xmrig/src/backend/cuda/CudaBackend.cpp
2019-10-30 20:26:21 +07:00

467 lines
13 KiB
C++

/* XMRig
* Copyright 2010 Jeff Garzik <jgarzik@pobox.com>
* Copyright 2012-2014 pooler <pooler@litecoinpool.org>
* Copyright 2014 Lucas Jones <https://github.com/lucasjones>
* Copyright 2014-2016 Wolf9466 <https://github.com/OhGodAPet>
* Copyright 2016 Jay D Dee <jayddee246@gmail.com>
* Copyright 2017-2018 XMR-Stak <https://github.com/fireice-uk>, <https://github.com/psychocrypt>
* Copyright 2018-2019 SChernykh <https://github.com/SChernykh>
* Copyright 2016-2019 XMRig <https://github.com/xmrig>, <support@xmrig.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <mutex>
#include <string>
#include "backend/cuda/CudaBackend.h"
#include "backend/common/Hashrate.h"
#include "backend/common/interfaces/IWorker.h"
#include "backend/common/Tags.h"
#include "backend/common/Workers.h"
#include "backend/cuda/CudaConfig.h"
#include "backend/cuda/CudaThreads.h"
#include "backend/cuda/CudaWorker.h"
#include "backend/cuda/wrappers/CudaDevice.h"
#include "backend/cuda/wrappers/CudaLib.h"
#include "base/io/log/Log.h"
#include "base/net/stratum/Job.h"
#include "base/tools/Chrono.h"
#include "base/tools/String.h"
#include "core/config/Config.h"
#include "core/Controller.h"
#include "rapidjson/document.h"
#ifdef XMRIG_FEATURE_API
# include "base/api/interfaces/IApiRequest.h"
#endif
#ifdef XMRIG_FEATURE_NVML
#include "backend/cuda/wrappers/NvmlLib.h"
namespace xmrig { static const char *kNvmlLabel = "NVML"; }
#endif
namespace xmrig {
extern template class Threads<CudaThreads>;
constexpr const size_t oneMiB = 1024u * 1024u;
static const char *kLabel = "CUDA";
static const char *tag = GREEN_BG_BOLD(WHITE_BOLD_S " nv ");
static const String kType = "cuda";
static std::mutex mutex;
static void printDisabled(const char *label, const char *reason)
{
Log::print(GREEN_BOLD(" * ") WHITE_BOLD("%-13s") RED_BOLD("disabled") "%s", label, reason);
}
struct CudaLaunchStatus
{
public:
inline size_t threads() const { return m_threads; }
inline bool started(bool ready)
{
ready ? m_started++ : m_errors++;
return (m_started + m_errors) == m_threads;
}
inline void start(size_t threads)
{
m_started = 0;
m_errors = 0;
m_threads = threads;
m_ts = Chrono::steadyMSecs();
CudaWorker::ready = false;
}
inline void print() const
{
if (m_started == 0) {
LOG_ERR("%s " RED_BOLD("disabled") YELLOW(" (failed to start threads)"), tag);
return;
}
LOG_INFO("%s" GREEN_BOLD(" READY") " threads " "%s%zu/%zu" BLACK_BOLD(" (%" PRIu64 " ms)"),
tag,
m_errors == 0 ? CYAN_BOLD_S : YELLOW_BOLD_S,
m_started,
m_threads,
Chrono::steadyMSecs() - m_ts
);
}
private:
size_t m_errors = 0;
size_t m_started = 0;
size_t m_threads = 0;
uint64_t m_ts = 0;
};
class CudaBackendPrivate
{
public:
inline CudaBackendPrivate(Controller *controller) :
controller(controller)
{
init(controller->config()->cuda());
}
void init(const CudaConfig &cuda)
{
if (!cuda.isEnabled()) {
return printDisabled(kLabel, "");
}
if (!CudaLib::init(cuda.loader())) {
return printDisabled(kLabel, RED_S " (failed to load CUDA plugin)");
}
runtimeVersion = CudaLib::runtimeVersion();
driverVersion = CudaLib::driverVersion();
if (!runtimeVersion || !driverVersion || !CudaLib::deviceCount()) {
return printDisabled(kLabel, RED_S " (no devices)");
}
if (!devices.empty()) {
return;
}
Log::print(GREEN_BOLD(" * ") WHITE_BOLD("%-13s") WHITE_BOLD("%s") "/" WHITE_BOLD("%s") BLACK_BOLD("/%s"), kLabel,
CudaLib::version(runtimeVersion).c_str(), CudaLib::version(driverVersion).c_str(), CudaLib::pluginVersion());
devices = CudaLib::devices(cuda.bfactor(), cuda.bsleep());
# ifdef XMRIG_FEATURE_NVML
if (cuda.isNvmlEnabled()) {
if (NvmlLib::init(cuda.nvmlLoader())) {
NvmlLib::assign(devices);
Log::print(GREEN_BOLD(" * ") WHITE_BOLD("%-13s") WHITE_BOLD("%s") "/" GREEN_BOLD("%s"), kNvmlLabel,
NvmlLib::version(), NvmlLib::driverVersion());
}
else {
printDisabled(kLabel, RED_S " (failed to load NVML)");
}
}
else {
printDisabled(kNvmlLabel, "");
}
# endif
for (const CudaDevice &device : devices) {
Log::print(GREEN_BOLD(" * ") WHITE_BOLD("%-13s") CYAN_BOLD("#%zu") YELLOW(" %s") GREEN_BOLD(" %s ") WHITE_BOLD("%u/%u MHz") " smx:" WHITE_BOLD("%u") " arch:" WHITE_BOLD("%u%u") " mem:" CYAN("%zu/%zu") " MB",
"CUDA GPU",
device.index(),
device.topology().toString().data(),
device.name().data(),
device.clock(),
device.memoryClock(),
device.smx(),
device.computeCapability(true),
device.computeCapability(false),
device.freeMemSize() / oneMiB,
device.globalMemSize() / oneMiB);
}
}
inline void start(const Job &)
{
LOG_INFO("%s use profile " BLUE_BG(WHITE_BOLD_S " %s ") WHITE_BOLD_S " (" CYAN_BOLD("%zu") WHITE_BOLD(" thread%s)") " scratchpad " CYAN_BOLD("%zu KB"),
tag,
profileName.data(),
threads.size(),
threads.size() > 1 ? "s" : "",
algo.l3() / 1024
);
Log::print(WHITE_BOLD("| # | GPU | BUS ID | I | T | B | BF | BS | MEM | NAME"));
size_t i = 0;
for (const auto &data : threads) {
Log::print("|" CYAN_BOLD("%3zu") " |" CYAN_BOLD("%4u") " |" YELLOW(" %7s") " |" CYAN_BOLD("%5d") " |" CYAN_BOLD("%4d") " |"
CYAN_BOLD("%4d") " |" CYAN_BOLD("%3d") " |" CYAN_BOLD("%4d") " |" CYAN("%5zu") " | " GREEN("%s"),
i,
data.thread.index(),
data.device.topology().toString().data(),
data.thread.threads() * data.thread.blocks(),
data.thread.threads(),
data.thread.blocks(),
data.thread.bfactor(),
data.thread.bsleep(),
(data.thread.threads() * data.thread.blocks()) * algo.l3() / oneMiB,
data.device.name().data()
);
i++;
}
status.start(threads.size());
workers.start(threads);
}
Algorithm algo;
Controller *controller;
CudaLaunchStatus status;
std::vector<CudaDevice> devices;
std::vector<CudaLaunchData> threads;
String profileName;
uint32_t driverVersion = 0;
uint32_t runtimeVersion = 0;
Workers<CudaLaunchData> workers;
};
} // namespace xmrig
const char *xmrig::cuda_tag()
{
return tag;
}
xmrig::CudaBackend::CudaBackend(Controller *controller) :
d_ptr(new CudaBackendPrivate(controller))
{
d_ptr->workers.setBackend(this);
}
xmrig::CudaBackend::~CudaBackend()
{
delete d_ptr;
CudaLib::close();
# ifdef XMRIG_FEATURE_NVML
NvmlLib::close();
# endif
}
bool xmrig::CudaBackend::isEnabled() const
{
return d_ptr->controller->config()->cuda().isEnabled() && CudaLib::isInitialized() && !d_ptr->devices.empty();;
}
bool xmrig::CudaBackend::isEnabled(const Algorithm &algorithm) const
{
return !d_ptr->controller->config()->cuda().threads().get(algorithm).isEmpty();
}
const xmrig::Hashrate *xmrig::CudaBackend::hashrate() const
{
return d_ptr->workers.hashrate();
}
const xmrig::String &xmrig::CudaBackend::profileName() const
{
return d_ptr->profileName;
}
const xmrig::String &xmrig::CudaBackend::type() const
{
return kType;
}
void xmrig::CudaBackend::prepare(const Job &)
{
}
void xmrig::CudaBackend::printHashrate(bool details)
{
if (!details || !hashrate()) {
return;
}
char num[8 * 3] = { 0 };
Log::print(WHITE_BOLD_S "| CUDA # | AFFINITY | 10s H/s | 60s H/s | 15m H/s |");
size_t i = 0;
for (const auto &data : d_ptr->threads) {
Log::print("| %8zu | %8" PRId64 " | %7s | %7s | %7s |" CYAN_BOLD(" #%u") YELLOW(" %s") GREEN(" %s"),
i,
data.thread.affinity(),
Hashrate::format(hashrate()->calc(i, Hashrate::ShortInterval), num, sizeof num / 3),
Hashrate::format(hashrate()->calc(i, Hashrate::MediumInterval), num + 8, sizeof num / 3),
Hashrate::format(hashrate()->calc(i, Hashrate::LargeInterval), num + 8 * 2, sizeof num / 3),
data.device.index(),
data.device.topology().toString().data(),
data.device.name().data()
);
i++;
}
Log::print(WHITE_BOLD_S "| - | - | %7s | %7s | %7s |",
Hashrate::format(hashrate()->calc(Hashrate::ShortInterval), num, sizeof num / 3),
Hashrate::format(hashrate()->calc(Hashrate::MediumInterval), num + 8, sizeof num / 3),
Hashrate::format(hashrate()->calc(Hashrate::LargeInterval), num + 8 * 2, sizeof num / 3)
);
}
void xmrig::CudaBackend::setJob(const Job &job)
{
const auto &cuda = d_ptr->controller->config()->cuda();
if (cuda.isEnabled()) {
d_ptr->init(cuda);
}
if (!isEnabled()) {
return stop();
}
auto threads = cuda.get(d_ptr->controller->miner(), job.algorithm(), d_ptr->devices);
if (!d_ptr->threads.empty() && d_ptr->threads.size() == threads.size() && std::equal(d_ptr->threads.begin(), d_ptr->threads.end(), threads.begin())) {
return;
}
d_ptr->algo = job.algorithm();
d_ptr->profileName = cuda.threads().profileName(job.algorithm());
if (d_ptr->profileName.isNull() || threads.empty()) {
LOG_WARN("%s " RED_BOLD("disabled") YELLOW(" (no suitable configuration found)"), tag);
return stop();
}
stop();
d_ptr->threads = std::move(threads);
d_ptr->start(job);
}
void xmrig::CudaBackend::start(IWorker *worker, bool ready)
{
mutex.lock();
if (d_ptr->status.started(ready)) {
d_ptr->status.print();
CudaWorker::ready = true;
}
mutex.unlock();
if (ready) {
worker->start();
}
}
void xmrig::CudaBackend::stop()
{
if (d_ptr->threads.empty()) {
return;
}
const uint64_t ts = Chrono::steadyMSecs();
d_ptr->workers.stop();
d_ptr->threads.clear();
LOG_INFO("%s" YELLOW(" stopped") BLACK_BOLD(" (%" PRIu64 " ms)"), tag, Chrono::steadyMSecs() - ts);
}
void xmrig::CudaBackend::tick(uint64_t ticks)
{
d_ptr->workers.tick(ticks);
}
#ifdef XMRIG_FEATURE_API
rapidjson::Value xmrig::CudaBackend::toJSON(rapidjson::Document &doc) const
{
using namespace rapidjson;
auto &allocator = doc.GetAllocator();
Value out(kObjectType);
out.AddMember("type", type().toJSON(), allocator);
out.AddMember("enabled", isEnabled(), allocator);
out.AddMember("algo", d_ptr->algo.toJSON(), allocator);
out.AddMember("profile", profileName().toJSON(), allocator);
Value versions(kObjectType);
versions.AddMember("cuda-runtime", Value(CudaLib::version(d_ptr->runtimeVersion).c_str(), allocator), allocator);
versions.AddMember("cuda-driver", Value(CudaLib::version(d_ptr->driverVersion).c_str(), allocator), allocator);
versions.AddMember("plugin", String(CudaLib::pluginVersion()).toJSON(doc), allocator);
# ifdef XMRIG_FEATURE_NVML
if (NvmlLib::isReady()) {
versions.AddMember("nvml", StringRef(NvmlLib::version()), allocator);
versions.AddMember("driver", StringRef(NvmlLib::driverVersion()), allocator);
}
# endif
out.AddMember("versions", versions, allocator);
if (d_ptr->threads.empty() || !hashrate()) {
return out;
}
out.AddMember("hashrate", hashrate()->toJSON(doc), allocator);
Value threads(kArrayType);
size_t i = 0;
for (const auto &data : d_ptr->threads) {
Value thread = data.thread.toJSON(doc);
thread.AddMember("hashrate", hashrate()->toJSON(i, doc), allocator);
data.device.toJSON(thread, doc);
i++;
threads.PushBack(thread, allocator);
}
out.AddMember("threads", threads, allocator);
return out;
}
void xmrig::CudaBackend::handleRequest(IApiRequest &)
{
}
#endif