xmrig/src/backend/cpu/platform/AdvancedCpuInfo.cpp
SChernykh 14ef99ca67 AstroBWT algorithm (DERO) support
To test:

- Download https://github.com/deroproject/derosuite/releases/tag/AstroBWT
- Run daemon with `--testnet` in command line

In config.json:
- "coin":"dero"
- "url":"127.0.0.1:30306"
- "daemon:"true"
2020-02-29 22:41:24 +01:00

223 lines
6 KiB
C++

/* XMRig
* Copyright 2010 Jeff Garzik <jgarzik@pobox.com>
* Copyright 2012-2014 pooler <pooler@litecoinpool.org>
* Copyright 2014 Lucas Jones <https://github.com/lucasjones>
* Copyright 2014-2016 Wolf9466 <https://github.com/OhGodAPet>
* Copyright 2016 Jay D Dee <jayddee246@gmail.com>
* Copyright 2017-2019 XMR-Stak <https://github.com/fireice-uk>, <https://github.com/psychocrypt>
* Copyright 2018-2020 SChernykh <https://github.com/SChernykh>
* Copyright 2016-2020 XMRig <support@xmrig.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "backend/cpu/platform/AdvancedCpuInfo.h"
#include "3rdparty/libcpuid/libcpuid.h"
#ifdef _MSC_VER
# include <intrin.h>
#else
# include <cpuid.h>
#endif
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstdio>
#include <cstring>
namespace xmrig {
static inline void cpu_brand_string(char out[64], const char *in) {
size_t pos = 0;
const size_t size = strlen(in);
for (size_t i = 0; i < size; ++i) {
if (in[i] == ' ' && ((pos > 0 && out[pos - 1] == ' ') || pos == 0)) {
continue;
}
out[pos++] = in[i];
}
if (pos > 0 && out[pos - 1] == ' ') {
out[pos - 1] = '\0';
}
}
static inline void cpuid(uint32_t level, int32_t output[4])
{
memset(output, 0, sizeof(int32_t) * 4);
# ifdef _MSC_VER
__cpuid(output, static_cast<int>(level));
# else
__cpuid_count(level, 0, output[0], output[1], output[2], output[3]);
# endif
}
static inline bool has_feature(uint32_t level, uint32_t reg, int32_t bit)
{
int32_t cpu_info[4] = { 0 };
cpuid(level, cpu_info);
return (cpu_info[reg] & bit) != 0;
}
static inline bool has_pdpe1gb()
{
return has_feature(0x80000001, 3, 1 << 26);
}
} // namespace xmrig
xmrig::AdvancedCpuInfo::AdvancedCpuInfo() :
m_pdpe1gb(has_pdpe1gb())
{
struct cpu_raw_data_t raw = {};
struct cpu_id_t data = {};
cpuid_get_raw_data(&raw);
cpu_identify(&raw, &data);
cpu_brand_string(m_brand, data.brand_str);
snprintf(m_backend, sizeof m_backend, "libcpuid/%s", cpuid_lib_version());
if (data.vendor == ::VENDOR_INTEL) {
m_vendor = VENDOR_INTEL;
}
else if (data.vendor == ::VENDOR_AMD) {
m_vendor = VENDOR_AMD;
}
m_threads = static_cast<size_t>(data.total_logical_cpus);
m_packages = std::max<size_t>(threads() / static_cast<size_t>(data.num_logical_cpus), 1);
m_cores = static_cast<size_t>(data.num_cores) * m_packages;
m_L3 = data.l3_cache > 0 ? static_cast<size_t>(data.l3_cache) * m_packages : 0;
const auto l2 = static_cast<size_t>(data.l2_cache);
// Workaround for AMD CPUs https://github.com/anrieff/libcpuid/issues/97
if (m_vendor == VENDOR_AMD && data.ext_family >= 0x15 && data.ext_family < 0x17) {
m_L2 = l2 * (cores() / 2) * m_packages;
m_L2_exclusive = true;
}
// Workaround for Intel Pentium Dual-Core, Core Duo, Core 2 Duo, Core 2 Quad and their Xeon homologue
// These processors have L2 cache shared by 2 cores.
else if (m_vendor == VENDOR_INTEL && data.ext_family == 0x06 && (data.ext_model == 0x0E || data.ext_model == 0x0F || data.ext_model == 0x17)) {
size_t l2_count_per_socket = cores() > 1 ? cores() / 2 : 1;
m_L2 = data.l2_cache > 0 ? l2 * l2_count_per_socket * m_packages : 0;
}
else{
m_L2 = data.l2_cache > 0 ? l2 * cores() * m_packages : 0;
}
m_L2 *= 1024;
m_L3 *= 1024;
if (data.flags[CPU_FEATURE_AES]) {
m_aes = true;
if (m_vendor == VENDOR_AMD) {
if (data.ext_family >= 23) {
m_assembly = Assembly::RYZEN;
m_msrMod = MSR_MOD_RYZEN;
}
else {
m_assembly = Assembly::BULLDOZER;
}
}
else if (m_vendor == VENDOR_INTEL) {
m_assembly = Assembly::INTEL;
}
}
m_avx2 = data.flags[CPU_FEATURE_AVX2] && data.flags[CPU_FEATURE_OSXSAVE];
m_bmi2 = data.flags[CPU_FEATURE_BMI2];
}
xmrig::CpuThreads xmrig::AdvancedCpuInfo::threads(const Algorithm &algorithm, uint32_t limit) const
{
if (threads() == 1) {
return 1;
}
# ifdef XMRIG_ALGO_CN_GPU
if (algorithm == Algorithm::CN_GPU) {
return CpuThreads(threads());
}
# endif
size_t cache = 0;
size_t count = 0;
# ifdef XMRIG_ALGO_ASTROBWT
if (algorithm == Algorithm::ASTROBWT_DERO) {
CpuThreads t;
count = threads();
for (size_t i = 0; i < count; ++i) {
t.add(i, 0);
}
return t;
}
# endif
if (m_L3) {
cache = m_L2_exclusive ? (m_L2 + m_L3) : m_L3;
}
else {
cache = m_L2;
}
if (cache) {
const size_t memory = algorithm.l3();
assert(memory > 0);
count = cache / memory;
if (cache % memory >= memory / 2) {
count++;
}
}
else {
count = threads() / 2;
}
uint32_t intensity = algorithm.maxIntensity() == 1 ? 0 : 1;
# ifdef XMRIG_ALGO_CN_PICO
if (algorithm == Algorithm::CN_PICO_0 && (count / cores()) >= 2) {
intensity = 2;
}
# endif
if (limit > 0 && limit < 100) {
count = std::min(count, static_cast<size_t>(round(threads() * (limit / 100.0))));
}
else {
count = std::min(count, threads());
}
return CpuThreads(std::max<size_t>(count, 1), intensity);
}