/* XMRig * Copyright 2010 Jeff Garzik * Copyright 2012-2014 pooler * Copyright 2014 Lucas Jones * Copyright 2014-2016 Wolf9466 * Copyright 2016 Jay D Dee * Copyright 2016 Imran Yusuff * Copyright 2017-2019 XMR-Stak , * Copyright 2018 Lee Clagett * Copyright 2018-2019 SChernykh * Copyright 2016-2019 XMRig , * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #ifndef XMRIG_CRYPTONIGHT_ARM_H #define XMRIG_CRYPTONIGHT_ARM_H #include "common/crypto/keccak.h" #include "crypto/cn/CnAlgo.h" #include "crypto/cn/CryptoNight_monero.h" #include "crypto/cn/CryptoNight.h" #include "crypto/cn/soft_aes.h" #include "crypto/common/portable/mm_malloc.h" extern "C" { #include "crypto/cn/c_groestl.h" #include "crypto/cn/c_blake256.h" #include "crypto/cn/c_jh.h" #include "crypto/cn/c_skein.h" } static inline void do_blake_hash(const uint8_t *input, size_t len, uint8_t *output) { blake256_hash(output, input, len); } static inline void do_groestl_hash(const uint8_t *input, size_t len, uint8_t *output) { groestl(input, len * 8, output); } static inline void do_jh_hash(const uint8_t *input, size_t len, uint8_t *output) { jh_hash(32 * 8, input, 8 * len, output); } static inline void do_skein_hash(const uint8_t *input, size_t len, uint8_t *output) { xmr_skein(input, output); } void (* const extra_hashes[4])(const uint8_t *, size_t, uint8_t *) = {do_blake_hash, do_groestl_hash, do_jh_hash, do_skein_hash}; static inline __attribute__((always_inline)) __m128i _mm_set_epi64x(const uint64_t a, const uint64_t b) { return vcombine_u64(vcreate_u64(b), vcreate_u64(a)); } #if __ARM_FEATURE_CRYPTO static inline __attribute__((always_inline)) __m128i _mm_aesenc_si128(__m128i v, __m128i rkey) { alignas(16) const __m128i zero = { 0 }; return veorq_u8(vaesmcq_u8(vaeseq_u8(v, zero)), rkey ); } #else static inline __attribute__((always_inline)) __m128i _mm_aesenc_si128(__m128i v, __m128i rkey) { alignas(16) const __m128i zero = { 0 }; return zero; } #endif /* this one was not implemented yet so here it is */ static inline __attribute__((always_inline)) uint64_t _mm_cvtsi128_si64(__m128i a) { return vgetq_lane_u64(a, 0); } #if defined (__arm64__) || defined (__aarch64__) static inline uint64_t __umul128(uint64_t a, uint64_t b, uint64_t* hi) { unsigned __int128 r = (unsigned __int128) a * (unsigned __int128) b; *hi = r >> 64; return (uint64_t) r; } #else static inline uint64_t __umul128(uint64_t multiplier, uint64_t multiplicand, uint64_t *product_hi) { // multiplier = ab = a * 2^32 + b // multiplicand = cd = c * 2^32 + d // ab * cd = a * c * 2^64 + (a * d + b * c) * 2^32 + b * d uint64_t a = multiplier >> 32; uint64_t b = multiplier & 0xFFFFFFFF; uint64_t c = multiplicand >> 32; uint64_t d = multiplicand & 0xFFFFFFFF; //uint64_t ac = a * c; uint64_t ad = a * d; //uint64_t bc = b * c; uint64_t bd = b * d; uint64_t adbc = ad + (b * c); uint64_t adbc_carry = adbc < ad ? 1 : 0; // multiplier * multiplicand = product_hi * 2^64 + product_lo uint64_t product_lo = bd + (adbc << 32); uint64_t product_lo_carry = product_lo < bd ? 1 : 0; *product_hi = (a * c) + (adbc >> 32) + (adbc_carry << 32) + product_lo_carry; return product_lo; } #endif // This will shift and xor tmp1 into itself as 4 32-bit vals such as // sl_xor(a1 a2 a3 a4) = a1 (a2^a1) (a3^a2^a1) (a4^a3^a2^a1) static inline __m128i sl_xor(__m128i tmp1) { __m128i tmp4; tmp4 = _mm_slli_si128(tmp1, 0x04); tmp1 = _mm_xor_si128(tmp1, tmp4); tmp4 = _mm_slli_si128(tmp4, 0x04); tmp1 = _mm_xor_si128(tmp1, tmp4); tmp4 = _mm_slli_si128(tmp4, 0x04); tmp1 = _mm_xor_si128(tmp1, tmp4); return tmp1; } template static inline void soft_aes_genkey_sub(__m128i* xout0, __m128i* xout2) { __m128i xout1 = soft_aeskeygenassist(*xout2); xout1 = _mm_shuffle_epi32(xout1, 0xFF); // see PSHUFD, set all elems to 4th elem *xout0 = sl_xor(*xout0); *xout0 = _mm_xor_si128(*xout0, xout1); xout1 = soft_aeskeygenassist<0x00>(*xout0); xout1 = _mm_shuffle_epi32(xout1, 0xAA); // see PSHUFD, set all elems to 3rd elem *xout2 = sl_xor(*xout2); *xout2 = _mm_xor_si128(*xout2, xout1); } template static inline void aes_genkey(const __m128i* memory, __m128i* k0, __m128i* k1, __m128i* k2, __m128i* k3, __m128i* k4, __m128i* k5, __m128i* k6, __m128i* k7, __m128i* k8, __m128i* k9) { __m128i xout0 = _mm_load_si128(memory); __m128i xout2 = _mm_load_si128(memory + 1); *k0 = xout0; *k1 = xout2; soft_aes_genkey_sub<0x01>(&xout0, &xout2); *k2 = xout0; *k3 = xout2; soft_aes_genkey_sub<0x02>(&xout0, &xout2); *k4 = xout0; *k5 = xout2; soft_aes_genkey_sub<0x04>(&xout0, &xout2); *k6 = xout0; *k7 = xout2; soft_aes_genkey_sub<0x08>(&xout0, &xout2); *k8 = xout0; *k9 = xout2; } template static inline void aes_round(__m128i key, __m128i* x0, __m128i* x1, __m128i* x2, __m128i* x3, __m128i* x4, __m128i* x5, __m128i* x6, __m128i* x7) { if (SOFT_AES) { *x0 = soft_aesenc((uint32_t*)x0, key); *x1 = soft_aesenc((uint32_t*)x1, key); *x2 = soft_aesenc((uint32_t*)x2, key); *x3 = soft_aesenc((uint32_t*)x3, key); *x4 = soft_aesenc((uint32_t*)x4, key); *x5 = soft_aesenc((uint32_t*)x5, key); *x6 = soft_aesenc((uint32_t*)x6, key); *x7 = soft_aesenc((uint32_t*)x7, key); } else { *x0 = _mm_aesenc_si128(*x0, key); *x1 = _mm_aesenc_si128(*x1, key); *x2 = _mm_aesenc_si128(*x2, key); *x3 = _mm_aesenc_si128(*x3, key); *x4 = _mm_aesenc_si128(*x4, key); *x5 = _mm_aesenc_si128(*x5, key); *x6 = _mm_aesenc_si128(*x6, key); *x7 = _mm_aesenc_si128(*x7, key); } } inline void mix_and_propagate(__m128i& x0, __m128i& x1, __m128i& x2, __m128i& x3, __m128i& x4, __m128i& x5, __m128i& x6, __m128i& x7) { __m128i tmp0 = x0; x0 = _mm_xor_si128(x0, x1); x1 = _mm_xor_si128(x1, x2); x2 = _mm_xor_si128(x2, x3); x3 = _mm_xor_si128(x3, x4); x4 = _mm_xor_si128(x4, x5); x5 = _mm_xor_si128(x5, x6); x6 = _mm_xor_si128(x6, x7); x7 = _mm_xor_si128(x7, tmp0); } namespace xmrig { template static inline void cn_explode_scratchpad(const __m128i *input, __m128i *output) { constexpr CnAlgo props; __m128i xin0, xin1, xin2, xin3, xin4, xin5, xin6, xin7; __m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9; aes_genkey(input, &k0, &k1, &k2, &k3, &k4, &k5, &k6, &k7, &k8, &k9); xin0 = _mm_load_si128(input + 4); xin1 = _mm_load_si128(input + 5); xin2 = _mm_load_si128(input + 6); xin3 = _mm_load_si128(input + 7); xin4 = _mm_load_si128(input + 8); xin5 = _mm_load_si128(input + 9); xin6 = _mm_load_si128(input + 10); xin7 = _mm_load_si128(input + 11); if (props.isHeavy()) { for (size_t i = 0; i < 16; i++) { aes_round(k0, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k1, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k2, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k3, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k4, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k5, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k6, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k7, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k8, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k9, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); mix_and_propagate(xin0, xin1, xin2, xin3, xin4, xin5, xin6, xin7); } } for (size_t i = 0; i < props.memory() / sizeof(__m128i); i += 8) { aes_round(k0, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k1, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k2, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k3, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k4, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k5, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k6, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k7, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k8, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k9, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); _mm_store_si128(output + i + 0, xin0); _mm_store_si128(output + i + 1, xin1); _mm_store_si128(output + i + 2, xin2); _mm_store_si128(output + i + 3, xin3); _mm_store_si128(output + i + 4, xin4); _mm_store_si128(output + i + 5, xin5); _mm_store_si128(output + i + 6, xin6); _mm_store_si128(output + i + 7, xin7); } } template static inline void cn_implode_scratchpad(const __m128i *input, __m128i *output) { constexpr CnAlgo props; # ifdef XMRIG_ALGO_CN_GPU constexpr bool IS_HEAVY = props.isHeavy() || ALGO == Algorithm::CN_GPU; # else constexpr bool IS_HEAVY = props.isHeavy(); # endif __m128i xout0, xout1, xout2, xout3, xout4, xout5, xout6, xout7; __m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9; aes_genkey(output + 2, &k0, &k1, &k2, &k3, &k4, &k5, &k6, &k7, &k8, &k9); xout0 = _mm_load_si128(output + 4); xout1 = _mm_load_si128(output + 5); xout2 = _mm_load_si128(output + 6); xout3 = _mm_load_si128(output + 7); xout4 = _mm_load_si128(output + 8); xout5 = _mm_load_si128(output + 9); xout6 = _mm_load_si128(output + 10); xout7 = _mm_load_si128(output + 11); for (size_t i = 0; i < props.memory() / sizeof(__m128i); i += 8) { xout0 = _mm_xor_si128(_mm_load_si128(input + i + 0), xout0); xout1 = _mm_xor_si128(_mm_load_si128(input + i + 1), xout1); xout2 = _mm_xor_si128(_mm_load_si128(input + i + 2), xout2); xout3 = _mm_xor_si128(_mm_load_si128(input + i + 3), xout3); xout4 = _mm_xor_si128(_mm_load_si128(input + i + 4), xout4); xout5 = _mm_xor_si128(_mm_load_si128(input + i + 5), xout5); xout6 = _mm_xor_si128(_mm_load_si128(input + i + 6), xout6); xout7 = _mm_xor_si128(_mm_load_si128(input + i + 7), xout7); aes_round(k0, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k1, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k2, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k3, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k4, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k5, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k6, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k7, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k8, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k9, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); if (IS_HEAVY) { mix_and_propagate(xout0, xout1, xout2, xout3, xout4, xout5, xout6, xout7); } } if (IS_HEAVY) { for (size_t i = 0; i < props.memory() / sizeof(__m128i); i += 8) { xout0 = _mm_xor_si128(_mm_load_si128(input + i + 0), xout0); xout1 = _mm_xor_si128(_mm_load_si128(input + i + 1), xout1); xout2 = _mm_xor_si128(_mm_load_si128(input + i + 2), xout2); xout3 = _mm_xor_si128(_mm_load_si128(input + i + 3), xout3); xout4 = _mm_xor_si128(_mm_load_si128(input + i + 4), xout4); xout5 = _mm_xor_si128(_mm_load_si128(input + i + 5), xout5); xout6 = _mm_xor_si128(_mm_load_si128(input + i + 6), xout6); xout7 = _mm_xor_si128(_mm_load_si128(input + i + 7), xout7); aes_round(k0, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k1, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k2, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k3, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k4, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k5, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k6, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k7, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k8, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k9, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); mix_and_propagate(xout0, xout1, xout2, xout3, xout4, xout5, xout6, xout7); } for (size_t i = 0; i < 16; i++) { aes_round(k0, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k1, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k2, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k3, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k4, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k5, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k6, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k7, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k8, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k9, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); mix_and_propagate(xout0, xout1, xout2, xout3, xout4, xout5, xout6, xout7); } } _mm_store_si128(output + 4, xout0); _mm_store_si128(output + 5, xout1); _mm_store_si128(output + 6, xout2); _mm_store_si128(output + 7, xout3); _mm_store_si128(output + 8, xout4); _mm_store_si128(output + 9, xout5); _mm_store_si128(output + 10, xout6); _mm_store_si128(output + 11, xout7); } } /* namespace xmrig */ static inline __m128i aes_round_tweak_div(const __m128i &in, const __m128i &key) { alignas(16) uint32_t k[4]; alignas(16) uint32_t x[4]; _mm_store_si128((__m128i*) k, key); _mm_store_si128((__m128i*) x, _mm_xor_si128(in, _mm_set_epi64x(0xffffffffffffffff, 0xffffffffffffffff))); #define BYTE(p, i) ((unsigned char*)&x[p])[i] k[0] ^= saes_table[0][BYTE(0, 0)] ^ saes_table[1][BYTE(1, 1)] ^ saes_table[2][BYTE(2, 2)] ^ saes_table[3][BYTE(3, 3)]; x[0] ^= k[0]; k[1] ^= saes_table[0][BYTE(1, 0)] ^ saes_table[1][BYTE(2, 1)] ^ saes_table[2][BYTE(3, 2)] ^ saes_table[3][BYTE(0, 3)]; x[1] ^= k[1]; k[2] ^= saes_table[0][BYTE(2, 0)] ^ saes_table[1][BYTE(3, 1)] ^ saes_table[2][BYTE(0, 2)] ^ saes_table[3][BYTE(1, 3)]; x[2] ^= k[2]; k[3] ^= saes_table[0][BYTE(3, 0)] ^ saes_table[1][BYTE(0, 1)] ^ saes_table[2][BYTE(1, 2)] ^ saes_table[3][BYTE(2, 3)]; #undef BYTE return _mm_load_si128((__m128i*)k); } namespace xmrig { template static inline void cryptonight_monero_tweak(const uint8_t* l, uint64_t idx, __m128i ax0, __m128i bx0, __m128i bx1, __m128i& cx) { constexpr CnAlgo props; uint64_t* mem_out = (uint64_t*)&l[idx]; if (props.base() == Algorithm::CN_2) { VARIANT2_SHUFFLE(l, idx, ax0, bx0, bx1, cx, (ALGO == Algorithm::CN_RWZ ? 1 : 0)); _mm_store_si128((__m128i *)mem_out, _mm_xor_si128(bx0, cx)); } else { __m128i tmp = _mm_xor_si128(bx0, cx); mem_out[0] = _mm_cvtsi128_si64(tmp); uint64_t vh = vgetq_lane_u64(tmp, 1); uint8_t x = vh >> 24; static const uint16_t table = 0x7531; const uint8_t index = (((x >> (3)) & 6) | (x & 1)) << 1; vh ^= ((table >> index) & 0x3) << 28; mem_out[1] = vh; } } template inline void cryptonight_single_hash(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, cryptonight_ctx **__restrict__ ctx, uint64_t height) { constexpr CnAlgo props; constexpr size_t MASK = props.mask(); constexpr Algorithm::Id BASE = props.base(); # ifdef XMRIG_ALGO_CN_HEAVY constexpr bool IS_CN_HEAVY_TUBE = ALGO == Algorithm::CN_HEAVY_TUBE; # else constexpr bool IS_CN_HEAVY_TUBE = false; # endif if (BASE == Algorithm::CN_1 && size < 43) { memset(output, 0, 32); return; } keccak(input, size, ctx[0]->state); cn_explode_scratchpad(reinterpret_cast(ctx[0]->state), reinterpret_cast<__m128i *>(ctx[0]->memory)); uint8_t* l0 = ctx[0]->memory; uint64_t* h0 = reinterpret_cast(ctx[0]->state); VARIANT1_INIT(0); VARIANT2_INIT(0); VARIANT4_RANDOM_MATH_INIT(0); uint64_t al0 = h0[0] ^ h0[4]; uint64_t ah0 = h0[1] ^ h0[5]; __m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]); __m128i bx1 = _mm_set_epi64x(h0[9] ^ h0[11], h0[8] ^ h0[10]); uint64_t idx0 = al0; for (size_t i = 0; i < props.iterations(); i++) { __m128i cx; if (IS_CN_HEAVY_TUBE || !SOFT_AES) { cx = _mm_load_si128(reinterpret_cast(&l0[idx0 & MASK])); } const __m128i ax0 = _mm_set_epi64x(ah0, al0); if (IS_CN_HEAVY_TUBE) { cx = aes_round_tweak_div(cx, ax0); } else if (SOFT_AES) { cx = soft_aesenc((uint32_t*)&l0[idx0 & MASK], ax0); } else { cx = _mm_aesenc_si128(cx, ax0); } if (BASE == Algorithm::CN_1 || BASE == Algorithm::CN_2) { cryptonight_monero_tweak(l0, idx0 & MASK, ax0, bx0, bx1, cx); } else { _mm_store_si128((__m128i *)&l0[idx0 & MASK], _mm_xor_si128(bx0, cx)); } idx0 = _mm_cvtsi128_si64(cx); uint64_t hi, lo, cl, ch; cl = ((uint64_t*) &l0[idx0 & MASK])[0]; ch = ((uint64_t*) &l0[idx0 & MASK])[1]; if (BASE == Algorithm::CN_2) { if (props.isR()) { VARIANT4_RANDOM_MATH(0, al0, ah0, cl, bx0, bx1); if (ALGO == Algorithm::CN_R) { al0 ^= r0[2] | ((uint64_t)(r0[3]) << 32); ah0 ^= r0[0] | ((uint64_t)(r0[1]) << 32); } } else { VARIANT2_INTEGER_MATH(0, cl, cx); } } lo = __umul128(idx0, cl, &hi); if (BASE == Algorithm::CN_2) { if (ALGO == Algorithm::CN_R) { VARIANT2_SHUFFLE(l0, idx0 & MASK, ax0, bx0, bx1, cx, 0); } else { VARIANT2_SHUFFLE2(l0, idx0 & MASK, ax0, bx0, bx1, hi, lo, (ALGO == Algorithm::CN_RWZ ? 1 : 0)); } } al0 += hi; ah0 += lo; ((uint64_t*)&l0[idx0 & MASK])[0] = al0; if (IS_CN_HEAVY_TUBE || ALGO == Algorithm::CN_RTO) { ((uint64_t*)&l0[idx0 & MASK])[1] = ah0 ^ tweak1_2_0 ^ al0; } else if (BASE == Algorithm::CN_1) { ((uint64_t*)&l0[idx0 & MASK])[1] = ah0 ^ tweak1_2_0; } else { ((uint64_t*)&l0[idx0 & MASK])[1] = ah0; } al0 ^= cl; ah0 ^= ch; idx0 = al0; # ifdef XMRIG_ALGO_CN_HEAVY if (props.isHeavy()) { const int64x2_t x = vld1q_s64(reinterpret_cast(&l0[idx0 & MASK])); const int64_t n = vgetq_lane_s64(x, 0); const int32_t d = vgetq_lane_s32(x, 2); const int64_t q = n / (d | 0x5); ((int64_t*)&l0[idx0 & MASK])[0] = n ^ q; if (ALGO == Algorithm::CN_HEAVY_XHV) { idx0 = (~d) ^ q; } else { idx0 = d ^ q; } } # endif if (BASE == Algorithm::CN_2) { bx1 = bx0; } bx0 = cx; } cn_implode_scratchpad(reinterpret_cast(ctx[0]->memory), reinterpret_cast<__m128i *>(ctx[0]->state)); keccakf(h0, 24); extra_hashes[ctx[0]->state[0] & 3](ctx[0]->state, 200, output); } } /* namespace xmrig */ #ifdef XMRIG_ALGO_CN_GPU template void cn_gpu_inner_arm(const uint8_t *spad, uint8_t *lpad); namespace xmrig { template void cn_explode_scratchpad_gpu(const uint8_t *input, uint8_t *output) { constexpr size_t hash_size = 200; // 25x8 bytes alignas(16) uint64_t hash[25]; for (uint64_t i = 0; i < MEM / 512; i++) { memcpy(hash, input, hash_size); hash[0] ^= i; xmrig::keccakf(hash, 24); memcpy(output, hash, 160); output += 160; xmrig::keccakf(hash, 24); memcpy(output, hash, 176); output += 176; xmrig::keccakf(hash, 24); memcpy(output, hash, 176); output += 176; } } template inline void cryptonight_single_hash_gpu(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, cryptonight_ctx **__restrict__ ctx, uint64_t height) { constexpr CnAlgo props; keccak(input, size, ctx[0]->state); cn_explode_scratchpad_gpu(ctx[0]->state, ctx[0]->memory); fesetround(FE_TONEAREST); cn_gpu_inner_arm(ctx[0]->state, ctx[0]->memory); cn_implode_scratchpad(reinterpret_cast(ctx[0]->memory), reinterpret_cast<__m128i *>(ctx[0]->state)); keccakf(reinterpret_cast(ctx[0]->state), 24); memcpy(output, ctx[0]->state, 32); } } /* namespace xmrig */ #endif namespace xmrig { template inline void cryptonight_double_hash(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, struct cryptonight_ctx **__restrict__ ctx, uint64_t height) { constexpr CnAlgo props; constexpr size_t MASK = props.mask(); constexpr Algorithm::Id BASE = props.base(); # ifdef XMRIG_ALGO_CN_HEAVY constexpr bool IS_CN_HEAVY_TUBE = ALGO == Algorithm::CN_HEAVY_TUBE; # else constexpr bool IS_CN_HEAVY_TUBE = false; # endif if (BASE == Algorithm::CN_1 && size < 43) { memset(output, 0, 64); return; } keccak(input, size, ctx[0]->state); keccak(input + size, size, ctx[1]->state); uint8_t *l0 = ctx[0]->memory; uint8_t *l1 = ctx[1]->memory; uint64_t *h0 = reinterpret_cast(ctx[0]->state); uint64_t *h1 = reinterpret_cast(ctx[1]->state); VARIANT1_INIT(0); VARIANT1_INIT(1); VARIANT2_INIT(0); VARIANT2_INIT(1); VARIANT4_RANDOM_MATH_INIT(0); VARIANT4_RANDOM_MATH_INIT(1); cn_explode_scratchpad(reinterpret_cast(h0), reinterpret_cast<__m128i *>(l0)); cn_explode_scratchpad(reinterpret_cast(h1), reinterpret_cast<__m128i *>(l1)); uint64_t al0 = h0[0] ^ h0[4]; uint64_t al1 = h1[0] ^ h1[4]; uint64_t ah0 = h0[1] ^ h0[5]; uint64_t ah1 = h1[1] ^ h1[5]; __m128i bx00 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]); __m128i bx01 = _mm_set_epi64x(h0[9] ^ h0[11], h0[8] ^ h0[10]); __m128i bx10 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]); __m128i bx11 = _mm_set_epi64x(h1[9] ^ h1[11], h1[8] ^ h1[10]); uint64_t idx0 = al0; uint64_t idx1 = al1; for (size_t i = 0; i < props.iterations(); i++) { __m128i cx0, cx1; if (IS_CN_HEAVY_TUBE || !SOFT_AES) { cx0 = _mm_load_si128((__m128i *) &l0[idx0 & MASK]); cx1 = _mm_load_si128((__m128i *) &l1[idx1 & MASK]); } const __m128i ax0 = _mm_set_epi64x(ah0, al0); const __m128i ax1 = _mm_set_epi64x(ah1, al1); if (IS_CN_HEAVY_TUBE) { cx0 = aes_round_tweak_div(cx0, ax0); cx1 = aes_round_tweak_div(cx1, ax1); } else if (SOFT_AES) { cx0 = soft_aesenc((uint32_t*)&l0[idx0 & MASK], ax0); cx1 = soft_aesenc((uint32_t*)&l1[idx1 & MASK], ax1); } else { cx0 = _mm_aesenc_si128(cx0, ax0); cx1 = _mm_aesenc_si128(cx1, ax1); } if (BASE == Algorithm::CN_1 || BASE == Algorithm::CN_2) { cryptonight_monero_tweak(l0, idx0 & MASK, ax0, bx00, bx01, cx0); cryptonight_monero_tweak(l1, idx1 & MASK, ax1, bx10, bx11, cx1); } else { _mm_store_si128((__m128i *) &l0[idx0 & MASK], _mm_xor_si128(bx00, cx0)); _mm_store_si128((__m128i *) &l1[idx1 & MASK], _mm_xor_si128(bx10, cx1)); } idx0 = _mm_cvtsi128_si64(cx0); idx1 = _mm_cvtsi128_si64(cx1); uint64_t hi, lo, cl, ch; cl = ((uint64_t*) &l0[idx0 & MASK])[0]; ch = ((uint64_t*) &l0[idx0 & MASK])[1]; if (BASE == Algorithm::CN_2) { if (props.isR()) { VARIANT4_RANDOM_MATH(0, al0, ah0, cl, bx00, bx01); if (ALGO == Algorithm::CN_R) { al0 ^= r0[2] | ((uint64_t)(r0[3]) << 32); ah0 ^= r0[0] | ((uint64_t)(r0[1]) << 32); } } else { VARIANT2_INTEGER_MATH(0, cl, cx0); } } lo = __umul128(idx0, cl, &hi); if (BASE == Algorithm::CN_2) { if (ALGO == Algorithm::CN_R) { VARIANT2_SHUFFLE(l0, idx0 & MASK, ax0, bx00, bx01, cx0, 0); } else { VARIANT2_SHUFFLE2(l0, idx0 & MASK, ax0, bx00, bx01, hi, lo, (ALGO == Algorithm::CN_RWZ ? 1 : 0)); } } al0 += hi; ah0 += lo; ((uint64_t*)&l0[idx0 & MASK])[0] = al0; if (IS_CN_HEAVY_TUBE || ALGO == Algorithm::CN_RTO) { ((uint64_t*)&l0[idx0 & MASK])[1] = ah0 ^ tweak1_2_0 ^ al0; } else if (BASE == Algorithm::CN_1) { ((uint64_t*)&l0[idx0 & MASK])[1] = ah0 ^ tweak1_2_0; } else { ((uint64_t*)&l0[idx0 & MASK])[1] = ah0; } al0 ^= cl; ah0 ^= ch; idx0 = al0; # ifdef XMRIG_ALGO_CN_HEAVY if (props.isHeavy()) { const int64x2_t x = vld1q_s64(reinterpret_cast(&l0[idx0 & MASK])); const int64_t n = vgetq_lane_s64(x, 0); const int32_t d = vgetq_lane_s32(x, 2); const int64_t q = n / (d | 0x5); ((int64_t*)&l0[idx0 & MASK])[0] = n ^ q; if (ALGO == Algorithm::CN_HEAVY_XHV) { idx0 = (~d) ^ q; } else { idx0 = d ^ q; } } # endif cl = ((uint64_t*) &l1[idx1 & MASK])[0]; ch = ((uint64_t*) &l1[idx1 & MASK])[1]; if (BASE == Algorithm::CN_2) { if (props.isR()) { VARIANT4_RANDOM_MATH(1, al1, ah1, cl, bx10, bx11); if (ALGO == Algorithm::CN_R) { al1 ^= r1[2] | ((uint64_t)(r1[3]) << 32); ah1 ^= r1[0] | ((uint64_t)(r1[1]) << 32); } } else { VARIANT2_INTEGER_MATH(1, cl, cx1); } } lo = __umul128(idx1, cl, &hi); if (BASE == Algorithm::CN_2) { if (ALGO == Algorithm::CN_R) { VARIANT2_SHUFFLE(l1, idx1 & MASK, ax1, bx10, bx11, cx1, 0); } else { VARIANT2_SHUFFLE2(l1, idx1 & MASK, ax1, bx10, bx11, hi, lo, (ALGO == Algorithm::CN_RWZ ? 1 : 0)); } } al1 += hi; ah1 += lo; ((uint64_t*)&l1[idx1 & MASK])[0] = al1; if (IS_CN_HEAVY_TUBE || ALGO == Algorithm::CN_RTO) { ((uint64_t*)&l1[idx1 & MASK])[1] = ah1 ^ tweak1_2_1 ^ al1; } else if (BASE == Algorithm::CN_1) { ((uint64_t*)&l1[idx1 & MASK])[1] = ah1 ^ tweak1_2_1; } else { ((uint64_t*)&l1[idx1 & MASK])[1] = ah1; } al1 ^= cl; ah1 ^= ch; idx1 = al1; # ifdef XMRIG_ALGO_CN_HEAVY if (props.isHeavy()) { const int64x2_t x = vld1q_s64(reinterpret_cast(&l1[idx1 & MASK])); const int64_t n = vgetq_lane_s64(x, 0); const int32_t d = vgetq_lane_s32(x, 2); const int64_t q = n / (d | 0x5); ((int64_t*)&l1[idx1 & MASK])[0] = n ^ q; if (ALGO == Algorithm::CN_HEAVY_XHV) { idx1 = (~d) ^ q; } else { idx1 = d ^ q; } } # endif if (BASE == Algorithm::CN_2) { bx01 = bx00; bx11 = bx10; } bx00 = cx0; bx10 = cx1; } cn_implode_scratchpad(reinterpret_cast(l0), reinterpret_cast<__m128i *>(h0)); cn_implode_scratchpad(reinterpret_cast(l1), reinterpret_cast<__m128i *>(h1)); keccakf(h0, 24); keccakf(h1, 24); extra_hashes[ctx[0]->state[0] & 3](ctx[0]->state, 200, output); extra_hashes[ctx[1]->state[0] & 3](ctx[1]->state, 200, output + 32); } template inline void cryptonight_triple_hash(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, struct cryptonight_ctx **__restrict__ ctx, uint64_t height) { } template inline void cryptonight_quad_hash(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, struct cryptonight_ctx **__restrict__ ctx, uint64_t height) { } template inline void cryptonight_penta_hash(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, struct cryptonight_ctx **__restrict__ ctx, uint64_t height) { } } /* namespace xmrig */ #endif /* XMRIG_CRYPTONIGHT_ARM_H */