/* XMRig * Copyright 2010 Jeff Garzik * Copyright 2012-2014 pooler * Copyright 2014 Lucas Jones * Copyright 2014-2016 Wolf9466 * Copyright 2016 Jay D Dee * Copyright 2017-2018 XMR-Stak , * Copyright 2018 Lee Clagett * Copyright 2018-2019 SChernykh * Copyright 2016-2019 XMRig , * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #ifndef XMRIG_CRYPTONIGHT_MONERO_H #define XMRIG_CRYPTONIGHT_MONERO_H #include #include #include #include static inline __m128i int_sqrt_v2(const uint64_t n0) { __m128d x = _mm_castsi128_pd(_mm_add_epi64(_mm_cvtsi64_si128(n0 >> 12), _mm_set_epi64x(0, 1023ULL << 52))); x = _mm_sqrt_sd(_mm_setzero_pd(), x); uint64_t r = (uint64_t)(_mm_cvtsi128_si64(_mm_castpd_si128(x))); const uint64_t s = r >> 20; r >>= 19; uint64_t x2 = (s - (1022ULL << 32)) * (r - s - (1022ULL << 32) + 1); # if (defined(_MSC_VER) || __GNUC__ > 7 || (__GNUC__ == 7 && __GNUC_MINOR__ > 1)) && (defined(__x86_64__) || defined(_M_AMD64)) _addcarry_u64(_subborrow_u64(0, x2, n0, (unsigned long long int*)&x2), r, 0, (unsigned long long int*)&r); # else if (x2 < n0) ++r; # endif return _mm_cvtsi64_si128(r); } # define VARIANT1_INIT(part) \ uint64_t tweak1_2_##part = (*(const uint64_t*)(input + 35 + part * size) ^ \ *((const uint64_t*)(ctx[part]->state) + 24)); \ # define VARIANT2_INIT(part) \ __m128i division_result_xmm_##part = _mm_cvtsi64_si128(h##part[12]); \ __m128i sqrt_result_xmm_##part = _mm_cvtsi64_si128(h##part[13]); #ifdef _MSC_VER # define VARIANT2_SET_ROUNDING_MODE() { _control87(RC_DOWN, MCW_RC); } #else # define VARIANT2_SET_ROUNDING_MODE() { fesetround(FE_DOWNWARD); } #endif # define VARIANT2_INTEGER_MATH(part, cl, cx) \ { \ const uint64_t sqrt_result = (uint64_t)(_mm_cvtsi128_si64(sqrt_result_xmm_##part)); \ const uint64_t cx_0 = _mm_cvtsi128_si64(cx); \ cl ^= (uint64_t)(_mm_cvtsi128_si64(division_result_xmm_##part)) ^ (sqrt_result << 32); \ const uint32_t d = (uint32_t)(cx_0 + (sqrt_result << 1)) | 0x80000001UL; \ const uint64_t cx_1 = _mm_cvtsi128_si64(_mm_srli_si128(cx, 8)); \ const uint64_t division_result = (uint32_t)(cx_1 / d) + ((cx_1 % d) << 32); \ division_result_xmm_##part = _mm_cvtsi64_si128((int64_t)(division_result)); \ sqrt_result_xmm_##part = int_sqrt_v2(cx_0 + division_result); \ } # define VARIANT2_SHUFFLE(base_ptr, offset, _a, _b, _b1) \ { \ const __m128i chunk1 = _mm_load_si128((__m128i *)((base_ptr) + ((offset) ^ 0x10))); \ const __m128i chunk2 = _mm_load_si128((__m128i *)((base_ptr) + ((offset) ^ 0x20))); \ const __m128i chunk3 = _mm_load_si128((__m128i *)((base_ptr) + ((offset) ^ 0x30))); \ _mm_store_si128((__m128i *)((base_ptr) + ((offset) ^ 0x10)), _mm_add_epi64(chunk3, _b1)); \ _mm_store_si128((__m128i *)((base_ptr) + ((offset) ^ 0x20)), _mm_add_epi64(chunk1, _b)); \ _mm_store_si128((__m128i *)((base_ptr) + ((offset) ^ 0x30)), _mm_add_epi64(chunk2, _a)); \ } # define VARIANT4_SHUFFLE(base_ptr, offset, _a, _b, _b1, _c) \ { \ const __m128i chunk1 = _mm_load_si128((__m128i *)((base_ptr) + ((offset) ^ 0x10))); \ const __m128i chunk2 = _mm_load_si128((__m128i *)((base_ptr) + ((offset) ^ 0x20))); \ const __m128i chunk3 = _mm_load_si128((__m128i *)((base_ptr) + ((offset) ^ 0x30))); \ _mm_store_si128((__m128i *)((base_ptr) + ((offset) ^ 0x10)), _mm_add_epi64(chunk3, _b1)); \ _mm_store_si128((__m128i *)((base_ptr) + ((offset) ^ 0x20)), _mm_add_epi64(chunk1, _b)); \ _mm_store_si128((__m128i *)((base_ptr) + ((offset) ^ 0x30)), _mm_add_epi64(chunk2, _a)); \ _c = _mm_xor_si128(_mm_xor_si128(_c, chunk3), _mm_xor_si128(chunk1, chunk2)); \ } # define VARIANT2_SHUFFLE2(base_ptr, offset, _a, _b, _b1, hi, lo) \ { \ const __m128i chunk1 = _mm_xor_si128(_mm_load_si128((__m128i *)((base_ptr) + ((offset) ^ 0x10))), _mm_set_epi64x(lo, hi)); \ const __m128i chunk2 = _mm_load_si128((__m128i *)((base_ptr) + ((offset) ^ 0x20))); \ hi ^= ((uint64_t*)((base_ptr) + ((offset) ^ 0x20)))[0]; \ lo ^= ((uint64_t*)((base_ptr) + ((offset) ^ 0x20)))[1]; \ const __m128i chunk3 = _mm_load_si128((__m128i *)((base_ptr) + ((offset) ^ 0x30))); \ _mm_store_si128((__m128i *)((base_ptr) + ((offset) ^ 0x10)), _mm_add_epi64(chunk3, _b1)); \ _mm_store_si128((__m128i *)((base_ptr) + ((offset) ^ 0x20)), _mm_add_epi64(chunk1, _b)); \ _mm_store_si128((__m128i *)((base_ptr) + ((offset) ^ 0x30)), _mm_add_epi64(chunk2, _a)); \ } #ifndef NOINLINE #ifdef __GNUC__ #define NOINLINE __attribute__ ((noinline)) #elif _MSC_VER #define NOINLINE __declspec(noinline) #else #define NOINLINE #endif #endif #include "variant4_random_math.h" #define VARIANT4_RANDOM_MATH_INIT(part) \ uint32_t r##part[9]; \ struct V4_Instruction code##part[256]; \ { \ r##part[0] = (uint32_t)(h##part[12]); \ r##part[1] = (uint32_t)(h##part[12] >> 32); \ r##part[2] = (uint32_t)(h##part[13]); \ r##part[3] = (uint32_t)(h##part[13] >> 32); \ } \ v4_random_math_init(code##part, ctx[part]->height); #define VARIANT4_RANDOM_MATH(part, al, ah, cl, bx0, bx1) \ { \ cl ^= (r##part[0] + r##part[1]) | ((uint64_t)(r##part[2] + r##part[3]) << 32); \ r##part[4] = (uint32_t)(al); \ r##part[5] = (uint32_t)(ah); \ r##part[6] = (uint32_t)(_mm_cvtsi128_si32(bx0)); \ r##part[7] = (uint32_t)(_mm_cvtsi128_si32(bx1)); \ r##part[8] = (uint32_t)(_mm_cvtsi128_si32(_mm_srli_si128(bx1, 8))); \ v4_random_math(code##part, r##part); \ } #endif /* XMRIG_CRYPTONIGHT_MONERO_H */