/* XMRig * Copyright 2010 Jeff Garzik * Copyright 2012-2014 pooler * Copyright 2014 Lucas Jones * Copyright 2014-2016 Wolf9466 * Copyright 2016 Jay D Dee * Copyright 2016-2017 XMRig * * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #ifndef __CRYPTONIGHT_P_H__ #define __CRYPTONIGHT_P_H__ #ifdef __GNUC__ # include #else # include # define __restrict__ __restrict #endif #include "crypto/CryptoNight.h" extern "C" { #include "crypto/c_keccak.h" #include "crypto/c_groestl.h" #include "crypto/c_blake256.h" #include "crypto/c_jh.h" #include "crypto/c_skein.h" __m128i soft_aesenc(__m128i in, __m128i key); __m128i soft_aeskeygenassist(__m128i key, uint8_t rcon); } static inline void do_blake_hash(const void* input, size_t len, char* output) { blake256_hash(reinterpret_cast(output), static_cast(input), len); } static inline void do_groestl_hash(const void* input, size_t len, char* output) { groestl(static_cast(input), len * 8, reinterpret_cast(output)); } static inline void do_jh_hash(const void* input, size_t len, char* output) { jh_hash(32 * 8, static_cast(input), 8 * len, reinterpret_cast(output)); } static inline void do_skein_hash(const void* input, size_t len, char* output) { xmr_skein(static_cast(input), reinterpret_cast(output)); } void (* const extra_hashes[4])(const void *, size_t, char *) = {do_blake_hash, do_groestl_hash, do_jh_hash, do_skein_hash}; #if defined(__x86_64__) || defined(_M_AMD64) # define EXTRACT64(X) _mm_cvtsi128_si64(X) # ifdef __GNUC__ static inline uint64_t __umul128(uint64_t a, uint64_t b, uint64_t* hi) { unsigned __int128 r = (unsigned __int128) a * (unsigned __int128) b; *hi = r >> 64; return (uint64_t) r; } # else #define __umul128 _umul128 # endif #elif defined(__i386__) || defined(_M_IX86) # define HI32(X) \ _mm_srli_si128((X), 4) # define EXTRACT64(X) \ ((uint64_t)(uint32_t)_mm_cvtsi128_si32(X) | \ ((uint64_t)(uint32_t)_mm_cvtsi128_si32(HI32(X)) << 32)) static inline uint64_t __umul128(uint64_t multiplier, uint64_t multiplicand, uint64_t *product_hi) { // multiplier = ab = a * 2^32 + b // multiplicand = cd = c * 2^32 + d // ab * cd = a * c * 2^64 + (a * d + b * c) * 2^32 + b * d uint64_t a = multiplier >> 32; uint64_t b = multiplier & 0xFFFFFFFF; uint64_t c = multiplicand >> 32; uint64_t d = multiplicand & 0xFFFFFFFF; //uint64_t ac = a * c; uint64_t ad = a * d; //uint64_t bc = b * c; uint64_t bd = b * d; uint64_t adbc = ad + (b * c); uint64_t adbc_carry = adbc < ad ? 1 : 0; // multiplier * multiplicand = product_hi * 2^64 + product_lo uint64_t product_lo = bd + (adbc << 32); uint64_t product_lo_carry = product_lo < bd ? 1 : 0; *product_hi = (a * c) + (adbc >> 32) + (adbc_carry << 32) + product_lo_carry; return product_lo; } #endif // This will shift and xor tmp1 into itself as 4 32-bit vals such as // sl_xor(a1 a2 a3 a4) = a1 (a2^a1) (a3^a2^a1) (a4^a3^a2^a1) static inline __m128i sl_xor(__m128i tmp1) { __m128i tmp4; tmp4 = _mm_slli_si128(tmp1, 0x04); tmp1 = _mm_xor_si128(tmp1, tmp4); tmp4 = _mm_slli_si128(tmp4, 0x04); tmp1 = _mm_xor_si128(tmp1, tmp4); tmp4 = _mm_slli_si128(tmp4, 0x04); tmp1 = _mm_xor_si128(tmp1, tmp4); return tmp1; } template static inline void aes_genkey_sub(__m128i* xout0, __m128i* xout2) { __m128i xout1 = _mm_aeskeygenassist_si128(*xout2, rcon); xout1 = _mm_shuffle_epi32(xout1, 0xFF); // see PSHUFD, set all elems to 4th elem *xout0 = sl_xor(*xout0); *xout0 = _mm_xor_si128(*xout0, xout1); xout1 = _mm_aeskeygenassist_si128(*xout0, 0x00); xout1 = _mm_shuffle_epi32(xout1, 0xAA); // see PSHUFD, set all elems to 3rd elem *xout2 = sl_xor(*xout2); *xout2 = _mm_xor_si128(*xout2, xout1); } static inline void soft_aes_genkey_sub(__m128i* xout0, __m128i* xout2, uint8_t rcon) { __m128i xout1 = soft_aeskeygenassist(*xout2, rcon); xout1 = _mm_shuffle_epi32(xout1, 0xFF); // see PSHUFD, set all elems to 4th elem *xout0 = sl_xor(*xout0); *xout0 = _mm_xor_si128(*xout0, xout1); xout1 = soft_aeskeygenassist(*xout0, 0x00); xout1 = _mm_shuffle_epi32(xout1, 0xAA); // see PSHUFD, set all elems to 3rd elem *xout2 = sl_xor(*xout2); *xout2 = _mm_xor_si128(*xout2, xout1); } template static inline void aes_genkey(const __m128i* memory, __m128i* k0, __m128i* k1, __m128i* k2, __m128i* k3, __m128i* k4, __m128i* k5, __m128i* k6, __m128i* k7, __m128i* k8, __m128i* k9) { __m128i xout0 = _mm_load_si128(memory); __m128i xout2 = _mm_load_si128(memory +1 ); *k0 = xout0; *k1 = xout2; SOFT_AES ? soft_aes_genkey_sub(&xout0, &xout2, 0x01) : aes_genkey_sub<0x01>(&xout0, &xout2); *k2 = xout0; *k3 = xout2; SOFT_AES ? soft_aes_genkey_sub(&xout0, &xout2, 0x02) : aes_genkey_sub<0x02>(&xout0, &xout2); *k4 = xout0; *k5 = xout2; SOFT_AES ? soft_aes_genkey_sub(&xout0, &xout2, 0x04) : aes_genkey_sub<0x04>(&xout0, &xout2); *k6 = xout0; *k7 = xout2; SOFT_AES ? soft_aes_genkey_sub(&xout0, &xout2, 0x08) : aes_genkey_sub<0x08>(&xout0, &xout2); *k8 = xout0; *k9 = xout2; } template static inline void aes_round(__m128i key, __m128i* x0, __m128i* x1, __m128i* x2, __m128i* x3, __m128i* x4, __m128i* x5, __m128i* x6, __m128i* x7) { if (SOFT_AES) { *x0 = soft_aesenc(*x0, key); *x1 = soft_aesenc(*x1, key); *x2 = soft_aesenc(*x2, key); *x3 = soft_aesenc(*x3, key); *x4 = soft_aesenc(*x4, key); *x5 = soft_aesenc(*x5, key); *x6 = soft_aesenc(*x6, key); *x7 = soft_aesenc(*x7, key); } else { *x0 = _mm_aesenc_si128(*x0, key); *x1 = _mm_aesenc_si128(*x1, key); *x2 = _mm_aesenc_si128(*x2, key); *x3 = _mm_aesenc_si128(*x3, key); *x4 = _mm_aesenc_si128(*x4, key); *x5 = _mm_aesenc_si128(*x5, key); *x6 = _mm_aesenc_si128(*x6, key); *x7 = _mm_aesenc_si128(*x7, key); } } template static inline void cn_explode_scratchpad(const __m128i *input, __m128i *output) { __m128i xin0, xin1, xin2, xin3, xin4, xin5, xin6, xin7; __m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9; aes_genkey(input, &k0, &k1, &k2, &k3, &k4, &k5, &k6, &k7, &k8, &k9); xin0 = _mm_load_si128(input + 4); xin1 = _mm_load_si128(input + 5); xin2 = _mm_load_si128(input + 6); xin3 = _mm_load_si128(input + 7); xin4 = _mm_load_si128(input + 8); xin5 = _mm_load_si128(input + 9); xin6 = _mm_load_si128(input + 10); xin7 = _mm_load_si128(input + 11); for (size_t i = 0; i < MEM / sizeof(__m128i); i += 8) { aes_round(k0, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k1, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k2, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k3, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k4, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k5, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k6, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k7, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k8, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k9, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); _mm_store_si128(output + i + 0, xin0); _mm_store_si128(output + i + 1, xin1); _mm_store_si128(output + i + 2, xin2); _mm_store_si128(output + i + 3, xin3); _mm_store_si128(output + i + 4, xin4); _mm_store_si128(output + i + 5, xin5); _mm_store_si128(output + i + 6, xin6); _mm_store_si128(output + i + 7, xin7); } } template static inline void cn_implode_scratchpad(const __m128i *input, __m128i *output) { __m128i xout0, xout1, xout2, xout3, xout4, xout5, xout6, xout7; __m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9; aes_genkey(output + 2, &k0, &k1, &k2, &k3, &k4, &k5, &k6, &k7, &k8, &k9); xout0 = _mm_load_si128(output + 4); xout1 = _mm_load_si128(output + 5); xout2 = _mm_load_si128(output + 6); xout3 = _mm_load_si128(output + 7); xout4 = _mm_load_si128(output + 8); xout5 = _mm_load_si128(output + 9); xout6 = _mm_load_si128(output + 10); xout7 = _mm_load_si128(output + 11); for (size_t i = 0; i < MEM / sizeof(__m128i); i += 8) { xout0 = _mm_xor_si128(_mm_load_si128(input + i + 0), xout0); xout1 = _mm_xor_si128(_mm_load_si128(input + i + 1), xout1); xout2 = _mm_xor_si128(_mm_load_si128(input + i + 2), xout2); xout3 = _mm_xor_si128(_mm_load_si128(input + i + 3), xout3); xout4 = _mm_xor_si128(_mm_load_si128(input + i + 4), xout4); xout5 = _mm_xor_si128(_mm_load_si128(input + i + 5), xout5); xout6 = _mm_xor_si128(_mm_load_si128(input + i + 6), xout6); xout7 = _mm_xor_si128(_mm_load_si128(input + i + 7), xout7); aes_round(k0, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k1, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k2, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k3, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k4, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k5, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k6, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k7, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k8, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k9, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); } _mm_store_si128(output + 4, xout0); _mm_store_si128(output + 5, xout1); _mm_store_si128(output + 6, xout2); _mm_store_si128(output + 7, xout3); _mm_store_si128(output + 8, xout4); _mm_store_si128(output + 9, xout5); _mm_store_si128(output + 10, xout6); _mm_store_si128(output + 11, xout7); } template inline void cryptonight_hash(const void *__restrict__ input, size_t size, void *__restrict__ output, cryptonight_ctx *__restrict__ ctx) { keccak(static_cast(input), size, ctx->state0, 200); cn_explode_scratchpad((__m128i*) ctx->state0, (__m128i*) ctx->memory); const uint8_t* l0 = ctx->memory; uint64_t* h0 = reinterpret_cast(ctx->state0); uint64_t al0 = h0[0] ^ h0[4]; uint64_t ah0 = h0[1] ^ h0[5]; __m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]); uint64_t idx0 = h0[0] ^ h0[4]; for (size_t i = 0; i < ITERATIONS; i++) { __m128i cx; cx = _mm_load_si128((__m128i *) &l0[idx0 & MASK]); if (SOFT_AES) { cx = soft_aesenc(cx, _mm_set_epi64x(ah0, al0)); } else { cx = _mm_aesenc_si128(cx, _mm_set_epi64x(ah0, al0)); } _mm_store_si128((__m128i *) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx)); idx0 = EXTRACT64(cx); bx0 = cx; uint64_t hi, lo, cl, ch; cl = ((uint64_t*) &l0[idx0 & MASK])[0]; ch = ((uint64_t*) &l0[idx0 & MASK])[1]; lo = __umul128(idx0, cl, &hi); al0 += hi; ah0 += lo; ((uint64_t*)&l0[idx0 & MASK])[0] = al0; ((uint64_t*)&l0[idx0 & MASK])[1] = ah0; ah0 ^= ch; al0 ^= cl; idx0 = al0; } cn_implode_scratchpad((__m128i*) ctx->memory, (__m128i*) ctx->state0); keccakf(h0, 24); extra_hashes[ctx->state0[0] & 3](ctx->state0, 200, static_cast(output)); } template inline void cryptonight_double_hash(const void *__restrict__ input, size_t size, void *__restrict__ output, struct cryptonight_ctx *__restrict__ ctx) { keccak((const uint8_t *) input, size, ctx->state0, 200); keccak((const uint8_t *) input + size, size, ctx->state1, 200); const uint8_t* l0 = ctx->memory; const uint8_t* l1 = ctx->memory + MEM; uint64_t* h0 = reinterpret_cast(ctx->state0); uint64_t* h1 = reinterpret_cast(ctx->state1); cn_explode_scratchpad((__m128i*) h0, (__m128i*) l0); cn_explode_scratchpad((__m128i*) h1, (__m128i*) l1); uint64_t al0 = h0[0] ^ h0[4]; uint64_t al1 = h1[0] ^ h1[4]; uint64_t ah0 = h0[1] ^ h0[5]; uint64_t ah1 = h1[1] ^ h1[5]; __m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]); __m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]); uint64_t idx0 = h0[0] ^ h0[4]; uint64_t idx1 = h1[0] ^ h1[4]; for (size_t i = 0; i < ITERATIONS; i++) { __m128i cx0 = _mm_load_si128((__m128i *) &l0[idx0 & MASK]); __m128i cx1 = _mm_load_si128((__m128i *) &l1[idx1 & MASK]); if (SOFT_AES) { cx0 = soft_aesenc(cx0, _mm_set_epi64x(ah0, al0)); cx1 = soft_aesenc(cx1, _mm_set_epi64x(ah1, al1)); } else { cx0 = _mm_aesenc_si128(cx0, _mm_set_epi64x(ah0, al0)); cx1 = _mm_aesenc_si128(cx1, _mm_set_epi64x(ah1, al1)); } _mm_store_si128((__m128i *) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0)); _mm_store_si128((__m128i *) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1)); idx0 = EXTRACT64(cx0); idx1 = EXTRACT64(cx1); bx0 = cx0; bx1 = cx1; uint64_t hi, lo, cl, ch; cl = ((uint64_t*) &l0[idx0 & MASK])[0]; ch = ((uint64_t*) &l0[idx0 & MASK])[1]; lo = __umul128(idx0, cl, &hi); al0 += hi; ah0 += lo; ((uint64_t*) &l0[idx0 & MASK])[0] = al0; ((uint64_t*) &l0[idx0 & MASK])[1] = ah0; ah0 ^= ch; al0 ^= cl; idx0 = al0; cl = ((uint64_t*) &l1[idx1 & MASK])[0]; ch = ((uint64_t*) &l1[idx1 & MASK])[1]; lo = __umul128(idx1, cl, &hi); al1 += hi; ah1 += lo; ((uint64_t*) &l1[idx1 & MASK])[0] = al1; ((uint64_t*) &l1[idx1 & MASK])[1] = ah1; ah1 ^= ch; al1 ^= cl; idx1 = al1; } cn_implode_scratchpad((__m128i*) l0, (__m128i*) h0); cn_implode_scratchpad((__m128i*) l1, (__m128i*) h1); keccakf(h0, 24); keccakf(h1, 24); extra_hashes[ctx->state0[0] & 3](ctx->state0, 200, static_cast(output)); extra_hashes[ctx->state1[0] & 3](ctx->state1, 200, static_cast(output) + 32); } #endif /* __CRYPTONIGHT_P_H__ */