#ifndef VARIANT4_RANDOM_MATH_H #define VARIANT4_RANDOM_MATH_H extern "C" { #include "c_blake256.h" } enum V4_Settings { // Generate code with minimal theoretical latency = 45 cycles, which is equivalent to 15 multiplications TOTAL_LATENCY = 15 * 3, // Always generate at least 60 instructions NUM_INSTRUCTIONS = 60, // Available ALUs for MUL // Modern CPUs typically have only 1 ALU which can do multiplications ALU_COUNT_MUL = 1, // Total available ALUs // Modern CPUs have 4 ALUs, but we use only 3 because random math executes together with other main loop code ALU_COUNT = 3, }; enum V4_InstructionList { MUL, // a*b ADD, // a+b + C, C is an unsigned 32-bit constant SUB, // a-b ROR, // rotate right "a" by "b & 31" bits ROL, // rotate left "a" by "b & 31" bits XOR, // a^b RET, // finish execution V4_INSTRUCTION_COUNT = RET, }; // V4_InstructionDefinition is used to generate code from random data // Every random sequence of bytes is a valid code // // There are 8 registers in total: // - 4 variable registers // - 4 constant registers initialized from loop variables // // This is why dst_index is 2 bits enum V4_InstructionDefinition { V4_OPCODE_BITS = 3, V4_DST_INDEX_BITS = 2, V4_SRC_INDEX_BITS = 3, }; struct V4_Instruction { uint8_t opcode; uint8_t dst_index; uint8_t src_index; uint32_t C; }; #ifndef FORCEINLINE #ifdef __GNUC__ #define FORCEINLINE __attribute__((always_inline)) inline #elif _MSC_VER #define FORCEINLINE __forceinline #else #define FORCEINLINE inline #endif #endif #ifndef UNREACHABLE_CODE #ifdef __GNUC__ #define UNREACHABLE_CODE __builtin_unreachable() #elif _MSC_VER #define UNREACHABLE_CODE __assume(false) #else #define UNREACHABLE_CODE #endif #endif // Random math interpreter's loop is fully unrolled and inlined to achieve 100% branch prediction on CPU: // every switch-case will point to the same destination on every iteration of Cryptonight main loop // // This is about as fast as it can get without using low-level machine code generation template static void v4_random_math(const struct V4_Instruction* code, v4_reg* r) { enum { REG_BITS = sizeof(v4_reg) * 8, }; #define V4_EXEC(i) \ { \ const struct V4_Instruction* op = code + i; \ const v4_reg src = r[op->src_index]; \ v4_reg* dst = r + op->dst_index; \ switch (op->opcode) \ { \ case MUL: \ *dst *= src; \ break; \ case ADD: \ *dst += src + op->C; \ break; \ case SUB: \ *dst -= src; \ break; \ case ROR: \ { \ const uint32_t shift = src % REG_BITS; \ *dst = (*dst >> shift) | (*dst << ((REG_BITS - shift) % REG_BITS)); \ } \ break; \ case ROL: \ { \ const uint32_t shift = src % REG_BITS; \ *dst = (*dst << shift) | (*dst >> ((REG_BITS - shift) % REG_BITS)); \ } \ break; \ case XOR: \ *dst ^= src; \ break; \ case RET: \ return; \ default: \ UNREACHABLE_CODE; \ break; \ } \ } #define V4_EXEC_10(j) \ V4_EXEC(j + 0) \ V4_EXEC(j + 1) \ V4_EXEC(j + 2) \ V4_EXEC(j + 3) \ V4_EXEC(j + 4) \ V4_EXEC(j + 5) \ V4_EXEC(j + 6) \ V4_EXEC(j + 7) \ V4_EXEC(j + 8) \ V4_EXEC(j + 9) // Generated program can have 60 + a few more (usually 2-3) instructions to achieve required latency // I've checked all block heights < 10,000,000 and here is the distribution of program sizes: // // 60 28495 // 61 106077 // 62 2455855 // 63 5114930 // 64 1020868 // 65 1109026 // 66 151756 // 67 8429 // 68 4477 // 69 87 // Unroll 70 instructions here V4_EXEC_10(0); // instructions 0-9 V4_EXEC_10(10); // instructions 10-19 V4_EXEC_10(20); // instructions 20-29 V4_EXEC_10(30); // instructions 30-39 V4_EXEC_10(40); // instructions 40-49 V4_EXEC_10(50); // instructions 50-59 V4_EXEC_10(60); // instructions 60-69 #undef V4_EXEC_10 #undef V4_EXEC } // If we don't have enough data available, generate more static FORCEINLINE void check_data(size_t* data_index, const size_t bytes_needed, int8_t* data, const size_t data_size) { if (*data_index + bytes_needed > data_size) { hash_extra_blake(data, data_size, (char*) data); *data_index = 0; } } // Generates as many random math operations as possible with given latency and ALU restrictions static int v4_random_math_init(struct V4_Instruction* code, const uint64_t height) { // MUL is 3 cycles, 3-way addition and rotations are 2 cycles, SUB/XOR are 1 cycle // These latencies match real-life instruction latencies for Intel CPUs starting from Sandy Bridge and up to Skylake/Coffee lake // // AMD Ryzen has the same latencies except 1-cycle ROR/ROL, so it'll be a bit faster than Intel Sandy Bridge and newer processors // Surprisingly, Intel Nehalem also has 1-cycle ROR/ROL, so it'll also be faster than Intel Sandy Bridge and newer processors // AMD Bulldozer has 4 cycles latency for MUL (slower than Intel) and 1 cycle for ROR/ROL (faster than Intel), so average performance will be the same // Source: https://www.agner.org/optimize/instruction_tables.pdf const int op_latency[V4_INSTRUCTION_COUNT] = { 3, 2, 1, 2, 2, 1 }; // Instruction latencies for theoretical ASIC implementation const int asic_op_latency[V4_INSTRUCTION_COUNT] = { 3, 1, 1, 1, 1, 1 }; // Available ALUs for each instruction const int op_ALUs[V4_INSTRUCTION_COUNT] = { ALU_COUNT_MUL, ALU_COUNT, ALU_COUNT, ALU_COUNT, ALU_COUNT, ALU_COUNT }; int8_t data[32]; memset(data, 0, sizeof(data)); uint64_t tmp = SWAP64LE(height); memcpy(data, &tmp, sizeof(uint64_t)); // Set data_index past the last byte in data // to trigger full data update with blake hash // before we start using it size_t data_index = sizeof(data); int code_size; do { int latency[8]; int asic_latency[8]; // Tracks previous instruction and value of the source operand for registers R0-R3 throughout code execution // byte 0: current value of the destination register // byte 1: instruction opcode // byte 2: current value of the source register // // Registers R4-R7 are constant and are treated as having the same value because when we do // the same operation twice with two constant source registers, it can be optimized into a single operation uint32_t inst_data[8] = { 0, 1, 2, 3, 0xFFFFFF, 0xFFFFFF, 0xFFFFFF, 0xFFFFFF }; bool alu_busy[TOTAL_LATENCY + 1][ALU_COUNT]; bool is_rotation[V4_INSTRUCTION_COUNT]; bool rotated[4]; int rotate_count = 0; memset(latency, 0, sizeof(latency)); memset(asic_latency, 0, sizeof(asic_latency)); memset(alu_busy, 0, sizeof(alu_busy)); memset(is_rotation, 0, sizeof(is_rotation)); memset(rotated, 0, sizeof(rotated)); is_rotation[ROR] = true; is_rotation[ROL] = true; int num_retries = 0; code_size = 0; int total_iterations = 0; // Generate random code to achieve minimal required latency for our abstract CPU // Try to get this latency for all 4 registers while (((latency[0] < TOTAL_LATENCY) || (latency[1] < TOTAL_LATENCY) || (latency[2] < TOTAL_LATENCY) || (latency[3] < TOTAL_LATENCY)) && (num_retries < 64)) { // Fail-safe to guarantee loop termination ++total_iterations; if (total_iterations > 256) break; check_data(&data_index, 1, data, sizeof(data)); const uint8_t c = ((uint8_t*)data)[data_index++]; // MUL = opcodes 0-2 // ADD = opcode 3 // SUB = opcode 4 // ROR/ROL = opcode 5, shift direction is selected randomly // XOR = opcodes 6-7 uint8_t opcode = c & ((1 << V4_OPCODE_BITS) - 1); if (opcode == 5) { check_data(&data_index, 1, data, sizeof(data)); opcode = (data[data_index++] >= 0) ? ROR : ROL; } else if (opcode >= 6) { opcode = XOR; } else { opcode = (opcode <= 2) ? MUL : (opcode - 2); } uint8_t dst_index = (c >> V4_OPCODE_BITS) & ((1 << V4_DST_INDEX_BITS) - 1); uint8_t src_index = (c >> (V4_OPCODE_BITS + V4_DST_INDEX_BITS)) & ((1 << V4_SRC_INDEX_BITS) - 1); const int a = dst_index; int b = src_index; // Don't do ADD/SUB/XOR with the same register if (((opcode == ADD) || (opcode == SUB) || (opcode == XOR)) && (a == b)) { // a is always < 4, so we don't need to check bounds here b = a + 4; src_index = b; } // Don't do rotation with the same destination twice because it's equal to a single rotation if (is_rotation[opcode] && rotated[a]) { continue; } // Don't do the same instruction (except MUL) with the same source value twice because all other cases can be optimized: // 2xADD(a, b, C) = ADD(a, b*2, C1+C2), same for SUB and rotations // 2xXOR(a, b) = NOP if ((opcode != MUL) && ((inst_data[a] & 0xFFFF00) == (opcode << 8) + ((inst_data[b] & 255) << 16))) { continue; } // Find which ALU is available (and when) for this instruction int next_latency = (latency[a] > latency[b]) ? latency[a] : latency[b]; int alu_index = -1; while (next_latency < TOTAL_LATENCY) { for (int i = op_ALUs[opcode] - 1; i >= 0; --i) { if (!alu_busy[next_latency][i]) { // ADD is implemented as two 1-cycle instructions on a real CPU, so do an additional availability check if ((opcode == ADD) && alu_busy[next_latency + 1][i]) { continue; } // Rotation can only start when previous rotation is finished, so do an additional availability check if (is_rotation[opcode] && (next_latency < rotate_count * op_latency[opcode])) { continue; } alu_index = i; break; } } if (alu_index >= 0) { break; } ++next_latency; } // Don't generate instructions that leave some register unchanged for more than 7 cycles if (next_latency > latency[a] + 7) { continue; } next_latency += op_latency[opcode]; if (next_latency <= TOTAL_LATENCY) { if (is_rotation[opcode]) { ++rotate_count; } // Mark ALU as busy only for the first cycle when it starts executing the instruction because ALUs are fully pipelined alu_busy[next_latency - op_latency[opcode]][alu_index] = true; latency[a] = next_latency; // ASIC is supposed to have enough ALUs to run as many independent instructions per cycle as possible, so latency calculation for ASIC is simple asic_latency[a] = ((asic_latency[a] > asic_latency[b]) ? asic_latency[a] : asic_latency[b]) + asic_op_latency[opcode]; rotated[a] = is_rotation[opcode]; inst_data[a] = code_size + (opcode << 8) + ((inst_data[b] & 255) << 16); code[code_size].opcode = opcode; code[code_size].dst_index = dst_index; code[code_size].src_index = src_index; code[code_size].C = 0; if (opcode == ADD) { // ADD instruction is implemented as two 1-cycle instructions on a real CPU, so mark ALU as busy for the next cycle too alu_busy[next_latency - op_latency[opcode] + 1][alu_index] = true; // ADD instruction requires 4 more random bytes for 32-bit constant "C" in "a = a + b + C" check_data(&data_index, sizeof(uint32_t), data, sizeof(data)); uint32_t t; memcpy(&t, data + data_index, sizeof(uint32_t)); code[code_size].C = SWAP32LE(t); data_index += sizeof(uint32_t); } ++code_size; if (code_size >= NUM_INSTRUCTIONS) { break; } } else { ++num_retries; } } // ASIC has more execution resources and can extract as much parallelism from the code as possible // We need to add a few more MUL and ROR instructions to achieve minimal required latency for ASIC // Get this latency for at least 1 of the 4 registers const int prev_code_size = code_size; while ((asic_latency[0] < TOTAL_LATENCY) && (asic_latency[1] < TOTAL_LATENCY) && (asic_latency[2] < TOTAL_LATENCY) && (asic_latency[3] < TOTAL_LATENCY)) { int min_idx = 0; int max_idx = 0; for (int i = 1; i < 4; ++i) { if (asic_latency[i] < asic_latency[min_idx]) min_idx = i; if (asic_latency[i] > asic_latency[max_idx]) max_idx = i; } const uint8_t pattern[3] = { ROR, MUL, MUL }; const uint8_t opcode = pattern[(code_size - prev_code_size) % 3]; latency[min_idx] = latency[max_idx] + op_latency[opcode]; asic_latency[min_idx] = asic_latency[max_idx] + asic_op_latency[opcode]; code[code_size].opcode = opcode; code[code_size].dst_index = min_idx; code[code_size].src_index = max_idx; code[code_size].C = 0; ++code_size; } // There is ~99.8% chance that code_size >= NUM_INSTRUCTIONS here, so second iteration is required rarely } while (code_size < NUM_INSTRUCTIONS); // Add final instruction to stop the interpreter code[code_size].opcode = RET; code[code_size].dst_index = 0; code[code_size].src_index = 0; code[code_size].C = 0; return code_size; } #endif