xmrig/algo/cryptonight/cryptonight_r_av2.c
2019-03-05 00:49:04 +07:00

202 lines
7.4 KiB
C

/* XMRig
* Copyright 2010 Jeff Garzik <jgarzik@pobox.com>
* Copyright 2012-2014 pooler <pooler@litecoinpool.org>
* Copyright 2014 Lucas Jones <https://github.com/lucasjones>
* Copyright 2014-2016 Wolf9466 <https://github.com/OhGodAPet>
* Copyright 2016 Jay D Dee <jayddee246@gmail.com>
* Copyright 2017 fireice-uk <https://github.com/fireice-uk>
* Copyright 2017-2018 XMR-Stak <https://github.com/fireice-uk>, <https://github.com/psychocrypt>
* Copyright 2018 Lee Clagett <https://github.com/vtnerd>
* Copyright 2018-2019 SChernykh <https://github.com/SChernykh>
* Copyright 2016-2019 XMRig <https://github.com/xmrig>, <support@xmrig.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <x86intrin.h>
#include <string.h>
#include "crypto/c_keccak.h"
#include "cryptonight.h"
#include "cryptonight_aesni.h"
#include "cryptonight_monero.h"
void cryptonight_r_av2(const uint8_t *restrict input, size_t size, uint8_t *restrict output, struct cryptonight_ctx **restrict ctx)
{
keccak(input, size, ctx[0]->state, 200);
keccak(input + size, size, ctx[1]->state, 200);
const uint8_t* l0 = ctx[0]->memory;
const uint8_t* l1 = ctx[1]->memory;
uint64_t* h0 = (uint64_t*) ctx[0]->state;
uint64_t* h1 = (uint64_t*) ctx[1]->state;
VARIANT2_INIT(0);
VARIANT2_INIT(1);
VARIANT2_SET_ROUNDING_MODE();
VARIANT4_RANDOM_MATH_INIT(0);
VARIANT4_RANDOM_MATH_INIT(1);
cn_explode_scratchpad((__m128i*) h0, (__m128i*) l0);
cn_explode_scratchpad((__m128i*) h1, (__m128i*) l1);
uint64_t al0 = h0[0] ^ h0[4];
uint64_t al1 = h1[0] ^ h1[4];
uint64_t ah0 = h0[1] ^ h0[5];
uint64_t ah1 = h1[1] ^ h1[5];
__m128i bx00 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
__m128i bx01 = _mm_set_epi64x(h0[9] ^ h0[11], h0[8] ^ h0[10]);
__m128i bx10 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
__m128i bx11 = _mm_set_epi64x(h1[9] ^ h1[11], h1[8] ^ h1[10]);
uint64_t idx0 = al0;
uint64_t idx1 = al1;
for (size_t i = 0; __builtin_expect(i < 0x80000, 1); i++) {
__m128i cx0 = _mm_load_si128((__m128i *) &l0[idx0 & 0x1FFFF0]);
__m128i cx1 = _mm_load_si128((__m128i *) &l1[idx1 & 0x1FFFF0]);
const __m128i ax0 = _mm_set_epi64x(ah0, al0);
const __m128i ax1 = _mm_set_epi64x(ah1, al1);
cx0 = _mm_aesenc_si128(cx0, ax0);
cx1 = _mm_aesenc_si128(cx1, ax1);
VARIANT4_SHUFFLE(l0, idx0 & 0x1FFFF0, ax0, bx00, bx01, cx0);
_mm_store_si128((__m128i *) &l0[idx0 & 0x1FFFF0], _mm_xor_si128(bx00, cx0));
VARIANT4_SHUFFLE(l1, idx1 & 0x1FFFF0, ax1, bx10, bx11, cx1);
_mm_store_si128((__m128i *) &l1[idx1 & 0x1FFFF0], _mm_xor_si128(bx10, cx1));
idx0 = _mm_cvtsi128_si64(cx0);
idx1 = _mm_cvtsi128_si64(cx1);
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*) &l0[idx0 & 0x1FFFF0])[0];
ch = ((uint64_t*) &l0[idx0 & 0x1FFFF0])[1];
VARIANT4_RANDOM_MATH(0, al0, ah0, cl, bx00, bx01);
al0 ^= r0[2] | ((uint64_t)(r0[3]) << 32);
ah0 ^= r0[0] | ((uint64_t)(r0[1]) << 32);
lo = _umul128(idx0, cl, &hi);
VARIANT4_SHUFFLE(l0, idx0 & 0x1FFFF0, ax0, bx00, bx01, cx0);
al0 += hi;
ah0 += lo;
((uint64_t*)&l0[idx0 & 0x1FFFF0])[0] = al0;
((uint64_t*)&l0[idx0 & 0x1FFFF0])[1] = ah0;
al0 ^= cl;
ah0 ^= ch;
idx0 = al0;
cl = ((uint64_t*) &l1[idx1 & 0x1FFFF0])[0];
ch = ((uint64_t*) &l1[idx1 & 0x1FFFF0])[1];
VARIANT4_RANDOM_MATH(1, al1, ah1, cl, bx10, bx11);
al1 ^= r1[2] | ((uint64_t)(r1[3]) << 32);
ah1 ^= r1[0] | ((uint64_t)(r1[1]) << 32);
lo = _umul128(idx1, cl, &hi);
VARIANT4_SHUFFLE(l1, idx1 & 0x1FFFF0, ax1, bx10, bx11, cx1);
al1 += hi;
ah1 += lo;
((uint64_t*)&l1[idx1 & 0x1FFFF0])[0] = al1;
((uint64_t*)&l1[idx1 & 0x1FFFF0])[1] = ah1;
al1 ^= cl;
ah1 ^= ch;
idx1 = al1;
bx01 = bx00;
bx11 = bx10;
bx00 = cx0;
bx10 = cx1;
}
cn_implode_scratchpad((__m128i*) l0, (__m128i*) h0);
cn_implode_scratchpad((__m128i*) l1, (__m128i*) h1);
keccakf(h0, 24);
keccakf(h1, 24);
extra_hashes[ctx[0]->state[0] & 3](ctx[0]->state, 200, output);
extra_hashes[ctx[1]->state[0] & 3](ctx[1]->state, 200, output + 32);
}
#ifndef XMRIG_NO_ASM
void v4_compile_code_double(const struct V4_Instruction* code, int code_size, void* machine_code, enum Assembly ASM);
void cryptonight_r_av2_asm_intel(const uint8_t *restrict input, size_t size, uint8_t *restrict output, struct cryptonight_ctx **restrict ctx)
{
if (ctx[0]->generated_code_height != ctx[0]->height) {
struct V4_Instruction code[256];
const int code_size = v4_random_math_init(code, ctx[0]->height);
v4_compile_code_double(code, code_size, (void*)(ctx[0]->generated_code_double), ASM_INTEL);
ctx[0]->generated_code_height = ctx[0]->height;
}
keccak(input, size, ctx[0]->state, 200);
keccak(input + size, size, ctx[1]->state, 200);
cn_explode_scratchpad((__m128i*) ctx[0]->state, (__m128i*) ctx[0]->memory);
cn_explode_scratchpad((__m128i*) ctx[1]->state, (__m128i*) ctx[1]->memory);
ctx[0]->generated_code_double(ctx[0], ctx[1]);
cn_implode_scratchpad((__m128i*) ctx[0]->memory, (__m128i*) ctx[0]->state);
cn_implode_scratchpad((__m128i*) ctx[1]->memory, (__m128i*) ctx[1]->state);
keccakf((uint64_t *) ctx[0]->state, 24);
keccakf((uint64_t *) ctx[1]->state, 24);
extra_hashes[ctx[0]->state[0] & 3](ctx[0]->state, 200, output);
extra_hashes[ctx[1]->state[0] & 3](ctx[1]->state, 200, output + 32);
}
void cryptonight_r_av2_asm_bulldozer(const uint8_t *restrict input, size_t size, uint8_t *restrict output, struct cryptonight_ctx **restrict ctx)
{
if (ctx[0]->generated_code_height != ctx[0]->height) {
struct V4_Instruction code[256];
const int code_size = v4_random_math_init(code, ctx[0]->height);
v4_compile_code_double(code, code_size, (void*)(ctx[0]->generated_code_double), ASM_BULLDOZER);
ctx[0]->generated_code_height = ctx[0]->height;
}
keccak(input, size, ctx[0]->state, 200);
keccak(input + size, size, ctx[1]->state, 200);
cn_explode_scratchpad((__m128i*) ctx[0]->state, (__m128i*) ctx[0]->memory);
cn_explode_scratchpad((__m128i*) ctx[1]->state, (__m128i*) ctx[1]->memory);
ctx[0]->generated_code_double(ctx[0], ctx[1]);
cn_implode_scratchpad((__m128i*) ctx[0]->memory, (__m128i*) ctx[0]->state);
cn_implode_scratchpad((__m128i*) ctx[1]->memory, (__m128i*) ctx[1]->state);
keccakf((uint64_t *) ctx[0]->state, 24);
keccakf((uint64_t *) ctx[1]->state, 24);
extra_hashes[ctx[0]->state[0] & 3](ctx[0]->state, 200, output);
extra_hashes[ctx[1]->state[0] & 3](ctx[1]->state, 200, output + 32);
}
#endif