/* XMRig * Copyright 2010 Jeff Garzik * Copyright 2012-2014 pooler * Copyright 2014 Lucas Jones * Copyright 2014-2016 Wolf9466 * Copyright 2016 Jay D Dee * Copyright 2017 fireice-uk * Copyright 2017-2018 XMR-Stak , * Copyright 2018 Lee Clagett * Copyright 2018-2019 SChernykh * Copyright 2016-2019 XMRig , * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include "crypto/c_keccak.h" #include "cryptonight.h" #include "cryptonight_monero.h" #include "cryptonight_softaes.h" #ifndef XMRIG_NO_ASM void v4_soft_aes_compile_code(const struct V4_Instruction* code, int code_size, void* machine_code, enum Assembly ASM); #endif void cryptonight_r_av3(const uint8_t *restrict input, size_t size, uint8_t *restrict output, struct cryptonight_ctx **restrict ctx) { keccak(input, size, ctx[0]->state, 200); cn_explode_scratchpad((__m128i*) ctx[0]->state, (__m128i*) ctx[0]->memory); # ifndef XMRIG_NO_ASM if (ctx[0]->generated_code_height != ctx[0]->height) { struct V4_Instruction code[256]; const int code_size = v4_random_math_init(code, ctx[0]->height); v4_soft_aes_compile_code(code, code_size, (void*)(ctx[0]->generated_code), ASM_NONE); ctx[0]->generated_code_height = ctx[0]->height; } ctx[0]->saes_table = (const uint32_t*)saes_table; ctx[0]->generated_code(ctx[0]); # else const uint8_t* l0 = ctx[0]->memory; uint64_t* h0 = (uint64_t*) ctx[0]->state; VARIANT2_INIT(0); VARIANT2_SET_ROUNDING_MODE(); VARIANT4_RANDOM_MATH_INIT(0); uint64_t al0 = h0[0] ^ h0[4]; uint64_t ah0 = h0[1] ^ h0[5]; __m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]); __m128i bx1 = _mm_set_epi64x(h0[9] ^ h0[11], h0[8] ^ h0[10]); uint64_t idx0 = al0; for (size_t i = 0; __builtin_expect(i < 0x80000, 1); i++) { __m128i cx = _mm_load_si128((__m128i *) &l0[idx0 & 0x1FFFF0]); const __m128i ax0 = _mm_set_epi64x(ah0, al0); cx = soft_aesenc(cx, ax0); VARIANT4_SHUFFLE(l0, idx0 & 0x1FFFF0, ax0, bx0, bx1, cx); _mm_store_si128((__m128i *) &l0[idx0 & 0x1FFFF0], _mm_xor_si128(bx0, cx)); idx0 = _mm_cvtsi128_si64(cx); uint64_t hi, lo, cl, ch; cl = ((uint64_t*) &l0[idx0 & 0x1FFFF0])[0]; ch = ((uint64_t*) &l0[idx0 & 0x1FFFF0])[1]; VARIANT4_RANDOM_MATH(0, al0, ah0, cl, bx0, bx1); al0 ^= r0[2] | ((uint64_t)(r0[3]) << 32); ah0 ^= r0[0] | ((uint64_t)(r0[1]) << 32); lo = _umul128(idx0, cl, &hi); VARIANT4_SHUFFLE(l0, idx0 & 0x1FFFF0, ax0, bx0, bx1, cx); al0 += hi; ah0 += lo; ((uint64_t*)&l0[idx0 & 0x1FFFF0])[0] = al0; ((uint64_t*)&l0[idx0 & 0x1FFFF0])[1] = ah0; al0 ^= cl; ah0 ^= ch; idx0 = al0; bx1 = bx0; bx0 = cx; } # endif cn_implode_scratchpad((__m128i*) ctx[0]->memory, (__m128i*) ctx[0]->state); keccakf((uint64_t *) ctx[0]->state, 24); extra_hashes[ctx[0]->state[0] & 3](ctx[0]->state, 200, output); }