), allocator);
|
|
|
|
Value threads(kArrayType);
|
|
|
|
size_t i = 0;
|
|
for (const auto &data : d_ptr->threads) {
|
|
Value thread = data.thread.toJSON(doc);
|
|
thread.AddMember("hashrate", hashrate()->toJSON(i, doc), allocator);
|
|
|
|
data.device.toJSON(thread, doc);
|
|
|
|
i++;
|
|
threads.PushBack(thread, allocator);
|
|
}
|
|
|
|
out.AddMember("threads", threads, allocator);
|
|
|
|
return out;
|
|
}
|
|
|
|
|
|
void xmrig::CudaBackend::handleRequest(IApiRequest &)
|
|
{
|
|
}
|
|
#endif
|