#ifndef SSE2NEON_H #define SSE2NEON_H // This header file provides a simple API translation layer // between SSE intrinsics to their corresponding ARM NEON versions // // This header file does not (yet) translate *all* of the SSE intrinsics. // Since this is in support of a specific porting effort, I have only // included the intrinsics I needed to get my port to work. // // Questions/Comments/Feedback send to: jratcliffscarab@gmail.com // // If you want to improve or add to this project, send me an // email and I will probably approve your access to the depot. // // Project is located here: // // https://github.com/jratcliff63367/sse2neon // // Show your appreciation for open source by sending me a bitcoin tip to the following // address. // // TipJar: 1PzgWDSyq4pmdAXRH8SPUtta4SWGrt4B1p : // https://blockchain.info/address/1PzgWDSyq4pmdAXRH8SPUtta4SWGrt4B1p // // // Contributors to this project are: // // John W. Ratcliff : jratcliffscarab@gmail.com // Brandon Rowlett : browlett@nvidia.com // Ken Fast : kfast@gdeb.com // Eric van Beurden : evanbeurden@nvidia.com // Alexander Potylitsin : apotylitsin@nvidia.com // // // ********************************************************************************************************************* // apoty: March 17, 2017 // Current version was changed in most to fix issues and potential issues. // All unit tests were rewritten as a part of forge lib project to cover all implemented functions. // ********************************************************************************************************************* // Release notes for January 20, 2017 version: // // The unit tests have been refactored. They no longer assert on an error, instead they return a pass/fail condition // The unit-tests now test 10,000 random float and int values against each intrinsic. // // SSE2NEON now supports 95 SSE intrinsics. 39 of them have formal unit tests which have been implemented and // fully tested on NEON/ARM. The remaining 56 still need unit tests implemented. // // A struct is now defined in this header file called 'SIMDVec' which can be used by applications which // attempt to access the contents of an _m128 struct directly. It is important to note that accessing the __m128 // struct directly is bad coding practice by Microsoft: @see: https://msdn.microsoft.com/en-us/library/ayeb3ayc.aspx // // However, some legacy source code may try to access the contents of an __m128 struct directly so the developer // can use the SIMDVec as an alias for it. Any casting must be done manually by the developer, as you cannot // cast or otherwise alias the base NEON data type for intrinsic operations. // // A bug was found with the _mm_shuffle_ps intrinsic. If the shuffle permutation was not one of the ones with // a custom/unique implementation causing it to fall through to the default shuffle implementation it was failing // to return the correct value. This is now fixed. // // A bug was found with the _mm_cvtps_epi32 intrinsic. This converts floating point values to integers. // It was not honoring the correct rounding mode. In SSE the default rounding mode when converting from float to int // is to use 'round to even' otherwise known as 'bankers rounding'. ARMv7 did not support this feature but ARMv8 does. // As it stands today, this header file assumes ARMv8. If you are trying to target really old ARM devices, you may get // a build error. // // Support for a number of new intrinsics was added, however, none of them yet have unit-tests to 100% confirm they are // producing the correct results on NEON. These unit tests will be added as soon as possible. // // Here is the list of new instrinsics which have been added: // // _mm_cvtss_f32 : extracts the lower order floating point value from the parameter // _mm_add_ss : adds the scalar single - precision floating point values of a and b // _mm_div_ps : Divides the four single - precision, floating - point values of a and b. // _mm_div_ss : Divides the scalar single - precision floating point value of a by b. // _mm_sqrt_ss : Computes the approximation of the square root of the scalar single - precision floating point value of in. // _mm_rsqrt_ps : Computes the approximations of the reciprocal square roots of the four single - precision floating point values of in. // _mm_comilt_ss : Compares the lower single - precision floating point scalar values of a and b using a less than operation // _mm_comigt_ss : Compares the lower single - precision floating point scalar values of a and b using a greater than operation. // _mm_comile_ss : Compares the lower single - precision floating point scalar values of a and b using a less than or equal operation. // _mm_comige_ss : Compares the lower single - precision floating point scalar values of a and b using a greater than or equal operation. // _mm_comieq_ss : Compares the lower single - precision floating point scalar values of a and b using an equality operation. // _mm_comineq_s : Compares the lower single - precision floating point scalar values of a and b using an inequality operation // _mm_unpackhi_epi8 : Interleaves the upper 8 signed or unsigned 8 - bit integers in a with the upper 8 signed or unsigned 8 - bit integers in b. // _mm_unpackhi_epi16: Interleaves the upper 4 signed or unsigned 16 - bit integers in a with the upper 4 signed or unsigned 16 - bit integers in b. // // ********************************************************************************************************************* /* ** The MIT license: ** ** Permission is hereby granted, free of charge, to any person obtaining a copy ** of this software and associated documentation files (the "Software"), to deal ** in the Software without restriction, including without limitation the rights ** to use, copy, modify, merge, publish, distribute, sublicense, and/or sell ** copies of the Software, and to permit persons to whom the Software is furnished ** to do so, subject to the following conditions: ** ** The above copyright notice and this permission notice shall be included in all ** copies or substantial portions of the Software. ** THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR ** IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, ** FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE ** AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, ** WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN ** CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #define ENABLE_CPP_VERSION 0 #if defined(__GNUC__) || defined(__clang__) # pragma push_macro("FORCE_INLINE") # pragma push_macro("ALIGN_STRUCT") # define FORCE_INLINE static inline __attribute__((always_inline)) # define ALIGN_STRUCT(x) __attribute__((aligned(x))) #else # error "Macro name collisions may happens with unknown compiler" # define FORCE_INLINE static inline # define ALIGN_STRUCT(x) __declspec(align(x)) #endif #include #include "arm_neon.h" /*******************************************************/ /* MACRO for shuffle parameter for _mm_shuffle_ps(). */ /* Argument fp3 is a digit[0123] that represents the fp*/ /* from argument "b" of mm_shuffle_ps that will be */ /* placed in fp3 of result. fp2 is the same for fp2 in */ /* result. fp1 is a digit[0123] that represents the fp */ /* from argument "a" of mm_shuffle_ps that will be */ /* places in fp1 of result. fp0 is the same for fp0 of */ /* result */ /*******************************************************/ #define _MM_SHUFFLE(fp3,fp2,fp1,fp0) \ (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0))) /* indicate immediate constant argument in a given range */ #define __constrange(a,b) \ const typedef float32x4_t __m128; typedef int32x4_t __m128i; // ****************************************** // type-safe casting between types // ****************************************** #define vreinterpretq_m128_f16(x) \ vreinterpretq_f32_f16(x) #define vreinterpretq_m128_f32(x) \ (x) #define vreinterpretq_m128_f64(x) \ vreinterpretq_f32_f64(x) #define vreinterpretq_m128_u8(x) \ vreinterpretq_f32_u8(x) #define vreinterpretq_m128_u16(x) \ vreinterpretq_f32_u16(x) #define vreinterpretq_m128_u32(x) \ vreinterpretq_f32_u32(x) #define vreinterpretq_m128_u64(x) \ vreinterpretq_f32_u64(x) #define vreinterpretq_m128_s8(x) \ vreinterpretq_f32_s8(x) #define vreinterpretq_m128_s16(x) \ vreinterpretq_f32_s16(x) #define vreinterpretq_m128_s32(x) \ vreinterpretq_f32_s32(x) #define vreinterpretq_m128_s64(x) \ vreinterpretq_f32_s64(x) #define vreinterpretq_f16_m128(x) \ vreinterpretq_f16_f32(x) #define vreinterpretq_f32_m128(x) \ (x) #define vreinterpretq_f64_m128(x) \ vreinterpretq_f64_f32(x) #define vreinterpretq_u8_m128(x) \ vreinterpretq_u8_f32(x) #define vreinterpretq_u16_m128(x) \ vreinterpretq_u16_f32(x) #define vreinterpretq_u32_m128(x) \ vreinterpretq_u32_f32(x) #define vreinterpretq_u64_m128(x) \ vreinterpretq_u64_f32(x) #define vreinterpretq_s8_m128(x) \ vreinterpretq_s8_f32(x) #define vreinterpretq_s16_m128(x) \ vreinterpretq_s16_f32(x) #define vreinterpretq_s32_m128(x) \ vreinterpretq_s32_f32(x) #define vreinterpretq_s64_m128(x) \ vreinterpretq_s64_f32(x) #define vreinterpretq_m128i_s8(x) \ vreinterpretq_s32_s8(x) #define vreinterpretq_m128i_s16(x) \ vreinterpretq_s32_s16(x) #define vreinterpretq_m128i_s32(x) \ (x) #define vreinterpretq_m128i_s64(x) \ vreinterpretq_s32_s64(x) #define vreinterpretq_m128i_u8(x) \ vreinterpretq_s32_u8(x) #define vreinterpretq_m128i_u16(x) \ vreinterpretq_s32_u16(x) #define vreinterpretq_m128i_u32(x) \ vreinterpretq_s32_u32(x) #define vreinterpretq_m128i_u64(x) \ vreinterpretq_s32_u64(x) #define vreinterpretq_s8_m128i(x) \ vreinterpretq_s8_s32(x) #define vreinterpretq_s16_m128i(x) \ vreinterpretq_s16_s32(x) #define vreinterpretq_s32_m128i(x) \ (x) #define vreinterpretq_s64_m128i(x) \ vreinterpretq_s64_s32(x) #define vreinterpretq_u8_m128i(x) \ vreinterpretq_u8_s32(x) #define vreinterpretq_u16_m128i(x) \ vreinterpretq_u16_s32(x) #define vreinterpretq_u32_m128i(x) \ vreinterpretq_u32_s32(x) #define vreinterpretq_u64_m128i(x) \ vreinterpretq_u64_s32(x) // union intended to allow direct access to an __m128 variable using the names that the MSVC // compiler provides. This union should really only be used when trying to access the members // of the vector as integer values. GCC/clang allow native access to the float members through // a simple array access operator (in C since 4.6, in C++ since 4.8). // // Ideally direct accesses to SIMD vectors should not be used since it can cause a performance // hit. If it really is needed however, the original __m128 variable can be aliased with a // pointer to this union and used to access individual components. The use of this union should // be hidden behind a macro that is used throughout the codebase to access the members instead // of always declaring this type of variable. typedef union ALIGN_STRUCT(16) SIMDVec { float m128_f32[4]; // as floats - do not to use this. Added for convenience. int8_t m128_i8[16]; // as signed 8-bit integers. int16_t m128_i16[8]; // as signed 16-bit integers. int32_t m128_i32[4]; // as signed 32-bit integers. int64_t m128_i64[2]; // as signed 64-bit integers. uint8_t m128_u8[16]; // as unsigned 8-bit integers. uint16_t m128_u16[8]; // as unsigned 16-bit integers. uint32_t m128_u32[4]; // as unsigned 32-bit integers. uint64_t m128_u64[2]; // as unsigned 64-bit integers. } SIMDVec; // ****************************************** // Set/get methods // ****************************************** // extracts the lower order floating point value from the parameter : https://msdn.microsoft.com/en-us/library/bb514059%28v=vs.120%29.aspx?f=255&MSPPError=-2147217396 FORCE_INLINE float _mm_cvtss_f32(__m128 a) { return vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); } // Sets the 128-bit value to zero https://msdn.microsoft.com/en-us/library/vstudio/ys7dw0kh(v=vs.100).aspx FORCE_INLINE __m128i _mm_setzero_si128() { return vreinterpretq_m128i_s32(vdupq_n_s32(0)); } // Clears the four single-precision, floating-point values. https://msdn.microsoft.com/en-us/library/vstudio/tk1t2tbz(v=vs.100).aspx FORCE_INLINE __m128 _mm_setzero_ps(void) { return vreinterpretq_m128_f32(vdupq_n_f32(0)); } // Sets the four single-precision, floating-point values to w. https://msdn.microsoft.com/en-us/library/vstudio/2x1se8ha(v=vs.100).aspx FORCE_INLINE __m128 _mm_set1_ps(float _w) { return vreinterpretq_m128_f32(vdupq_n_f32(_w)); } // Sets the four single-precision, floating-point values to w. https://msdn.microsoft.com/en-us/library/vstudio/2x1se8ha(v=vs.100).aspx FORCE_INLINE __m128 _mm_set_ps1(float _w) { return vreinterpretq_m128_f32(vdupq_n_f32(_w)); } // Sets the four single-precision, floating-point values to the four inputs. https://msdn.microsoft.com/en-us/library/vstudio/afh0zf75(v=vs.100).aspx FORCE_INLINE __m128 _mm_set_ps(float w, float z, float y, float x) { float __attribute__((aligned(16))) data[4] = { x, y, z, w }; return vreinterpretq_m128_f32(vld1q_f32(data)); } // Sets the four single-precision, floating-point values to the four inputs in reverse order. https://msdn.microsoft.com/en-us/library/vstudio/d2172ct3(v=vs.100).aspx FORCE_INLINE __m128 _mm_setr_ps(float w, float z , float y , float x ) { float __attribute__ ((aligned (16))) data[4] = { w, z, y, x }; return vreinterpretq_m128_f32(vld1q_f32(data)); } // Sets the 4 signed 32-bit integer values to i. https://msdn.microsoft.com/en-us/library/vstudio/h4xscxat(v=vs.100).aspx FORCE_INLINE __m128i _mm_set1_epi32(int _i) { return vreinterpretq_m128i_s32(vdupq_n_s32(_i)); } // Sets the 4 signed 32-bit integer values. https://msdn.microsoft.com/en-us/library/vstudio/019beekt(v=vs.100).aspx FORCE_INLINE __m128i _mm_set_epi32(int i3, int i2, int i1, int i0) { int32_t __attribute__((aligned(16))) data[4] = { i0, i1, i2, i3 }; return vreinterpretq_m128i_s32(vld1q_s32(data)); } // Stores four single-precision, floating-point values. https://msdn.microsoft.com/en-us/library/vstudio/s3h4ay6y(v=vs.100).aspx FORCE_INLINE void _mm_store_ps(float *p, __m128 a) { vst1q_f32(p, vreinterpretq_f32_m128(a)); } // Stores four single-precision, floating-point values. https://msdn.microsoft.com/en-us/library/44e30x22(v=vs.100).aspx FORCE_INLINE void _mm_storeu_ps(float *p, __m128 a) { vst1q_f32(p, vreinterpretq_f32_m128(a)); } // Stores four 32-bit integer values as (as a __m128i value) at the address p. https://msdn.microsoft.com/en-us/library/vstudio/edk11s13(v=vs.100).aspx FORCE_INLINE void _mm_store_si128(__m128i *p, __m128i a) { vst1q_s32((int32_t*) p, vreinterpretq_s32_m128i(a)); } // Stores the lower single - precision, floating - point value. https://msdn.microsoft.com/en-us/library/tzz10fbx(v=vs.100).aspx FORCE_INLINE void _mm_store_ss(float *p, __m128 a) { vst1q_lane_f32(p, vreinterpretq_f32_m128(a), 0); } // Reads the lower 64 bits of b and stores them into the lower 64 bits of a. https://msdn.microsoft.com/en-us/library/hhwf428f%28v=vs.90%29.aspx FORCE_INLINE void _mm_storel_epi64(__m128i* a, __m128i b) { uint64x1_t hi = vget_high_u64(vreinterpretq_u64_m128i(*a)); uint64x1_t lo = vget_low_u64(vreinterpretq_u64_m128i(b)); *a = vreinterpretq_m128i_u64(vcombine_u64(lo, hi)); } // Loads a single single-precision, floating-point value, copying it into all four words https://msdn.microsoft.com/en-us/library/vstudio/5cdkf716(v=vs.100).aspx FORCE_INLINE __m128 _mm_load1_ps(const float * p) { return vreinterpretq_m128_f32(vld1q_dup_f32(p)); } // Loads four single-precision, floating-point values. https://msdn.microsoft.com/en-us/library/vstudio/zzd50xxt(v=vs.100).aspx FORCE_INLINE __m128 _mm_load_ps(const float * p) { return vreinterpretq_m128_f32(vld1q_f32(p)); } // Loads four single-precision, floating-point values. https://msdn.microsoft.com/en-us/library/x1b16s7z%28v=vs.90%29.aspx FORCE_INLINE __m128 _mm_loadu_ps(const float * p) { // for neon, alignment doesn't matter, so _mm_load_ps and _mm_loadu_ps are equivalent for neon return vreinterpretq_m128_f32(vld1q_f32(p)); } // Loads an single - precision, floating - point value into the low word and clears the upper three words. https://msdn.microsoft.com/en-us/library/548bb9h4%28v=vs.90%29.aspx FORCE_INLINE __m128 _mm_load_ss(const float * p) { return vreinterpretq_m128_f32(vsetq_lane_f32(*p, vdupq_n_f32(0), 0)); } // ****************************************** // Logic/Binary operations // ****************************************** // Compares for inequality. https://msdn.microsoft.com/en-us/library/sf44thbx(v=vs.100).aspx FORCE_INLINE __m128 _mm_cmpneq_ps(__m128 a, __m128 b) { return vreinterpretq_m128_u32( vmvnq_u32( vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)) ) ); } // Computes the bitwise AND-NOT of the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/68h7wd02(v=vs.100).aspx FORCE_INLINE __m128 _mm_andnot_ps(__m128 a, __m128 b) { return vreinterpretq_m128_s32( vbicq_s32(vreinterpretq_s32_m128(b), vreinterpretq_s32_m128(a)) ); // *NOTE* argument swap } // Computes the bitwise AND of the 128-bit value in b and the bitwise NOT of the 128-bit value in a. https://msdn.microsoft.com/en-us/library/vstudio/1beaceh8(v=vs.100).aspx FORCE_INLINE __m128i _mm_andnot_si128(__m128i a, __m128i b) { return vreinterpretq_m128i_s32( vbicq_s32(vreinterpretq_s32_m128i(b), vreinterpretq_s32_m128i(a)) ); // *NOTE* argument swap } // Computes the bitwise AND of the 128-bit value in a and the 128-bit value in b. https://msdn.microsoft.com/en-us/library/vstudio/6d1txsa8(v=vs.100).aspx FORCE_INLINE __m128i _mm_and_si128(__m128i a, __m128i b) { return vreinterpretq_m128i_s32( vandq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)) ); } // Computes the bitwise AND of the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/73ck1xc5(v=vs.100).aspx FORCE_INLINE __m128 _mm_and_ps(__m128 a, __m128 b) { return vreinterpretq_m128_s32( vandq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b)) ); } // Computes the bitwise OR of the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/7ctdsyy0(v=vs.100).aspx FORCE_INLINE __m128 _mm_or_ps(__m128 a, __m128 b) { return vreinterpretq_m128_s32( vorrq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b)) ); } // Computes bitwise EXOR (exclusive-or) of the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/ss6k3wk8(v=vs.100).aspx FORCE_INLINE __m128 _mm_xor_ps(__m128 a, __m128 b) { return vreinterpretq_m128_s32( veorq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b)) ); } // Computes the bitwise OR of the 128-bit value in a and the 128-bit value in b. https://msdn.microsoft.com/en-us/library/vstudio/ew8ty0db(v=vs.100).aspx FORCE_INLINE __m128i _mm_or_si128(__m128i a, __m128i b) { return vreinterpretq_m128i_s32( vorrq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)) ); } // Computes the bitwise XOR of the 128-bit value in a and the 128-bit value in b. https://msdn.microsoft.com/en-us/library/fzt08www(v=vs.100).aspx FORCE_INLINE __m128i _mm_xor_si128(__m128i a, __m128i b) { return vreinterpretq_m128i_s32( veorq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)) ); } // NEON does not provide this method // Creates a 4-bit mask from the most significant bits of the four single-precision, floating-point values. https://msdn.microsoft.com/en-us/library/vstudio/4490ys29(v=vs.100).aspx FORCE_INLINE int _mm_movemask_ps(__m128 a) { #if ENABLE_CPP_VERSION // I am not yet convinced that the NEON version is faster than the C version of this uint32x4_t &ia = *(uint32x4_t *)&a; return (ia[0] >> 31) | ((ia[1] >> 30) & 2) | ((ia[2] >> 29) & 4) | ((ia[3] >> 28) & 8); #else static const uint32x4_t movemask = { 1, 2, 4, 8 }; static const uint32x4_t highbit = { 0x80000000, 0x80000000, 0x80000000, 0x80000000 }; uint32x4_t t0 = vreinterpretq_u32_m128(a); uint32x4_t t1 = vtstq_u32(t0, highbit); uint32x4_t t2 = vandq_u32(t1, movemask); uint32x2_t t3 = vorr_u32(vget_low_u32(t2), vget_high_u32(t2)); return vget_lane_u32(t3, 0) | vget_lane_u32(t3, 1); #endif } // Takes the upper 64 bits of a and places it in the low end of the result // Takes the lower 64 bits of b and places it into the high end of the result. FORCE_INLINE __m128 _mm_shuffle_ps_1032(__m128 a, __m128 b) { float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a)); float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b)); return vreinterpretq_m128_f32(vcombine_f32(a32, b10)); } // takes the lower two 32-bit values from a and swaps them and places in high end of result // takes the higher two 32 bit values from b and swaps them and places in low end of result. FORCE_INLINE __m128 _mm_shuffle_ps_2301(__m128 a, __m128 b) { float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a))); float32x2_t b23 = vrev64_f32(vget_high_f32(vreinterpretq_f32_m128(b))); return vreinterpretq_m128_f32(vcombine_f32(a01, b23)); } FORCE_INLINE __m128 _mm_shuffle_ps_0321(__m128 a, __m128 b) { float32x2_t a21 = vget_high_f32(vextq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 3)); float32x2_t b03 = vget_low_f32(vextq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b), 3)); return vreinterpretq_m128_f32(vcombine_f32(a21, b03)); } FORCE_INLINE __m128 _mm_shuffle_ps_2103(__m128 a, __m128 b) { float32x2_t a03 = vget_low_f32(vextq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 3)); float32x2_t b21 = vget_high_f32(vextq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b), 3)); return vreinterpretq_m128_f32(vcombine_f32(a03, b21)); } FORCE_INLINE __m128 _mm_shuffle_ps_1010(__m128 a, __m128 b) { float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a)); float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b)); return vreinterpretq_m128_f32(vcombine_f32(a10, b10)); } FORCE_INLINE __m128 _mm_shuffle_ps_1001(__m128 a, __m128 b) { float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a))); float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b)); return vreinterpretq_m128_f32(vcombine_f32(a01, b10)); } FORCE_INLINE __m128 _mm_shuffle_ps_0101(__m128 a, __m128 b) { float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a))); float32x2_t b01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(b))); return vreinterpretq_m128_f32(vcombine_f32(a01, b01)); } // keeps the low 64 bits of b in the low and puts the high 64 bits of a in the high FORCE_INLINE __m128 _mm_shuffle_ps_3210(__m128 a, __m128 b) { float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a)); float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b)); return vreinterpretq_m128_f32(vcombine_f32(a10, b32)); } FORCE_INLINE __m128 _mm_shuffle_ps_0011(__m128 a, __m128 b) { float32x2_t a11 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(a)), 1); float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0); return vreinterpretq_m128_f32(vcombine_f32(a11, b00)); } FORCE_INLINE __m128 _mm_shuffle_ps_0022(__m128 a, __m128 b) { float32x2_t a22 = vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 0); float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0); return vreinterpretq_m128_f32(vcombine_f32(a22, b00)); } FORCE_INLINE __m128 _mm_shuffle_ps_2200(__m128 a, __m128 b) { float32x2_t a00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(a)), 0); float32x2_t b22 = vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(b)), 0); return vreinterpretq_m128_f32(vcombine_f32(a00, b22)); } FORCE_INLINE __m128 _mm_shuffle_ps_3202(__m128 a, __m128 b) { float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); float32x2_t a22 = vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 0); float32x2_t a02 = vset_lane_f32(a0, a22, 1); /* apoty: TODO: use vzip ?*/ float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b)); return vreinterpretq_m128_f32(vcombine_f32(a02, b32)); } FORCE_INLINE __m128 _mm_shuffle_ps_1133(__m128 a, __m128 b) { float32x2_t a33 = vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 1); float32x2_t b11 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 1); return vreinterpretq_m128_f32(vcombine_f32(a33, b11)); } FORCE_INLINE __m128 _mm_shuffle_ps_2010(__m128 a, __m128 b) { float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a)); float32_t b2 = vgetq_lane_f32(vreinterpretq_f32_m128(b), 2); float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0); float32x2_t b20 = vset_lane_f32(b2, b00, 1); return vreinterpretq_m128_f32(vcombine_f32(a10, b20)); } FORCE_INLINE __m128 _mm_shuffle_ps_2001(__m128 a, __m128 b) { float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a))); float32_t b2 = vgetq_lane_f32(b, 2); float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0); float32x2_t b20 = vset_lane_f32(b2, b00, 1); return vreinterpretq_m128_f32(vcombine_f32(a01, b20)); } FORCE_INLINE __m128 _mm_shuffle_ps_2032(__m128 a, __m128 b) { float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a)); float32_t b2 = vgetq_lane_f32(b, 2); float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0); float32x2_t b20 = vset_lane_f32(b2, b00, 1); return vreinterpretq_m128_f32(vcombine_f32(a32, b20)); } // NEON does not support a general purpose permute intrinsic // Currently I am not sure whether the C implementation is faster or slower than the NEON version. // Note, this has to be expanded as a template because the shuffle value must be an immediate value. // The same is true on SSE as well. // Selects four specific single-precision, floating-point values from a and b, based on the mask i. https://msdn.microsoft.com/en-us/library/vstudio/5f0858x0(v=vs.100).aspx #if ENABLE_CPP_VERSION // I am not convinced that the NEON version is faster than the C version yet. FORCE_INLINE __m128 _mm_shuffle_ps_default(__m128 a, __m128 b, __constrange(0,255) int imm) { __m128 ret; ret[0] = a[imm & 0x3]; ret[1] = a[(imm >> 2) & 0x3]; ret[2] = b[(imm >> 4) & 0x03]; ret[3] = b[(imm >> 6) & 0x03]; return ret; } #else #define _mm_shuffle_ps_default(a, b, imm) \ ({ \ float32x4_t ret; \ ret = vmovq_n_f32(vgetq_lane_f32(vreinterpretq_f32_m128(a), (imm) & 0x3)); \ ret = vsetq_lane_f32(vgetq_lane_f32(vreinterpretq_f32_m128(a), ((imm) >> 2) & 0x3), ret, 1); \ ret = vsetq_lane_f32(vgetq_lane_f32(vreinterpretq_f32_m128(b), ((imm) >> 4) & 0x3), ret, 2); \ ret = vsetq_lane_f32(vgetq_lane_f32(vreinterpretq_f32_m128(b), ((imm) >> 6) & 0x3), ret, 3); \ vreinterpretq_m128_f32(ret); \ }) #endif //FORCE_INLINE __m128 _mm_shuffle_ps(__m128 a, __m128 b, __constrange(0,255) int imm) #define _mm_shuffle_ps(a, b, imm) \ ({ \ __m128 ret; \ switch (imm) \ { \ case _MM_SHUFFLE(1, 0, 3, 2): ret = _mm_shuffle_ps_1032((a), (b)); break; \ case _MM_SHUFFLE(2, 3, 0, 1): ret = _mm_shuffle_ps_2301((a), (b)); break; \ case _MM_SHUFFLE(0, 3, 2, 1): ret = _mm_shuffle_ps_0321((a), (b)); break; \ case _MM_SHUFFLE(2, 1, 0, 3): ret = _mm_shuffle_ps_2103((a), (b)); break; \ case _MM_SHUFFLE(1, 0, 1, 0): ret = _mm_shuffle_ps_1010((a), (b)); break; \ case _MM_SHUFFLE(1, 0, 0, 1): ret = _mm_shuffle_ps_1001((a), (b)); break; \ case _MM_SHUFFLE(0, 1, 0, 1): ret = _mm_shuffle_ps_0101((a), (b)); break; \ case _MM_SHUFFLE(3, 2, 1, 0): ret = _mm_shuffle_ps_3210((a), (b)); break; \ case _MM_SHUFFLE(0, 0, 1, 1): ret = _mm_shuffle_ps_0011((a), (b)); break; \ case _MM_SHUFFLE(0, 0, 2, 2): ret = _mm_shuffle_ps_0022((a), (b)); break; \ case _MM_SHUFFLE(2, 2, 0, 0): ret = _mm_shuffle_ps_2200((a), (b)); break; \ case _MM_SHUFFLE(3, 2, 0, 2): ret = _mm_shuffle_ps_3202((a), (b)); break; \ case _MM_SHUFFLE(1, 1, 3, 3): ret = _mm_shuffle_ps_1133((a), (b)); break; \ case _MM_SHUFFLE(2, 0, 1, 0): ret = _mm_shuffle_ps_2010((a), (b)); break; \ case _MM_SHUFFLE(2, 0, 0, 1): ret = _mm_shuffle_ps_2001((a), (b)); break; \ case _MM_SHUFFLE(2, 0, 3, 2): ret = _mm_shuffle_ps_2032((a), (b)); break; \ default: ret = _mm_shuffle_ps_default((a), (b), (imm)); break; \ } \ ret; \ }) // Takes the upper 64 bits of a and places it in the low end of the result // Takes the lower 64 bits of a and places it into the high end of the result. FORCE_INLINE __m128i _mm_shuffle_epi_1032(__m128i a) { int32x2_t a32 = vget_high_s32(vreinterpretq_s32_m128i(a)); int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a)); return vreinterpretq_m128i_s32(vcombine_s32(a32, a10)); } // takes the lower two 32-bit values from a and swaps them and places in low end of result // takes the higher two 32 bit values from a and swaps them and places in high end of result. FORCE_INLINE __m128i _mm_shuffle_epi_2301(__m128i a) { int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a))); int32x2_t a23 = vrev64_s32(vget_high_s32(vreinterpretq_s32_m128i(a))); return vreinterpretq_m128i_s32(vcombine_s32(a01, a23)); } // rotates the least significant 32 bits into the most signficant 32 bits, and shifts the rest down FORCE_INLINE __m128i _mm_shuffle_epi_0321(__m128i a) { return vreinterpretq_m128i_s32(vextq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(a), 1)); } // rotates the most significant 32 bits into the least signficant 32 bits, and shifts the rest up FORCE_INLINE __m128i _mm_shuffle_epi_2103(__m128i a) { return vreinterpretq_m128i_s32(vextq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(a), 3)); } // gets the lower 64 bits of a, and places it in the upper 64 bits // gets the lower 64 bits of a and places it in the lower 64 bits FORCE_INLINE __m128i _mm_shuffle_epi_1010(__m128i a) { int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a)); return vreinterpretq_m128i_s32(vcombine_s32(a10, a10)); } // gets the lower 64 bits of a, swaps the 0 and 1 elements, and places it in the lower 64 bits // gets the lower 64 bits of a, and places it in the upper 64 bits FORCE_INLINE __m128i _mm_shuffle_epi_1001(__m128i a) { int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a))); int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a)); return vreinterpretq_m128i_s32(vcombine_s32(a01, a10)); } // gets the lower 64 bits of a, swaps the 0 and 1 elements and places it in the upper 64 bits // gets the lower 64 bits of a, swaps the 0 and 1 elements, and places it in the lower 64 bits FORCE_INLINE __m128i _mm_shuffle_epi_0101(__m128i a) { int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a))); return vreinterpretq_m128i_s32(vcombine_s32(a01, a01)); } FORCE_INLINE __m128i _mm_shuffle_epi_2211(__m128i a) { int32x2_t a11 = vdup_lane_s32(vget_low_s32(vreinterpretq_s32_m128i(a)), 1); int32x2_t a22 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 0); return vreinterpretq_m128i_s32(vcombine_s32(a11, a22)); } FORCE_INLINE __m128i _mm_shuffle_epi_0122(__m128i a) { int32x2_t a22 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 0); int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a))); return vreinterpretq_m128i_s32(vcombine_s32(a22, a01)); } FORCE_INLINE __m128i _mm_shuffle_epi_3332(__m128i a) { int32x2_t a32 = vget_high_s32(vreinterpretq_s32_m128i(a)); int32x2_t a33 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 1); return vreinterpretq_m128i_s32(vcombine_s32(a32, a33)); } //FORCE_INLINE __m128i _mm_shuffle_epi32_default(__m128i a, __constrange(0,255) int imm) #if ENABLE_CPP_VERSION FORCE_INLINE __m128i _mm_shuffle_epi32_default(__m128i a, __constrange(0,255) int imm) { __m128i ret; ret[0] = a[imm & 0x3]; ret[1] = a[(imm >> 2) & 0x3]; ret[2] = a[(imm >> 4) & 0x03]; ret[3] = a[(imm >> 6) & 0x03]; return ret; } #else #define _mm_shuffle_epi32_default(a, imm) \ ({ \ int32x4_t ret; \ ret = vmovq_n_s32(vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm) & 0x3)); \ ret = vsetq_lane_s32(vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 2) & 0x3), ret, 1); \ ret = vsetq_lane_s32(vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 4) & 0x3), ret, 2); \ ret = vsetq_lane_s32(vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 6) & 0x3), ret, 3); \ vreinterpretq_m128i_s32(ret); \ }) #endif //FORCE_INLINE __m128i _mm_shuffle_epi32_splat(__m128i a, __constrange(0,255) int imm) #if defined(__aarch64__) #define _mm_shuffle_epi32_splat(a, imm) \ ({ \ vreinterpretq_m128i_s32(vdupq_laneq_s32(vreinterpretq_s32_m128i(a), (imm))); \ }) #else #define _mm_shuffle_epi32_splat(a, imm) \ ({ \ vreinterpretq_m128i_s32(vdupq_n_s32(vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm)))); \ }) #endif // Shuffles the 4 signed or unsigned 32-bit integers in a as specified by imm. https://msdn.microsoft.com/en-us/library/56f67xbk%28v=vs.90%29.aspx //FORCE_INLINE __m128i _mm_shuffle_epi32(__m128i a, __constrange(0,255) int imm) #define _mm_shuffle_epi32(a, imm) \ ({ \ __m128i ret; \ switch (imm) \ { \ case _MM_SHUFFLE(1, 0, 3, 2): ret = _mm_shuffle_epi_1032((a)); break; \ case _MM_SHUFFLE(2, 3, 0, 1): ret = _mm_shuffle_epi_2301((a)); break; \ case _MM_SHUFFLE(0, 3, 2, 1): ret = _mm_shuffle_epi_0321((a)); break; \ case _MM_SHUFFLE(2, 1, 0, 3): ret = _mm_shuffle_epi_2103((a)); break; \ case _MM_SHUFFLE(1, 0, 1, 0): ret = _mm_shuffle_epi_1010((a)); break; \ case _MM_SHUFFLE(1, 0, 0, 1): ret = _mm_shuffle_epi_1001((a)); break; \ case _MM_SHUFFLE(0, 1, 0, 1): ret = _mm_shuffle_epi_0101((a)); break; \ case _MM_SHUFFLE(2, 2, 1, 1): ret = _mm_shuffle_epi_2211((a)); break; \ case _MM_SHUFFLE(0, 1, 2, 2): ret = _mm_shuffle_epi_0122((a)); break; \ case _MM_SHUFFLE(3, 3, 3, 2): ret = _mm_shuffle_epi_3332((a)); break; \ case _MM_SHUFFLE(0, 0, 0, 0): ret = _mm_shuffle_epi32_splat((a),0); break; \ case _MM_SHUFFLE(1, 1, 1, 1): ret = _mm_shuffle_epi32_splat((a),1); break; \ case _MM_SHUFFLE(2, 2, 2, 2): ret = _mm_shuffle_epi32_splat((a),2); break; \ case _MM_SHUFFLE(3, 3, 3, 3): ret = _mm_shuffle_epi32_splat((a),3); break; \ default: ret = _mm_shuffle_epi32_default((a), (imm)); break; \ } \ ret; \ }) // Shuffles the upper 4 signed or unsigned 16 - bit integers in a as specified by imm. https://msdn.microsoft.com/en-us/library/13ywktbs(v=vs.100).aspx //FORCE_INLINE __m128i _mm_shufflehi_epi16_function(__m128i a, __constrange(0,255) int imm) #define _mm_shufflehi_epi16_function(a, imm) \ ({ \ int16x8_t ret = vreinterpretq_s16_s32(a); \ int16x4_t highBits = vget_high_s16(ret); \ ret = vsetq_lane_s16(vget_lane_s16(highBits, (imm) & 0x3), ret, 4); \ ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 2) & 0x3), ret, 5); \ ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 4) & 0x3), ret, 6); \ ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 6) & 0x3), ret, 7); \ vreinterpretq_s32_s16(ret); \ }) //FORCE_INLINE __m128i _mm_shufflehi_epi16(__m128i a, __constrange(0,255) int imm) #define _mm_shufflehi_epi16(a, imm) \ _mm_shufflehi_epi16_function((a), (imm)) // Shifts the 4 signed or unsigned 32-bit integers in a left by count bits while shifting in zeros. : https://msdn.microsoft.com/en-us/library/z2k3bbtb%28v=vs.90%29.aspx //FORCE_INLINE __m128i _mm_slli_epi32(__m128i a, __constrange(0,255) int imm) #define _mm_slli_epi32(a, imm) \ ({ \ __m128i ret; \ if ((imm) <= 0) {\ ret = a; \ } \ else if ((imm) > 31) { \ ret = _mm_setzero_si128(); \ } \ else { \ ret = vreinterpretq_m128i_s32(vshlq_n_s32(vreinterpretq_s32_m128i(a), (imm))); \ } \ ret; \ }) //Shifts the 4 signed or unsigned 32-bit integers in a right by count bits while shifting in zeros. https://msdn.microsoft.com/en-us/library/w486zcfa(v=vs.100).aspx //FORCE_INLINE __m128i _mm_srli_epi32(__m128i a, __constrange(0,255) int imm) #define _mm_srli_epi32(a, imm) \ ({ \ __m128i ret; \ if ((imm) <= 0) { \ ret = a; \ } \ else if ((imm)> 31) { \ ret = _mm_setzero_si128(); \ } \ else { \ ret = vreinterpretq_m128i_u32(vshrq_n_u32(vreinterpretq_u32_m128i(a), (imm))); \ } \ ret; \ }) // Shifts the 4 signed 32 - bit integers in a right by count bits while shifting in the sign bit. https://msdn.microsoft.com/en-us/library/z1939387(v=vs.100).aspx //FORCE_INLINE __m128i _mm_srai_epi32(__m128i a, __constrange(0,255) int imm) #define _mm_srai_epi32(a, imm) \ ({ \ __m128i ret; \ if ((imm) <= 0) { \ ret = a; \ } \ else if ((imm) > 31) { \ ret = vreinterpretq_m128i_s32(vshrq_n_s32(vreinterpretq_s32_m128i(a), 16)); \ ret = vreinterpretq_m128i_s32(vshrq_n_s32(vreinterpretq_s32_m128i(ret), 16)); \ } \ else { \ ret = vreinterpretq_m128i_s32(vshrq_n_s32(vreinterpretq_s32_m128i(a), (imm))); \ } \ ret; \ }) // Shifts the 128 - bit value in a right by imm bytes while shifting in zeros.imm must be an immediate. https://msdn.microsoft.com/en-us/library/305w28yz(v=vs.100).aspx //FORCE_INLINE _mm_srli_si128(__m128i a, __constrange(0,255) int imm) #define _mm_srli_si128(a, imm) \ ({ \ __m128i ret; \ if ((imm) <= 0) { \ ret = a; \ } \ else if ((imm) > 15) { \ ret = _mm_setzero_si128(); \ } \ else { \ ret = vreinterpretq_m128i_s8(vextq_s8(vreinterpretq_s8_m128i(a), vdupq_n_s8(0), (imm))); \ } \ ret; \ }) // Shifts the 128-bit value in a left by imm bytes while shifting in zeros. imm must be an immediate. https://msdn.microsoft.com/en-us/library/34d3k2kt(v=vs.100).aspx //FORCE_INLINE __m128i _mm_slli_si128(__m128i a, __constrange(0,255) int imm) #define _mm_slli_si128(a, imm) \ ({ \ __m128i ret; \ if ((imm) <= 0) { \ ret = a; \ } \ else if ((imm) > 15) { \ ret = _mm_setzero_si128(); \ } \ else { \ ret = vreinterpretq_m128i_s8(vextq_s8(vdupq_n_s8(0), vreinterpretq_s8_m128i(a), 16 - (imm))); \ } \ ret; \ }) // NEON does not provide a version of this function, here is an article about some ways to repro the results. // http://stackoverflow.com/questions/11870910/sse-mm-movemask-epi8-equivalent-method-for-arm-neon // Creates a 16-bit mask from the most significant bits of the 16 signed or unsigned 8-bit integers in a and zero extends the upper bits. https://msdn.microsoft.com/en-us/library/vstudio/s090c8fk(v=vs.100).aspx FORCE_INLINE int _mm_movemask_epi8(__m128i _a) { uint8x16_t input = vreinterpretq_u8_m128i(_a); static const int8_t __attribute__((aligned(16))) xr[8] = { -7, -6, -5, -4, -3, -2, -1, 0 }; uint8x8_t mask_and = vdup_n_u8(0x80); int8x8_t mask_shift = vld1_s8(xr); uint8x8_t lo = vget_low_u8(input); uint8x8_t hi = vget_high_u8(input); lo = vand_u8(lo, mask_and); lo = vshl_u8(lo, mask_shift); hi = vand_u8(hi, mask_and); hi = vshl_u8(hi, mask_shift); lo = vpadd_u8(lo, lo); lo = vpadd_u8(lo, lo); lo = vpadd_u8(lo, lo); hi = vpadd_u8(hi, hi); hi = vpadd_u8(hi, hi); hi = vpadd_u8(hi, hi); return ((hi[0] << 8) | (lo[0] & 0xFF)); } // ****************************************** // Math operations // ****************************************** // Subtracts the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/1zad2k61(v=vs.100).aspx FORCE_INLINE __m128 _mm_sub_ps(__m128 a, __m128 b) { return vreinterpretq_m128_f32(vsubq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); } // Subtracts the 4 signed or unsigned 32-bit integers of b from the 4 signed or unsigned 32-bit integers of a. https://msdn.microsoft.com/en-us/library/vstudio/fhh866h0(v=vs.100).aspx FORCE_INLINE __m128i _mm_sub_epi32(__m128i a, __m128i b) { return vreinterpretq_m128_f32(vsubq_s32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); } FORCE_INLINE __m128i _mm_sub_epi16(__m128i a, __m128i b) { return vreinterpretq_m128i_s16(vsubq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); } // Adds the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/c9848chc(v=vs.100).aspx FORCE_INLINE __m128 _mm_add_ps(__m128 a, __m128 b) { return vreinterpretq_m128_f32(vaddq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); } // adds the scalar single-precision floating point values of a and b. https://msdn.microsoft.com/en-us/library/be94x2y6(v=vs.100).aspx FORCE_INLINE __m128 _mm_add_ss(__m128 a, __m128 b) { float32_t b0 = vgetq_lane_f32(vreinterpretq_f32_m128(b), 0); float32x4_t value = vsetq_lane_f32(b0, vdupq_n_f32(0), 0); //the upper values in the result must be the remnants of . return vreinterpretq_m128_f32(vaddq_f32(a, value)); } // Adds the 4 signed or unsigned 32-bit integers in a to the 4 signed or unsigned 32-bit integers in b. https://msdn.microsoft.com/en-us/library/vstudio/09xs4fkk(v=vs.100).aspx FORCE_INLINE __m128i _mm_add_epi32(__m128i a, __m128i b) { return vreinterpretq_m128i_s32(vaddq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); } // Adds the 8 signed or unsigned 16-bit integers in a to the 8 signed or unsigned 16-bit integers in b. https://msdn.microsoft.com/en-us/library/fceha5k4(v=vs.100).aspx FORCE_INLINE __m128i _mm_add_epi16(__m128i a, __m128i b) { return vreinterpretq_m128i_s16(vaddq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); } // Multiplies the 8 signed or unsigned 16-bit integers from a by the 8 signed or unsigned 16-bit integers from b. https://msdn.microsoft.com/en-us/library/vstudio/9ks1472s(v=vs.100).aspx FORCE_INLINE __m128i _mm_mullo_epi16(__m128i a, __m128i b) { return vreinterpretq_m128i_s16(vmulq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); } // Multiplies the 4 signed or unsigned 32-bit integers from a by the 4 signed or unsigned 32-bit integers from b. https://msdn.microsoft.com/en-us/library/vstudio/bb531409(v=vs.100).aspx FORCE_INLINE __m128i _mm_mullo_epi32(__m128i a, __m128i b) { return vreinterpretq_m128i_s32(vmulq_s32(vreinterpretq_s32_m128i(a),vreinterpretq_s32_m128i(b))); } // Multiplies the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/22kbk6t9(v=vs.100).aspx FORCE_INLINE __m128 _mm_mul_ps(__m128 a, __m128 b) { return vreinterpretq_m128_f32(vmulq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); } // Divides the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/edaw8147(v=vs.100).aspx FORCE_INLINE __m128 _mm_div_ps(__m128 a, __m128 b) { float32x4_t recip0 = vrecpeq_f32(vreinterpretq_f32_m128(b)); float32x4_t recip1 = vmulq_f32(recip0, vrecpsq_f32(recip0, vreinterpretq_f32_m128(b))); return vreinterpretq_m128_f32(vmulq_f32(vreinterpretq_f32_m128(a), recip1)); } // Divides the scalar single-precision floating point value of a by b. https://msdn.microsoft.com/en-us/library/4y73xa49(v=vs.100).aspx FORCE_INLINE __m128 _mm_div_ss(__m128 a, __m128 b) { float32_t value = vgetq_lane_f32(vreinterpretq_f32_m128(_mm_div_ps(a, b)), 0); return vreinterpretq_m128_f32(vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0)); } // This version does additional iterations to improve accuracy. Between 1 and 4 recommended. // Computes the approximations of reciprocals of the four single-precision, floating-point values of a. https://msdn.microsoft.com/en-us/library/vstudio/796k1tty(v=vs.100).aspx FORCE_INLINE __m128 recipq_newton(__m128 in, int n) { int i; float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(in)); for (i = 0; i < n; ++i) { recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(in))); } return vreinterpretq_m128_f32(recip); } // Computes the approximations of reciprocals of the four single-precision, floating-point values of a. https://msdn.microsoft.com/en-us/library/vstudio/796k1tty(v=vs.100).aspx FORCE_INLINE __m128 _mm_rcp_ps(__m128 in) { float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(in)); recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(in))); return vreinterpretq_m128_f32(recip); } // Computes the approximations of square roots of the four single-precision, floating-point values of a. First computes reciprocal square roots and then reciprocals of the four values. https://msdn.microsoft.com/en-us/library/vstudio/8z67bwwk(v=vs.100).aspx FORCE_INLINE __m128 _mm_sqrt_ps(__m128 in) { float32x4_t recipsq = vrsqrteq_f32(vreinterpretq_f32_m128(in)); float32x4_t sq = vrecpeq_f32(recipsq); // ??? use step versions of both sqrt and recip for better accuracy? return vreinterpretq_m128_f32(sq); } // Computes the approximation of the square root of the scalar single-precision floating point value of in. https://msdn.microsoft.com/en-us/library/ahfsc22d(v=vs.100).aspx FORCE_INLINE __m128 _mm_sqrt_ss(__m128 in) { float32_t value = vgetq_lane_f32(vreinterpretq_f32_m128(_mm_sqrt_ps(in)), 0); return vreinterpretq_m128_f32(vsetq_lane_f32(value, vreinterpretq_f32_m128(in), 0)); } // Computes the approximations of the reciprocal square roots of the four single-precision floating point values of in. https://msdn.microsoft.com/en-us/library/22hfsh53(v=vs.100).aspx FORCE_INLINE __m128 _mm_rsqrt_ps(__m128 in) { return vreinterpretq_m128_f32(vrsqrteq_f32(vreinterpretq_f32_m128(in))); } // Computes the maximums of the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/ff5d607a(v=vs.100).aspx FORCE_INLINE __m128 _mm_max_ps(__m128 a, __m128 b) { return vreinterpretq_m128_f32(vmaxq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); } // Computes the minima of the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/wh13kadz(v=vs.100).aspx FORCE_INLINE __m128 _mm_min_ps(__m128 a, __m128 b) { return vreinterpretq_m128_f32(vminq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); } // Computes the maximum of the two lower scalar single-precision floating point values of a and b. https://msdn.microsoft.com/en-us/library/s6db5esz(v=vs.100).aspx FORCE_INLINE __m128 _mm_max_ss(__m128 a, __m128 b) { float32_t value = vgetq_lane_f32(vmaxq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)), 0); return vreinterpretq_m128_f32(vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0)); } // Computes the minimum of the two lower scalar single-precision floating point values of a and b. https://msdn.microsoft.com/en-us/library/0a9y7xaa(v=vs.100).aspx FORCE_INLINE __m128 _mm_min_ss(__m128 a, __m128 b) { float32_t value = vgetq_lane_f32(vminq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)), 0); return vreinterpretq_m128_f32(vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0)); } // Computes the pairwise minima of the 8 signed 16-bit integers from a and the 8 signed 16-bit integers from b. https://msdn.microsoft.com/en-us/library/vstudio/6te997ew(v=vs.100).aspx FORCE_INLINE __m128i _mm_min_epi16(__m128i a, __m128i b) { return vreinterpretq_m128i_s16(vminq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); } // epi versions of min/max // Computes the pariwise maximums of the four signed 32-bit integer values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/bb514055(v=vs.100).aspx FORCE_INLINE __m128i _mm_max_epi32(__m128i a, __m128i b) { return vreinterpretq_m128i_s32(vmaxq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); } // Computes the pariwise minima of the four signed 32-bit integer values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/bb531476(v=vs.100).aspx FORCE_INLINE __m128i _mm_min_epi32(__m128i a, __m128i b) { return vreinterpretq_m128i_s32(vminq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); } // Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit integers from b. https://msdn.microsoft.com/en-us/library/vstudio/59hddw1d(v=vs.100).aspx FORCE_INLINE __m128i _mm_mulhi_epi16(__m128i a, __m128i b) { /* apoty: issue with large values because of result saturation */ //int16x8_t ret = vqdmulhq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)); /* =2*a*b */ //return vreinterpretq_m128i_s16(vshrq_n_s16(ret, 1)); int16x4_t a3210 = vget_low_s16(vreinterpretq_s16_m128i(a)); int16x4_t b3210 = vget_low_s16(vreinterpretq_s16_m128i(b)); int32x4_t ab3210 = vmull_s16(a3210, b3210); /* 3333222211110000 */ int16x4_t a7654 = vget_high_s16(vreinterpretq_s16_m128i(a)); int16x4_t b7654 = vget_high_s16(vreinterpretq_s16_m128i(b)); int32x4_t ab7654 = vmull_s16(a7654, b7654); /* 7777666655554444 */ uint16x8x2_t r = vuzpq_u16(vreinterpretq_u16_s32(ab3210), vreinterpretq_u16_s32(ab7654)); return vreinterpretq_m128i_u16(r.val[1]); } // Computes pairwise add of each argument as single-precision, floating-point values a and b. //https://msdn.microsoft.com/en-us/library/yd9wecaa.aspx FORCE_INLINE __m128 _mm_hadd_ps(__m128 a, __m128 b ) { #if defined(__aarch64__) return vreinterpretq_m128_f32(vpaddq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); //AArch64 #else float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a)); float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a)); float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b)); float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b)); return vreinterpretq_m128_f32(vcombine_f32(vpadd_f32(a10, a32), vpadd_f32(b10, b32))); #endif } // ****************************************** // Compare operations // ****************************************** // Compares for less than https://msdn.microsoft.com/en-us/library/vstudio/f330yhc8(v=vs.100).aspx FORCE_INLINE __m128 _mm_cmplt_ps(__m128 a, __m128 b) { return vreinterpretq_m128_u32(vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); } // Compares for greater than. https://msdn.microsoft.com/en-us/library/vstudio/11dy102s(v=vs.100).aspx FORCE_INLINE __m128 _mm_cmpgt_ps(__m128 a, __m128 b) { return vreinterpretq_m128_u32(vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); } // Compares for greater than or equal. https://msdn.microsoft.com/en-us/library/vstudio/fs813y2t(v=vs.100).aspx FORCE_INLINE __m128 _mm_cmpge_ps(__m128 a, __m128 b) { return vreinterpretq_m128_u32(vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); } // Compares for less than or equal. https://msdn.microsoft.com/en-us/library/vstudio/1s75w83z(v=vs.100).aspx FORCE_INLINE __m128 _mm_cmple_ps(__m128 a, __m128 b) { return vreinterpretq_m128_u32(vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); } // Compares for equality. https://msdn.microsoft.com/en-us/library/vstudio/36aectz5(v=vs.100).aspx FORCE_INLINE __m128 _mm_cmpeq_ps(__m128 a, __m128 b) { return vreinterpretq_m128_u32(vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); } // Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers in b for less than. https://msdn.microsoft.com/en-us/library/vstudio/4ak0bf5d(v=vs.100).aspx FORCE_INLINE __m128i _mm_cmplt_epi32(__m128i a, __m128i b) { return vreinterpretq_m128i_u32(vcltq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); } // Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers in b for greater than. https://msdn.microsoft.com/en-us/library/vstudio/1s9f2z0y(v=vs.100).aspx FORCE_INLINE __m128i _mm_cmpgt_epi32(__m128i a, __m128i b) { return vreinterpretq_m128i_u32(vcgtq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); } // Compares the four 32-bit floats in a and b to check if any values are NaN. Ordered compare between each value returns true for "orderable" and false for "not orderable" (NaN). https://msdn.microsoft.com/en-us/library/vstudio/0h9w00fx(v=vs.100).aspx // see also: // http://stackoverflow.com/questions/8627331/what-does-ordered-unordered-comparison-mean // http://stackoverflow.com/questions/29349621/neon-isnanval-intrinsics FORCE_INLINE __m128 _mm_cmpord_ps(__m128 a, __m128 b ) { // Note: NEON does not have ordered compare builtin // Need to compare a eq a and b eq b to check for NaN // Do AND of results to get final uint32x4_t ceqaa = vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)); uint32x4_t ceqbb = vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b)); return vreinterpretq_m128_u32(vandq_u32(ceqaa, ceqbb)); } // Compares the lower single-precision floating point scalar values of a and b using a less than operation. : https://msdn.microsoft.com/en-us/library/2kwe606b(v=vs.90).aspx // Important note!! The documentation on MSDN is incorrect! If either of the values is a NAN the docs say you will get a one, but in fact, it will return a zero!! FORCE_INLINE int _mm_comilt_ss(__m128 a, __m128 b) { uint32x4_t a_not_nan = vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)); uint32x4_t b_not_nan = vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b)); uint32x4_t a_or_b_nan = vmvnq_u32(vandq_u32(a_not_nan, b_not_nan)); uint32x4_t a_lt_b = vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)); return (vgetq_lane_u32(vorrq_u32(a_or_b_nan, a_lt_b), 0) != 0) ? 1 : 0; } // Compares the lower single-precision floating point scalar values of a and b using a greater than operation. : https://msdn.microsoft.com/en-us/library/b0738e0t(v=vs.100).aspx FORCE_INLINE int _mm_comigt_ss(__m128 a, __m128 b) { //return vgetq_lane_u32(vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)), 0); uint32x4_t a_not_nan = vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)); uint32x4_t b_not_nan = vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b)); uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan); uint32x4_t a_gt_b = vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)); return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_gt_b), 0) != 0) ? 1 : 0; } // Compares the lower single-precision floating point scalar values of a and b using a less than or equal operation. : https://msdn.microsoft.com/en-us/library/1w4t7c57(v=vs.90).aspx FORCE_INLINE int _mm_comile_ss(__m128 a, __m128 b) { //return vgetq_lane_u32(vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)), 0); uint32x4_t a_not_nan = vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)); uint32x4_t b_not_nan = vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b)); uint32x4_t a_or_b_nan = vmvnq_u32(vandq_u32(a_not_nan, b_not_nan)); uint32x4_t a_le_b = vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)); return (vgetq_lane_u32(vorrq_u32(a_or_b_nan, a_le_b), 0) != 0) ? 1 : 0; } // Compares the lower single-precision floating point scalar values of a and b using a greater than or equal operation. : https://msdn.microsoft.com/en-us/library/8t80des6(v=vs.100).aspx FORCE_INLINE int _mm_comige_ss(__m128 a, __m128 b) { //return vgetq_lane_u32(vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)), 0); uint32x4_t a_not_nan = vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)); uint32x4_t b_not_nan = vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b)); uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan); uint32x4_t a_ge_b = vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)); return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_ge_b), 0) != 0) ? 1 : 0; } // Compares the lower single-precision floating point scalar values of a and b using an equality operation. : https://msdn.microsoft.com/en-us/library/93yx2h2b(v=vs.100).aspx FORCE_INLINE int _mm_comieq_ss(__m128 a, __m128 b) { //return vgetq_lane_u32(vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)), 0); uint32x4_t a_not_nan = vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)); uint32x4_t b_not_nan = vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b)); uint32x4_t a_or_b_nan = vmvnq_u32(vandq_u32(a_not_nan, b_not_nan)); uint32x4_t a_eq_b = vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)); return (vgetq_lane_u32(vorrq_u32(a_or_b_nan, a_eq_b), 0) != 0) ? 1 : 0; } // Compares the lower single-precision floating point scalar values of a and b using an inequality operation. : https://msdn.microsoft.com/en-us/library/bafh5e0a(v=vs.90).aspx FORCE_INLINE int _mm_comineq_ss(__m128 a, __m128 b) { //return !vgetq_lane_u32(vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)), 0); uint32x4_t a_not_nan = vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)); uint32x4_t b_not_nan = vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b)); uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan); uint32x4_t a_neq_b = vmvnq_u32(vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_neq_b), 0) != 0) ? 1 : 0; } // according to the documentation, these intrinsics behave the same as the non-'u' versions. We'll just alias them here. #define _mm_ucomilt_ss _mm_comilt_ss #define _mm_ucomile_ss _mm_comile_ss #define _mm_ucomigt_ss _mm_comigt_ss #define _mm_ucomige_ss _mm_comige_ss #define _mm_ucomieq_ss _mm_comieq_ss #define _mm_ucomineq_ss _mm_comineq_ss // ****************************************** // Conversions // ****************************************** // Converts the four single-precision, floating-point values of a to signed 32-bit integer values using truncate. https://msdn.microsoft.com/en-us/library/vstudio/1h005y6x(v=vs.100).aspx FORCE_INLINE __m128i _mm_cvttps_epi32(__m128 a) { return vreinterpretq_m128i_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a))); } // Converts the four signed 32-bit integer values of a to single-precision, floating-point values https://msdn.microsoft.com/en-us/library/vstudio/36bwxcx5(v=vs.100).aspx FORCE_INLINE __m128 _mm_cvtepi32_ps(__m128i a) { return vreinterpretq_m128_f32(vcvtq_f32_s32(vreinterpretq_s32_m128i(a))); } // Converts the four unsigned 8-bit integers in the lower 32 bits to four unsigned 32-bit integers. https://msdn.microsoft.com/en-us/library/bb531467%28v=vs.100%29.aspx FORCE_INLINE __m128i _mm_cvtepu8_epi32(__m128i a) { uint8x16_t u8x16 = vreinterpretq_u8_s32(a); /* xxxx xxxx xxxx DCBA */ uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16)); /* 0x0x 0x0x 0D0C 0B0A */ uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000D 000C 000B 000A */ return vreinterpretq_s32_u32(u32x4); } // Converts the four signed 16-bit integers in the lower 64 bits to four signed 32-bit integers. https://msdn.microsoft.com/en-us/library/bb514079%28v=vs.100%29.aspx FORCE_INLINE __m128i _mm_cvtepi16_epi32(__m128i a) { return vreinterpretq_m128i_s32(vmovl_s16(vget_low_s16(vreinterpretq_s16_m128i(a)))); } // Converts the four single-precision, floating-point values of a to signed 32-bit integer values. https://msdn.microsoft.com/en-us/library/vstudio/xdc42k5e(v=vs.100).aspx // *NOTE*. The default rounding mode on SSE is 'round to even', which ArmV7 does not support! // It is supported on ARMv8 however. FORCE_INLINE __m128i _mm_cvtps_epi32(__m128 a) { #if defined(__aarch64__) return vcvtnq_s32_f32(a); #else uint32x4_t signmask = vdupq_n_u32(0x80000000); float32x4_t half = vbslq_f32(signmask, vreinterpretq_f32_m128(a), vdupq_n_f32(0.5f)); /* +/- 0.5 */ int32x4_t r_normal = vcvtq_s32_f32(vaddq_f32(vreinterpretq_f32_m128(a), half)); /* round to integer: [a + 0.5]*/ int32x4_t r_trunc = vcvtq_s32_f32(vreinterpretq_f32_m128(a)); /* truncate to integer: [a] */ int32x4_t plusone = vreinterpretq_s32_u32(vshrq_n_u32(vreinterpretq_u32_s32(vnegq_s32(r_trunc)), 31)); /* 1 or 0 */ int32x4_t r_even = vbicq_s32(vaddq_s32(r_trunc, plusone), vdupq_n_s32(1)); /* ([a] + {0,1}) & ~1 */ float32x4_t delta = vsubq_f32(vreinterpretq_f32_m128(a), vcvtq_f32_s32(r_trunc)); /* compute delta: delta = (a - [a]) */ uint32x4_t is_delta_half = vceqq_f32(delta, half); /* delta == +/- 0.5 */ return vreinterpretq_m128i_s32(vbslq_s32(is_delta_half, r_even, r_normal)); #endif } // Moves the least significant 32 bits of a to a 32-bit integer. https://msdn.microsoft.com/en-us/library/5z7a9642%28v=vs.90%29.aspx FORCE_INLINE int _mm_cvtsi128_si32(__m128i a) { return vgetq_lane_s32(vreinterpretq_s32_m128i(a), 0); } // Moves 32-bit integer a to the least significant 32 bits of an __m128 object, zero extending the upper bits. https://msdn.microsoft.com/en-us/library/ct3539ha%28v=vs.90%29.aspx FORCE_INLINE __m128i _mm_cvtsi32_si128(int a) { return vreinterpretq_m128i_s32(vsetq_lane_s32(a, vdupq_n_s32(0), 0)); } // Applies a type cast to reinterpret four 32-bit floating point values passed in as a 128-bit parameter as packed 32-bit integers. https://msdn.microsoft.com/en-us/library/bb514099.aspx FORCE_INLINE __m128i _mm_castps_si128(__m128 a) { return vreinterpretq_m128i_s32(vreinterpretq_s32_m128(a)); } // Applies a type cast to reinterpret four 32-bit integers passed in as a 128-bit parameter as packed 32-bit floating point values. https://msdn.microsoft.com/en-us/library/bb514029.aspx FORCE_INLINE __m128 _mm_castsi128_ps(__m128i a) { return vreinterpretq_m128_s32(vreinterpretq_s32_m128i(a)); } // Loads 128-bit value. : https://msdn.microsoft.com/en-us/library/atzzad1h(v=vs.80).aspx FORCE_INLINE __m128i _mm_load_si128(const __m128i *p) { return vreinterpretq_m128i_s32(vld1q_s32((int32_t *)p)); } // ****************************************** // Miscellaneous Operations // ****************************************** // Packs the 16 signed 16-bit integers from a and b into 8-bit integers and saturates. https://msdn.microsoft.com/en-us/library/k4y4f7w5%28v=vs.90%29.aspx FORCE_INLINE __m128i _mm_packs_epi16(__m128i a, __m128i b) { return vreinterpretq_m128i_s8(vcombine_s8(vqmovn_s16(vreinterpretq_s16_m128i(a)), vqmovn_s16(vreinterpretq_s16_m128i(b)))); } // Packs the 16 signed 16 - bit integers from a and b into 8 - bit unsigned integers and saturates. https://msdn.microsoft.com/en-us/library/07ad1wx4(v=vs.100).aspx FORCE_INLINE __m128i _mm_packus_epi16(const __m128i a, const __m128i b) { return vreinterpretq_m128i_u8(vcombine_u8(vqmovun_s16(vreinterpretq_s16_m128i(a)), vqmovun_s16(vreinterpretq_s16_m128i(b)))); } // Packs the 8 signed 32-bit integers from a and b into signed 16-bit integers and saturates. https://msdn.microsoft.com/en-us/library/393t56f9%28v=vs.90%29.aspx FORCE_INLINE __m128i _mm_packs_epi32(__m128i a, __m128i b) { return vreinterpretq_m128i_s16(vcombine_s16(vqmovn_s32(vreinterpretq_s32_m128i(a)), vqmovn_s32(vreinterpretq_s32_m128i(b)))); } // Interleaves the lower 8 signed or unsigned 8-bit integers in a with the lower 8 signed or unsigned 8-bit integers in b. https://msdn.microsoft.com/en-us/library/xf7k860c%28v=vs.90%29.aspx FORCE_INLINE __m128i _mm_unpacklo_epi8(__m128i a, __m128i b) { int8x8_t a1 = vreinterpret_s8_s16(vget_low_s16(vreinterpretq_s16_m128i(a))); int8x8_t b1 = vreinterpret_s8_s16(vget_low_s16(vreinterpretq_s16_m128i(b))); int8x8x2_t result = vzip_s8(a1, b1); return vreinterpretq_m128i_s8(vcombine_s8(result.val[0], result.val[1])); } // Interleaves the lower 4 signed or unsigned 16-bit integers in a with the lower 4 signed or unsigned 16-bit integers in b. https://msdn.microsoft.com/en-us/library/btxb17bw%28v=vs.90%29.aspx FORCE_INLINE __m128i _mm_unpacklo_epi16(__m128i a, __m128i b) { int16x4_t a1 = vget_low_s16(vreinterpretq_s16_m128i(a)); int16x4_t b1 = vget_low_s16(vreinterpretq_s16_m128i(b)); int16x4x2_t result = vzip_s16(a1, b1); return vreinterpretq_m128i_s16(vcombine_s16(result.val[0], result.val[1])); } // Interleaves the lower 2 signed or unsigned 32 - bit integers in a with the lower 2 signed or unsigned 32 - bit integers in b. https://msdn.microsoft.com/en-us/library/x8atst9d(v=vs.100).aspx FORCE_INLINE __m128i _mm_unpacklo_epi32(__m128i a, __m128i b) { int32x2_t a1 = vget_low_s32(vreinterpretq_s32_m128i(a)); int32x2_t b1 = vget_low_s32(vreinterpretq_s32_m128i(b)); int32x2x2_t result = vzip_s32(a1, b1); return vreinterpretq_m128i_s32(vcombine_s32(result.val[0], result.val[1])); } // Selects and interleaves the lower two single-precision, floating-point values from a and b. https://msdn.microsoft.com/en-us/library/25st103b%28v=vs.90%29.aspx FORCE_INLINE __m128 _mm_unpacklo_ps(__m128 a, __m128 b) { float32x2_t a1 = vget_low_f32(vreinterpretq_f32_m128(a)); float32x2_t b1 = vget_low_f32(vreinterpretq_f32_m128(b)); float32x2x2_t result = vzip_f32(a1, b1); return vreinterpretq_m128_f32(vcombine_f32(result.val[0], result.val[1])); } // Selects and interleaves the upper two single-precision, floating-point values from a and b. https://msdn.microsoft.com/en-us/library/skccxx7d%28v=vs.90%29.aspx FORCE_INLINE __m128 _mm_unpackhi_ps(__m128 a, __m128 b) { float32x2_t a1 = vget_high_f32(vreinterpretq_f32_m128(a)); float32x2_t b1 = vget_high_f32(vreinterpretq_f32_m128(b)); float32x2x2_t result = vzip_f32(a1, b1); return vreinterpretq_m128_f32(vcombine_f32(result.val[0], result.val[1])); } // Interleaves the upper 8 signed or unsigned 8-bit integers in a with the upper 8 signed or unsigned 8-bit integers in b. https://msdn.microsoft.com/en-us/library/t5h7783k(v=vs.100).aspx FORCE_INLINE __m128i _mm_unpackhi_epi8(__m128i a, __m128i b) { int8x8_t a1 = vreinterpret_s8_s16(vget_high_s16(vreinterpretq_s16_m128i(a))); int8x8_t b1 = vreinterpret_s8_s16(vget_high_s16(vreinterpretq_s16_m128i(b))); int8x8x2_t result = vzip_s8(a1, b1); return vreinterpretq_m128i_s8(vcombine_s8(result.val[0], result.val[1])); } // Interleaves the upper 4 signed or unsigned 16-bit integers in a with the upper 4 signed or unsigned 16-bit integers in b. https://msdn.microsoft.com/en-us/library/03196cz7(v=vs.100).aspx FORCE_INLINE __m128i _mm_unpackhi_epi16(__m128i a, __m128i b) { int16x4_t a1 = vget_high_s16(vreinterpretq_s16_m128i(a)); int16x4_t b1 = vget_high_s16(vreinterpretq_s16_m128i(b)); int16x4x2_t result = vzip_s16(a1, b1); return vreinterpretq_m128i_s16(vcombine_s16(result.val[0], result.val[1])); } // Interleaves the upper 2 signed or unsigned 32-bit integers in a with the upper 2 signed or unsigned 32-bit integers in b. https://msdn.microsoft.com/en-us/library/65sa7cbs(v=vs.100).aspx FORCE_INLINE __m128i _mm_unpackhi_epi32(__m128i a, __m128i b) { int32x2_t a1 = vget_high_s32(vreinterpretq_s32_m128i(a)); int32x2_t b1 = vget_high_s32(vreinterpretq_s32_m128i(b)); int32x2x2_t result = vzip_s32(a1, b1); return vreinterpretq_m128i_s32(vcombine_s32(result.val[0], result.val[1])); } // Extracts the selected signed or unsigned 16-bit integer from a and zero extends. https://msdn.microsoft.com/en-us/library/6dceta0c(v=vs.100).aspx //FORCE_INLINE int _mm_extract_epi16(__m128i a, __constrange(0,8) int imm) #define _mm_extract_epi16(a, imm) \ ({ \ (vgetq_lane_s16(vreinterpretq_s16_m128i(a), (imm)) & 0x0000ffffUL); \ }) // Inserts the least significant 16 bits of b into the selected 16-bit integer of a. https://msdn.microsoft.com/en-us/library/kaze8hz1%28v=vs.100%29.aspx //FORCE_INLINE __m128i _mm_insert_epi16(__m128i a, const int b, __constrange(0,8) int imm) #define _mm_insert_epi16(a, b, imm) \ ({ \ vreinterpretq_m128i_s16(vsetq_lane_s16((b), vreinterpretq_s16_m128i(a), (imm))); \ }) // ****************************************** // Streaming Extensions // ****************************************** // Guarantees that every preceding store is globally visible before any subsequent store. https://msdn.microsoft.com/en-us/library/5h2w73d1%28v=vs.90%29.aspx FORCE_INLINE void _mm_sfence(void) { __sync_synchronize(); } // Stores the data in a to the address p without polluting the caches. If the cache line containing address p is already in the cache, the cache will be updated.Address p must be 16 - byte aligned. https://msdn.microsoft.com/en-us/library/ba08y07y%28v=vs.90%29.aspx FORCE_INLINE void _mm_stream_si128(__m128i *p, __m128i a) { *p = a; } // Cache line containing p is flushed and invalidated from all caches in the coherency domain. : https://msdn.microsoft.com/en-us/library/ba08y07y(v=vs.100).aspx FORCE_INLINE void _mm_clflush(void const*p) { // no corollary for Neon? } #if defined(__GNUC__) || defined(__clang__) # pragma pop_macro("ALIGN_STRUCT") # pragma pop_macro("FORCE_INLINE") #endif #endif