mirror of
https://github.com/xmrig/xmrig.git
synced 2024-11-19 10:31:05 +00:00
1481 lines
59 KiB
C++
1481 lines
59 KiB
C++
/* XMRig
|
|
* Copyright 2010 Jeff Garzik <jgarzik@pobox.com>
|
|
* Copyright 2012-2014 pooler <pooler@litecoinpool.org>
|
|
* Copyright 2014 Lucas Jones <https://github.com/lucasjones>
|
|
* Copyright 2014-2016 Wolf9466 <https://github.com/OhGodAPet>
|
|
* Copyright 2016 Jay D Dee <jayddee246@gmail.com>
|
|
* Copyright 2017-2019 XMR-Stak <https://github.com/fireice-uk>, <https://github.com/psychocrypt>
|
|
* Copyright 2018 Lee Clagett <https://github.com/vtnerd>
|
|
* Copyright 2018-2019 SChernykh <https://github.com/SChernykh>
|
|
* Copyright 2016-2019 XMRig <https://github.com/xmrig>, <support@xmrig.com>
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef XMRIG_CRYPTONIGHT_X86_H
|
|
#define XMRIG_CRYPTONIGHT_X86_H
|
|
|
|
|
|
#ifdef __GNUC__
|
|
# include <x86intrin.h>
|
|
#else
|
|
# include <intrin.h>
|
|
# define __restrict__ __restrict
|
|
#endif
|
|
|
|
|
|
#include "common/cpu/Cpu.h"
|
|
#include "common/crypto/keccak.h"
|
|
#include "crypto/CryptoNight.h"
|
|
#include "crypto/CryptoNight_constants.h"
|
|
#include "crypto/CryptoNight_monero.h"
|
|
#include "crypto/soft_aes.h"
|
|
|
|
|
|
extern "C"
|
|
{
|
|
#include "crypto/c_groestl.h"
|
|
#include "crypto/c_blake256.h"
|
|
#include "crypto/c_jh.h"
|
|
#include "crypto/c_skein.h"
|
|
}
|
|
|
|
|
|
static inline void do_blake_hash(const uint8_t *input, size_t len, uint8_t *output) {
|
|
blake256_hash(output, input, len);
|
|
}
|
|
|
|
|
|
static inline void do_groestl_hash(const uint8_t *input, size_t len, uint8_t *output) {
|
|
groestl(input, len * 8, output);
|
|
}
|
|
|
|
|
|
static inline void do_jh_hash(const uint8_t *input, size_t len, uint8_t *output) {
|
|
jh_hash(32 * 8, input, 8 * len, output);
|
|
}
|
|
|
|
|
|
static inline void do_skein_hash(const uint8_t *input, size_t len, uint8_t *output) {
|
|
xmr_skein(input, output);
|
|
}
|
|
|
|
|
|
void (* const extra_hashes[4])(const uint8_t *, size_t, uint8_t *) = {do_blake_hash, do_groestl_hash, do_jh_hash, do_skein_hash};
|
|
|
|
|
|
#if defined(__x86_64__) || defined(_M_AMD64)
|
|
# ifdef __GNUC__
|
|
static inline uint64_t __umul128(uint64_t a, uint64_t b, uint64_t* hi)
|
|
{
|
|
unsigned __int128 r = (unsigned __int128) a * (unsigned __int128) b;
|
|
*hi = r >> 64;
|
|
return (uint64_t) r;
|
|
}
|
|
# else
|
|
#define __umul128 _umul128
|
|
# endif
|
|
#elif defined(__i386__) || defined(_M_IX86)
|
|
static inline int64_t _mm_cvtsi128_si64(__m128i a)
|
|
{
|
|
return ((uint64_t)(uint32_t)_mm_cvtsi128_si32(a) | ((uint64_t)(uint32_t)_mm_cvtsi128_si32(_mm_srli_si128(a, 4)) << 32));
|
|
}
|
|
|
|
static inline __m128i _mm_cvtsi64_si128(int64_t a) {
|
|
return _mm_set_epi64x(0, a);
|
|
}
|
|
|
|
static inline uint64_t __umul128(uint64_t multiplier, uint64_t multiplicand, uint64_t *product_hi) {
|
|
// multiplier = ab = a * 2^32 + b
|
|
// multiplicand = cd = c * 2^32 + d
|
|
// ab * cd = a * c * 2^64 + (a * d + b * c) * 2^32 + b * d
|
|
uint64_t a = multiplier >> 32;
|
|
uint64_t b = multiplier & 0xFFFFFFFF;
|
|
uint64_t c = multiplicand >> 32;
|
|
uint64_t d = multiplicand & 0xFFFFFFFF;
|
|
|
|
//uint64_t ac = a * c;
|
|
uint64_t ad = a * d;
|
|
//uint64_t bc = b * c;
|
|
uint64_t bd = b * d;
|
|
|
|
uint64_t adbc = ad + (b * c);
|
|
uint64_t adbc_carry = adbc < ad ? 1 : 0;
|
|
|
|
// multiplier * multiplicand = product_hi * 2^64 + product_lo
|
|
uint64_t product_lo = bd + (adbc << 32);
|
|
uint64_t product_lo_carry = product_lo < bd ? 1 : 0;
|
|
*product_hi = (a * c) + (adbc >> 32) + (adbc_carry << 32) + product_lo_carry;
|
|
|
|
return product_lo;
|
|
}
|
|
#endif
|
|
|
|
|
|
// This will shift and xor tmp1 into itself as 4 32-bit vals such as
|
|
// sl_xor(a1 a2 a3 a4) = a1 (a2^a1) (a3^a2^a1) (a4^a3^a2^a1)
|
|
static inline __m128i sl_xor(__m128i tmp1)
|
|
{
|
|
__m128i tmp4;
|
|
tmp4 = _mm_slli_si128(tmp1, 0x04);
|
|
tmp1 = _mm_xor_si128(tmp1, tmp4);
|
|
tmp4 = _mm_slli_si128(tmp4, 0x04);
|
|
tmp1 = _mm_xor_si128(tmp1, tmp4);
|
|
tmp4 = _mm_slli_si128(tmp4, 0x04);
|
|
tmp1 = _mm_xor_si128(tmp1, tmp4);
|
|
return tmp1;
|
|
}
|
|
|
|
|
|
template<uint8_t rcon>
|
|
static inline void aes_genkey_sub(__m128i* xout0, __m128i* xout2)
|
|
{
|
|
__m128i xout1 = _mm_aeskeygenassist_si128(*xout2, rcon);
|
|
xout1 = _mm_shuffle_epi32(xout1, 0xFF); // see PSHUFD, set all elems to 4th elem
|
|
*xout0 = sl_xor(*xout0);
|
|
*xout0 = _mm_xor_si128(*xout0, xout1);
|
|
xout1 = _mm_aeskeygenassist_si128(*xout0, 0x00);
|
|
xout1 = _mm_shuffle_epi32(xout1, 0xAA); // see PSHUFD, set all elems to 3rd elem
|
|
*xout2 = sl_xor(*xout2);
|
|
*xout2 = _mm_xor_si128(*xout2, xout1);
|
|
}
|
|
|
|
|
|
template<uint8_t rcon>
|
|
static inline void soft_aes_genkey_sub(__m128i* xout0, __m128i* xout2)
|
|
{
|
|
__m128i xout1 = soft_aeskeygenassist<rcon>(*xout2);
|
|
xout1 = _mm_shuffle_epi32(xout1, 0xFF); // see PSHUFD, set all elems to 4th elem
|
|
*xout0 = sl_xor(*xout0);
|
|
*xout0 = _mm_xor_si128(*xout0, xout1);
|
|
xout1 = soft_aeskeygenassist<0x00>(*xout0);
|
|
xout1 = _mm_shuffle_epi32(xout1, 0xAA); // see PSHUFD, set all elems to 3rd elem
|
|
*xout2 = sl_xor(*xout2);
|
|
*xout2 = _mm_xor_si128(*xout2, xout1);
|
|
}
|
|
|
|
|
|
template<bool SOFT_AES>
|
|
static inline void aes_genkey(const __m128i* memory, __m128i* k0, __m128i* k1, __m128i* k2, __m128i* k3, __m128i* k4, __m128i* k5, __m128i* k6, __m128i* k7, __m128i* k8, __m128i* k9)
|
|
{
|
|
__m128i xout0 = _mm_load_si128(memory);
|
|
__m128i xout2 = _mm_load_si128(memory + 1);
|
|
*k0 = xout0;
|
|
*k1 = xout2;
|
|
|
|
SOFT_AES ? soft_aes_genkey_sub<0x01>(&xout0, &xout2) : aes_genkey_sub<0x01>(&xout0, &xout2);
|
|
*k2 = xout0;
|
|
*k3 = xout2;
|
|
|
|
SOFT_AES ? soft_aes_genkey_sub<0x02>(&xout0, &xout2) : aes_genkey_sub<0x02>(&xout0, &xout2);
|
|
*k4 = xout0;
|
|
*k5 = xout2;
|
|
|
|
SOFT_AES ? soft_aes_genkey_sub<0x04>(&xout0, &xout2) : aes_genkey_sub<0x04>(&xout0, &xout2);
|
|
*k6 = xout0;
|
|
*k7 = xout2;
|
|
|
|
SOFT_AES ? soft_aes_genkey_sub<0x08>(&xout0, &xout2) : aes_genkey_sub<0x08>(&xout0, &xout2);
|
|
*k8 = xout0;
|
|
*k9 = xout2;
|
|
}
|
|
|
|
|
|
static FORCEINLINE void soft_aesenc(void* __restrict ptr, const void* __restrict key, const uint32_t* __restrict t)
|
|
{
|
|
uint32_t x0 = ((const uint32_t*)(ptr))[0];
|
|
uint32_t x1 = ((const uint32_t*)(ptr))[1];
|
|
uint32_t x2 = ((const uint32_t*)(ptr))[2];
|
|
uint32_t x3 = ((const uint32_t*)(ptr))[3];
|
|
|
|
uint32_t y0 = t[x0 & 0xff]; x0 >>= 8;
|
|
uint32_t y1 = t[x1 & 0xff]; x1 >>= 8;
|
|
uint32_t y2 = t[x2 & 0xff]; x2 >>= 8;
|
|
uint32_t y3 = t[x3 & 0xff]; x3 >>= 8;
|
|
t += 256;
|
|
|
|
y0 ^= t[x1 & 0xff]; x1 >>= 8;
|
|
y1 ^= t[x2 & 0xff]; x2 >>= 8;
|
|
y2 ^= t[x3 & 0xff]; x3 >>= 8;
|
|
y3 ^= t[x0 & 0xff]; x0 >>= 8;
|
|
t += 256;
|
|
|
|
y0 ^= t[x2 & 0xff]; x2 >>= 8;
|
|
y1 ^= t[x3 & 0xff]; x3 >>= 8;
|
|
y2 ^= t[x0 & 0xff]; x0 >>= 8;
|
|
y3 ^= t[x1 & 0xff]; x1 >>= 8;
|
|
t += 256;
|
|
|
|
y0 ^= t[x3];
|
|
y1 ^= t[x0];
|
|
y2 ^= t[x1];
|
|
y3 ^= t[x2];
|
|
|
|
((uint32_t*)ptr)[0] = y0 ^ ((uint32_t*)key)[0];
|
|
((uint32_t*)ptr)[1] = y1 ^ ((uint32_t*)key)[1];
|
|
((uint32_t*)ptr)[2] = y2 ^ ((uint32_t*)key)[2];
|
|
((uint32_t*)ptr)[3] = y3 ^ ((uint32_t*)key)[3];
|
|
}
|
|
|
|
static FORCEINLINE __m128i soft_aesenc(const void* __restrict ptr, const __m128i key, const uint32_t* __restrict t)
|
|
{
|
|
uint32_t x0 = ((const uint32_t*)(ptr))[0];
|
|
uint32_t x1 = ((const uint32_t*)(ptr))[1];
|
|
uint32_t x2 = ((const uint32_t*)(ptr))[2];
|
|
uint32_t x3 = ((const uint32_t*)(ptr))[3];
|
|
|
|
uint32_t y0 = t[x0 & 0xff]; x0 >>= 8;
|
|
uint32_t y1 = t[x1 & 0xff]; x1 >>= 8;
|
|
uint32_t y2 = t[x2 & 0xff]; x2 >>= 8;
|
|
uint32_t y3 = t[x3 & 0xff]; x3 >>= 8;
|
|
t += 256;
|
|
|
|
y0 ^= t[x1 & 0xff]; x1 >>= 8;
|
|
y1 ^= t[x2 & 0xff]; x2 >>= 8;
|
|
y2 ^= t[x3 & 0xff]; x3 >>= 8;
|
|
y3 ^= t[x0 & 0xff]; x0 >>= 8;
|
|
t += 256;
|
|
|
|
y0 ^= t[x2 & 0xff]; x2 >>= 8;
|
|
y1 ^= t[x3 & 0xff]; x3 >>= 8;
|
|
y2 ^= t[x0 & 0xff]; x0 >>= 8;
|
|
y3 ^= t[x1 & 0xff]; x1 >>= 8;
|
|
|
|
y0 ^= t[x3 + 256];
|
|
y1 ^= t[x0 + 256];
|
|
y2 ^= t[x1 + 256];
|
|
y3 ^= t[x2 + 256];
|
|
|
|
return _mm_xor_si128(_mm_set_epi32(y3, y2, y1, y0), key);
|
|
}
|
|
|
|
template<bool SOFT_AES>
|
|
void aes_round(__m128i key, __m128i* x0, __m128i* x1, __m128i* x2, __m128i* x3, __m128i* x4, __m128i* x5, __m128i* x6, __m128i* x7);
|
|
|
|
template<>
|
|
NOINLINE void aes_round<true>(__m128i key, __m128i* x0, __m128i* x1, __m128i* x2, __m128i* x3, __m128i* x4, __m128i* x5, __m128i* x6, __m128i* x7)
|
|
{
|
|
*x0 = soft_aesenc((uint32_t*)x0, key, (const uint32_t*)saes_table);
|
|
*x1 = soft_aesenc((uint32_t*)x1, key, (const uint32_t*)saes_table);
|
|
*x2 = soft_aesenc((uint32_t*)x2, key, (const uint32_t*)saes_table);
|
|
*x3 = soft_aesenc((uint32_t*)x3, key, (const uint32_t*)saes_table);
|
|
*x4 = soft_aesenc((uint32_t*)x4, key, (const uint32_t*)saes_table);
|
|
*x5 = soft_aesenc((uint32_t*)x5, key, (const uint32_t*)saes_table);
|
|
*x6 = soft_aesenc((uint32_t*)x6, key, (const uint32_t*)saes_table);
|
|
*x7 = soft_aesenc((uint32_t*)x7, key, (const uint32_t*)saes_table);
|
|
}
|
|
|
|
template<>
|
|
FORCEINLINE void aes_round<false>(__m128i key, __m128i* x0, __m128i* x1, __m128i* x2, __m128i* x3, __m128i* x4, __m128i* x5, __m128i* x6, __m128i* x7)
|
|
{
|
|
*x0 = _mm_aesenc_si128(*x0, key);
|
|
*x1 = _mm_aesenc_si128(*x1, key);
|
|
*x2 = _mm_aesenc_si128(*x2, key);
|
|
*x3 = _mm_aesenc_si128(*x3, key);
|
|
*x4 = _mm_aesenc_si128(*x4, key);
|
|
*x5 = _mm_aesenc_si128(*x5, key);
|
|
*x6 = _mm_aesenc_si128(*x6, key);
|
|
*x7 = _mm_aesenc_si128(*x7, key);
|
|
}
|
|
|
|
inline void mix_and_propagate(__m128i& x0, __m128i& x1, __m128i& x2, __m128i& x3, __m128i& x4, __m128i& x5, __m128i& x6, __m128i& x7)
|
|
{
|
|
__m128i tmp0 = x0;
|
|
x0 = _mm_xor_si128(x0, x1);
|
|
x1 = _mm_xor_si128(x1, x2);
|
|
x2 = _mm_xor_si128(x2, x3);
|
|
x3 = _mm_xor_si128(x3, x4);
|
|
x4 = _mm_xor_si128(x4, x5);
|
|
x5 = _mm_xor_si128(x5, x6);
|
|
x6 = _mm_xor_si128(x6, x7);
|
|
x7 = _mm_xor_si128(x7, tmp0);
|
|
}
|
|
|
|
|
|
template<xmrig::Algo ALGO, size_t MEM, bool SOFT_AES>
|
|
static inline void cn_explode_scratchpad(const __m128i *input, __m128i *output)
|
|
{
|
|
__m128i xin0, xin1, xin2, xin3, xin4, xin5, xin6, xin7;
|
|
__m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9;
|
|
|
|
aes_genkey<SOFT_AES>(input, &k0, &k1, &k2, &k3, &k4, &k5, &k6, &k7, &k8, &k9);
|
|
|
|
xin0 = _mm_load_si128(input + 4);
|
|
xin1 = _mm_load_si128(input + 5);
|
|
xin2 = _mm_load_si128(input + 6);
|
|
xin3 = _mm_load_si128(input + 7);
|
|
xin4 = _mm_load_si128(input + 8);
|
|
xin5 = _mm_load_si128(input + 9);
|
|
xin6 = _mm_load_si128(input + 10);
|
|
xin7 = _mm_load_si128(input + 11);
|
|
|
|
if (ALGO == xmrig::CRYPTONIGHT_HEAVY) {
|
|
for (size_t i = 0; i < 16; i++) {
|
|
aes_round<SOFT_AES>(k0, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
|
|
aes_round<SOFT_AES>(k1, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
|
|
aes_round<SOFT_AES>(k2, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
|
|
aes_round<SOFT_AES>(k3, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
|
|
aes_round<SOFT_AES>(k4, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
|
|
aes_round<SOFT_AES>(k5, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
|
|
aes_round<SOFT_AES>(k6, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
|
|
aes_round<SOFT_AES>(k7, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
|
|
aes_round<SOFT_AES>(k8, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
|
|
aes_round<SOFT_AES>(k9, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
|
|
|
|
mix_and_propagate(xin0, xin1, xin2, xin3, xin4, xin5, xin6, xin7);
|
|
}
|
|
}
|
|
|
|
for (size_t i = 0; i < MEM / sizeof(__m128i); i += 8) {
|
|
aes_round<SOFT_AES>(k0, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
|
|
aes_round<SOFT_AES>(k1, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
|
|
aes_round<SOFT_AES>(k2, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
|
|
aes_round<SOFT_AES>(k3, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
|
|
aes_round<SOFT_AES>(k4, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
|
|
aes_round<SOFT_AES>(k5, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
|
|
aes_round<SOFT_AES>(k6, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
|
|
aes_round<SOFT_AES>(k7, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
|
|
aes_round<SOFT_AES>(k8, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
|
|
aes_round<SOFT_AES>(k9, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
|
|
|
|
_mm_store_si128(output + i + 0, xin0);
|
|
_mm_store_si128(output + i + 1, xin1);
|
|
_mm_store_si128(output + i + 2, xin2);
|
|
_mm_store_si128(output + i + 3, xin3);
|
|
_mm_store_si128(output + i + 4, xin4);
|
|
_mm_store_si128(output + i + 5, xin5);
|
|
_mm_store_si128(output + i + 6, xin6);
|
|
_mm_store_si128(output + i + 7, xin7);
|
|
}
|
|
}
|
|
|
|
|
|
#ifndef XMRIG_NO_CN_GPU
|
|
template<xmrig::Algo ALGO, size_t MEM>
|
|
void cn_explode_scratchpad_gpu(const uint8_t *input, uint8_t *output)
|
|
{
|
|
constexpr size_t hash_size = 200; // 25x8 bytes
|
|
alignas(16) uint64_t hash[25];
|
|
|
|
for (uint64_t i = 0; i < MEM / 512; i++)
|
|
{
|
|
memcpy(hash, input, hash_size);
|
|
hash[0] ^= i;
|
|
|
|
xmrig::keccakf(hash, 24);
|
|
memcpy(output, hash, 160);
|
|
output += 160;
|
|
|
|
xmrig::keccakf(hash, 24);
|
|
memcpy(output, hash, 176);
|
|
output += 176;
|
|
|
|
xmrig::keccakf(hash, 24);
|
|
memcpy(output, hash, 176);
|
|
output += 176;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
template<xmrig::Algo ALGO, size_t MEM, bool SOFT_AES>
|
|
static inline void cn_implode_scratchpad(const __m128i *input, __m128i *output)
|
|
{
|
|
__m128i xout0, xout1, xout2, xout3, xout4, xout5, xout6, xout7;
|
|
__m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9;
|
|
|
|
aes_genkey<SOFT_AES>(output + 2, &k0, &k1, &k2, &k3, &k4, &k5, &k6, &k7, &k8, &k9);
|
|
|
|
xout0 = _mm_load_si128(output + 4);
|
|
xout1 = _mm_load_si128(output + 5);
|
|
xout2 = _mm_load_si128(output + 6);
|
|
xout3 = _mm_load_si128(output + 7);
|
|
xout4 = _mm_load_si128(output + 8);
|
|
xout5 = _mm_load_si128(output + 9);
|
|
xout6 = _mm_load_si128(output + 10);
|
|
xout7 = _mm_load_si128(output + 11);
|
|
|
|
for (size_t i = 0; i < MEM / sizeof(__m128i); i += 8)
|
|
{
|
|
xout0 = _mm_xor_si128(_mm_load_si128(input + i + 0), xout0);
|
|
xout1 = _mm_xor_si128(_mm_load_si128(input + i + 1), xout1);
|
|
xout2 = _mm_xor_si128(_mm_load_si128(input + i + 2), xout2);
|
|
xout3 = _mm_xor_si128(_mm_load_si128(input + i + 3), xout3);
|
|
xout4 = _mm_xor_si128(_mm_load_si128(input + i + 4), xout4);
|
|
xout5 = _mm_xor_si128(_mm_load_si128(input + i + 5), xout5);
|
|
xout6 = _mm_xor_si128(_mm_load_si128(input + i + 6), xout6);
|
|
xout7 = _mm_xor_si128(_mm_load_si128(input + i + 7), xout7);
|
|
|
|
aes_round<SOFT_AES>(k0, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
aes_round<SOFT_AES>(k1, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
aes_round<SOFT_AES>(k2, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
aes_round<SOFT_AES>(k3, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
aes_round<SOFT_AES>(k4, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
aes_round<SOFT_AES>(k5, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
aes_round<SOFT_AES>(k6, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
aes_round<SOFT_AES>(k7, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
aes_round<SOFT_AES>(k8, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
aes_round<SOFT_AES>(k9, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
|
|
if (ALGO == xmrig::CRYPTONIGHT_HEAVY) {
|
|
mix_and_propagate(xout0, xout1, xout2, xout3, xout4, xout5, xout6, xout7);
|
|
}
|
|
}
|
|
|
|
if (ALGO == xmrig::CRYPTONIGHT_HEAVY) {
|
|
for (size_t i = 0; i < MEM / sizeof(__m128i); i += 8) {
|
|
xout0 = _mm_xor_si128(_mm_load_si128(input + i + 0), xout0);
|
|
xout1 = _mm_xor_si128(_mm_load_si128(input + i + 1), xout1);
|
|
xout2 = _mm_xor_si128(_mm_load_si128(input + i + 2), xout2);
|
|
xout3 = _mm_xor_si128(_mm_load_si128(input + i + 3), xout3);
|
|
xout4 = _mm_xor_si128(_mm_load_si128(input + i + 4), xout4);
|
|
xout5 = _mm_xor_si128(_mm_load_si128(input + i + 5), xout5);
|
|
xout6 = _mm_xor_si128(_mm_load_si128(input + i + 6), xout6);
|
|
xout7 = _mm_xor_si128(_mm_load_si128(input + i + 7), xout7);
|
|
|
|
aes_round<SOFT_AES>(k0, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
aes_round<SOFT_AES>(k1, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
aes_round<SOFT_AES>(k2, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
aes_round<SOFT_AES>(k3, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
aes_round<SOFT_AES>(k4, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
aes_round<SOFT_AES>(k5, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
aes_round<SOFT_AES>(k6, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
aes_round<SOFT_AES>(k7, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
aes_round<SOFT_AES>(k8, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
aes_round<SOFT_AES>(k9, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
|
|
mix_and_propagate(xout0, xout1, xout2, xout3, xout4, xout5, xout6, xout7);
|
|
}
|
|
|
|
for (size_t i = 0; i < 16; i++) {
|
|
aes_round<SOFT_AES>(k0, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
aes_round<SOFT_AES>(k1, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
aes_round<SOFT_AES>(k2, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
aes_round<SOFT_AES>(k3, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
aes_round<SOFT_AES>(k4, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
aes_round<SOFT_AES>(k5, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
aes_round<SOFT_AES>(k6, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
aes_round<SOFT_AES>(k7, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
aes_round<SOFT_AES>(k8, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
aes_round<SOFT_AES>(k9, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
|
|
mix_and_propagate(xout0, xout1, xout2, xout3, xout4, xout5, xout6, xout7);
|
|
}
|
|
}
|
|
|
|
_mm_store_si128(output + 4, xout0);
|
|
_mm_store_si128(output + 5, xout1);
|
|
_mm_store_si128(output + 6, xout2);
|
|
_mm_store_si128(output + 7, xout3);
|
|
_mm_store_si128(output + 8, xout4);
|
|
_mm_store_si128(output + 9, xout5);
|
|
_mm_store_si128(output + 10, xout6);
|
|
_mm_store_si128(output + 11, xout7);
|
|
}
|
|
|
|
|
|
static inline __m128i aes_round_tweak_div(const __m128i &in, const __m128i &key)
|
|
{
|
|
alignas(16) uint32_t k[4];
|
|
alignas(16) uint32_t x[4];
|
|
|
|
_mm_store_si128((__m128i*) k, key);
|
|
_mm_store_si128((__m128i*) x, _mm_xor_si128(in, _mm_set_epi64x(0xffffffffffffffff, 0xffffffffffffffff)));
|
|
|
|
#define BYTE(p, i) ((unsigned char*)&x[p])[i]
|
|
k[0] ^= saes_table[0][BYTE(0, 0)] ^ saes_table[1][BYTE(1, 1)] ^ saes_table[2][BYTE(2, 2)] ^ saes_table[3][BYTE(3, 3)];
|
|
x[0] ^= k[0];
|
|
k[1] ^= saes_table[0][BYTE(1, 0)] ^ saes_table[1][BYTE(2, 1)] ^ saes_table[2][BYTE(3, 2)] ^ saes_table[3][BYTE(0, 3)];
|
|
x[1] ^= k[1];
|
|
k[2] ^= saes_table[0][BYTE(2, 0)] ^ saes_table[1][BYTE(3, 1)] ^ saes_table[2][BYTE(0, 2)] ^ saes_table[3][BYTE(1, 3)];
|
|
x[2] ^= k[2];
|
|
k[3] ^= saes_table[0][BYTE(3, 0)] ^ saes_table[1][BYTE(0, 1)] ^ saes_table[2][BYTE(1, 2)] ^ saes_table[3][BYTE(2, 3)];
|
|
#undef BYTE
|
|
|
|
return _mm_load_si128((__m128i*)k);
|
|
}
|
|
|
|
|
|
static inline __m128i int_sqrt_v2(const uint64_t n0)
|
|
{
|
|
__m128d x = _mm_castsi128_pd(_mm_add_epi64(_mm_cvtsi64_si128(n0 >> 12), _mm_set_epi64x(0, 1023ULL << 52)));
|
|
x = _mm_sqrt_sd(_mm_setzero_pd(), x);
|
|
uint64_t r = static_cast<uint64_t>(_mm_cvtsi128_si64(_mm_castpd_si128(x)));
|
|
|
|
const uint64_t s = r >> 20;
|
|
r >>= 19;
|
|
|
|
uint64_t x2 = (s - (1022ULL << 32)) * (r - s - (1022ULL << 32) + 1);
|
|
# if (defined(_MSC_VER) || __GNUC__ > 7 || (__GNUC__ == 7 && __GNUC_MINOR__ > 1)) && (defined(__x86_64__) || defined(_M_AMD64))
|
|
_addcarry_u64(_subborrow_u64(0, x2, n0, (unsigned long long int*)&x2), r, 0, (unsigned long long int*)&r);
|
|
# else
|
|
if (x2 < n0) ++r;
|
|
# endif
|
|
|
|
return _mm_cvtsi64_si128(r);
|
|
}
|
|
|
|
|
|
template<xmrig::Variant VARIANT, xmrig::Variant BASE>
|
|
static inline void cryptonight_monero_tweak(uint64_t* mem_out, const uint8_t* l, uint64_t idx, __m128i ax0, __m128i bx0, __m128i bx1, __m128i& cx)
|
|
{
|
|
if (BASE == xmrig::VARIANT_2) {
|
|
VARIANT2_SHUFFLE(l, idx, ax0, bx0, bx1, cx, (VARIANT == xmrig::VARIANT_RWZ ? 1 : 0));
|
|
_mm_store_si128((__m128i *)mem_out, _mm_xor_si128(bx0, cx));
|
|
} else {
|
|
__m128i tmp = _mm_xor_si128(bx0, cx);
|
|
mem_out[0] = _mm_cvtsi128_si64(tmp);
|
|
|
|
tmp = _mm_castps_si128(_mm_movehl_ps(_mm_castsi128_ps(tmp), _mm_castsi128_ps(tmp)));
|
|
uint64_t vh = _mm_cvtsi128_si64(tmp);
|
|
|
|
uint8_t x = static_cast<uint8_t>(vh >> 24);
|
|
static const uint16_t table = 0x7531;
|
|
const uint8_t index = (((x >> (VARIANT == xmrig::VARIANT_XTL ? 4 : 3)) & 6) | (x & 1)) << 1;
|
|
vh ^= ((table >> index) & 0x3) << 28;
|
|
|
|
mem_out[1] = vh;
|
|
}
|
|
}
|
|
|
|
void wow_soft_aes_compile_code(const V4_Instruction* code, int code_size, void* machine_code, xmrig::Assembly ASM);
|
|
void v4_soft_aes_compile_code(const V4_Instruction* code, int code_size, void* machine_code, xmrig::Assembly ASM);
|
|
|
|
template<xmrig::Algo ALGO, bool SOFT_AES, xmrig::Variant VARIANT>
|
|
inline void cryptonight_single_hash(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, cryptonight_ctx **__restrict__ ctx, uint64_t height)
|
|
{
|
|
constexpr size_t MASK = xmrig::cn_select_mask<ALGO>();
|
|
constexpr size_t ITERATIONS = xmrig::cn_select_iter<ALGO, VARIANT>();
|
|
constexpr size_t MEM = xmrig::cn_select_memory<ALGO>();
|
|
constexpr xmrig::Variant BASE = xmrig::cn_base_variant<VARIANT>();
|
|
|
|
static_assert(MASK > 0 && ITERATIONS > 0 && MEM > 0, "unsupported algorithm/variant");
|
|
|
|
if (BASE == xmrig::VARIANT_1 && size < 43) {
|
|
memset(output, 0, 32);
|
|
return;
|
|
}
|
|
|
|
xmrig::keccak(input, size, ctx[0]->state);
|
|
|
|
cn_explode_scratchpad<ALGO, MEM, SOFT_AES>((__m128i*) ctx[0]->state, (__m128i*) ctx[0]->memory);
|
|
|
|
uint64_t* h0 = reinterpret_cast<uint64_t*>(ctx[0]->state);
|
|
|
|
#ifndef XMRIG_NO_ASM
|
|
if (SOFT_AES && xmrig::cn_is_cryptonight_r<VARIANT>())
|
|
{
|
|
if (!ctx[0]->generated_code_data.match(VARIANT, height)) {
|
|
V4_Instruction code[256];
|
|
const int code_size = v4_random_math_init<VARIANT>(code, height);
|
|
|
|
if (VARIANT == xmrig::VARIANT_WOW)
|
|
wow_soft_aes_compile_code(code, code_size, reinterpret_cast<void*>(ctx[0]->generated_code), xmrig::ASM_NONE);
|
|
else if (VARIANT == xmrig::VARIANT_4)
|
|
v4_soft_aes_compile_code(code, code_size, reinterpret_cast<void*>(ctx[0]->generated_code), xmrig::ASM_NONE);
|
|
|
|
ctx[0]->generated_code_data.variant = VARIANT;
|
|
ctx[0]->generated_code_data.height = height;
|
|
}
|
|
|
|
ctx[0]->saes_table = (const uint32_t*)saes_table;
|
|
ctx[0]->generated_code(ctx[0]);
|
|
} else {
|
|
#endif
|
|
|
|
const uint8_t* l0 = ctx[0]->memory;
|
|
|
|
VARIANT1_INIT(0);
|
|
VARIANT2_INIT(0);
|
|
VARIANT2_SET_ROUNDING_MODE();
|
|
VARIANT4_RANDOM_MATH_INIT(0);
|
|
|
|
uint64_t al0 = h0[0] ^ h0[4];
|
|
uint64_t ah0 = h0[1] ^ h0[5];
|
|
__m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
|
|
__m128i bx1 = _mm_set_epi64x(h0[9] ^ h0[11], h0[8] ^ h0[10]);
|
|
|
|
uint64_t idx0 = al0;
|
|
|
|
for (size_t i = 0; i < ITERATIONS; i++) {
|
|
__m128i cx;
|
|
if (VARIANT == xmrig::VARIANT_TUBE || !SOFT_AES) {
|
|
cx = _mm_load_si128((__m128i *) &l0[idx0 & MASK]);
|
|
}
|
|
|
|
const __m128i ax0 = _mm_set_epi64x(ah0, al0);
|
|
if (VARIANT == xmrig::VARIANT_TUBE) {
|
|
cx = aes_round_tweak_div(cx, ax0);
|
|
}
|
|
else if (SOFT_AES) {
|
|
cx = soft_aesenc((uint32_t*)&l0[idx0 & MASK], ax0, (const uint32_t*)saes_table);
|
|
}
|
|
else {
|
|
cx = _mm_aesenc_si128(cx, ax0);
|
|
}
|
|
|
|
if (BASE == xmrig::VARIANT_1 || BASE == xmrig::VARIANT_2) {
|
|
cryptonight_monero_tweak<VARIANT, BASE>((uint64_t*)&l0[idx0 & MASK], l0, idx0 & MASK, ax0, bx0, bx1, cx);
|
|
} else {
|
|
_mm_store_si128((__m128i *)&l0[idx0 & MASK], _mm_xor_si128(bx0, cx));
|
|
}
|
|
|
|
idx0 = _mm_cvtsi128_si64(cx);
|
|
|
|
uint64_t hi, lo, cl, ch;
|
|
cl = ((uint64_t*) &l0[idx0 & MASK])[0];
|
|
ch = ((uint64_t*) &l0[idx0 & MASK])[1];
|
|
|
|
if (BASE == xmrig::VARIANT_2) {
|
|
if ((VARIANT == xmrig::VARIANT_WOW) || (VARIANT == xmrig::VARIANT_4)) {
|
|
VARIANT4_RANDOM_MATH(0, al0, ah0, cl, bx0, bx1);
|
|
if (VARIANT == xmrig::VARIANT_4) {
|
|
al0 ^= r0[2] | ((uint64_t)(r0[3]) << 32);
|
|
ah0 ^= r0[0] | ((uint64_t)(r0[1]) << 32);
|
|
}
|
|
} else {
|
|
VARIANT2_INTEGER_MATH(0, cl, cx);
|
|
}
|
|
}
|
|
|
|
lo = __umul128(idx0, cl, &hi);
|
|
|
|
if (BASE == xmrig::VARIANT_2) {
|
|
if (VARIANT == xmrig::VARIANT_4) {
|
|
VARIANT2_SHUFFLE(l0, idx0 & MASK, ax0, bx0, bx1, cx, 0);
|
|
} else {
|
|
VARIANT2_SHUFFLE2(l0, idx0 & MASK, ax0, bx0, bx1, hi, lo, (VARIANT == xmrig::VARIANT_RWZ ? 1 : 0));
|
|
}
|
|
}
|
|
|
|
al0 += hi;
|
|
ah0 += lo;
|
|
|
|
((uint64_t*)&l0[idx0 & MASK])[0] = al0;
|
|
|
|
if (BASE == xmrig::VARIANT_1 && (VARIANT == xmrig::VARIANT_TUBE || VARIANT == xmrig::VARIANT_RTO)) {
|
|
((uint64_t*)&l0[idx0 & MASK])[1] = ah0 ^ tweak1_2_0 ^ al0;
|
|
} else if (BASE == xmrig::VARIANT_1) {
|
|
((uint64_t*)&l0[idx0 & MASK])[1] = ah0 ^ tweak1_2_0;
|
|
} else {
|
|
((uint64_t*)&l0[idx0 & MASK])[1] = ah0;
|
|
}
|
|
|
|
al0 ^= cl;
|
|
ah0 ^= ch;
|
|
idx0 = al0;
|
|
|
|
if (ALGO == xmrig::CRYPTONIGHT_HEAVY) {
|
|
int64_t n = ((int64_t*)&l0[idx0 & MASK])[0];
|
|
int32_t d = ((int32_t*)&l0[idx0 & MASK])[2];
|
|
int64_t q = n / (d | 0x5);
|
|
|
|
((int64_t*)&l0[idx0 & MASK])[0] = n ^ q;
|
|
|
|
if (VARIANT == xmrig::VARIANT_XHV) {
|
|
d = ~d;
|
|
}
|
|
|
|
idx0 = d ^ q;
|
|
}
|
|
|
|
if (BASE == xmrig::VARIANT_2) {
|
|
bx1 = bx0;
|
|
}
|
|
|
|
bx0 = cx;
|
|
}
|
|
|
|
#ifndef XMRIG_NO_ASM
|
|
}
|
|
#endif
|
|
|
|
cn_implode_scratchpad<ALGO, MEM, SOFT_AES>((__m128i*) ctx[0]->memory, (__m128i*) ctx[0]->state);
|
|
|
|
xmrig::keccakf(h0, 24);
|
|
extra_hashes[ctx[0]->state[0] & 3](ctx[0]->state, 200, output);
|
|
}
|
|
|
|
|
|
#ifndef XMRIG_NO_CN_GPU
|
|
template<size_t ITER, uint32_t MASK>
|
|
void cn_gpu_inner_avx(const uint8_t *spad, uint8_t *lpad);
|
|
|
|
|
|
template<size_t ITER, uint32_t MASK>
|
|
void cn_gpu_inner_ssse3(const uint8_t *spad, uint8_t *lpad);
|
|
|
|
|
|
template<xmrig::Algo ALGO, bool SOFT_AES, xmrig::Variant VARIANT>
|
|
inline void cryptonight_single_hash_gpu(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, cryptonight_ctx **__restrict__ ctx, uint64_t height)
|
|
{
|
|
constexpr size_t MASK = xmrig::CRYPTONIGHT_GPU_MASK;
|
|
constexpr size_t ITERATIONS = xmrig::cn_select_iter<ALGO, VARIANT>();
|
|
constexpr size_t MEM = xmrig::cn_select_memory<ALGO>();
|
|
|
|
static_assert(MASK > 0 && ITERATIONS > 0 && MEM > 0, "unsupported algorithm/variant");
|
|
|
|
xmrig::keccak(input, size, ctx[0]->state);
|
|
cn_explode_scratchpad_gpu<ALGO, MEM>(ctx[0]->state, ctx[0]->memory);
|
|
|
|
# ifdef _MSC_VER
|
|
_control87(RC_NEAR, MCW_RC);
|
|
# else
|
|
fesetround(FE_TONEAREST);
|
|
# endif
|
|
|
|
if (xmrig::Cpu::info()->hasAVX2()) {
|
|
cn_gpu_inner_avx<ITERATIONS, MASK>(ctx[0]->state, ctx[0]->memory);
|
|
} else {
|
|
cn_gpu_inner_ssse3<ITERATIONS, MASK>(ctx[0]->state, ctx[0]->memory);
|
|
}
|
|
|
|
cn_implode_scratchpad<xmrig::CRYPTONIGHT_HEAVY, MEM, SOFT_AES>((__m128i*) ctx[0]->memory, (__m128i*) ctx[0]->state);
|
|
|
|
xmrig::keccakf((uint64_t*) ctx[0]->state, 24);
|
|
memcpy(output, ctx[0]->state, 32);
|
|
}
|
|
#endif
|
|
|
|
|
|
#ifndef XMRIG_NO_ASM
|
|
extern "C" void cnv2_mainloop_ivybridge_asm(cryptonight_ctx *ctx);
|
|
extern "C" void cnv2_mainloop_ryzen_asm(cryptonight_ctx *ctx);
|
|
extern "C" void cnv2_mainloop_bulldozer_asm(cryptonight_ctx *ctx);
|
|
extern "C" void cnv2_double_mainloop_sandybridge_asm(cryptonight_ctx* ctx0, cryptonight_ctx* ctx1);
|
|
extern "C" void cnv2_rwz_mainloop_asm(cryptonight_ctx *ctx);
|
|
extern "C" void cnv2_rwz_double_mainloop_asm(cryptonight_ctx* ctx0, cryptonight_ctx* ctx1);
|
|
|
|
extern xmrig::CpuThread::cn_mainloop_fun cn_half_mainloop_ivybridge_asm;
|
|
extern xmrig::CpuThread::cn_mainloop_fun cn_half_mainloop_ryzen_asm;
|
|
extern xmrig::CpuThread::cn_mainloop_fun cn_half_mainloop_bulldozer_asm;
|
|
extern xmrig::CpuThread::cn_mainloop_double_fun cn_half_double_mainloop_sandybridge_asm;
|
|
|
|
extern xmrig::CpuThread::cn_mainloop_fun cn_trtl_mainloop_ivybridge_asm;
|
|
extern xmrig::CpuThread::cn_mainloop_fun cn_trtl_mainloop_ryzen_asm;
|
|
extern xmrig::CpuThread::cn_mainloop_fun cn_trtl_mainloop_bulldozer_asm;
|
|
extern xmrig::CpuThread::cn_mainloop_double_fun cn_trtl_double_mainloop_sandybridge_asm;
|
|
|
|
extern xmrig::CpuThread::cn_mainloop_fun cn_zls_mainloop_ivybridge_asm;
|
|
extern xmrig::CpuThread::cn_mainloop_fun cn_zls_mainloop_ryzen_asm;
|
|
extern xmrig::CpuThread::cn_mainloop_fun cn_zls_mainloop_bulldozer_asm;
|
|
extern xmrig::CpuThread::cn_mainloop_double_fun cn_zls_double_mainloop_sandybridge_asm;
|
|
|
|
extern xmrig::CpuThread::cn_mainloop_fun cn_double_mainloop_ivybridge_asm;
|
|
extern xmrig::CpuThread::cn_mainloop_fun cn_double_mainloop_ryzen_asm;
|
|
extern xmrig::CpuThread::cn_mainloop_fun cn_double_mainloop_bulldozer_asm;
|
|
extern xmrig::CpuThread::cn_mainloop_double_fun cn_double_double_mainloop_sandybridge_asm;
|
|
|
|
void wow_compile_code(const V4_Instruction* code, int code_size, void* machine_code, xmrig::Assembly ASM);
|
|
void v4_compile_code(const V4_Instruction* code, int code_size, void* machine_code, xmrig::Assembly ASM);
|
|
void wow_compile_code_double(const V4_Instruction* code, int code_size, void* machine_code, xmrig::Assembly ASM);
|
|
void v4_compile_code_double(const V4_Instruction* code, int code_size, void* machine_code, xmrig::Assembly ASM);
|
|
|
|
template<xmrig::Variant VARIANT>
|
|
void cn_r_compile_code(const V4_Instruction* code, int code_size, void* machine_code, xmrig::Assembly ASM)
|
|
{
|
|
v4_compile_code(code, code_size, machine_code, ASM);
|
|
}
|
|
|
|
template<xmrig::Variant VARIANT>
|
|
void cn_r_compile_code_double(const V4_Instruction* code, int code_size, void* machine_code, xmrig::Assembly ASM)
|
|
{
|
|
v4_compile_code_double(code, code_size, machine_code, ASM);
|
|
}
|
|
|
|
template<>
|
|
void cn_r_compile_code<xmrig::VARIANT_WOW>(const V4_Instruction* code, int code_size, void* machine_code, xmrig::Assembly ASM)
|
|
{
|
|
wow_compile_code(code, code_size, machine_code, ASM);
|
|
}
|
|
|
|
template<>
|
|
void cn_r_compile_code_double<xmrig::VARIANT_WOW>(const V4_Instruction* code, int code_size, void* machine_code, xmrig::Assembly ASM)
|
|
{
|
|
wow_compile_code_double(code, code_size, machine_code, ASM);
|
|
}
|
|
|
|
template<xmrig::Algo ALGO, xmrig::Variant VARIANT, xmrig::Assembly ASM>
|
|
inline void cryptonight_single_hash_asm(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, cryptonight_ctx **__restrict__ ctx, uint64_t height)
|
|
{
|
|
constexpr size_t MEM = xmrig::cn_select_memory<ALGO>();
|
|
|
|
if (xmrig::cn_is_cryptonight_r<VARIANT>() && !ctx[0]->generated_code_data.match(VARIANT, height)) {
|
|
V4_Instruction code[256];
|
|
const int code_size = v4_random_math_init<VARIANT>(code, height);
|
|
cn_r_compile_code<VARIANT>(code, code_size, reinterpret_cast<void*>(ctx[0]->generated_code), ASM);
|
|
ctx[0]->generated_code_data.variant = VARIANT;
|
|
ctx[0]->generated_code_data.height = height;
|
|
}
|
|
|
|
xmrig::keccak(input, size, ctx[0]->state);
|
|
cn_explode_scratchpad<ALGO, MEM, false>(reinterpret_cast<__m128i*>(ctx[0]->state), reinterpret_cast<__m128i*>(ctx[0]->memory));
|
|
|
|
if (VARIANT == xmrig::VARIANT_2) {
|
|
if (ASM == xmrig::ASM_INTEL) {
|
|
cnv2_mainloop_ivybridge_asm(ctx[0]);
|
|
}
|
|
else if (ASM == xmrig::ASM_RYZEN) {
|
|
cnv2_mainloop_ryzen_asm(ctx[0]);
|
|
}
|
|
else {
|
|
cnv2_mainloop_bulldozer_asm(ctx[0]);
|
|
}
|
|
}
|
|
else if (VARIANT == xmrig::VARIANT_HALF) {
|
|
if (ASM == xmrig::ASM_INTEL) {
|
|
cn_half_mainloop_ivybridge_asm(ctx[0]);
|
|
}
|
|
else if (ASM == xmrig::ASM_RYZEN) {
|
|
cn_half_mainloop_ryzen_asm(ctx[0]);
|
|
}
|
|
else {
|
|
cn_half_mainloop_bulldozer_asm(ctx[0]);
|
|
}
|
|
}
|
|
else if (VARIANT == xmrig::VARIANT_TRTL) {
|
|
if (ASM == xmrig::ASM_INTEL) {
|
|
cn_trtl_mainloop_ivybridge_asm(ctx[0]);
|
|
}
|
|
else if (ASM == xmrig::ASM_RYZEN) {
|
|
cn_trtl_mainloop_ryzen_asm(ctx[0]);
|
|
}
|
|
else {
|
|
cn_trtl_mainloop_bulldozer_asm(ctx[0]);
|
|
}
|
|
}
|
|
else if (VARIANT == xmrig::VARIANT_RWZ) {
|
|
cnv2_rwz_mainloop_asm(ctx[0]);
|
|
}
|
|
else if (VARIANT == xmrig::VARIANT_ZLS) {
|
|
if (ASM == xmrig::ASM_INTEL) {
|
|
cn_zls_mainloop_ivybridge_asm(ctx[0]);
|
|
}
|
|
else if (ASM == xmrig::ASM_RYZEN) {
|
|
cn_zls_mainloop_ryzen_asm(ctx[0]);
|
|
}
|
|
else {
|
|
cn_zls_mainloop_bulldozer_asm(ctx[0]);
|
|
}
|
|
}
|
|
else if (VARIANT == xmrig::VARIANT_DOUBLE) {
|
|
if (ASM == xmrig::ASM_INTEL) {
|
|
cn_double_mainloop_ivybridge_asm(ctx[0]);
|
|
}
|
|
else if (ASM == xmrig::ASM_RYZEN) {
|
|
cn_double_mainloop_ryzen_asm(ctx[0]);
|
|
}
|
|
else {
|
|
cn_double_mainloop_bulldozer_asm(ctx[0]);
|
|
}
|
|
}
|
|
else if (xmrig::cn_is_cryptonight_r<VARIANT>()) {
|
|
ctx[0]->generated_code(ctx[0]);
|
|
}
|
|
|
|
cn_implode_scratchpad<ALGO, MEM, false>(reinterpret_cast<__m128i*>(ctx[0]->memory), reinterpret_cast<__m128i*>(ctx[0]->state));
|
|
xmrig::keccakf(reinterpret_cast<uint64_t*>(ctx[0]->state), 24);
|
|
extra_hashes[ctx[0]->state[0] & 3](ctx[0]->state, 200, output);
|
|
}
|
|
|
|
|
|
template<xmrig::Algo ALGO, xmrig::Variant VARIANT, xmrig::Assembly ASM>
|
|
inline void cryptonight_double_hash_asm(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, cryptonight_ctx **__restrict__ ctx, uint64_t height)
|
|
{
|
|
constexpr size_t MEM = xmrig::cn_select_memory<ALGO>();
|
|
|
|
if (xmrig::cn_is_cryptonight_r<VARIANT>() && !ctx[0]->generated_code_double_data.match(VARIANT, height)) {
|
|
V4_Instruction code[256];
|
|
const int code_size = v4_random_math_init<VARIANT>(code, height);
|
|
cn_r_compile_code_double<VARIANT>(code, code_size, reinterpret_cast<void*>(ctx[0]->generated_code_double), ASM);
|
|
ctx[0]->generated_code_double_data.variant = VARIANT;
|
|
ctx[0]->generated_code_double_data.height = height;
|
|
}
|
|
|
|
xmrig::keccak(input, size, ctx[0]->state);
|
|
xmrig::keccak(input + size, size, ctx[1]->state);
|
|
|
|
cn_explode_scratchpad<ALGO, MEM, false>(reinterpret_cast<__m128i*>(ctx[0]->state), reinterpret_cast<__m128i*>(ctx[0]->memory));
|
|
cn_explode_scratchpad<ALGO, MEM, false>(reinterpret_cast<__m128i*>(ctx[1]->state), reinterpret_cast<__m128i*>(ctx[1]->memory));
|
|
|
|
if (VARIANT == xmrig::VARIANT_2) {
|
|
cnv2_double_mainloop_sandybridge_asm(ctx[0], ctx[1]);
|
|
}
|
|
else if (VARIANT == xmrig::VARIANT_HALF) {
|
|
cn_half_double_mainloop_sandybridge_asm(ctx[0], ctx[1]);
|
|
}
|
|
else if (VARIANT == xmrig::VARIANT_TRTL) {
|
|
cn_trtl_double_mainloop_sandybridge_asm(ctx[0], ctx[1]);
|
|
}
|
|
else if (VARIANT == xmrig::VARIANT_RWZ) {
|
|
cnv2_rwz_double_mainloop_asm(ctx[0], ctx[1]);
|
|
}
|
|
else if (VARIANT == xmrig::VARIANT_ZLS) {
|
|
cn_zls_double_mainloop_sandybridge_asm(ctx[0], ctx[1]);
|
|
}
|
|
else if (VARIANT == xmrig::VARIANT_DOUBLE) {
|
|
cn_double_double_mainloop_sandybridge_asm(ctx[0], ctx[1]);
|
|
}
|
|
else if (xmrig::cn_is_cryptonight_r<VARIANT>()) {
|
|
ctx[0]->generated_code_double(ctx[0], ctx[1]);
|
|
}
|
|
|
|
cn_implode_scratchpad<ALGO, MEM, false>(reinterpret_cast<__m128i*>(ctx[0]->memory), reinterpret_cast<__m128i*>(ctx[0]->state));
|
|
cn_implode_scratchpad<ALGO, MEM, false>(reinterpret_cast<__m128i*>(ctx[1]->memory), reinterpret_cast<__m128i*>(ctx[1]->state));
|
|
|
|
xmrig::keccakf(reinterpret_cast<uint64_t*>(ctx[0]->state), 24);
|
|
xmrig::keccakf(reinterpret_cast<uint64_t*>(ctx[1]->state), 24);
|
|
|
|
extra_hashes[ctx[0]->state[0] & 3](ctx[0]->state, 200, output);
|
|
extra_hashes[ctx[1]->state[0] & 3](ctx[1]->state, 200, output + 32);
|
|
}
|
|
#endif
|
|
|
|
|
|
template<xmrig::Algo ALGO, bool SOFT_AES, xmrig::Variant VARIANT>
|
|
inline void cryptonight_double_hash(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, cryptonight_ctx **__restrict__ ctx, uint64_t height)
|
|
{
|
|
constexpr size_t MASK = xmrig::cn_select_mask<ALGO>();
|
|
constexpr size_t ITERATIONS = xmrig::cn_select_iter<ALGO, VARIANT>();
|
|
constexpr size_t MEM = xmrig::cn_select_memory<ALGO>();
|
|
constexpr xmrig::Variant BASE = xmrig::cn_base_variant<VARIANT>();
|
|
|
|
if (BASE == xmrig::VARIANT_1 && size < 43) {
|
|
memset(output, 0, 64);
|
|
return;
|
|
}
|
|
|
|
xmrig::keccak(input, size, ctx[0]->state);
|
|
xmrig::keccak(input + size, size, ctx[1]->state);
|
|
|
|
const uint8_t* l0 = ctx[0]->memory;
|
|
const uint8_t* l1 = ctx[1]->memory;
|
|
uint64_t* h0 = reinterpret_cast<uint64_t*>(ctx[0]->state);
|
|
uint64_t* h1 = reinterpret_cast<uint64_t*>(ctx[1]->state);
|
|
|
|
VARIANT1_INIT(0);
|
|
VARIANT1_INIT(1);
|
|
VARIANT2_INIT(0);
|
|
VARIANT2_INIT(1);
|
|
VARIANT2_SET_ROUNDING_MODE();
|
|
VARIANT4_RANDOM_MATH_INIT(0);
|
|
VARIANT4_RANDOM_MATH_INIT(1);
|
|
|
|
cn_explode_scratchpad<ALGO, MEM, SOFT_AES>((__m128i*) h0, (__m128i*) l0);
|
|
cn_explode_scratchpad<ALGO, MEM, SOFT_AES>((__m128i*) h1, (__m128i*) l1);
|
|
|
|
uint64_t al0 = h0[0] ^ h0[4];
|
|
uint64_t al1 = h1[0] ^ h1[4];
|
|
uint64_t ah0 = h0[1] ^ h0[5];
|
|
uint64_t ah1 = h1[1] ^ h1[5];
|
|
|
|
__m128i bx00 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
|
|
__m128i bx01 = _mm_set_epi64x(h0[9] ^ h0[11], h0[8] ^ h0[10]);
|
|
__m128i bx10 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
|
|
__m128i bx11 = _mm_set_epi64x(h1[9] ^ h1[11], h1[8] ^ h1[10]);
|
|
|
|
uint64_t idx0 = al0;
|
|
uint64_t idx1 = al1;
|
|
|
|
for (size_t i = 0; i < ITERATIONS; i++) {
|
|
__m128i cx0, cx1;
|
|
if (VARIANT == xmrig::VARIANT_TUBE || !SOFT_AES) {
|
|
cx0 = _mm_load_si128((__m128i *) &l0[idx0 & MASK]);
|
|
cx1 = _mm_load_si128((__m128i *) &l1[idx1 & MASK]);
|
|
}
|
|
|
|
const __m128i ax0 = _mm_set_epi64x(ah0, al0);
|
|
const __m128i ax1 = _mm_set_epi64x(ah1, al1);
|
|
if (VARIANT == xmrig::VARIANT_TUBE) {
|
|
cx0 = aes_round_tweak_div(cx0, ax0);
|
|
cx1 = aes_round_tweak_div(cx1, ax1);
|
|
}
|
|
else if (SOFT_AES) {
|
|
cx0 = soft_aesenc((uint32_t*)&l0[idx0 & MASK], ax0, (const uint32_t*)saes_table);
|
|
cx1 = soft_aesenc((uint32_t*)&l1[idx1 & MASK], ax1, (const uint32_t*)saes_table);
|
|
}
|
|
else {
|
|
cx0 = _mm_aesenc_si128(cx0, ax0);
|
|
cx1 = _mm_aesenc_si128(cx1, ax1);
|
|
}
|
|
|
|
if (BASE == xmrig::VARIANT_1 || (BASE == xmrig::VARIANT_2)) {
|
|
cryptonight_monero_tweak<VARIANT, BASE>((uint64_t*)&l0[idx0 & MASK], l0, idx0 & MASK, ax0, bx00, bx01, cx0);
|
|
cryptonight_monero_tweak<VARIANT, BASE>((uint64_t*)&l1[idx1 & MASK], l1, idx1 & MASK, ax1, bx10, bx11, cx1);
|
|
} else {
|
|
_mm_store_si128((__m128i *) &l0[idx0 & MASK], _mm_xor_si128(bx00, cx0));
|
|
_mm_store_si128((__m128i *) &l1[idx1 & MASK], _mm_xor_si128(bx10, cx1));
|
|
}
|
|
|
|
idx0 = _mm_cvtsi128_si64(cx0);
|
|
idx1 = _mm_cvtsi128_si64(cx1);
|
|
|
|
uint64_t hi, lo, cl, ch;
|
|
cl = ((uint64_t*) &l0[idx0 & MASK])[0];
|
|
ch = ((uint64_t*) &l0[idx0 & MASK])[1];
|
|
|
|
if (BASE == xmrig::VARIANT_2) {
|
|
if ((VARIANT == xmrig::VARIANT_WOW) || (VARIANT == xmrig::VARIANT_4)) {
|
|
VARIANT4_RANDOM_MATH(0, al0, ah0, cl, bx00, bx01);
|
|
if (VARIANT == xmrig::VARIANT_4) {
|
|
al0 ^= r0[2] | ((uint64_t)(r0[3]) << 32);
|
|
ah0 ^= r0[0] | ((uint64_t)(r0[1]) << 32);
|
|
}
|
|
} else {
|
|
VARIANT2_INTEGER_MATH(0, cl, cx0);
|
|
}
|
|
}
|
|
|
|
lo = __umul128(idx0, cl, &hi);
|
|
|
|
if (BASE == xmrig::VARIANT_2) {
|
|
if (VARIANT == xmrig::VARIANT_4) {
|
|
VARIANT2_SHUFFLE(l0, idx0 & MASK, ax0, bx00, bx01, cx0, 0);
|
|
} else {
|
|
VARIANT2_SHUFFLE2(l0, idx0 & MASK, ax0, bx00, bx01, hi, lo, (VARIANT == xmrig::VARIANT_RWZ ? 1 : 0));
|
|
}
|
|
}
|
|
|
|
al0 += hi;
|
|
ah0 += lo;
|
|
|
|
((uint64_t*)&l0[idx0 & MASK])[0] = al0;
|
|
|
|
if (BASE == xmrig::VARIANT_1 && (VARIANT == xmrig::VARIANT_TUBE || VARIANT == xmrig::VARIANT_RTO)) {
|
|
((uint64_t*) &l0[idx0 & MASK])[1] = ah0 ^ tweak1_2_0 ^ al0;
|
|
} else if (BASE == xmrig::VARIANT_1) {
|
|
((uint64_t*) &l0[idx0 & MASK])[1] = ah0 ^ tweak1_2_0;
|
|
} else {
|
|
((uint64_t*) &l0[idx0 & MASK])[1] = ah0;
|
|
}
|
|
|
|
al0 ^= cl;
|
|
ah0 ^= ch;
|
|
idx0 = al0;
|
|
|
|
if (ALGO == xmrig::CRYPTONIGHT_HEAVY) {
|
|
int64_t n = ((int64_t*)&l0[idx0 & MASK])[0];
|
|
int32_t d = ((int32_t*)&l0[idx0 & MASK])[2];
|
|
int64_t q = n / (d | 0x5);
|
|
|
|
((int64_t*)&l0[idx0 & MASK])[0] = n ^ q;
|
|
|
|
if (VARIANT == xmrig::VARIANT_XHV) {
|
|
d = ~d;
|
|
}
|
|
|
|
idx0 = d ^ q;
|
|
}
|
|
|
|
cl = ((uint64_t*) &l1[idx1 & MASK])[0];
|
|
ch = ((uint64_t*) &l1[idx1 & MASK])[1];
|
|
|
|
if (BASE == xmrig::VARIANT_2) {
|
|
if ((VARIANT == xmrig::VARIANT_WOW) || (VARIANT == xmrig::VARIANT_4)) {
|
|
VARIANT4_RANDOM_MATH(1, al1, ah1, cl, bx10, bx11);
|
|
if (VARIANT == xmrig::VARIANT_4) {
|
|
al1 ^= r1[2] | ((uint64_t)(r1[3]) << 32);
|
|
ah1 ^= r1[0] | ((uint64_t)(r1[1]) << 32);
|
|
}
|
|
} else {
|
|
VARIANT2_INTEGER_MATH(1, cl, cx1);
|
|
}
|
|
}
|
|
|
|
lo = __umul128(idx1, cl, &hi);
|
|
|
|
if (BASE == xmrig::VARIANT_2) {
|
|
if (VARIANT == xmrig::VARIANT_4) {
|
|
VARIANT2_SHUFFLE(l1, idx1 & MASK, ax1, bx10, bx11, cx1, 0);
|
|
} else {
|
|
VARIANT2_SHUFFLE2(l1, idx1 & MASK, ax1, bx10, bx11, hi, lo, (VARIANT == xmrig::VARIANT_RWZ ? 1 : 0));
|
|
}
|
|
}
|
|
|
|
al1 += hi;
|
|
ah1 += lo;
|
|
|
|
((uint64_t*)&l1[idx1 & MASK])[0] = al1;
|
|
|
|
if (BASE == xmrig::VARIANT_1 && (VARIANT == xmrig::VARIANT_TUBE || VARIANT == xmrig::VARIANT_RTO)) {
|
|
((uint64_t*)&l1[idx1 & MASK])[1] = ah1 ^ tweak1_2_1 ^ al1;
|
|
} else if (BASE == xmrig::VARIANT_1) {
|
|
((uint64_t*)&l1[idx1 & MASK])[1] = ah1 ^ tweak1_2_1;
|
|
} else {
|
|
((uint64_t*)&l1[idx1 & MASK])[1] = ah1;
|
|
}
|
|
|
|
al1 ^= cl;
|
|
ah1 ^= ch;
|
|
idx1 = al1;
|
|
|
|
if (ALGO == xmrig::CRYPTONIGHT_HEAVY) {
|
|
int64_t n = ((int64_t*)&l1[idx1 & MASK])[0];
|
|
int32_t d = ((int32_t*)&l1[idx1 & MASK])[2];
|
|
int64_t q = n / (d | 0x5);
|
|
|
|
((int64_t*)&l1[idx1 & MASK])[0] = n ^ q;
|
|
|
|
if (VARIANT == xmrig::VARIANT_XHV) {
|
|
d = ~d;
|
|
}
|
|
|
|
idx1 = d ^ q;
|
|
}
|
|
|
|
if (BASE == xmrig::VARIANT_2) {
|
|
bx01 = bx00;
|
|
bx11 = bx10;
|
|
}
|
|
|
|
bx00 = cx0;
|
|
bx10 = cx1;
|
|
}
|
|
|
|
cn_implode_scratchpad<ALGO, MEM, SOFT_AES>((__m128i*) l0, (__m128i*) h0);
|
|
cn_implode_scratchpad<ALGO, MEM, SOFT_AES>((__m128i*) l1, (__m128i*) h1);
|
|
|
|
xmrig::keccakf(h0, 24);
|
|
xmrig::keccakf(h1, 24);
|
|
|
|
extra_hashes[ctx[0]->state[0] & 3](ctx[0]->state, 200, output);
|
|
extra_hashes[ctx[1]->state[0] & 3](ctx[1]->state, 200, output + 32);
|
|
}
|
|
|
|
|
|
#define CN_STEP1(a, b0, b1, c, l, ptr, idx) \
|
|
ptr = reinterpret_cast<__m128i*>(&l[idx & MASK]); \
|
|
c = _mm_load_si128(ptr);
|
|
|
|
|
|
#define CN_STEP2(a, b0, b1, c, l, ptr, idx) \
|
|
if (VARIANT == xmrig::VARIANT_TUBE) { \
|
|
c = aes_round_tweak_div(c, a); \
|
|
} \
|
|
else if (SOFT_AES) { \
|
|
c = soft_aesenc(&c, a, (const uint32_t*)saes_table); \
|
|
} else { \
|
|
c = _mm_aesenc_si128(c, a); \
|
|
} \
|
|
\
|
|
if (BASE == xmrig::VARIANT_1 || BASE == xmrig::VARIANT_2) { \
|
|
cryptonight_monero_tweak<VARIANT, BASE>((uint64_t*)ptr, l, idx & MASK, a, b0, b1, c); \
|
|
} else { \
|
|
_mm_store_si128(ptr, _mm_xor_si128(b0, c)); \
|
|
}
|
|
|
|
|
|
#define CN_STEP3(part, a, b0, b1, c, l, ptr, idx) \
|
|
idx = _mm_cvtsi128_si64(c); \
|
|
ptr = reinterpret_cast<__m128i*>(&l[idx & MASK]); \
|
|
uint64_t cl##part = ((uint64_t*)ptr)[0]; \
|
|
uint64_t ch##part = ((uint64_t*)ptr)[1];
|
|
|
|
|
|
#define CN_STEP4(part, a, b0, b1, c, l, mc, ptr, idx) \
|
|
uint64_t al##part, ah##part; \
|
|
if (BASE == xmrig::VARIANT_2) { \
|
|
if ((VARIANT == xmrig::VARIANT_WOW) || (VARIANT == xmrig::VARIANT_4)) { \
|
|
al##part = _mm_cvtsi128_si64(a); \
|
|
ah##part = _mm_cvtsi128_si64(_mm_srli_si128(a, 8)); \
|
|
VARIANT4_RANDOM_MATH(part, al##part, ah##part, cl##part, b0, b1); \
|
|
if (VARIANT == xmrig::VARIANT_4) { \
|
|
al##part ^= r##part[2] | ((uint64_t)(r##part[3]) << 32); \
|
|
ah##part ^= r##part[0] | ((uint64_t)(r##part[1]) << 32); \
|
|
} \
|
|
} else { \
|
|
VARIANT2_INTEGER_MATH(part, cl##part, c); \
|
|
} \
|
|
} \
|
|
lo = __umul128(idx, cl##part, &hi); \
|
|
if (BASE == xmrig::VARIANT_2) { \
|
|
if (VARIANT == xmrig::VARIANT_4) { \
|
|
VARIANT2_SHUFFLE(l, idx & MASK, a, b0, b1, c, 0); \
|
|
} else { \
|
|
VARIANT2_SHUFFLE2(l, idx & MASK, a, b0, b1, hi, lo, (VARIANT == xmrig::VARIANT_RWZ ? 1 : 0)); \
|
|
} \
|
|
} \
|
|
if (VARIANT == xmrig::VARIANT_4) { \
|
|
a = _mm_set_epi64x(ah##part, al##part); \
|
|
} \
|
|
a = _mm_add_epi64(a, _mm_set_epi64x(lo, hi)); \
|
|
\
|
|
if (BASE == xmrig::VARIANT_1) { \
|
|
_mm_store_si128(ptr, _mm_xor_si128(a, mc)); \
|
|
\
|
|
if (VARIANT == xmrig::VARIANT_TUBE || \
|
|
VARIANT == xmrig::VARIANT_RTO) { \
|
|
((uint64_t*)ptr)[1] ^= ((uint64_t*)ptr)[0]; \
|
|
} \
|
|
} else { \
|
|
_mm_store_si128(ptr, a); \
|
|
} \
|
|
\
|
|
a = _mm_xor_si128(a, _mm_set_epi64x(ch##part, cl##part)); \
|
|
idx = _mm_cvtsi128_si64(a); \
|
|
\
|
|
if (ALGO == xmrig::CRYPTONIGHT_HEAVY) { \
|
|
int64_t n = ((int64_t*)&l[idx & MASK])[0]; \
|
|
int32_t d = ((int32_t*)&l[idx & MASK])[2]; \
|
|
int64_t q = n / (d | 0x5); \
|
|
((int64_t*)&l[idx & MASK])[0] = n ^ q; \
|
|
if (VARIANT == xmrig::VARIANT_XHV) { \
|
|
d = ~d; \
|
|
} \
|
|
\
|
|
idx = d ^ q; \
|
|
} \
|
|
if (BASE == xmrig::VARIANT_2) { \
|
|
b1 = b0; \
|
|
} \
|
|
b0 = c;
|
|
|
|
|
|
#define CONST_INIT(ctx, n) \
|
|
__m128i mc##n; \
|
|
__m128i division_result_xmm_##n; \
|
|
__m128i sqrt_result_xmm_##n; \
|
|
if (BASE == xmrig::VARIANT_1) { \
|
|
mc##n = _mm_set_epi64x(*reinterpret_cast<const uint64_t*>(input + n * size + 35) ^ \
|
|
*(reinterpret_cast<const uint64_t*>((ctx)->state) + 24), 0); \
|
|
} \
|
|
if (BASE == xmrig::VARIANT_2) { \
|
|
division_result_xmm_##n = _mm_cvtsi64_si128(h##n[12]); \
|
|
sqrt_result_xmm_##n = _mm_cvtsi64_si128(h##n[13]); \
|
|
} \
|
|
__m128i ax##n = _mm_set_epi64x(h##n[1] ^ h##n[5], h##n[0] ^ h##n[4]); \
|
|
__m128i bx##n##0 = _mm_set_epi64x(h##n[3] ^ h##n[7], h##n[2] ^ h##n[6]); \
|
|
__m128i bx##n##1 = _mm_set_epi64x(h##n[9] ^ h##n[11], h##n[8] ^ h##n[10]); \
|
|
__m128i cx##n = _mm_setzero_si128(); \
|
|
VARIANT4_RANDOM_MATH_INIT(n);
|
|
|
|
|
|
template<xmrig::Algo ALGO, bool SOFT_AES, xmrig::Variant VARIANT>
|
|
inline void cryptonight_triple_hash(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, cryptonight_ctx **__restrict__ ctx, uint64_t height)
|
|
{
|
|
constexpr size_t MASK = xmrig::cn_select_mask<ALGO>();
|
|
constexpr size_t ITERATIONS = xmrig::cn_select_iter<ALGO, VARIANT>();
|
|
constexpr size_t MEM = xmrig::cn_select_memory<ALGO>();
|
|
constexpr xmrig::Variant BASE = xmrig::cn_base_variant<VARIANT>();
|
|
|
|
if (BASE == xmrig::VARIANT_1 && size < 43) {
|
|
memset(output, 0, 32 * 3);
|
|
return;
|
|
}
|
|
|
|
for (size_t i = 0; i < 3; i++) {
|
|
xmrig::keccak(input + size * i, size, ctx[i]->state);
|
|
cn_explode_scratchpad<ALGO, MEM, SOFT_AES>(reinterpret_cast<__m128i*>(ctx[i]->state), reinterpret_cast<__m128i*>(ctx[i]->memory));
|
|
}
|
|
|
|
uint8_t* l0 = ctx[0]->memory;
|
|
uint8_t* l1 = ctx[1]->memory;
|
|
uint8_t* l2 = ctx[2]->memory;
|
|
uint64_t* h0 = reinterpret_cast<uint64_t*>(ctx[0]->state);
|
|
uint64_t* h1 = reinterpret_cast<uint64_t*>(ctx[1]->state);
|
|
uint64_t* h2 = reinterpret_cast<uint64_t*>(ctx[2]->state);
|
|
|
|
CONST_INIT(ctx[0], 0);
|
|
CONST_INIT(ctx[1], 1);
|
|
CONST_INIT(ctx[2], 2);
|
|
VARIANT2_SET_ROUNDING_MODE();
|
|
|
|
uint64_t idx0, idx1, idx2;
|
|
idx0 = _mm_cvtsi128_si64(ax0);
|
|
idx1 = _mm_cvtsi128_si64(ax1);
|
|
idx2 = _mm_cvtsi128_si64(ax2);
|
|
|
|
for (size_t i = 0; i < ITERATIONS; i++) {
|
|
uint64_t hi, lo;
|
|
__m128i *ptr0, *ptr1, *ptr2;
|
|
|
|
CN_STEP1(ax0, bx00, bx01, cx0, l0, ptr0, idx0);
|
|
CN_STEP1(ax1, bx10, bx11, cx1, l1, ptr1, idx1);
|
|
CN_STEP1(ax2, bx20, bx21, cx2, l2, ptr2, idx2);
|
|
|
|
CN_STEP2(ax0, bx00, bx01, cx0, l0, ptr0, idx0);
|
|
CN_STEP2(ax1, bx10, bx11, cx1, l1, ptr1, idx1);
|
|
CN_STEP2(ax2, bx20, bx21, cx2, l2, ptr2, idx2);
|
|
|
|
CN_STEP3(0, ax0, bx00, bx01, cx0, l0, ptr0, idx0);
|
|
CN_STEP3(1, ax1, bx10, bx11, cx1, l1, ptr1, idx1);
|
|
CN_STEP3(2, ax2, bx20, bx21, cx2, l2, ptr2, idx2);
|
|
|
|
CN_STEP4(0, ax0, bx00, bx01, cx0, l0, mc0, ptr0, idx0);
|
|
CN_STEP4(1, ax1, bx10, bx11, cx1, l1, mc1, ptr1, idx1);
|
|
CN_STEP4(2, ax2, bx20, bx21, cx2, l2, mc2, ptr2, idx2);
|
|
}
|
|
|
|
for (size_t i = 0; i < 3; i++) {
|
|
cn_implode_scratchpad<ALGO, MEM, SOFT_AES>(reinterpret_cast<__m128i*>(ctx[i]->memory), reinterpret_cast<__m128i*>(ctx[i]->state));
|
|
xmrig::keccakf(reinterpret_cast<uint64_t*>(ctx[i]->state), 24);
|
|
extra_hashes[ctx[i]->state[0] & 3](ctx[i]->state, 200, output + 32 * i);
|
|
}
|
|
}
|
|
|
|
|
|
template<xmrig::Algo ALGO, bool SOFT_AES, xmrig::Variant VARIANT>
|
|
inline void cryptonight_quad_hash(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, cryptonight_ctx **__restrict__ ctx, uint64_t height)
|
|
{
|
|
constexpr size_t MASK = xmrig::cn_select_mask<ALGO>();
|
|
constexpr size_t ITERATIONS = xmrig::cn_select_iter<ALGO, VARIANT>();
|
|
constexpr size_t MEM = xmrig::cn_select_memory<ALGO>();
|
|
constexpr xmrig::Variant BASE = xmrig::cn_base_variant<VARIANT>();
|
|
|
|
if (BASE == xmrig::VARIANT_1 && size < 43) {
|
|
memset(output, 0, 32 * 4);
|
|
return;
|
|
}
|
|
|
|
for (size_t i = 0; i < 4; i++) {
|
|
xmrig::keccak(input + size * i, size, ctx[i]->state);
|
|
cn_explode_scratchpad<ALGO, MEM, SOFT_AES>(reinterpret_cast<__m128i*>(ctx[i]->state), reinterpret_cast<__m128i*>(ctx[i]->memory));
|
|
}
|
|
|
|
uint8_t* l0 = ctx[0]->memory;
|
|
uint8_t* l1 = ctx[1]->memory;
|
|
uint8_t* l2 = ctx[2]->memory;
|
|
uint8_t* l3 = ctx[3]->memory;
|
|
uint64_t* h0 = reinterpret_cast<uint64_t*>(ctx[0]->state);
|
|
uint64_t* h1 = reinterpret_cast<uint64_t*>(ctx[1]->state);
|
|
uint64_t* h2 = reinterpret_cast<uint64_t*>(ctx[2]->state);
|
|
uint64_t* h3 = reinterpret_cast<uint64_t*>(ctx[3]->state);
|
|
|
|
CONST_INIT(ctx[0], 0);
|
|
CONST_INIT(ctx[1], 1);
|
|
CONST_INIT(ctx[2], 2);
|
|
CONST_INIT(ctx[3], 3);
|
|
VARIANT2_SET_ROUNDING_MODE();
|
|
|
|
uint64_t idx0, idx1, idx2, idx3;
|
|
idx0 = _mm_cvtsi128_si64(ax0);
|
|
idx1 = _mm_cvtsi128_si64(ax1);
|
|
idx2 = _mm_cvtsi128_si64(ax2);
|
|
idx3 = _mm_cvtsi128_si64(ax3);
|
|
|
|
for (size_t i = 0; i < ITERATIONS; i++)
|
|
{
|
|
uint64_t hi, lo;
|
|
__m128i *ptr0, *ptr1, *ptr2, *ptr3;
|
|
|
|
CN_STEP1(ax0, bx00, bx01, cx0, l0, ptr0, idx0);
|
|
CN_STEP1(ax1, bx10, bx11, cx1, l1, ptr1, idx1);
|
|
CN_STEP1(ax2, bx20, bx21, cx2, l2, ptr2, idx2);
|
|
CN_STEP1(ax3, bx30, bx31, cx3, l3, ptr3, idx3);
|
|
|
|
CN_STEP2(ax0, bx00, bx01, cx0, l0, ptr0, idx0);
|
|
CN_STEP2(ax1, bx10, bx11, cx1, l1, ptr1, idx1);
|
|
CN_STEP2(ax2, bx20, bx21, cx2, l2, ptr2, idx2);
|
|
CN_STEP2(ax3, bx30, bx31, cx3, l3, ptr3, idx3);
|
|
|
|
CN_STEP3(0, ax0, bx00, bx01, cx0, l0, ptr0, idx0);
|
|
CN_STEP3(1, ax1, bx10, bx11, cx1, l1, ptr1, idx1);
|
|
CN_STEP3(2, ax2, bx20, bx21, cx2, l2, ptr2, idx2);
|
|
CN_STEP3(3, ax3, bx30, bx31, cx3, l3, ptr3, idx3);
|
|
|
|
CN_STEP4(0, ax0, bx00, bx01, cx0, l0, mc0, ptr0, idx0);
|
|
CN_STEP4(1, ax1, bx10, bx11, cx1, l1, mc1, ptr1, idx1);
|
|
CN_STEP4(2, ax2, bx20, bx21, cx2, l2, mc2, ptr2, idx2);
|
|
CN_STEP4(3, ax3, bx30, bx31, cx3, l3, mc3, ptr3, idx3);
|
|
}
|
|
|
|
for (size_t i = 0; i < 4; i++) {
|
|
cn_implode_scratchpad<ALGO, MEM, SOFT_AES>(reinterpret_cast<__m128i*>(ctx[i]->memory), reinterpret_cast<__m128i*>(ctx[i]->state));
|
|
xmrig::keccakf(reinterpret_cast<uint64_t*>(ctx[i]->state), 24);
|
|
extra_hashes[ctx[i]->state[0] & 3](ctx[i]->state, 200, output + 32 * i);
|
|
}
|
|
}
|
|
|
|
|
|
template<xmrig::Algo ALGO, bool SOFT_AES, xmrig::Variant VARIANT>
|
|
inline void cryptonight_penta_hash(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, cryptonight_ctx **__restrict__ ctx, uint64_t height)
|
|
{
|
|
constexpr size_t MASK = xmrig::cn_select_mask<ALGO>();
|
|
constexpr size_t ITERATIONS = xmrig::cn_select_iter<ALGO, VARIANT>();
|
|
constexpr size_t MEM = xmrig::cn_select_memory<ALGO>();
|
|
constexpr xmrig::Variant BASE = xmrig::cn_base_variant<VARIANT>();
|
|
|
|
if (BASE == xmrig::VARIANT_1 && size < 43) {
|
|
memset(output, 0, 32 * 5);
|
|
return;
|
|
}
|
|
|
|
for (size_t i = 0; i < 5; i++) {
|
|
xmrig::keccak(input + size * i, size, ctx[i]->state);
|
|
cn_explode_scratchpad<ALGO, MEM, SOFT_AES>(reinterpret_cast<__m128i*>(ctx[i]->state), reinterpret_cast<__m128i*>(ctx[i]->memory));
|
|
}
|
|
|
|
uint8_t* l0 = ctx[0]->memory;
|
|
uint8_t* l1 = ctx[1]->memory;
|
|
uint8_t* l2 = ctx[2]->memory;
|
|
uint8_t* l3 = ctx[3]->memory;
|
|
uint8_t* l4 = ctx[4]->memory;
|
|
uint64_t* h0 = reinterpret_cast<uint64_t*>(ctx[0]->state);
|
|
uint64_t* h1 = reinterpret_cast<uint64_t*>(ctx[1]->state);
|
|
uint64_t* h2 = reinterpret_cast<uint64_t*>(ctx[2]->state);
|
|
uint64_t* h3 = reinterpret_cast<uint64_t*>(ctx[3]->state);
|
|
uint64_t* h4 = reinterpret_cast<uint64_t*>(ctx[4]->state);
|
|
|
|
CONST_INIT(ctx[0], 0);
|
|
CONST_INIT(ctx[1], 1);
|
|
CONST_INIT(ctx[2], 2);
|
|
CONST_INIT(ctx[3], 3);
|
|
CONST_INIT(ctx[4], 4);
|
|
VARIANT2_SET_ROUNDING_MODE();
|
|
|
|
uint64_t idx0, idx1, idx2, idx3, idx4;
|
|
idx0 = _mm_cvtsi128_si64(ax0);
|
|
idx1 = _mm_cvtsi128_si64(ax1);
|
|
idx2 = _mm_cvtsi128_si64(ax2);
|
|
idx3 = _mm_cvtsi128_si64(ax3);
|
|
idx4 = _mm_cvtsi128_si64(ax4);
|
|
|
|
for (size_t i = 0; i < ITERATIONS; i++)
|
|
{
|
|
uint64_t hi, lo;
|
|
__m128i *ptr0, *ptr1, *ptr2, *ptr3, *ptr4;
|
|
|
|
CN_STEP1(ax0, bx00, bx01, cx0, l0, ptr0, idx0);
|
|
CN_STEP1(ax1, bx10, bx11, cx1, l1, ptr1, idx1);
|
|
CN_STEP1(ax2, bx20, bx21, cx2, l2, ptr2, idx2);
|
|
CN_STEP1(ax3, bx30, bx31, cx3, l3, ptr3, idx3);
|
|
CN_STEP1(ax4, bx40, bx41, cx4, l4, ptr4, idx4);
|
|
|
|
CN_STEP2(ax0, bx00, bx01, cx0, l0, ptr0, idx0);
|
|
CN_STEP2(ax1, bx10, bx11, cx1, l1, ptr1, idx1);
|
|
CN_STEP2(ax2, bx20, bx21, cx2, l2, ptr2, idx2);
|
|
CN_STEP2(ax3, bx30, bx31, cx3, l3, ptr3, idx3);
|
|
CN_STEP2(ax4, bx40, bx41, cx4, l4, ptr4, idx4);
|
|
|
|
CN_STEP3(0, ax0, bx00, bx01, cx0, l0, ptr0, idx0);
|
|
CN_STEP3(1, ax1, bx10, bx11, cx1, l1, ptr1, idx1);
|
|
CN_STEP3(2, ax2, bx20, bx21, cx2, l2, ptr2, idx2);
|
|
CN_STEP3(3, ax3, bx30, bx31, cx3, l3, ptr3, idx3);
|
|
CN_STEP3(4, ax4, bx40, bx41, cx4, l4, ptr4, idx4);
|
|
|
|
CN_STEP4(0, ax0, bx00, bx01, cx0, l0, mc0, ptr0, idx0);
|
|
CN_STEP4(1, ax1, bx10, bx11, cx1, l1, mc1, ptr1, idx1);
|
|
CN_STEP4(2, ax2, bx20, bx21, cx2, l2, mc2, ptr2, idx2);
|
|
CN_STEP4(3, ax3, bx30, bx31, cx3, l3, mc3, ptr3, idx3);
|
|
CN_STEP4(4, ax4, bx40, bx41, cx4, l4, mc4, ptr4, idx4);
|
|
}
|
|
|
|
for (size_t i = 0; i < 5; i++) {
|
|
cn_implode_scratchpad<ALGO, MEM, SOFT_AES>(reinterpret_cast<__m128i*>(ctx[i]->memory), reinterpret_cast<__m128i*>(ctx[i]->state));
|
|
xmrig::keccakf(reinterpret_cast<uint64_t*>(ctx[i]->state), 24);
|
|
extra_hashes[ctx[i]->state[0] & 3](ctx[i]->state, 200, output + 32 * i);
|
|
}
|
|
}
|
|
|
|
#endif /* XMRIG_CRYPTONIGHT_X86_H */
|