/* XMRig
 * Copyright 2010      Jeff Garzik <jgarzik@pobox.com>
 * Copyright 2012-2014 pooler      <pooler@litecoinpool.org>
 * Copyright 2014      Lucas Jones <https://github.com/lucasjones>
 * Copyright 2014-2016 Wolf9466    <https://github.com/OhGodAPet>
 * Copyright 2016      Jay D Dee   <jayddee246@gmail.com>
 * Copyright 2017      fireice-uk  <https://github.com/fireice-uk>
 * Copyright 2016-2017 XMRig       <support@xmrig.com>
 *
 *
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program. If not, see <http://www.gnu.org/licenses/>.
 */

#ifndef __CRYPTONIGHT_AESNI_H__
#define __CRYPTONIGHT_AESNI_H__

#include <x86intrin.h>


#define aes_genkey_sub(imm8) \
    __m128i xout1 = _mm_aeskeygenassist_si128(*xout2, (imm8)); \
    xout1  = _mm_shuffle_epi32(xout1, 0xFF); \
    *xout0 = sl_xor(*xout0); \
    *xout0 = _mm_xor_si128(*xout0, xout1); \
    xout1  = _mm_aeskeygenassist_si128(*xout0, 0x00);\
    xout1  = _mm_shuffle_epi32(xout1, 0xAA); \
    *xout2 = sl_xor(*xout2); \
    *xout2 = _mm_xor_si128(*xout2, xout1); \


// This will shift and xor tmp1 into itself as 4 32-bit vals such as
// sl_xor(a1 a2 a3 a4) = a1 (a2^a1) (a3^a2^a1) (a4^a3^a2^a1)
inline __m128i sl_xor(__m128i tmp1)
{
    __m128i tmp4;
    tmp4 = _mm_slli_si128(tmp1, 0x04);
    tmp1 = _mm_xor_si128(tmp1, tmp4);
    tmp4 = _mm_slli_si128(tmp4, 0x04);
    tmp1 = _mm_xor_si128(tmp1, tmp4);
    tmp4 = _mm_slli_si128(tmp4, 0x04);
    tmp1 = _mm_xor_si128(tmp1, tmp4);
    return tmp1;
}


inline void aes_genkey_sub1(__m128i* xout0, __m128i* xout2)
{
   aes_genkey_sub(0x1)
}


inline void aes_genkey_sub2(__m128i* xout0, __m128i* xout2)
{
   aes_genkey_sub(0x2)
}


inline void aes_genkey_sub4(__m128i* xout0, __m128i* xout2)
{
   aes_genkey_sub(0x4)
}


inline void aes_genkey_sub8(__m128i* xout0, __m128i* xout2)
{
   aes_genkey_sub(0x8)
}


inline void aes_round(__m128i key, __m128i* x0, __m128i* x1, __m128i* x2, __m128i* x3, __m128i* x4, __m128i* x5, __m128i* x6, __m128i* x7)
{
    *x0 = _mm_aesenc_si128(*x0, key);
    *x1 = _mm_aesenc_si128(*x1, key);
    *x2 = _mm_aesenc_si128(*x2, key);
    *x3 = _mm_aesenc_si128(*x3, key);
    *x4 = _mm_aesenc_si128(*x4, key);
    *x5 = _mm_aesenc_si128(*x5, key);
    *x6 = _mm_aesenc_si128(*x6, key);
    *x7 = _mm_aesenc_si128(*x7, key);
}


inline void aes_genkey(const __m128i* memory, __m128i* k0, __m128i* k1, __m128i* k2, __m128i* k3, __m128i* k4, __m128i* k5, __m128i* k6, __m128i* k7, __m128i* k8, __m128i* k9)
{
    __m128i xout0 = _mm_load_si128(memory);
    __m128i xout2 = _mm_load_si128(memory + 1);
    *k0 = xout0;
    *k1 = xout2;

     aes_genkey_sub1(&xout0, &xout2);
    *k2 = xout0;
    *k3 = xout2;

     aes_genkey_sub2(&xout0, &xout2);
    *k4 = xout0;
    *k5 = xout2;

     aes_genkey_sub4(&xout0, &xout2);
    *k6 = xout0;
    *k7 = xout2;

     aes_genkey_sub8(&xout0, &xout2);
    *k8 = xout0;
    *k9 = xout2;
}


inline void cn_explode_scratchpad(const __m128i* input, __m128i* output)
{
    // This is more than we have registers, compiler will assign 2 keys on the stack
    __m128i xin0, xin1, xin2, xin3, xin4, xin5, xin6, xin7;
    __m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9;

    aes_genkey(input, &k0, &k1, &k2, &k3, &k4, &k5, &k6, &k7, &k8, &k9);

    xin0 = _mm_load_si128(input + 4);
    xin1 = _mm_load_si128(input + 5);
    xin2 = _mm_load_si128(input + 6);
    xin3 = _mm_load_si128(input + 7);
    xin4 = _mm_load_si128(input + 8);
    xin5 = _mm_load_si128(input + 9);
    xin6 = _mm_load_si128(input + 10);
    xin7 = _mm_load_si128(input + 11);

    for (size_t i = 0; __builtin_expect(i < MEMORY / sizeof(__m128i), 1); i += 8) {
        aes_round(k0, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
        aes_round(k1, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
        aes_round(k2, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
        aes_round(k3, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
        aes_round(k4, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
        aes_round(k5, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
        aes_round(k6, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
        aes_round(k7, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
        aes_round(k8, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
        aes_round(k9, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);

        _mm_store_si128(output + i + 0, xin0);
        _mm_store_si128(output + i + 1, xin1);
        _mm_store_si128(output + i + 2, xin2);
        _mm_store_si128(output + i + 3, xin3);
        _mm_store_si128(output + i + 4, xin4);
        _mm_store_si128(output + i + 5, xin5);
        _mm_store_si128(output + i + 6, xin6);
        _mm_store_si128(output + i + 7, xin7);
    }
}


inline void cn_implode_scratchpad(const __m128i* input, __m128i* output)
{
    // This is more than we have registers, compiler will assign 2 keys on the stack
    __m128i xout0, xout1, xout2, xout3, xout4, xout5, xout6, xout7;
    __m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9;

    aes_genkey(output + 2, &k0, &k1, &k2, &k3, &k4, &k5, &k6, &k7, &k8, &k9);

    xout0 = _mm_load_si128(output + 4);
    xout1 = _mm_load_si128(output + 5);
    xout2 = _mm_load_si128(output + 6);
    xout3 = _mm_load_si128(output + 7);
    xout4 = _mm_load_si128(output + 8);
    xout5 = _mm_load_si128(output + 9);
    xout6 = _mm_load_si128(output + 10);
    xout7 = _mm_load_si128(output + 11);

    for (size_t i = 0; __builtin_expect(i < MEMORY / sizeof(__m128i), 1); i += 8)
    {
        xout0 = _mm_xor_si128(_mm_load_si128(input + i + 0), xout0);
        xout1 = _mm_xor_si128(_mm_load_si128(input + i + 1), xout1);
        xout2 = _mm_xor_si128(_mm_load_si128(input + i + 2), xout2);
        xout3 = _mm_xor_si128(_mm_load_si128(input + i + 3), xout3);
        xout4 = _mm_xor_si128(_mm_load_si128(input + i + 4), xout4);
        xout5 = _mm_xor_si128(_mm_load_si128(input + i + 5), xout5);
        xout6 = _mm_xor_si128(_mm_load_si128(input + i + 6), xout6);
        xout7 = _mm_xor_si128(_mm_load_si128(input + i + 7), xout7);

        aes_round(k0, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
        aes_round(k1, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
        aes_round(k2, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
        aes_round(k3, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
        aes_round(k4, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
        aes_round(k5, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
        aes_round(k6, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
        aes_round(k7, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
        aes_round(k8, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
        aes_round(k9, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
    }

    _mm_store_si128(output + 4, xout0);
    _mm_store_si128(output + 5, xout1);
    _mm_store_si128(output + 6, xout2);
    _mm_store_si128(output + 7, xout3);
    _mm_store_si128(output + 8, xout4);
    _mm_store_si128(output + 9, xout5);
    _mm_store_si128(output + 10, xout6);
    _mm_store_si128(output + 11, xout7);
}


#if defined(__x86_64__)
#   define EXTRACT64(X) _mm_cvtsi128_si64(X)

inline uint64_t _umul128(uint64_t a, uint64_t b, uint64_t* hi)
{
    unsigned __int128 r = (unsigned __int128) a * (unsigned __int128) b;
    *hi = r >> 64;
    return (uint64_t) r;
}
#elif defined(__i386__)
#   define HI32(X) \
    _mm_srli_si128((X), 4)


#   define EXTRACT64(X) \
    ((uint64_t)(uint32_t)_mm_cvtsi128_si32(X) | \
    ((uint64_t)(uint32_t)_mm_cvtsi128_si32(HI32(X)) << 32))

inline uint64_t _umul128(uint64_t multiplier, uint64_t multiplicand, uint64_t *product_hi) {
    // multiplier   = ab = a * 2^32 + b
    // multiplicand = cd = c * 2^32 + d
    // ab * cd = a * c * 2^64 + (a * d + b * c) * 2^32 + b * d
    uint64_t a = multiplier >> 32;
    uint64_t b = multiplier & 0xFFFFFFFF;
    uint64_t c = multiplicand >> 32;
    uint64_t d = multiplicand & 0xFFFFFFFF;

    //uint64_t ac = a * c;
    uint64_t ad = a * d;
    //uint64_t bc = b * c;
    uint64_t bd = b * d;

    uint64_t adbc = ad + (b * c);
    uint64_t adbc_carry = adbc < ad ? 1 : 0;

    // multiplier * multiplicand = product_hi * 2^64 + product_lo
    uint64_t product_lo = bd + (adbc << 32);
    uint64_t product_lo_carry = product_lo < bd ? 1 : 0;
    *product_hi = (a * c) + (adbc >> 32) + (adbc_carry << 32) + product_lo_carry;

    return product_lo;
}
#endif


#endif /* __CRYPTONIGHT_AESNI_H__ */