Faster quad hash for GhostRider algos (Ryzen CPUs)

This commit is contained in:
SChernykh 2021-11-23 21:32:44 +01:00
parent a6656a8c49
commit e67eb47796

View file

@ -1299,6 +1299,188 @@ inline void cryptonight_double_hash(const uint8_t *__restrict__ input, size_t si
} }
static inline void cryptonight_monero_tweak_gr(uint64_t* mem_out, const uint8_t* l, uint64_t idx, __m128i ax0, __m128i bx0, __m128i cx)
{
__m128i tmp = _mm_xor_si128(bx0, cx);
mem_out[0] = _mm_cvtsi128_si64(tmp);
tmp = _mm_castps_si128(_mm_movehl_ps(_mm_castsi128_ps(tmp), _mm_castsi128_ps(tmp)));
uint64_t vh = _mm_cvtsi128_si64(tmp);
mem_out[1] = vh ^ tweak1_table[static_cast<uint32_t>(vh) >> 24];
}
template<Algorithm::Id ALGO, bool SOFT_AES>
void cryptonight_quad_hash_zen(const uint8_t* __restrict__ input, size_t size, uint8_t* __restrict__ output, cryptonight_ctx** __restrict__ ctx, uint64_t height)
{
constexpr CnAlgo<ALGO> props;
constexpr size_t MASK = props.mask();
constexpr Algorithm::Id BASE = props.base();
if (BASE == Algorithm::CN_1 && size < 43) {
memset(output, 0, 64);
return;
}
keccak(input + size * 0, size, ctx[0]->state);
keccak(input + size * 1, size, ctx[1]->state);
keccak(input + size * 2, size, ctx[2]->state);
keccak(input + size * 3, size, ctx[3]->state);
uint8_t* l0 = ctx[0]->memory;
uint8_t* l1 = ctx[1]->memory;
uint8_t* l2 = ctx[2]->memory;
uint8_t* l3 = ctx[3]->memory;
uint64_t* h0 = reinterpret_cast<uint64_t*>(ctx[0]->state);
uint64_t* h1 = reinterpret_cast<uint64_t*>(ctx[1]->state);
uint64_t* h2 = reinterpret_cast<uint64_t*>(ctx[2]->state);
uint64_t* h3 = reinterpret_cast<uint64_t*>(ctx[3]->state);
VARIANT1_INIT(0);
VARIANT1_INIT(1);
VARIANT1_INIT(2);
VARIANT1_INIT(3);
if (props.half_mem()) {
ctx[0]->first_half = true;
ctx[1]->first_half = true;
ctx[2]->first_half = true;
ctx[3]->first_half = true;
}
cn_explode_scratchpad<ALGO, SOFT_AES, 0>(ctx[0]);
cn_explode_scratchpad<ALGO, SOFT_AES, 0>(ctx[1]);
cn_explode_scratchpad<ALGO, SOFT_AES, 0>(ctx[2]);
cn_explode_scratchpad<ALGO, SOFT_AES, 0>(ctx[3]);
uint64_t al0 = h0[0] ^ h0[4];
uint64_t al1 = h1[0] ^ h1[4];
uint64_t al2 = h2[0] ^ h2[4];
uint64_t al3 = h3[0] ^ h3[4];
uint64_t ah0 = h0[1] ^ h0[5];
uint64_t ah1 = h1[1] ^ h1[5];
uint64_t ah2 = h2[1] ^ h2[5];
uint64_t ah3 = h3[1] ^ h3[5];
__m128i bx00 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
__m128i bx10 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
__m128i bx20 = _mm_set_epi64x(h2[3] ^ h2[7], h2[2] ^ h2[6]);
__m128i bx30 = _mm_set_epi64x(h3[3] ^ h3[7], h3[2] ^ h3[6]);
uint64_t idx0 = al0;
uint64_t idx1 = al1;
uint64_t idx2 = al2;
uint64_t idx3 = al3;
for (size_t i = 0; i < props.iterations(); i++) {
__m128i cx0, cx1, cx2, cx3;
if (!SOFT_AES) {
cx0 = _mm_load_si128(reinterpret_cast<const __m128i*>(&l0[idx0 & MASK]));
cx1 = _mm_load_si128(reinterpret_cast<const __m128i*>(&l1[idx1 & MASK]));
cx2 = _mm_load_si128(reinterpret_cast<const __m128i*>(&l2[idx2 & MASK]));
cx3 = _mm_load_si128(reinterpret_cast<const __m128i*>(&l3[idx3 & MASK]));
}
const __m128i ax0 = _mm_set_epi64x(ah0, al0);
const __m128i ax1 = _mm_set_epi64x(ah1, al1);
const __m128i ax2 = _mm_set_epi64x(ah2, al2);
const __m128i ax3 = _mm_set_epi64x(ah3, al3);
if (SOFT_AES) {
cx0 = soft_aesenc(&l0[idx0 & MASK], ax0, reinterpret_cast<const uint32_t*>(saes_table));
cx1 = soft_aesenc(&l1[idx1 & MASK], ax1, reinterpret_cast<const uint32_t*>(saes_table));
cx2 = soft_aesenc(&l2[idx2 & MASK], ax2, reinterpret_cast<const uint32_t*>(saes_table));
cx3 = soft_aesenc(&l3[idx3 & MASK], ax3, reinterpret_cast<const uint32_t*>(saes_table));
}
else {
cx0 = _mm_aesenc_si128(cx0, ax0);
cx1 = _mm_aesenc_si128(cx1, ax1);
cx2 = _mm_aesenc_si128(cx2, ax2);
cx3 = _mm_aesenc_si128(cx3, ax3);
}
cryptonight_monero_tweak_gr((uint64_t*)&l0[idx0 & MASK], l0, idx0 & MASK, ax0, bx00, cx0);
cryptonight_monero_tweak_gr((uint64_t*)&l1[idx1 & MASK], l1, idx1 & MASK, ax1, bx10, cx1);
cryptonight_monero_tweak_gr((uint64_t*)&l2[idx2 & MASK], l2, idx2 & MASK, ax2, bx20, cx2);
cryptonight_monero_tweak_gr((uint64_t*)&l3[idx3 & MASK], l3, idx3 & MASK, ax3, bx30, cx3);
idx0 = _mm_cvtsi128_si64(cx0);
idx1 = _mm_cvtsi128_si64(cx1);
idx2 = _mm_cvtsi128_si64(cx2);
idx3 = _mm_cvtsi128_si64(cx3);
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*)&l0[idx0 & MASK])[0];
ch = ((uint64_t*)&l0[idx0 & MASK])[1];
lo = __umul128(idx0, cl, &hi);
al0 += hi;
ah0 += lo;
((uint64_t*)&l0[idx0 & MASK])[0] = al0;
((uint64_t*)&l0[idx0 & MASK])[1] = ah0 ^ tweak1_2_0;
al0 ^= cl;
ah0 ^= ch;
idx0 = al0;
cl = ((uint64_t*)&l1[idx1 & MASK])[0];
ch = ((uint64_t*)&l1[idx1 & MASK])[1];
lo = __umul128(idx1, cl, &hi);
al1 += hi;
ah1 += lo;
((uint64_t*)&l1[idx1 & MASK])[0] = al1;
((uint64_t*)&l1[idx1 & MASK])[1] = ah1 ^ tweak1_2_1;
al1 ^= cl;
ah1 ^= ch;
idx1 = al1;
cl = ((uint64_t*)&l2[idx2 & MASK])[0];
ch = ((uint64_t*)&l2[idx2 & MASK])[1];
lo = __umul128(idx2, cl, &hi);
al2 += hi;
ah2 += lo;
((uint64_t*)&l2[idx2 & MASK])[0] = al2;
((uint64_t*)&l2[idx2 & MASK])[1] = ah2 ^ tweak1_2_2;
al2 ^= cl;
ah2 ^= ch;
idx2 = al2;
cl = ((uint64_t*)&l3[idx3 & MASK])[0];
ch = ((uint64_t*)&l3[idx3 & MASK])[1];
lo = __umul128(idx3, cl, &hi);
al3 += hi;
ah3 += lo;
((uint64_t*)&l3[idx3 & MASK])[0] = al3;
((uint64_t*)&l3[idx3 & MASK])[1] = ah3 ^ tweak1_2_3;
al3 ^= cl;
ah3 ^= ch;
idx3 = al3;
bx00 = cx0;
bx10 = cx1;
bx20 = cx2;
bx30 = cx3;
}
cn_implode_scratchpad<ALGO, SOFT_AES, 0>(ctx[0]);
cn_implode_scratchpad<ALGO, SOFT_AES, 0>(ctx[1]);
cn_implode_scratchpad<ALGO, SOFT_AES, 0>(ctx[2]);
cn_implode_scratchpad<ALGO, SOFT_AES, 0>(ctx[3]);
keccakf(h0, 24);
keccakf(h1, 24);
keccakf(h2, 24);
keccakf(h3, 24);
extra_hashes[ctx[0]->state[0] & 3](ctx[0]->state, 200, output);
extra_hashes[ctx[1]->state[0] & 3](ctx[1]->state, 200, output + 32);
extra_hashes[ctx[2]->state[0] & 3](ctx[2]->state, 200, output + 64);
extra_hashes[ctx[3]->state[0] & 3](ctx[3]->state, 200, output + 96);
}
#define CN_STEP1(a, b0, b1, c, l, ptr, idx, conc_var) \ #define CN_STEP1(a, b0, b1, c, l, ptr, idx, conc_var) \
ptr = reinterpret_cast<__m128i*>(&l[idx & MASK]); \ ptr = reinterpret_cast<__m128i*>(&l[idx & MASK]); \
c = _mm_load_si128(ptr); \ c = _mm_load_si128(ptr); \
@ -1492,6 +1674,14 @@ inline void cryptonight_triple_hash(const uint8_t *__restrict__ input, size_t si
template<Algorithm::Id ALGO, bool SOFT_AES> template<Algorithm::Id ALGO, bool SOFT_AES>
inline void cryptonight_quad_hash(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, cryptonight_ctx **__restrict__ ctx, uint64_t height) inline void cryptonight_quad_hash(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, cryptonight_ctx **__restrict__ ctx, uint64_t height)
{ {
const auto arch = Cpu::info()->arch();
if ((arch >= ICpuInfo::ARCH_ZEN) && (arch <= ICpuInfo::ARCH_ZEN3)) {
if ((ALGO == Algorithm::CN_GR_0) || (ALGO == Algorithm::CN_GR_1) || (ALGO == Algorithm::CN_GR_2) || (ALGO == Algorithm::CN_GR_3) || (ALGO == Algorithm::CN_GR_4) || (ALGO == Algorithm::CN_GR_5)) {
cryptonight_quad_hash_zen<ALGO, SOFT_AES>(input, size, output, ctx, height);
return;
}
}
constexpr CnAlgo<ALGO> props; constexpr CnAlgo<ALGO> props;
constexpr size_t MASK = props.mask(); constexpr size_t MASK = props.mask();
constexpr Algorithm::Id BASE = props.base(); constexpr Algorithm::Id BASE = props.base();