/* Copyright (c) 2018-2019, tevador Copyright (c) 2019, SChernykh All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "crypto/randomx/jit_compiler_a64.hpp" #include "crypto/randomx/superscalar.hpp" #include "crypto/randomx/program.hpp" #include "crypto/randomx/reciprocal.h" #include "crypto/randomx/virtual_memory.hpp" namespace ARMV8A { constexpr uint32_t B = 0x14000000; constexpr uint32_t EOR = 0xCA000000; constexpr uint32_t EOR32 = 0x4A000000; constexpr uint32_t ADD = 0x8B000000; constexpr uint32_t SUB = 0xCB000000; constexpr uint32_t MUL = 0x9B007C00; constexpr uint32_t UMULH = 0x9BC07C00; constexpr uint32_t SMULH = 0x9B407C00; constexpr uint32_t MOVZ = 0xD2800000; constexpr uint32_t MOVN = 0x92800000; constexpr uint32_t MOVK = 0xF2800000; constexpr uint32_t ADD_IMM_LO = 0x91000000; constexpr uint32_t ADD_IMM_HI = 0x91400000; constexpr uint32_t LDR_LITERAL = 0x58000000; constexpr uint32_t ROR = 0x9AC02C00; constexpr uint32_t ROR_IMM = 0x93C00000; constexpr uint32_t MOV_REG = 0xAA0003E0; constexpr uint32_t MOV_VREG_EL = 0x6E080400; constexpr uint32_t FADD = 0x4E60D400; constexpr uint32_t FSUB = 0x4EE0D400; constexpr uint32_t FEOR = 0x6E201C00; constexpr uint32_t FMUL = 0x6E60DC00; constexpr uint32_t FDIV = 0x6E60FC00; constexpr uint32_t FSQRT = 0x6EE1F800; } namespace randomx { static const size_t CodeSize = ((uint8_t*)randomx_init_dataset_aarch64_end) - ((uint8_t*)randomx_program_aarch64); static const size_t MainLoopBegin = ((uint8_t*)randomx_program_aarch64_main_loop) - ((uint8_t*)randomx_program_aarch64); static const size_t PrologueSize = ((uint8_t*)randomx_program_aarch64_vm_instructions) - ((uint8_t*)randomx_program_aarch64); static const size_t ImulRcpLiteralsEnd = ((uint8_t*)randomx_program_aarch64_imul_rcp_literals_end) - ((uint8_t*)randomx_program_aarch64); static size_t CalcDatasetItemSize() { return // Prologue ((uint8_t*)randomx_calc_dataset_item_aarch64_prefetch - (uint8_t*)randomx_calc_dataset_item_aarch64) + // Main loop RandomX_CurrentConfig.CacheAccesses * ( // Main loop prologue ((uint8_t*)randomx_calc_dataset_item_aarch64_mix - ((uint8_t*)randomx_calc_dataset_item_aarch64_prefetch)) + 4 + // Inner main loop (instructions) ((RandomX_CurrentConfig.SuperscalarLatency * 3) + 2) * 16 + // Main loop epilogue ((uint8_t*)randomx_calc_dataset_item_aarch64_store_result - (uint8_t*)randomx_calc_dataset_item_aarch64_mix) + 4 ) + // Epilogue ((uint8_t*)randomx_calc_dataset_item_aarch64_end - (uint8_t*)randomx_calc_dataset_item_aarch64_store_result); } constexpr uint32_t IntRegMap[8] = { 4, 5, 6, 7, 12, 13, 14, 15 }; JitCompilerA64::JitCompilerA64() : code((uint8_t*) allocExecutableMemory(CodeSize + CalcDatasetItemSize())) , literalPos(ImulRcpLiteralsEnd) , num32bitLiterals(0) { memset(reg_changed_offset, 0, sizeof(reg_changed_offset)); memcpy(code, (void*) randomx_program_aarch64, CodeSize); } JitCompilerA64::~JitCompilerA64() { freePagedMemory(code, CodeSize + CalcDatasetItemSize()); } #if defined(ios_HOST_OS) || defined (darwin_HOST_OS) void sys_icache_invalidate(void *start, size_t len); #endif static void clear_code_cache(char* p1, char* p2) { # if defined(ios_HOST_OS) || defined (darwin_HOST_OS) sys_icache_invalidate(p1, static_cast(p2 - p1)); # elif defined (HAVE_BUILTIN_CLEAR_CACHE) || defined (__GNUC__) __builtin___clear_cache(p1, p2); # else # error "No clear code cache function found" # endif } void JitCompilerA64::generateProgram(Program& program, ProgramConfiguration& config, uint32_t) { uint32_t codePos = MainLoopBegin + 4; // and w16, w10, ScratchpadL3Mask64 emit32(0x121A0000 | 16 | (10 << 5) | ((RandomX_CurrentConfig.Log2_ScratchpadL3 - 7) << 10), code, codePos); // and w17, w18, ScratchpadL3Mask64 emit32(0x121A0000 | 17 | (18 << 5) | ((RandomX_CurrentConfig.Log2_ScratchpadL3 - 7) << 10), code, codePos); codePos = PrologueSize; literalPos = ImulRcpLiteralsEnd; num32bitLiterals = 0; for (uint32_t i = 0; i < RegistersCount; ++i) reg_changed_offset[i] = codePos; for (uint32_t i = 0; i < program.getSize(); ++i) { Instruction& instr = program(i); instr.src %= RegistersCount; instr.dst %= RegistersCount; (this->*engine[instr.opcode])(instr, codePos); } // Update spMix2 // eor w18, config.readReg2, config.readReg3 emit32(ARMV8A::EOR32 | 18 | (IntRegMap[config.readReg2] << 5) | (IntRegMap[config.readReg3] << 16), code, codePos); // Jump back to the main loop const uint32_t offset = (((uint8_t*)randomx_program_aarch64_vm_instructions_end) - ((uint8_t*)randomx_program_aarch64)) - codePos; emit32(ARMV8A::B | (offset / 4), code, codePos); // and w18, w18, CacheLineAlignMask codePos = (((uint8_t*)randomx_program_aarch64_cacheline_align_mask1) - ((uint8_t*)randomx_program_aarch64)); emit32(0x121A0000 | 18 | (18 << 5) | ((RandomX_CurrentConfig.Log2_DatasetBaseSize - 7) << 10), code, codePos); // and w10, w10, CacheLineAlignMask codePos = (((uint8_t*)randomx_program_aarch64_cacheline_align_mask2) - ((uint8_t*)randomx_program_aarch64)); emit32(0x121A0000 | 10 | (10 << 5) | ((RandomX_CurrentConfig.Log2_DatasetBaseSize - 7) << 10), code, codePos); // Update spMix1 // eor x10, config.readReg0, config.readReg1 codePos = ((uint8_t*)randomx_program_aarch64_update_spMix1) - ((uint8_t*)randomx_program_aarch64); emit32(ARMV8A::EOR | 10 | (IntRegMap[config.readReg0] << 5) | (IntRegMap[config.readReg1] << 16), code, codePos); clear_code_cache(reinterpret_cast(code + MainLoopBegin), reinterpret_cast(code + codePos)); } void JitCompilerA64::generateProgramLight(Program& program, ProgramConfiguration& config, uint32_t datasetOffset) { uint32_t codePos = MainLoopBegin + 4; // and w16, w10, ScratchpadL3Mask64 emit32(0x121A0000 | 16 | (10 << 5) | ((RandomX_CurrentConfig.Log2_ScratchpadL3 - 7) << 10), code, codePos); // and w17, w18, ScratchpadL3Mask64 emit32(0x121A0000 | 17 | (18 << 5) | ((RandomX_CurrentConfig.Log2_ScratchpadL3 - 7) << 10), code, codePos); codePos = PrologueSize; literalPos = ImulRcpLiteralsEnd; num32bitLiterals = 0; for (uint32_t i = 0; i < RegistersCount; ++i) reg_changed_offset[i] = codePos; for (uint32_t i = 0; i < program.getSize(); ++i) { Instruction& instr = program(i); instr.src %= RegistersCount; instr.dst %= RegistersCount; (this->*engine[instr.opcode])(instr, codePos); } // Update spMix2 // eor w18, config.readReg2, config.readReg3 emit32(ARMV8A::EOR32 | 18 | (IntRegMap[config.readReg2] << 5) | (IntRegMap[config.readReg3] << 16), code, codePos); // Jump back to the main loop const uint32_t offset = (((uint8_t*)randomx_program_aarch64_vm_instructions_end_light) - ((uint8_t*)randomx_program_aarch64)) - codePos; emit32(ARMV8A::B | (offset / 4), code, codePos); // and w2, w9, CacheLineAlignMask codePos = (((uint8_t*)randomx_program_aarch64_light_cacheline_align_mask) - ((uint8_t*)randomx_program_aarch64)); emit32(0x121A0000 | 2 | (9 << 5) | ((RandomX_CurrentConfig.Log2_DatasetBaseSize - 7) << 10), code, codePos); // Update spMix1 // eor x10, config.readReg0, config.readReg1 codePos = ((uint8_t*)randomx_program_aarch64_update_spMix1) - ((uint8_t*)randomx_program_aarch64); emit32(ARMV8A::EOR | 10 | (IntRegMap[config.readReg0] << 5) | (IntRegMap[config.readReg1] << 16), code, codePos); // Apply dataset offset codePos = ((uint8_t*)randomx_program_aarch64_light_dataset_offset) - ((uint8_t*)randomx_program_aarch64); datasetOffset /= CacheLineSize; const uint32_t imm_lo = datasetOffset & ((1 << 12) - 1); const uint32_t imm_hi = datasetOffset >> 12; emit32(ARMV8A::ADD_IMM_LO | 2 | (2 << 5) | (imm_lo << 10), code, codePos); emit32(ARMV8A::ADD_IMM_HI | 2 | (2 << 5) | (imm_hi << 10), code, codePos); clear_code_cache(reinterpret_cast(code + MainLoopBegin), reinterpret_cast(code + codePos)); } template void JitCompilerA64::generateSuperscalarHash(SuperscalarProgram(&programs)[N], std::vector &reciprocalCache) { uint32_t codePos = CodeSize; uint8_t* p1 = (uint8_t*)randomx_calc_dataset_item_aarch64; uint8_t* p2 = (uint8_t*)randomx_calc_dataset_item_aarch64_prefetch; memcpy(code + codePos, p1, p2 - p1); codePos += p2 - p1; num32bitLiterals = 64; constexpr uint32_t tmp_reg = 12; for (size_t i = 0; i < RandomX_CurrentConfig.CacheAccesses; ++i) { // and x11, x10, CacheSize / CacheLineSize - 1 emit32(0x92400000 | 11 | (10 << 5) | ((RandomX_CurrentConfig.Log2_CacheSize - 1) << 10), code, codePos); p1 = ((uint8_t*)randomx_calc_dataset_item_aarch64_prefetch) + 4; p2 = (uint8_t*)randomx_calc_dataset_item_aarch64_mix; memcpy(code + codePos, p1, p2 - p1); codePos += p2 - p1; SuperscalarProgram& prog = programs[i]; const size_t progSize = prog.getSize(); uint32_t jmp_pos = codePos; codePos += 4; // Fill in literal pool for (size_t j = 0; j < progSize; ++j) { const Instruction& instr = prog(j); if (static_cast(instr.opcode) == randomx::SuperscalarInstructionType::IMUL_RCP) emit64(reciprocalCache[instr.getImm32()], code, codePos); } // Jump over literal pool uint32_t literal_pos = jmp_pos; emit32(ARMV8A::B | ((codePos - jmp_pos) / 4), code, literal_pos); for (size_t j = 0; j < progSize; ++j) { const Instruction& instr = prog(j); const uint32_t src = instr.src; const uint32_t dst = instr.dst; switch (static_cast(instr.opcode)) { case randomx::SuperscalarInstructionType::ISUB_R: emit32(ARMV8A::SUB | dst | (dst << 5) | (src << 16), code, codePos); break; case randomx::SuperscalarInstructionType::IXOR_R: emit32(ARMV8A::EOR | dst | (dst << 5) | (src << 16), code, codePos); break; case randomx::SuperscalarInstructionType::IADD_RS: emit32(ARMV8A::ADD | dst | (dst << 5) | (instr.getModShift() << 10) | (src << 16), code, codePos); break; case randomx::SuperscalarInstructionType::IMUL_R: emit32(ARMV8A::MUL | dst | (dst << 5) | (src << 16), code, codePos); break; case randomx::SuperscalarInstructionType::IROR_C: emit32(ARMV8A::ROR_IMM | dst | (dst << 5) | ((instr.getImm32() & 63) << 10) | (dst << 16), code, codePos); break; case randomx::SuperscalarInstructionType::IADD_C7: case randomx::SuperscalarInstructionType::IADD_C8: case randomx::SuperscalarInstructionType::IADD_C9: emitAddImmediate(dst, dst, instr.getImm32(), code, codePos); break; case randomx::SuperscalarInstructionType::IXOR_C7: case randomx::SuperscalarInstructionType::IXOR_C8: case randomx::SuperscalarInstructionType::IXOR_C9: emitMovImmediate(tmp_reg, instr.getImm32(), code, codePos); emit32(ARMV8A::EOR | dst | (dst << 5) | (tmp_reg << 16), code, codePos); break; case randomx::SuperscalarInstructionType::IMULH_R: emit32(ARMV8A::UMULH | dst | (dst << 5) | (src << 16), code, codePos); break; case randomx::SuperscalarInstructionType::ISMULH_R: emit32(ARMV8A::SMULH | dst | (dst << 5) | (src << 16), code, codePos); break; case randomx::SuperscalarInstructionType::IMUL_RCP: { int32_t offset = (literal_pos - codePos) / 4; offset &= (1 << 19) - 1; literal_pos += 8; // ldr tmp_reg, reciprocal emit32(ARMV8A::LDR_LITERAL | tmp_reg | (offset << 5), code, codePos); // mul dst, dst, tmp_reg emit32(ARMV8A::MUL | dst | (dst << 5) | (tmp_reg << 16), code, codePos); } break; default: break; } } p1 = (uint8_t*)randomx_calc_dataset_item_aarch64_mix; p2 = (uint8_t*)randomx_calc_dataset_item_aarch64_store_result; memcpy(code + codePos, p1, p2 - p1); codePos += p2 - p1; // Update registerValue emit32(ARMV8A::MOV_REG | 10 | (prog.getAddressRegister() << 16), code, codePos); } p1 = (uint8_t*)randomx_calc_dataset_item_aarch64_store_result; p2 = (uint8_t*)randomx_calc_dataset_item_aarch64_end; memcpy(code + codePos, p1, p2 - p1); codePos += p2 - p1; clear_code_cache(reinterpret_cast(code + CodeSize), reinterpret_cast(code + codePos)); } template void JitCompilerA64::generateSuperscalarHash(SuperscalarProgram(&programs)[RANDOMX_CACHE_MAX_ACCESSES], std::vector &reciprocalCache); DatasetInitFunc* JitCompilerA64::getDatasetInitFunc() { return (DatasetInitFunc*)(code + (((uint8_t*)randomx_init_dataset_aarch64) - ((uint8_t*)randomx_program_aarch64))); } size_t JitCompilerA64::getCodeSize() { return CodeSize; } void JitCompilerA64::emitMovImmediate(uint32_t dst, uint32_t imm, uint8_t* code, uint32_t& codePos) { uint32_t k = codePos; if (imm < (1 << 16)) { // movz tmp_reg, imm32 (16 low bits) emit32(ARMV8A::MOVZ | dst | (imm << 5), code, k); } else { if (num32bitLiterals < 64) { if (static_cast(imm) < 0) { // smov dst, vN.s[M] emit32(0x4E042C00 | dst | ((num32bitLiterals / 4) << 5) | ((num32bitLiterals % 4) << 19), code, k); } else { // umov dst, vN.s[M] emit32(0x0E043C00 | dst | ((num32bitLiterals / 4) << 5) | ((num32bitLiterals % 4) << 19), code, k); } ((uint32_t*)(code + ImulRcpLiteralsEnd))[num32bitLiterals] = imm; ++num32bitLiterals; } else { if (static_cast(imm) < 0) { // movn tmp_reg, ~imm32 (16 high bits) emit32(ARMV8A::MOVN | dst | (1 << 21) | ((~imm >> 16) << 5), code, k); } else { // movz tmp_reg, imm32 (16 high bits) emit32(ARMV8A::MOVZ | dst | (1 << 21) | ((imm >> 16) << 5), code, k); } // movk tmp_reg, imm32 (16 low bits) emit32(ARMV8A::MOVK | dst | ((imm & 0xFFFF) << 5), code, k); } } codePos = k; } void JitCompilerA64::emitAddImmediate(uint32_t dst, uint32_t src, uint32_t imm, uint8_t* code, uint32_t& codePos) { uint32_t k = codePos; if (imm < (1 << 24)) { const uint32_t imm_lo = imm & ((1 << 12) - 1); const uint32_t imm_hi = imm >> 12; if (imm_lo && imm_hi) { emit32(ARMV8A::ADD_IMM_LO | dst | (src << 5) | (imm_lo << 10), code, k); emit32(ARMV8A::ADD_IMM_HI | dst | (dst << 5) | (imm_hi << 10), code, k); } else if (imm_lo) { emit32(ARMV8A::ADD_IMM_LO | dst | (src << 5) | (imm_lo << 10), code, k); } else { emit32(ARMV8A::ADD_IMM_HI | dst | (src << 5) | (imm_hi << 10), code, k); } } else { constexpr uint32_t tmp_reg = 18; emitMovImmediate(tmp_reg, imm, code, k); // add dst, src, tmp_reg emit32(ARMV8A::ADD | dst | (src << 5) | (tmp_reg << 16), code, k); } codePos = k; } template void JitCompilerA64::emitMemLoad(uint32_t dst, uint32_t src, Instruction& instr, uint8_t* code, uint32_t& codePos) { uint32_t k = codePos; uint32_t imm = instr.getImm32(); if (src != dst) { imm &= instr.getModMem() ? (RandomX_CurrentConfig.ScratchpadL1_Size - 1) : (RandomX_CurrentConfig.ScratchpadL2_Size - 1); emitAddImmediate(tmp_reg, src, imm, code, k); constexpr uint32_t t = 0x927d0000 | tmp_reg | (tmp_reg << 5); const uint32_t andInstrL1 = t | ((RandomX_CurrentConfig.Log2_ScratchpadL1 - 4) << 10); const uint32_t andInstrL2 = t | ((RandomX_CurrentConfig.Log2_ScratchpadL2 - 4) << 10); emit32(instr.getModMem() ? andInstrL1 : andInstrL2, code, k); // ldr tmp_reg, [x2, tmp_reg] emit32(0xf8606840 | tmp_reg | (tmp_reg << 16), code, k); } else { imm = (imm & ScratchpadL3Mask) >> 3; emitMovImmediate(tmp_reg, imm, code, k); // ldr tmp_reg, [x2, tmp_reg, lsl 3] emit32(0xf8607840 | tmp_reg | (tmp_reg << 16), code, k); } codePos = k; } template void JitCompilerA64::emitMemLoadFP(uint32_t src, Instruction& instr, uint8_t* code, uint32_t& codePos) { uint32_t k = codePos; uint32_t imm = instr.getImm32(); constexpr uint32_t tmp_reg = 18; imm &= instr.getModMem() ? (RandomX_CurrentConfig.ScratchpadL1_Size - 1) : (RandomX_CurrentConfig.ScratchpadL2_Size - 1); emitAddImmediate(tmp_reg, src, imm, code, k); constexpr uint32_t t = 0x927d0000 | tmp_reg | (tmp_reg << 5); const uint32_t andInstrL1 = t | ((RandomX_CurrentConfig.Log2_ScratchpadL1 - 4) << 10); const uint32_t andInstrL2 = t | ((RandomX_CurrentConfig.Log2_ScratchpadL2 - 4) << 10); emit32(instr.getModMem() ? andInstrL1 : andInstrL2, code, k); // add tmp_reg, x2, tmp_reg emit32(ARMV8A::ADD | tmp_reg | (2 << 5) | (tmp_reg << 16), code, k); // ldpsw tmp_reg, tmp_reg + 1, [tmp_reg] emit32(0x69400000 | tmp_reg | (tmp_reg << 5) | ((tmp_reg + 1) << 10), code, k); // ins tmp_reg_fp.d[0], tmp_reg emit32(0x4E081C00 | tmp_reg_fp | (tmp_reg << 5), code, k); // ins tmp_reg_fp.d[1], tmp_reg + 1 emit32(0x4E181C00 | tmp_reg_fp | ((tmp_reg + 1) << 5), code, k); // scvtf tmp_reg_fp.2d, tmp_reg_fp.2d emit32(0x4E61D800 | tmp_reg_fp | (tmp_reg_fp << 5), code, k); codePos = k; } void JitCompilerA64::h_IADD_RS(Instruction& instr, uint32_t& codePos) { uint32_t k = codePos; const uint32_t src = IntRegMap[instr.src]; const uint32_t dst = IntRegMap[instr.dst]; const uint32_t shift = instr.getModShift(); // add dst, src << shift emit32(ARMV8A::ADD | dst | (dst << 5) | (shift << 10) | (src << 16), code, k); if (instr.dst == RegisterNeedsDisplacement) emitAddImmediate(dst, dst, instr.getImm32(), code, k); reg_changed_offset[instr.dst] = k; codePos = k; } void JitCompilerA64::h_IADD_M(Instruction& instr, uint32_t& codePos) { uint32_t k = codePos; const uint32_t src = IntRegMap[instr.src]; const uint32_t dst = IntRegMap[instr.dst]; constexpr uint32_t tmp_reg = 18; emitMemLoad(dst, src, instr, code, k); // add dst, dst, tmp_reg emit32(ARMV8A::ADD | dst | (dst << 5) | (tmp_reg << 16), code, k); reg_changed_offset[instr.dst] = k; codePos = k; } void JitCompilerA64::h_ISUB_R(Instruction& instr, uint32_t& codePos) { uint32_t k = codePos; const uint32_t src = IntRegMap[instr.src]; const uint32_t dst = IntRegMap[instr.dst]; if (src != dst) { // sub dst, dst, src emit32(ARMV8A::SUB | dst | (dst << 5) | (src << 16), code, k); } else { emitAddImmediate(dst, dst, -instr.getImm32(), code, k); } reg_changed_offset[instr.dst] = k; codePos = k; } void JitCompilerA64::h_ISUB_M(Instruction& instr, uint32_t& codePos) { uint32_t k = codePos; const uint32_t src = IntRegMap[instr.src]; const uint32_t dst = IntRegMap[instr.dst]; constexpr uint32_t tmp_reg = 18; emitMemLoad(dst, src, instr, code, k); // sub dst, dst, tmp_reg emit32(ARMV8A::SUB | dst | (dst << 5) | (tmp_reg << 16), code, k); reg_changed_offset[instr.dst] = k; codePos = k; } void JitCompilerA64::h_IMUL_R(Instruction& instr, uint32_t& codePos) { uint32_t k = codePos; uint32_t src = IntRegMap[instr.src]; const uint32_t dst = IntRegMap[instr.dst]; if (src == dst) { src = 18; emitMovImmediate(src, instr.getImm32(), code, k); } // mul dst, dst, src emit32(ARMV8A::MUL | dst | (dst << 5) | (src << 16), code, k); reg_changed_offset[instr.dst] = k; codePos = k; } void JitCompilerA64::h_IMUL_M(Instruction& instr, uint32_t& codePos) { uint32_t k = codePos; const uint32_t src = IntRegMap[instr.src]; const uint32_t dst = IntRegMap[instr.dst]; constexpr uint32_t tmp_reg = 18; emitMemLoad(dst, src, instr, code, k); // sub dst, dst, tmp_reg emit32(ARMV8A::MUL | dst | (dst << 5) | (tmp_reg << 16), code, k); reg_changed_offset[instr.dst] = k; codePos = k; } void JitCompilerA64::h_IMULH_R(Instruction& instr, uint32_t& codePos) { uint32_t k = codePos; const uint32_t src = IntRegMap[instr.src]; const uint32_t dst = IntRegMap[instr.dst]; // umulh dst, dst, src emit32(ARMV8A::UMULH | dst | (dst << 5) | (src << 16), code, k); reg_changed_offset[instr.dst] = k; codePos = k; } void JitCompilerA64::h_IMULH_M(Instruction& instr, uint32_t& codePos) { uint32_t k = codePos; const uint32_t src = IntRegMap[instr.src]; const uint32_t dst = IntRegMap[instr.dst]; constexpr uint32_t tmp_reg = 18; emitMemLoad(dst, src, instr, code, k); // umulh dst, dst, tmp_reg emit32(ARMV8A::UMULH | dst | (dst << 5) | (tmp_reg << 16), code, k); reg_changed_offset[instr.dst] = k; codePos = k; } void JitCompilerA64::h_ISMULH_R(Instruction& instr, uint32_t& codePos) { uint32_t k = codePos; const uint32_t src = IntRegMap[instr.src]; const uint32_t dst = IntRegMap[instr.dst]; // smulh dst, dst, src emit32(ARMV8A::SMULH | dst | (dst << 5) | (src << 16), code, k); reg_changed_offset[instr.dst] = k; codePos = k; } void JitCompilerA64::h_ISMULH_M(Instruction& instr, uint32_t& codePos) { uint32_t k = codePos; const uint32_t src = IntRegMap[instr.src]; const uint32_t dst = IntRegMap[instr.dst]; constexpr uint32_t tmp_reg = 18; emitMemLoad(dst, src, instr, code, k); // smulh dst, dst, tmp_reg emit32(ARMV8A::SMULH | dst | (dst << 5) | (tmp_reg << 16), code, k); reg_changed_offset[instr.dst] = k; codePos = k; } void JitCompilerA64::h_IMUL_RCP(Instruction& instr, uint32_t& codePos) { const uint64_t divisor = instr.getImm32(); if (isZeroOrPowerOf2(divisor)) return; uint32_t k = codePos; constexpr uint32_t tmp_reg = 18; const uint32_t dst = IntRegMap[instr.dst]; constexpr uint64_t N = 1ULL << 63; const uint64_t q = N / divisor; const uint64_t r = N % divisor; #ifdef __GNUC__ const uint64_t shift = 64 - __builtin_clzll(divisor); #else uint64_t shift = 32; for (uint64_t k = 1U << 31; (k & divisor) == 0; k >>= 1) --shift; #endif const uint32_t literal_id = (ImulRcpLiteralsEnd - literalPos) / sizeof(uint64_t); literalPos -= sizeof(uint64_t); *(uint64_t*)(code + literalPos) = (q << shift) + ((r << shift) / divisor); if (literal_id < 13) { static constexpr uint32_t literal_regs[13] = { 30 << 16, 29 << 16, 28 << 16, 27 << 16, 26 << 16, 25 << 16, 24 << 16, 23 << 16, 22 << 16, 21 << 16, 20 << 16, 11 << 16, 0 }; // mul dst, dst, literal_reg emit32(ARMV8A::MUL | dst | (dst << 5) | literal_regs[literal_id], code, k); } else { // ldr tmp_reg, reciprocal const uint32_t offset = (literalPos - k) / 4; emit32(ARMV8A::LDR_LITERAL | tmp_reg | (offset << 5), code, k); // mul dst, dst, tmp_reg emit32(ARMV8A::MUL | dst | (dst << 5) | (tmp_reg << 16), code, k); } reg_changed_offset[instr.dst] = k; codePos = k; } void JitCompilerA64::h_INEG_R(Instruction& instr, uint32_t& codePos) { const uint32_t dst = IntRegMap[instr.dst]; // sub dst, xzr, dst emit32(ARMV8A::SUB | dst | (31 << 5) | (dst << 16), code, codePos); reg_changed_offset[instr.dst] = codePos; } void JitCompilerA64::h_IXOR_R(Instruction& instr, uint32_t& codePos) { uint32_t k = codePos; uint32_t src = IntRegMap[instr.src]; const uint32_t dst = IntRegMap[instr.dst]; if (src == dst) { src = 18; emitMovImmediate(src, instr.getImm32(), code, k); } // eor dst, dst, src emit32(ARMV8A::EOR | dst | (dst << 5) | (src << 16), code, k); reg_changed_offset[instr.dst] = k; codePos = k; } void JitCompilerA64::h_IXOR_M(Instruction& instr, uint32_t& codePos) { uint32_t k = codePos; const uint32_t src = IntRegMap[instr.src]; const uint32_t dst = IntRegMap[instr.dst]; constexpr uint32_t tmp_reg = 18; emitMemLoad(dst, src, instr, code, k); // eor dst, dst, tmp_reg emit32(ARMV8A::EOR | dst | (dst << 5) | (tmp_reg << 16), code, k); reg_changed_offset[instr.dst] = k; codePos = k; } void JitCompilerA64::h_IROR_R(Instruction& instr, uint32_t& codePos) { const uint32_t src = IntRegMap[instr.src]; const uint32_t dst = IntRegMap[instr.dst]; if (src != dst) { // ror dst, dst, src emit32(ARMV8A::ROR | dst | (dst << 5) | (src << 16), code, codePos); } else { // ror dst, dst, imm emit32(ARMV8A::ROR_IMM | dst | (dst << 5) | ((instr.getImm32() & 63) << 10) | (dst << 16), code, codePos); } reg_changed_offset[instr.dst] = codePos; } void JitCompilerA64::h_IROL_R(Instruction& instr, uint32_t& codePos) { uint32_t k = codePos; const uint32_t src = IntRegMap[instr.src]; const uint32_t dst = IntRegMap[instr.dst]; if (src != dst) { constexpr uint32_t tmp_reg = 18; // sub tmp_reg, xzr, src emit32(ARMV8A::SUB | tmp_reg | (31 << 5) | (src << 16), code, k); // ror dst, dst, tmp_reg emit32(ARMV8A::ROR | dst | (dst << 5) | (tmp_reg << 16), code, k); } else { // ror dst, dst, imm emit32(ARMV8A::ROR_IMM | dst | (dst << 5) | ((-instr.getImm32() & 63) << 10) | (dst << 16), code, k); } reg_changed_offset[instr.dst] = k; codePos = k; } void JitCompilerA64::h_ISWAP_R(Instruction& instr, uint32_t& codePos) { const uint32_t src = IntRegMap[instr.src]; const uint32_t dst = IntRegMap[instr.dst]; if (src == dst) return; uint32_t k = codePos; constexpr uint32_t tmp_reg = 18; emit32(ARMV8A::MOV_REG | tmp_reg | (dst << 16), code, k); emit32(ARMV8A::MOV_REG | dst | (src << 16), code, k); emit32(ARMV8A::MOV_REG | src | (tmp_reg << 16), code, k); reg_changed_offset[instr.src] = k; reg_changed_offset[instr.dst] = k; codePos = k; } void JitCompilerA64::h_FSWAP_R(Instruction& instr, uint32_t& codePos) { uint32_t k = codePos; const uint32_t dst = instr.dst + 16; constexpr uint32_t tmp_reg_fp = 28; constexpr uint32_t src_index1 = 1 << 14; constexpr uint32_t dst_index1 = 1 << 20; emit32(ARMV8A::MOV_VREG_EL | tmp_reg_fp | (dst << 5) | src_index1, code, k); emit32(ARMV8A::MOV_VREG_EL | dst | (dst << 5) | dst_index1, code, k); emit32(ARMV8A::MOV_VREG_EL | dst | (tmp_reg_fp << 5), code, k); codePos = k; } void JitCompilerA64::h_FADD_R(Instruction& instr, uint32_t& codePos) { const uint32_t src = (instr.src % 4) + 24; const uint32_t dst = (instr.dst % 4) + 16; emit32(ARMV8A::FADD | dst | (dst << 5) | (src << 16), code, codePos); } void JitCompilerA64::h_FADD_M(Instruction& instr, uint32_t& codePos) { uint32_t k = codePos; const uint32_t src = IntRegMap[instr.src]; const uint32_t dst = (instr.dst % 4) + 16; constexpr uint32_t tmp_reg_fp = 28; emitMemLoadFP(src, instr, code, k); emit32(ARMV8A::FADD | dst | (dst << 5) | (tmp_reg_fp << 16), code, k); codePos = k; } void JitCompilerA64::h_FSUB_R(Instruction& instr, uint32_t& codePos) { const uint32_t src = (instr.src % 4) + 24; const uint32_t dst = (instr.dst % 4) + 16; emit32(ARMV8A::FSUB | dst | (dst << 5) | (src << 16), code, codePos); } void JitCompilerA64::h_FSUB_M(Instruction& instr, uint32_t& codePos) { uint32_t k = codePos; const uint32_t src = IntRegMap[instr.src]; const uint32_t dst = (instr.dst % 4) + 16; constexpr uint32_t tmp_reg_fp = 28; emitMemLoadFP(src, instr, code, k); emit32(ARMV8A::FSUB | dst | (dst << 5) | (tmp_reg_fp << 16), code, k); codePos = k; } void JitCompilerA64::h_FSCAL_R(Instruction& instr, uint32_t& codePos) { const uint32_t dst = (instr.dst % 4) + 16; emit32(ARMV8A::FEOR | dst | (dst << 5) | (31 << 16), code, codePos); } void JitCompilerA64::h_FMUL_R(Instruction& instr, uint32_t& codePos) { const uint32_t src = (instr.src % 4) + 24; const uint32_t dst = (instr.dst % 4) + 20; emit32(ARMV8A::FMUL | dst | (dst << 5) | (src << 16), code, codePos); } void JitCompilerA64::h_FDIV_M(Instruction& instr, uint32_t& codePos) { uint32_t k = codePos; const uint32_t src = IntRegMap[instr.src]; const uint32_t dst = (instr.dst % 4) + 20; constexpr uint32_t tmp_reg_fp = 28; emitMemLoadFP(src, instr, code, k); // and tmp_reg_fp, tmp_reg_fp, and_mask_reg emit32(0x4E201C00 | tmp_reg_fp | (tmp_reg_fp << 5) | (29 << 16), code, k); // orr tmp_reg_fp, tmp_reg_fp, or_mask_reg emit32(0x4EA01C00 | tmp_reg_fp | (tmp_reg_fp << 5) | (30 << 16), code, k); emit32(ARMV8A::FDIV | dst | (dst << 5) | (tmp_reg_fp << 16), code, k); codePos = k; } void JitCompilerA64::h_FSQRT_R(Instruction& instr, uint32_t& codePos) { const uint32_t dst = (instr.dst % 4) + 20; emit32(ARMV8A::FSQRT | dst | (dst << 5), code, codePos); } void JitCompilerA64::h_CBRANCH(Instruction& instr, uint32_t& codePos) { uint32_t k = codePos; const uint32_t dst = IntRegMap[instr.dst]; const uint32_t modCond = instr.getModCond(); const uint32_t shift = modCond + RandomX_CurrentConfig.JumpOffset; const uint32_t imm = (instr.getImm32() | (1U << shift)) & ~(1U << (shift - 1)); emitAddImmediate(dst, dst, imm, code, k); // tst dst, mask emit32((0xF2781C1F - (modCond << 16)) | (dst << 5), code, k); int32_t offset = reg_changed_offset[instr.dst]; offset = ((offset - k) >> 2) & ((1 << 19) - 1); // beq target emit32(0x54000000 | (offset << 5), code, k); for (uint32_t i = 0; i < RegistersCount; ++i) reg_changed_offset[i] = k; codePos = k; } void JitCompilerA64::h_CFROUND(Instruction& instr, uint32_t& codePos) { uint32_t k = codePos; const uint32_t src = IntRegMap[instr.src]; constexpr uint32_t tmp_reg = 18; constexpr uint32_t fpcr_tmp_reg = 8; // ror tmp_reg, src, imm emit32(ARMV8A::ROR_IMM | tmp_reg | (src << 5) | ((instr.getImm32() & 63) << 10) | (src << 16), code, k); // bfi fpcr_tmp_reg, tmp_reg, 40, 2 emit32(0xB3580400 | fpcr_tmp_reg | (tmp_reg << 5), code, k); // rbit tmp_reg, fpcr_tmp_reg emit32(0xDAC00000 | tmp_reg | (fpcr_tmp_reg << 5), code, k); // msr fpcr, tmp_reg emit32(0xD51B4400 | tmp_reg, code, k); codePos = k; } void JitCompilerA64::h_ISTORE(Instruction& instr, uint32_t& codePos) { uint32_t k = codePos; const uint32_t src = IntRegMap[instr.src]; const uint32_t dst = IntRegMap[instr.dst]; constexpr uint32_t tmp_reg = 18; uint32_t imm = instr.getImm32(); if (instr.getModCond() < StoreL3Condition) imm &= instr.getModMem() ? (RandomX_CurrentConfig.ScratchpadL1_Size - 1) : (RandomX_CurrentConfig.ScratchpadL2_Size - 1); else imm &= RandomX_CurrentConfig.ScratchpadL3_Size - 1; emitAddImmediate(tmp_reg, dst, imm, code, k); constexpr uint32_t t = 0x927d0000 | tmp_reg | (tmp_reg << 5); const uint32_t andInstrL1 = t | ((RandomX_CurrentConfig.Log2_ScratchpadL1 - 4) << 10); const uint32_t andInstrL2 = t | ((RandomX_CurrentConfig.Log2_ScratchpadL2 - 4) << 10); const uint32_t andInstrL3 = t | ((RandomX_CurrentConfig.Log2_ScratchpadL3 - 4) << 10); emit32((instr.getModCond() < StoreL3Condition) ? (instr.getModMem() ? andInstrL1 : andInstrL2) : andInstrL3, code, k); // str src, [x2, tmp_reg] emit32(0xF8206840 | src | (tmp_reg << 16), code, k); codePos = k; } void JitCompilerA64::h_NOP(Instruction& instr, uint32_t& codePos) { } InstructionGeneratorA64 JitCompilerA64::engine[256] = {}; }