From f4ec0287c467e3366905a0c4123ea2ff9e5a038f Mon Sep 17 00:00:00 2001 From: XMRig Date: Sun, 23 Oct 2022 23:19:50 +0700 Subject: [PATCH 01/19] v6.18.2-dev --- src/version.h | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/src/version.h b/src/version.h index 1d8f16d1d..fd245efaf 100644 --- a/src/version.h +++ b/src/version.h @@ -22,7 +22,7 @@ #define APP_ID "xmrig" #define APP_NAME "XMRig" #define APP_DESC "XMRig miner" -#define APP_VERSION "6.18.1" +#define APP_VERSION "6.18.2-dev" #define APP_DOMAIN "xmrig.com" #define APP_SITE "www.xmrig.com" #define APP_COPYRIGHT "Copyright (C) 2016-2022 xmrig.com" @@ -30,7 +30,7 @@ #define APP_VER_MAJOR 6 #define APP_VER_MINOR 18 -#define APP_VER_PATCH 1 +#define APP_VER_PATCH 2 #ifdef _MSC_VER # if (_MSC_VER >= 1930) From eeb459506c62e9ec4cec2ae27cbe98f3019d4982 Mon Sep 17 00:00:00 2001 From: Tony Butler Date: Sun, 23 Oct 2022 15:27:14 -0600 Subject: [PATCH 02/19] Update to latest sse2neon.h from github:DLTcollab/sse2neon --- src/crypto/cn/sse2neon.h | 13686 +++++++++++++++++++++---------------- 1 file changed, 7760 insertions(+), 5926 deletions(-) diff --git a/src/crypto/cn/sse2neon.h b/src/crypto/cn/sse2neon.h index 36bc16853..506fe1879 100644 --- a/src/crypto/cn/sse2neon.h +++ b/src/crypto/cn/sse2neon.h @@ -25,6 +25,9 @@ // Yang-Hao Yuan // Syoyo Fujita // Brecht Van Lommel +// Jonathan Hue +// Cuda Chen +// Aymen Qader /* * sse2neon is freely redistributable under the MIT License. @@ -52,9 +55,9 @@ /* Enable precise implementation of math operations * This would slow down the computation a bit, but gives consistent result with - * x86 SSE2. (e.g. would solve a hole or NaN pixel in the rendering result) + * x86 SSE. (e.g. would solve a hole or NaN pixel in the rendering result) */ -/* _mm_min_ps and _mm_max_ps */ +/* _mm_min|max_ps|ss|pd|sd */ #ifndef SSE2NEON_PRECISE_MINMAX #define SSE2NEON_PRECISE_MINMAX (0) #endif @@ -66,38 +69,48 @@ #ifndef SSE2NEON_PRECISE_SQRT #define SSE2NEON_PRECISE_SQRT (0) #endif +/* _mm_dp_pd */ +#ifndef SSE2NEON_PRECISE_DP +#define SSE2NEON_PRECISE_DP (0) +#endif +/* compiler specific definitions */ #if defined(__GNUC__) || defined(__clang__) #pragma push_macro("FORCE_INLINE") #pragma push_macro("ALIGN_STRUCT") #define FORCE_INLINE static inline __attribute__((always_inline)) #define ALIGN_STRUCT(x) __attribute__((aligned(x))) -#ifndef likely -#define likely(x) __builtin_expect(!!(x), 1) -#endif -#ifndef unlikely -#define unlikely(x) __builtin_expect(!!(x), 0) -#endif -#else -#error "Macro name collisions may happen with unsupported compiler." -#ifdef FORCE_INLINE -#undef FORCE_INLINE -#endif +#define _sse2neon_likely(x) __builtin_expect(!!(x), 1) +#define _sse2neon_unlikely(x) __builtin_expect(!!(x), 0) +#else /* non-GNU / non-clang compilers */ +#warning "Macro name collisions may happen with unsupported compiler." +#ifndef FORCE_INLINE #define FORCE_INLINE static inline +#endif #ifndef ALIGN_STRUCT #define ALIGN_STRUCT(x) __declspec(align(x)) #endif +#define _sse2neon_likely(x) (x) +#define _sse2neon_unlikely(x) (x) #endif -#ifndef likely -#define likely(x) (x) -#endif -#ifndef unlikely -#define unlikely(x) (x) + +/* C language does not allow initializing a variable with a function call. */ +#ifdef __cplusplus +#define _sse2neon_const static const +#else +#define _sse2neon_const const #endif #include #include +#if defined(_WIN32) +/* Definitions for _mm_{malloc,free} are provided by + * from both MinGW-w64 and MSVC. + */ +#define SSE2NEON_ALLOC_DEFINED +#endif + /* Architecture-specific build options */ /* FIXME: #pragma GCC push_options is only available on GCC */ #if defined(__GNUC__) @@ -118,27 +131,59 @@ #pragma GCC push_options #pragma GCC target("+simd") #endif +#elif __ARM_ARCH == 8 +#if !defined(__ARM_NEON) || !defined(__ARM_NEON__) +#error \ + "You must enable NEON instructions (e.g. -mfpu=neon-fp-armv8) to use SSE2NEON." +#endif +#if !defined(__clang__) +#pragma GCC push_options +#endif #else #error "Unsupported target. Must be either ARMv7-A+NEON or ARMv8-A." #endif #endif #include +#if !defined(__aarch64__) && (__ARM_ARCH == 8) +#if defined __has_include && __has_include() +#include +#endif +#endif /* Rounding functions require either Aarch64 instructions or libm failback */ #if !defined(__aarch64__) #include #endif +/* On ARMv7, some registers, such as PMUSERENR and PMCCNTR, are read-only + * or even not accessible in user mode. + * To write or access to these registers in user mode, + * we have to perform syscall instead. + */ +#if !defined(__aarch64__) +#include +#endif + /* "__has_builtin" can be used to query support for built-in functions * provided by gcc/clang and other compilers that support it. */ #ifndef __has_builtin /* GCC prior to 10 or non-clang compilers */ /* Compatibility with gcc <= 9 */ -#if __GNUC__ <= 9 +#if defined(__GNUC__) && (__GNUC__ <= 9) #define __has_builtin(x) HAS##x #define HAS__builtin_popcount 1 #define HAS__builtin_popcountll 1 + +// __builtin_shuffle introduced in GCC 4.7.0 +#if (__GNUC__ >= 5) || ((__GNUC__ == 4) && (__GNUC_MINOR__ >= 7)) +#define HAS__builtin_shuffle 1 +#else +#define HAS__builtin_shuffle 0 +#endif + +#define HAS__builtin_shufflevector 0 +#define HAS__builtin_nontemporal_store 0 #else #define __has_builtin(x) 0 #endif @@ -155,6 +200,26 @@ #define _MM_SHUFFLE(fp3, fp2, fp1, fp0) \ (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0))) +#if __has_builtin(__builtin_shufflevector) +#define _sse2neon_shuffle(type, a, b, ...) \ + __builtin_shufflevector(a, b, __VA_ARGS__) +#elif __has_builtin(__builtin_shuffle) +#define _sse2neon_shuffle(type, a, b, ...) \ + __extension__({ \ + type tmp = {__VA_ARGS__}; \ + __builtin_shuffle(a, b, tmp); \ + }) +#endif + +#ifdef _sse2neon_shuffle +#define vshuffle_s16(a, b, ...) _sse2neon_shuffle(int16x4_t, a, b, __VA_ARGS__) +#define vshuffleq_s16(a, b, ...) _sse2neon_shuffle(int16x8_t, a, b, __VA_ARGS__) +#define vshuffle_s32(a, b, ...) _sse2neon_shuffle(int32x2_t, a, b, __VA_ARGS__) +#define vshuffleq_s32(a, b, ...) _sse2neon_shuffle(int32x4_t, a, b, __VA_ARGS__) +#define vshuffle_s64(a, b, ...) _sse2neon_shuffle(int64x1_t, a, b, __VA_ARGS__) +#define vshuffleq_s64(a, b, ...) _sse2neon_shuffle(int64x2_t, a, b, __VA_ARGS__) +#endif + /* Rounding mode macros. */ #define _MM_FROUND_TO_NEAREST_INT 0x00 #define _MM_FROUND_TO_NEG_INF 0x01 @@ -162,10 +227,25 @@ #define _MM_FROUND_TO_ZERO 0x03 #define _MM_FROUND_CUR_DIRECTION 0x04 #define _MM_FROUND_NO_EXC 0x08 +#define _MM_FROUND_RAISE_EXC 0x00 +#define _MM_FROUND_NINT (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_RAISE_EXC) +#define _MM_FROUND_FLOOR (_MM_FROUND_TO_NEG_INF | _MM_FROUND_RAISE_EXC) +#define _MM_FROUND_CEIL (_MM_FROUND_TO_POS_INF | _MM_FROUND_RAISE_EXC) +#define _MM_FROUND_TRUNC (_MM_FROUND_TO_ZERO | _MM_FROUND_RAISE_EXC) +#define _MM_FROUND_RINT (_MM_FROUND_CUR_DIRECTION | _MM_FROUND_RAISE_EXC) +#define _MM_FROUND_NEARBYINT (_MM_FROUND_CUR_DIRECTION | _MM_FROUND_NO_EXC) #define _MM_ROUND_NEAREST 0x0000 #define _MM_ROUND_DOWN 0x2000 #define _MM_ROUND_UP 0x4000 #define _MM_ROUND_TOWARD_ZERO 0x6000 +/* Flush zero mode macros. */ +#define _MM_FLUSH_ZERO_MASK 0x8000 +#define _MM_FLUSH_ZERO_ON 0x8000 +#define _MM_FLUSH_ZERO_OFF 0x0000 +/* Denormals are zeros mode macros. */ +#define _MM_DENORMALS_ZERO_MASK 0x0040 +#define _MM_DENORMALS_ZERO_ON 0x0040 +#define _MM_DENORMALS_ZERO_OFF 0x0000 /* indicate immediate constant argument in a given range */ #define __constrange(a, b) const @@ -188,6 +268,16 @@ typedef float32x4_t __m128d; #endif typedef int64x2_t __m128i; /* 128-bit vector containing integers */ +// __int64 is defined in the Intrinsics Guide which maps to different datatype +// in different data model +#if !(defined(_WIN32) || defined(_WIN64) || defined(__int64)) +#if (defined(__x86_64__) || defined(__i386__)) +#define __int64 long long +#else +#define __int64 int64_t +#endif +#endif + /* type-safe casting between types */ #define vreinterpretq_m128_f16(x) vreinterpretq_f32_f16(x) @@ -301,10 +391,10 @@ typedef int64x2_t __m128i; /* 128-bit vector containing integers */ #endif // A struct is defined in this header file called 'SIMDVec' which can be used -// by applications which attempt to access the contents of an _m128 struct +// by applications which attempt to access the contents of an __m128 struct // directly. It is important to note that accessing the __m128 struct directly // is bad coding practice by Microsoft: @see: -// https://msdn.microsoft.com/en-us/library/ayeb3ayc.aspx +// https://docs.microsoft.com/en-us/cpp/cpp/m128 // // However, some legacy source code may try to access the contents of an __m128 // struct directly so the developer can use the SIMDVec as an alias for it. Any @@ -340,11 +430,46 @@ typedef union ALIGN_STRUCT(16) SIMDVec { #define vreinterpretq_nth_u32_m128i(x, n) (((SIMDVec *) &x)->m128_u32[n]) #define vreinterpretq_nth_u8_m128i(x, n) (((SIMDVec *) &x)->m128_u8[n]) +/* SSE macros */ +#define _MM_GET_FLUSH_ZERO_MODE _sse2neon_mm_get_flush_zero_mode +#define _MM_SET_FLUSH_ZERO_MODE _sse2neon_mm_set_flush_zero_mode +#define _MM_GET_DENORMALS_ZERO_MODE _sse2neon_mm_get_denormals_zero_mode +#define _MM_SET_DENORMALS_ZERO_MODE _sse2neon_mm_set_denormals_zero_mode + +// Function declaration +// SSE +FORCE_INLINE unsigned int _MM_GET_ROUNDING_MODE(); +FORCE_INLINE __m128 _mm_move_ss(__m128, __m128); +FORCE_INLINE __m128 _mm_or_ps(__m128, __m128); +FORCE_INLINE __m128 _mm_set_ps1(float); +FORCE_INLINE __m128 _mm_setzero_ps(void); +// SSE2 +FORCE_INLINE __m128i _mm_and_si128(__m128i, __m128i); +FORCE_INLINE __m128i _mm_castps_si128(__m128); +FORCE_INLINE __m128i _mm_cmpeq_epi32(__m128i, __m128i); +FORCE_INLINE __m128i _mm_cvtps_epi32(__m128); +FORCE_INLINE __m128d _mm_move_sd(__m128d, __m128d); +FORCE_INLINE __m128i _mm_or_si128(__m128i, __m128i); +FORCE_INLINE __m128i _mm_set_epi32(int, int, int, int); +FORCE_INLINE __m128i _mm_set_epi64x(int64_t, int64_t); +FORCE_INLINE __m128d _mm_set_pd(double, double); +FORCE_INLINE __m128i _mm_set1_epi32(int); +FORCE_INLINE __m128i _mm_setzero_si128(); +// SSE4.1 +FORCE_INLINE __m128d _mm_ceil_pd(__m128d); +FORCE_INLINE __m128 _mm_ceil_ps(__m128); +FORCE_INLINE __m128d _mm_floor_pd(__m128d); +FORCE_INLINE __m128 _mm_floor_ps(__m128); +FORCE_INLINE __m128d _mm_round_pd(__m128d, int); +FORCE_INLINE __m128 _mm_round_ps(__m128, int); +// SSE4.2 +FORCE_INLINE uint32_t _mm_crc32_u8(uint32_t, uint8_t); + /* Backwards compatibility for compilers with lack of specific type support */ // Older gcc does not define vld1q_u8_x4 type #if defined(__GNUC__) && !defined(__clang__) && \ - ((__GNUC__ <= 11 && defined(__arm__)) || \ + ((__GNUC__ <= 12 && defined(__arm__)) || \ (__GNUC__ == 10 && __GNUC_MINOR__ < 3 && defined(__aarch64__)) || \ (__GNUC__ <= 9 && defined(__aarch64__))) FORCE_INLINE uint8x16x4_t _sse2neon_vld1q_u8_x4(const uint8_t *p) @@ -441,8 +566,6 @@ FORCE_INLINE uint8x16x4_t _sse2neon_vld1q_u8_x4(const uint8_t *p) +------+------+------+------+------+------+-------------+ */ -/* Set/get methods */ - /* Constants for use with _mm_prefetch. */ enum _mm_hint { _MM_HINT_NTA = 0, /* load data to L1 and L2 cache, mark it as NTA */ @@ -455,1323 +578,18 @@ enum _mm_hint { _MM_HINT_ET2 = 7 /* exclusive version of _MM_HINT_T2 */ }; -// Loads one cache line of data from address p to a location closer to the -// processor. https://msdn.microsoft.com/en-us/library/84szxsww(v=vs.100).aspx -FORCE_INLINE void _mm_prefetch(const void *p, int i) -{ - (void) i; - __builtin_prefetch(p); -} - -// Pause the processor. This is typically used in spin-wait loops and depending -// on the x86 processor typical values are in the 40-100 cycle range. The -// 'yield' instruction isn't a good fit beacuse it's effectively a nop on most -// Arm cores. Experience with several databases has shown has shown an 'isb' is -// a reasonable approximation. -FORCE_INLINE void _mm_pause() -{ - __asm__ __volatile__("isb\n"); -} - -// Copy the lower single-precision (32-bit) floating-point element of a to dst. -// -// dst[31:0] := a[31:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_f32 -FORCE_INLINE float _mm_cvtss_f32(__m128 a) -{ - return vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); -} - -// Convert the lower single-precision (32-bit) floating-point element in b to a -// double-precision (64-bit) floating-point element, store the result in the -// lower element of dst, and copy the upper element from a to the upper element -// of dst. -// -// dst[63:0] := Convert_FP32_To_FP64(b[31:0]) -// dst[127:64] := a[127:64] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_sd -FORCE_INLINE __m128d _mm_cvtss_sd(__m128d a, __m128 b) -{ - double d = (double) vgetq_lane_f32(vreinterpretq_f32_m128(b), 0); +// The bit field mapping to the FPCR(floating-point control register) +typedef struct { + uint16_t res0; + uint8_t res1 : 6; + uint8_t bit22 : 1; + uint8_t bit23 : 1; + uint8_t bit24 : 1; + uint8_t res2 : 7; #if defined(__aarch64__) - return vreinterpretq_m128d_f64( - vsetq_lane_f64(d, vreinterpretq_f64_m128d(a), 0)); -#else - return vreinterpretq_m128d_s64( - vsetq_lane_s64(*(int64_t *) &d, vreinterpretq_s64_m128d(a), 0)); + uint32_t res3; #endif -} - -// Convert the lower single-precision (32-bit) floating-point element in a to a -// 32-bit integer, and store the result in dst. -// -// dst[31:0] := Convert_FP32_To_Int32(a[31:0]) -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_si32 -#define _mm_cvtss_si32(a) _mm_cvt_ss2si(a) - -// Convert the lower single-precision (32-bit) floating-point element in a to a -// 64-bit integer, and store the result in dst. -// -// dst[63:0] := Convert_FP32_To_Int64(a[31:0]) -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_si64 -FORCE_INLINE int _mm_cvtss_si64(__m128 a) -{ -#if defined(__aarch64__) - return vgetq_lane_s64( - vreinterpretq_s64_s32(vcvtnq_s32_f32(vreinterpretq_f32_m128(a))), 0); -#else - float32_t data = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); - float32_t diff = data - floor(data); - if (diff > 0.5) - return (int64_t) ceil(data); - if (unlikely(diff == 0.5)) { - int64_t f = (int64_t) floor(data); - int64_t c = (int64_t) ceil(data); - return c & 1 ? f : c; - } - return (int64_t) floor(data); -#endif -} - -// Convert packed single-precision (32-bit) floating-point elements in a to -// packed 32-bit integers with truncation, and store the results in dst. -// -// FOR j := 0 to 1 -// i := 32*j -// dst[i+31:i] := Convert_FP32_To_Int32_Truncate(a[i+31:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtt_ps2pi -FORCE_INLINE __m64 _mm_cvtt_ps2pi(__m128 a) -{ - return vreinterpret_m64_s32( - vget_low_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a)))); -} - -// Convert the lower single-precision (32-bit) floating-point element in a to a -// 32-bit integer with truncation, and store the result in dst. -// -// dst[31:0] := Convert_FP32_To_Int32_Truncate(a[31:0]) -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtt_ss2si -FORCE_INLINE int _mm_cvtt_ss2si(__m128 a) -{ - return vgetq_lane_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a)), 0); -} - -// Convert packed single-precision (32-bit) floating-point elements in a to -// packed 32-bit integers with truncation, and store the results in dst. -// -// FOR j := 0 to 1 -// i := 32*j -// dst[i+31:i] := Convert_FP32_To_Int32_Truncate(a[i+31:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttps_pi32 -#define _mm_cvttps_pi32(a) _mm_cvtt_ps2pi(a) - -// Convert the lower single-precision (32-bit) floating-point element in a to a -// 32-bit integer with truncation, and store the result in dst. -// -// dst[31:0] := Convert_FP32_To_Int32_Truncate(a[31:0]) -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttss_si32 -#define _mm_cvttss_si32(a) _mm_cvtt_ss2si(a) - -// Convert the lower single-precision (32-bit) floating-point element in a to a -// 64-bit integer with truncation, and store the result in dst. -// -// dst[63:0] := Convert_FP32_To_Int64_Truncate(a[31:0]) -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttss_si64 -FORCE_INLINE int64_t _mm_cvttss_si64(__m128 a) -{ - return vgetq_lane_s64( - vmovl_s32(vget_low_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a)))), 0); -} - -// Sets the 128-bit value to zero -// https://msdn.microsoft.com/en-us/library/vstudio/ys7dw0kh(v=vs.100).aspx -FORCE_INLINE __m128i _mm_setzero_si128(void) -{ - return vreinterpretq_m128i_s32(vdupq_n_s32(0)); -} - -// Clears the four single-precision, floating-point values. -// https://msdn.microsoft.com/en-us/library/vstudio/tk1t2tbz(v=vs.100).aspx -FORCE_INLINE __m128 _mm_setzero_ps(void) -{ - return vreinterpretq_m128_f32(vdupq_n_f32(0)); -} - -// Return vector of type __m128d with all elements set to zero. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_setzero_pd -FORCE_INLINE __m128d _mm_setzero_pd(void) -{ -#if defined(__aarch64__) - return vreinterpretq_m128d_f64(vdupq_n_f64(0)); -#else - return vreinterpretq_m128d_f32(vdupq_n_f32(0)); -#endif -} - -// Sets the four single-precision, floating-point values to w. -// -// r0 := r1 := r2 := r3 := w -// -// https://msdn.microsoft.com/en-us/library/vstudio/2x1se8ha(v=vs.100).aspx -FORCE_INLINE __m128 _mm_set1_ps(float _w) -{ - return vreinterpretq_m128_f32(vdupq_n_f32(_w)); -} - -// Sets the four single-precision, floating-point values to w. -// https://msdn.microsoft.com/en-us/library/vstudio/2x1se8ha(v=vs.100).aspx -FORCE_INLINE __m128 _mm_set_ps1(float _w) -{ - return vreinterpretq_m128_f32(vdupq_n_f32(_w)); -} - -// Sets the four single-precision, floating-point values to the four inputs. -// https://msdn.microsoft.com/en-us/library/vstudio/afh0zf75(v=vs.100).aspx -FORCE_INLINE __m128 _mm_set_ps(float w, float z, float y, float x) -{ - float ALIGN_STRUCT(16) data[4] = {x, y, z, w}; - return vreinterpretq_m128_f32(vld1q_f32(data)); -} - -// Copy single-precision (32-bit) floating-point element a to the lower element -// of dst, and zero the upper 3 elements. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_ss -FORCE_INLINE __m128 _mm_set_ss(float a) -{ - float ALIGN_STRUCT(16) data[4] = {a, 0, 0, 0}; - return vreinterpretq_m128_f32(vld1q_f32(data)); -} - -// Sets the four single-precision, floating-point values to the four inputs in -// reverse order. -// https://msdn.microsoft.com/en-us/library/vstudio/d2172ct3(v=vs.100).aspx -FORCE_INLINE __m128 _mm_setr_ps(float w, float z, float y, float x) -{ - float ALIGN_STRUCT(16) data[4] = {w, z, y, x}; - return vreinterpretq_m128_f32(vld1q_f32(data)); -} - -// Sets the 8 signed 16-bit integer values in reverse order. -// -// Return Value -// r0 := w0 -// r1 := w1 -// ... -// r7 := w7 -FORCE_INLINE __m128i _mm_setr_epi16(short w0, - short w1, - short w2, - short w3, - short w4, - short w5, - short w6, - short w7) -{ - int16_t ALIGN_STRUCT(16) data[8] = {w0, w1, w2, w3, w4, w5, w6, w7}; - return vreinterpretq_m128i_s16(vld1q_s16((int16_t *) data)); -} - -// Sets the 4 signed 32-bit integer values in reverse order -// https://technet.microsoft.com/en-us/library/security/27yb3ee5(v=vs.90).aspx -FORCE_INLINE __m128i _mm_setr_epi32(int i3, int i2, int i1, int i0) -{ - int32_t ALIGN_STRUCT(16) data[4] = {i3, i2, i1, i0}; - return vreinterpretq_m128i_s32(vld1q_s32(data)); -} - -// Set packed 64-bit integers in dst with the supplied values in reverse order. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_setr_epi64 -FORCE_INLINE __m128i _mm_setr_epi64(__m64 e1, __m64 e0) -{ - return vreinterpretq_m128i_s64(vcombine_s64(e1, e0)); -} - -// Sets the 16 signed 8-bit integer values to b. -// -// r0 := b -// r1 := b -// ... -// r15 := b -// -// https://msdn.microsoft.com/en-us/library/6e14xhyf(v=vs.100).aspx -FORCE_INLINE __m128i _mm_set1_epi8(signed char w) -{ - return vreinterpretq_m128i_s8(vdupq_n_s8(w)); -} - -// Broadcast double-precision (64-bit) floating-point value a to all elements of -// dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set1_pd -FORCE_INLINE __m128d _mm_set1_pd(double d) -{ -#if defined(__aarch64__) - return vreinterpretq_m128d_f64(vdupq_n_f64(d)); -#else - return vreinterpretq_m128d_s64(vdupq_n_s64(*(int64_t *) &d)); -#endif -} - -// Sets the 8 signed 16-bit integer values to w. -// -// r0 := w -// r1 := w -// ... -// r7 := w -// -// https://msdn.microsoft.com/en-us/library/k0ya3x0e(v=vs.90).aspx -FORCE_INLINE __m128i _mm_set1_epi16(short w) -{ - return vreinterpretq_m128i_s16(vdupq_n_s16(w)); -} - -// Sets the 16 signed 8-bit integer values. -// https://msdn.microsoft.com/en-us/library/x0cx8zd3(v=vs.90).aspx -FORCE_INLINE __m128i _mm_set_epi8(signed char b15, - signed char b14, - signed char b13, - signed char b12, - signed char b11, - signed char b10, - signed char b9, - signed char b8, - signed char b7, - signed char b6, - signed char b5, - signed char b4, - signed char b3, - signed char b2, - signed char b1, - signed char b0) -{ - int8_t ALIGN_STRUCT(16) - data[16] = {(int8_t) b0, (int8_t) b1, (int8_t) b2, (int8_t) b3, - (int8_t) b4, (int8_t) b5, (int8_t) b6, (int8_t) b7, - (int8_t) b8, (int8_t) b9, (int8_t) b10, (int8_t) b11, - (int8_t) b12, (int8_t) b13, (int8_t) b14, (int8_t) b15}; - return (__m128i) vld1q_s8(data); -} - -// Sets the 8 signed 16-bit integer values. -// https://msdn.microsoft.com/en-au/library/3e0fek84(v=vs.90).aspx -FORCE_INLINE __m128i _mm_set_epi16(short i7, - short i6, - short i5, - short i4, - short i3, - short i2, - short i1, - short i0) -{ - int16_t ALIGN_STRUCT(16) data[8] = {i0, i1, i2, i3, i4, i5, i6, i7}; - return vreinterpretq_m128i_s16(vld1q_s16(data)); -} - -// Sets the 16 signed 8-bit integer values in reverse order. -// https://msdn.microsoft.com/en-us/library/2khb9c7k(v=vs.90).aspx -FORCE_INLINE __m128i _mm_setr_epi8(signed char b0, - signed char b1, - signed char b2, - signed char b3, - signed char b4, - signed char b5, - signed char b6, - signed char b7, - signed char b8, - signed char b9, - signed char b10, - signed char b11, - signed char b12, - signed char b13, - signed char b14, - signed char b15) -{ - int8_t ALIGN_STRUCT(16) - data[16] = {(int8_t) b0, (int8_t) b1, (int8_t) b2, (int8_t) b3, - (int8_t) b4, (int8_t) b5, (int8_t) b6, (int8_t) b7, - (int8_t) b8, (int8_t) b9, (int8_t) b10, (int8_t) b11, - (int8_t) b12, (int8_t) b13, (int8_t) b14, (int8_t) b15}; - return (__m128i) vld1q_s8(data); -} - -// Sets the 4 signed 32-bit integer values to i. -// -// r0 := i -// r1 := i -// r2 := i -// r3 := I -// -// https://msdn.microsoft.com/en-us/library/vstudio/h4xscxat(v=vs.100).aspx -FORCE_INLINE __m128i _mm_set1_epi32(int _i) -{ - return vreinterpretq_m128i_s32(vdupq_n_s32(_i)); -} - -// Sets the 2 signed 64-bit integer values to i. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/whtfzhzk(v=vs.100) -FORCE_INLINE __m128i _mm_set1_epi64(__m64 _i) -{ - return vreinterpretq_m128i_s64(vdupq_n_s64((int64_t) _i)); -} - -// Sets the 2 signed 64-bit integer values to i. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set1_epi64x -FORCE_INLINE __m128i _mm_set1_epi64x(int64_t _i) -{ - return vreinterpretq_m128i_s64(vdupq_n_s64(_i)); -} - -// Sets the 4 signed 32-bit integer values. -// https://msdn.microsoft.com/en-us/library/vstudio/019beekt(v=vs.100).aspx -FORCE_INLINE __m128i _mm_set_epi32(int i3, int i2, int i1, int i0) -{ - int32_t ALIGN_STRUCT(16) data[4] = {i0, i1, i2, i3}; - return vreinterpretq_m128i_s32(vld1q_s32(data)); -} - -// Returns the __m128i structure with its two 64-bit integer values -// initialized to the values of the two 64-bit integers passed in. -// https://msdn.microsoft.com/en-us/library/dk2sdw0h(v=vs.120).aspx -FORCE_INLINE __m128i _mm_set_epi64x(int64_t i1, int64_t i2) -{ - return vreinterpretq_m128i_s64( - vcombine_s64(vcreate_s64(i2), vcreate_s64(i1))); -} - -// Returns the __m128i structure with its two 64-bit integer values -// initialized to the values of the two 64-bit integers passed in. -// https://msdn.microsoft.com/en-us/library/dk2sdw0h(v=vs.120).aspx -FORCE_INLINE __m128i _mm_set_epi64(__m64 i1, __m64 i2) -{ - return _mm_set_epi64x((int64_t) i1, (int64_t) i2); -} - -// Set packed double-precision (64-bit) floating-point elements in dst with the -// supplied values. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_pd -FORCE_INLINE __m128d _mm_set_pd(double e1, double e0) -{ - double ALIGN_STRUCT(16) data[2] = {e0, e1}; -#if defined(__aarch64__) - return vreinterpretq_m128d_f64(vld1q_f64((float64_t *) data)); -#else - return vreinterpretq_m128d_f32(vld1q_f32((float32_t *) data)); -#endif -} - -// Set packed double-precision (64-bit) floating-point elements in dst with the -// supplied values in reverse order. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_setr_pd -FORCE_INLINE __m128d _mm_setr_pd(double e1, double e0) -{ - return _mm_set_pd(e0, e1); -} - -// Copy double-precision (64-bit) floating-point element a to the lower element -// of dst, and zero the upper element. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_sd -FORCE_INLINE __m128d _mm_set_sd(double a) -{ - return _mm_set_pd(0, a); -} - -// Broadcast double-precision (64-bit) floating-point value a to all elements of -// dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_pd1 -#define _mm_set_pd1 _mm_set1_pd - -// Stores four single-precision, floating-point values. -// https://msdn.microsoft.com/en-us/library/vstudio/s3h4ay6y(v=vs.100).aspx -FORCE_INLINE void _mm_store_ps(float *p, __m128 a) -{ - vst1q_f32(p, vreinterpretq_f32_m128(a)); -} - -// Store the lower single-precision (32-bit) floating-point element from a into -// 4 contiguous elements in memory. mem_addr must be aligned on a 16-byte -// boundary or a general-protection exception may be generated. -// -// MEM[mem_addr+31:mem_addr] := a[31:0] -// MEM[mem_addr+63:mem_addr+32] := a[31:0] -// MEM[mem_addr+95:mem_addr+64] := a[31:0] -// MEM[mem_addr+127:mem_addr+96] := a[31:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store_ps1 -FORCE_INLINE void _mm_store_ps1(float *p, __m128 a) -{ - float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); - vst1q_f32(p, vdupq_n_f32(a0)); -} - -// Store the lower single-precision (32-bit) floating-point element from a into -// 4 contiguous elements in memory. mem_addr must be aligned on a 16-byte -// boundary or a general-protection exception may be generated. -// -// MEM[mem_addr+31:mem_addr] := a[31:0] -// MEM[mem_addr+63:mem_addr+32] := a[31:0] -// MEM[mem_addr+95:mem_addr+64] := a[31:0] -// MEM[mem_addr+127:mem_addr+96] := a[31:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store1_ps -#define _mm_store1_ps _mm_store_ps1 - -// Store 4 single-precision (32-bit) floating-point elements from a into memory -// in reverse order. mem_addr must be aligned on a 16-byte boundary or a -// general-protection exception may be generated. -// -// MEM[mem_addr+31:mem_addr] := a[127:96] -// MEM[mem_addr+63:mem_addr+32] := a[95:64] -// MEM[mem_addr+95:mem_addr+64] := a[63:32] -// MEM[mem_addr+127:mem_addr+96] := a[31:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storer_ps -FORCE_INLINE void _mm_storer_ps(float *p, __m128 a) -{ - float32x4_t tmp = vrev64q_f32(vreinterpretq_f32_m128(a)); - float32x4_t rev = vextq_f32(tmp, tmp, 2); - vst1q_f32(p, rev); -} - -// Stores four single-precision, floating-point values. -// https://msdn.microsoft.com/en-us/library/44e30x22(v=vs.100).aspx -FORCE_INLINE void _mm_storeu_ps(float *p, __m128 a) -{ - vst1q_f32(p, vreinterpretq_f32_m128(a)); -} - -// Stores four 32-bit integer values as (as a __m128i value) at the address p. -// https://msdn.microsoft.com/en-us/library/vstudio/edk11s13(v=vs.100).aspx -FORCE_INLINE void _mm_store_si128(__m128i *p, __m128i a) -{ - vst1q_s32((int32_t *) p, vreinterpretq_s32_m128i(a)); -} - -// Stores 128-bits of integer data a at the address p. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_si128 -FORCE_INLINE void _mm_storeu_si128(__m128i *p, __m128i a) -{ - vst1q_s32((int32_t *) p, vreinterpretq_s32_m128i(a)); -} - -// Stores 64-bits of integer data a at the address p. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_si64 -FORCE_INLINE void _mm_storeu_si64(void *p, __m128i a) -{ - vst1q_lane_s64((int64_t *) p, vreinterpretq_s64_m128i(a), 0); -} - -// Stores 32-bits of integer data a at the address p. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_si32 -FORCE_INLINE void _mm_storeu_si32(void *p, __m128i a) -{ - vst1q_lane_s32((int32_t *) p, vreinterpretq_s32_m128i(a), 0); -} - -// Stores 16-bits of integer data a at the address p. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_si16 -FORCE_INLINE void _mm_storeu_si16(void *p, __m128i a) -{ - vst1q_lane_s16((int16_t *) p, vreinterpretq_s16_m128i(a), 0); -} - -// Stores the lower single - precision, floating - point value. -// https://msdn.microsoft.com/en-us/library/tzz10fbx(v=vs.100).aspx -FORCE_INLINE void _mm_store_ss(float *p, __m128 a) -{ - vst1q_lane_f32(p, vreinterpretq_f32_m128(a), 0); -} - -// Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point -// elements) from a into memory. mem_addr must be aligned on a 16-byte boundary -// or a general-protection exception may be generated. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store_pd -FORCE_INLINE void _mm_store_pd(double *mem_addr, __m128d a) -{ -#if defined(__aarch64__) - vst1q_f64((float64_t *) mem_addr, vreinterpretq_f64_m128d(a)); -#else - vst1q_f32((float32_t *) mem_addr, vreinterpretq_f32_m128d(a)); -#endif -} - -// Store the upper double-precision (64-bit) floating-point element from a into -// memory. -// -// MEM[mem_addr+63:mem_addr] := a[127:64] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeh_pd -FORCE_INLINE void _mm_storeh_pd(double *mem_addr, __m128d a) -{ -#if defined(__aarch64__) - vst1_f64((float64_t *) mem_addr, vget_high_f64(vreinterpretq_f64_m128d(a))); -#else - vst1_f32((float32_t *) mem_addr, vget_high_f32(vreinterpretq_f32_m128d(a))); -#endif -} - -// Store the lower double-precision (64-bit) floating-point element from a into -// memory. -// -// MEM[mem_addr+63:mem_addr] := a[63:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storel_pd -FORCE_INLINE void _mm_storel_pd(double *mem_addr, __m128d a) -{ -#if defined(__aarch64__) - vst1_f64((float64_t *) mem_addr, vget_low_f64(vreinterpretq_f64_m128d(a))); -#else - vst1_f32((float32_t *) mem_addr, vget_low_f32(vreinterpretq_f32_m128d(a))); -#endif -} - -// Store 2 double-precision (64-bit) floating-point elements from a into memory -// in reverse order. mem_addr must be aligned on a 16-byte boundary or a -// general-protection exception may be generated. -// -// MEM[mem_addr+63:mem_addr] := a[127:64] -// MEM[mem_addr+127:mem_addr+64] := a[63:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storer_pd -FORCE_INLINE void _mm_storer_pd(double *mem_addr, __m128d a) -{ - float32x4_t f = vreinterpretq_f32_m128d(a); - _mm_store_pd(mem_addr, vreinterpretq_m128d_f32(vextq_f32(f, f, 2))); -} - -// Store the lower double-precision (64-bit) floating-point element from a into -// 2 contiguous elements in memory. mem_addr must be aligned on a 16-byte -// boundary or a general-protection exception may be generated. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store_pd1 -FORCE_INLINE void _mm_store_pd1(double *mem_addr, __m128d a) -{ -#if defined(__aarch64__) - float64x1_t a_low = vget_low_f64(vreinterpretq_f64_m128d(a)); - vst1q_f64((float64_t *) mem_addr, - vreinterpretq_f64_m128d(vcombine_f64(a_low, a_low))); -#else - float32x2_t a_low = vget_low_f32(vreinterpretq_f32_m128d(a)); - vst1q_f32((float32_t *) mem_addr, - vreinterpretq_f32_m128d(vcombine_f32(a_low, a_low))); -#endif -} - -// Store the lower double-precision (64-bit) floating-point element from a into -// memory. mem_addr does not need to be aligned on any particular boundary. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_store_sd -FORCE_INLINE void _mm_store_sd(double *mem_addr, __m128d a) -{ -#if defined(__aarch64__) - vst1_f64((float64_t *) mem_addr, vget_low_f64(vreinterpretq_f64_m128d(a))); -#else - vst1_u64((uint64_t *) mem_addr, vget_low_u64(vreinterpretq_u64_m128d(a))); -#endif -} - -// Store the lower double-precision (64-bit) floating-point element from a into -// 2 contiguous elements in memory. mem_addr must be aligned on a 16-byte -// boundary or a general-protection exception may be generated. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#expand=9,526,5601&text=_mm_store1_pd -#define _mm_store1_pd _mm_store_pd1 - -// Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point -// elements) from a into memory. mem_addr does not need to be aligned on any -// particular boundary. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_pd -FORCE_INLINE void _mm_storeu_pd(double *mem_addr, __m128d a) -{ - _mm_store_pd(mem_addr, a); -} - -// Reads the lower 64 bits of b and stores them into the lower 64 bits of a. -// https://msdn.microsoft.com/en-us/library/hhwf428f%28v=vs.90%29.aspx -FORCE_INLINE void _mm_storel_epi64(__m128i *a, __m128i b) -{ - uint64x1_t hi = vget_high_u64(vreinterpretq_u64_m128i(*a)); - uint64x1_t lo = vget_low_u64(vreinterpretq_u64_m128i(b)); - *a = vreinterpretq_m128i_u64(vcombine_u64(lo, hi)); -} - -// Stores the lower two single-precision floating point values of a to the -// address p. -// -// *p0 := a0 -// *p1 := a1 -// -// https://msdn.microsoft.com/en-us/library/h54t98ks(v=vs.90).aspx -FORCE_INLINE void _mm_storel_pi(__m64 *p, __m128 a) -{ - *p = vreinterpret_m64_f32(vget_low_f32(a)); -} - -// Stores the upper two single-precision, floating-point values of a to the -// address p. -// -// *p0 := a2 -// *p1 := a3 -// -// https://msdn.microsoft.com/en-us/library/a7525fs8(v%3dvs.90).aspx -FORCE_INLINE void _mm_storeh_pi(__m64 *p, __m128 a) -{ - *p = vreinterpret_m64_f32(vget_high_f32(a)); -} - -// Loads a single single-precision, floating-point value, copying it into all -// four words -// https://msdn.microsoft.com/en-us/library/vstudio/5cdkf716(v=vs.100).aspx -FORCE_INLINE __m128 _mm_load1_ps(const float *p) -{ - return vreinterpretq_m128_f32(vld1q_dup_f32(p)); -} - -// Load a single-precision (32-bit) floating-point element from memory into all -// elements of dst. -// -// dst[31:0] := MEM[mem_addr+31:mem_addr] -// dst[63:32] := MEM[mem_addr+31:mem_addr] -// dst[95:64] := MEM[mem_addr+31:mem_addr] -// dst[127:96] := MEM[mem_addr+31:mem_addr] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_ps1 -#define _mm_load_ps1 _mm_load1_ps - -// Sets the lower two single-precision, floating-point values with 64 -// bits of data loaded from the address p; the upper two values are passed -// through from a. -// -// Return Value -// r0 := *p0 -// r1 := *p1 -// r2 := a2 -// r3 := a3 -// -// https://msdn.microsoft.com/en-us/library/s57cyak2(v=vs.100).aspx -FORCE_INLINE __m128 _mm_loadl_pi(__m128 a, __m64 const *p) -{ - return vreinterpretq_m128_f32( - vcombine_f32(vld1_f32((const float32_t *) p), vget_high_f32(a))); -} - -// Load 4 single-precision (32-bit) floating-point elements from memory into dst -// in reverse order. mem_addr must be aligned on a 16-byte boundary or a -// general-protection exception may be generated. -// -// dst[31:0] := MEM[mem_addr+127:mem_addr+96] -// dst[63:32] := MEM[mem_addr+95:mem_addr+64] -// dst[95:64] := MEM[mem_addr+63:mem_addr+32] -// dst[127:96] := MEM[mem_addr+31:mem_addr] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadr_ps -FORCE_INLINE __m128 _mm_loadr_ps(const float *p) -{ - float32x4_t v = vrev64q_f32(vld1q_f32(p)); - return vreinterpretq_m128_f32(vextq_f32(v, v, 2)); -} - -// Sets the upper two single-precision, floating-point values with 64 -// bits of data loaded from the address p; the lower two values are passed -// through from a. -// -// r0 := a0 -// r1 := a1 -// r2 := *p0 -// r3 := *p1 -// -// https://msdn.microsoft.com/en-us/library/w92wta0x(v%3dvs.100).aspx -FORCE_INLINE __m128 _mm_loadh_pi(__m128 a, __m64 const *p) -{ - return vreinterpretq_m128_f32( - vcombine_f32(vget_low_f32(a), vld1_f32((const float32_t *) p))); -} - -// Loads four single-precision, floating-point values. -// https://msdn.microsoft.com/en-us/library/vstudio/zzd50xxt(v=vs.100).aspx -FORCE_INLINE __m128 _mm_load_ps(const float *p) -{ - return vreinterpretq_m128_f32(vld1q_f32(p)); -} - -// Loads four single-precision, floating-point values. -// https://msdn.microsoft.com/en-us/library/x1b16s7z%28v=vs.90%29.aspx -FORCE_INLINE __m128 _mm_loadu_ps(const float *p) -{ - // for neon, alignment doesn't matter, so _mm_load_ps and _mm_loadu_ps are - // equivalent for neon - return vreinterpretq_m128_f32(vld1q_f32(p)); -} - -// Load unaligned 16-bit integer from memory into the first element of dst. -// -// dst[15:0] := MEM[mem_addr+15:mem_addr] -// dst[MAX:16] := 0 -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_si16 -FORCE_INLINE __m128i _mm_loadu_si16(const void *p) -{ - return vreinterpretq_m128i_s16( - vsetq_lane_s16(*(const int16_t *) p, vdupq_n_s16(0), 0)); -} - -// Load unaligned 64-bit integer from memory into the first element of dst. -// -// dst[63:0] := MEM[mem_addr+63:mem_addr] -// dst[MAX:64] := 0 -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_si64 -FORCE_INLINE __m128i _mm_loadu_si64(const void *p) -{ - return vreinterpretq_m128i_s64( - vcombine_s64(vld1_s64((const int64_t *) p), vdup_n_s64(0))); -} - -// Load a double-precision (64-bit) floating-point element from memory into the -// lower of dst, and zero the upper element. mem_addr does not need to be -// aligned on any particular boundary. -// -// dst[63:0] := MEM[mem_addr+63:mem_addr] -// dst[127:64] := 0 -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_sd -FORCE_INLINE __m128d _mm_load_sd(const double *p) -{ -#if defined(__aarch64__) - return vreinterpretq_m128d_f64(vsetq_lane_f64(*p, vdupq_n_f64(0), 0)); -#else - const float *fp = (const float *) p; - float ALIGN_STRUCT(16) data[4] = {fp[0], fp[1], 0, 0}; - return vreinterpretq_m128d_f32(vld1q_f32(data)); -#endif -} - -// Loads two double-precision from 16-byte aligned memory, floating-point -// values. -// -// dst[127:0] := MEM[mem_addr+127:mem_addr] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_pd -FORCE_INLINE __m128d _mm_load_pd(const double *p) -{ -#if defined(__aarch64__) - return vreinterpretq_m128d_f64(vld1q_f64(p)); -#else - const float *fp = (const float *) p; - float ALIGN_STRUCT(16) data[4] = {fp[0], fp[1], fp[2], fp[3]}; - return vreinterpretq_m128d_f32(vld1q_f32(data)); -#endif -} - -// Loads two double-precision from unaligned memory, floating-point values. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_pd -FORCE_INLINE __m128d _mm_loadu_pd(const double *p) -{ - return _mm_load_pd(p); -} - -// Loads an single - precision, floating - point value into the low word and -// clears the upper three words. -// https://msdn.microsoft.com/en-us/library/548bb9h4%28v=vs.90%29.aspx -FORCE_INLINE __m128 _mm_load_ss(const float *p) -{ - return vreinterpretq_m128_f32(vsetq_lane_f32(*p, vdupq_n_f32(0), 0)); -} - -// Load 64-bit integer from memory into the first element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadl_epi64 -FORCE_INLINE __m128i _mm_loadl_epi64(__m128i const *p) -{ - /* Load the lower 64 bits of the value pointed to by p into the - * lower 64 bits of the result, zeroing the upper 64 bits of the result. - */ - return vreinterpretq_m128i_s32( - vcombine_s32(vld1_s32((int32_t const *) p), vcreate_s32(0))); -} - -// Load a double-precision (64-bit) floating-point element from memory into the -// lower element of dst, and copy the upper element from a to dst. mem_addr does -// not need to be aligned on any particular boundary. -// -// dst[63:0] := MEM[mem_addr+63:mem_addr] -// dst[127:64] := a[127:64] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadl_pd -FORCE_INLINE __m128d _mm_loadl_pd(__m128d a, const double *p) -{ -#if defined(__aarch64__) - return vreinterpretq_m128d_f64( - vcombine_f64(vld1_f64(p), vget_high_f64(vreinterpretq_f64_m128d(a)))); -#else - return vreinterpretq_m128d_f32( - vcombine_f32(vld1_f32((const float *) p), - vget_high_f32(vreinterpretq_f32_m128d(a)))); -#endif -} - -// Load 2 double-precision (64-bit) floating-point elements from memory into dst -// in reverse order. mem_addr must be aligned on a 16-byte boundary or a -// general-protection exception may be generated. -// -// dst[63:0] := MEM[mem_addr+127:mem_addr+64] -// dst[127:64] := MEM[mem_addr+63:mem_addr] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadr_pd -FORCE_INLINE __m128d _mm_loadr_pd(const double *p) -{ -#if defined(__aarch64__) - float64x2_t v = vld1q_f64(p); - return vreinterpretq_m128d_f64(vextq_f64(v, v, 1)); -#else - int64x2_t v = vld1q_s64((const int64_t *) p); - return vreinterpretq_m128d_s64(vextq_s64(v, v, 1)); -#endif -} - -// Sets the low word to the single-precision, floating-point value of b -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/35hdzazd(v=vs.100) -FORCE_INLINE __m128 _mm_move_ss(__m128 a, __m128 b) -{ - return vreinterpretq_m128_f32( - vsetq_lane_f32(vgetq_lane_f32(vreinterpretq_f32_m128(b), 0), - vreinterpretq_f32_m128(a), 0)); -} - -// Move the lower double-precision (64-bit) floating-point element from b to the -// lower element of dst, and copy the upper element from a to the upper element -// of dst. -// -// dst[63:0] := b[63:0] -// dst[127:64] := a[127:64] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_move_sd -FORCE_INLINE __m128d _mm_move_sd(__m128d a, __m128d b) -{ - return vreinterpretq_m128d_f32( - vcombine_f32(vget_low_f32(vreinterpretq_f32_m128d(b)), - vget_high_f32(vreinterpretq_f32_m128d(a)))); -} - -// Copy the lower 64-bit integer in a to the lower element of dst, and zero the -// upper element. -// -// dst[63:0] := a[63:0] -// dst[127:64] := 0 -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_move_epi64 -FORCE_INLINE __m128i _mm_move_epi64(__m128i a) -{ - return vreinterpretq_m128i_s64( - vsetq_lane_s64(0, vreinterpretq_s64_m128i(a), 1)); -} - -// Return vector of type __m128 with undefined elements. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_undefined_ps -FORCE_INLINE __m128 _mm_undefined_ps(void) -{ -#if defined(__GNUC__) || defined(__clang__) -#pragma GCC diagnostic push -#pragma GCC diagnostic ignored "-Wuninitialized" -#endif - __m128 a; - return a; -#if defined(__GNUC__) || defined(__clang__) -#pragma GCC diagnostic pop -#endif -} - -/* Logic/Binary operations */ - -// Computes the bitwise AND-NOT of the four single-precision, floating-point -// values of a and b. -// -// r0 := ~a0 & b0 -// r1 := ~a1 & b1 -// r2 := ~a2 & b2 -// r3 := ~a3 & b3 -// -// https://msdn.microsoft.com/en-us/library/vstudio/68h7wd02(v=vs.100).aspx -FORCE_INLINE __m128 _mm_andnot_ps(__m128 a, __m128 b) -{ - return vreinterpretq_m128_s32( - vbicq_s32(vreinterpretq_s32_m128(b), - vreinterpretq_s32_m128(a))); // *NOTE* argument swap -} - -// Compute the bitwise NOT of packed double-precision (64-bit) floating-point -// elements in a and then AND with b, and store the results in dst. -// -// FOR j := 0 to 1 -// i := j*64 -// dst[i+63:i] := ((NOT a[i+63:i]) AND b[i+63:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_andnot_pd -FORCE_INLINE __m128d _mm_andnot_pd(__m128d a, __m128d b) -{ - // *NOTE* argument swap - return vreinterpretq_m128d_s64( - vbicq_s64(vreinterpretq_s64_m128d(b), vreinterpretq_s64_m128d(a))); -} - -// Computes the bitwise AND of the 128-bit value in b and the bitwise NOT of the -// 128-bit value in a. -// -// r := (~a) & b -// -// https://msdn.microsoft.com/en-us/library/vstudio/1beaceh8(v=vs.100).aspx -FORCE_INLINE __m128i _mm_andnot_si128(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_s32( - vbicq_s32(vreinterpretq_s32_m128i(b), - vreinterpretq_s32_m128i(a))); // *NOTE* argument swap -} - -// Computes the bitwise AND of the 128-bit value in a and the 128-bit value in -// b. -// -// r := a & b -// -// https://msdn.microsoft.com/en-us/library/vstudio/6d1txsa8(v=vs.100).aspx -FORCE_INLINE __m128i _mm_and_si128(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_s32( - vandq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); -} - -// Computes the bitwise AND of the four single-precision, floating-point values -// of a and b. -// -// r0 := a0 & b0 -// r1 := a1 & b1 -// r2 := a2 & b2 -// r3 := a3 & b3 -// -// https://msdn.microsoft.com/en-us/library/vstudio/73ck1xc5(v=vs.100).aspx -FORCE_INLINE __m128 _mm_and_ps(__m128 a, __m128 b) -{ - return vreinterpretq_m128_s32( - vandq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b))); -} - -// Compute the bitwise AND of packed double-precision (64-bit) floating-point -// elements in a and b, and store the results in dst. -// -// FOR j := 0 to 1 -// i := j*64 -// dst[i+63:i] := a[i+63:i] AND b[i+63:i] -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_and_pd -FORCE_INLINE __m128d _mm_and_pd(__m128d a, __m128d b) -{ - return vreinterpretq_m128d_s64( - vandq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b))); -} - -// Computes the bitwise OR of the four single-precision, floating-point values -// of a and b. -// https://msdn.microsoft.com/en-us/library/vstudio/7ctdsyy0(v=vs.100).aspx -FORCE_INLINE __m128 _mm_or_ps(__m128 a, __m128 b) -{ - return vreinterpretq_m128_s32( - vorrq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b))); -} - -// Computes bitwise EXOR (exclusive-or) of the four single-precision, -// floating-point values of a and b. -// https://msdn.microsoft.com/en-us/library/ss6k3wk8(v=vs.100).aspx -FORCE_INLINE __m128 _mm_xor_ps(__m128 a, __m128 b) -{ - return vreinterpretq_m128_s32( - veorq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b))); -} - -// Compute the bitwise XOR of packed double-precision (64-bit) floating-point -// elements in a and b, and store the results in dst. -// -// FOR j := 0 to 1 -// i := j*64 -// dst[i+63:i] := a[i+63:i] XOR b[i+63:i] -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_xor_pd -FORCE_INLINE __m128d _mm_xor_pd(__m128d a, __m128d b) -{ - return vreinterpretq_m128d_s64( - veorq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b))); -} - -// Compute the bitwise OR of packed double-precision (64-bit) floating-point -// elements in a and b, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_or_pd -FORCE_INLINE __m128d _mm_or_pd(__m128d a, __m128d b) -{ - return vreinterpretq_m128d_s64( - vorrq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b))); -} - -// Computes the bitwise OR of the 128-bit value in a and the 128-bit value in b. -// -// r := a | b -// -// https://msdn.microsoft.com/en-us/library/vstudio/ew8ty0db(v=vs.100).aspx -FORCE_INLINE __m128i _mm_or_si128(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_s32( - vorrq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); -} - -// Computes the bitwise XOR of the 128-bit value in a and the 128-bit value in -// b. https://msdn.microsoft.com/en-us/library/fzt08www(v=vs.100).aspx -FORCE_INLINE __m128i _mm_xor_si128(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_s32( - veorq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); -} - -// Duplicate the low double-precision (64-bit) floating-point element from a, -// and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movedup_pd -FORCE_INLINE __m128d _mm_movedup_pd(__m128d a) -{ -#if (__aarch64__) - return vreinterpretq_m128d_f64( - vdupq_laneq_f64(vreinterpretq_f64_m128d(a), 0)); -#else - return vreinterpretq_m128d_u64( - vdupq_n_u64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0))); -#endif -} - -// Duplicate odd-indexed single-precision (32-bit) floating-point elements -// from a, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movehdup_ps -FORCE_INLINE __m128 _mm_movehdup_ps(__m128 a) -{ -#if __has_builtin(__builtin_shufflevector) - return vreinterpretq_m128_f32(__builtin_shufflevector( - vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 1, 1, 3, 3)); -#else - float32_t a1 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 1); - float32_t a3 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 3); - float ALIGN_STRUCT(16) data[4] = {a1, a1, a3, a3}; - return vreinterpretq_m128_f32(vld1q_f32(data)); -#endif -} - -// Duplicate even-indexed single-precision (32-bit) floating-point elements -// from a, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_moveldup_ps -FORCE_INLINE __m128 _mm_moveldup_ps(__m128 a) -{ -#if __has_builtin(__builtin_shufflevector) - return vreinterpretq_m128_f32(__builtin_shufflevector( - vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 0, 0, 2, 2)); -#else - float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); - float32_t a2 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 2); - float ALIGN_STRUCT(16) data[4] = {a0, a0, a2, a2}; - return vreinterpretq_m128_f32(vld1q_f32(data)); -#endif -} - -// Moves the upper two values of B into the lower two values of A. -// -// r3 := a3 -// r2 := a2 -// r1 := b3 -// r0 := b2 -FORCE_INLINE __m128 _mm_movehl_ps(__m128 __A, __m128 __B) -{ - float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(__A)); - float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(__B)); - return vreinterpretq_m128_f32(vcombine_f32(b32, a32)); -} - -// Moves the lower two values of B into the upper two values of A. -// -// r3 := b1 -// r2 := b0 -// r1 := a1 -// r0 := a0 -FORCE_INLINE __m128 _mm_movelh_ps(__m128 __A, __m128 __B) -{ - float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(__A)); - float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(__B)); - return vreinterpretq_m128_f32(vcombine_f32(a10, b10)); -} - -// Create mask from the most significant bit of each 8-bit element in a, and -// store the result in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movemask_pi8 -FORCE_INLINE int _mm_movemask_pi8(__m64 a) -{ - uint8x8_t input = vreinterpret_u8_m64(a); -#if defined(__aarch64__) - static const int8x8_t shift = {0, 1, 2, 3, 4, 5, 6, 7}; - uint8x8_t tmp = vshr_n_u8(input, 7); - return vaddv_u8(vshl_u8(tmp, shift)); -#else - // Refer the implementation of `_mm_movemask_epi8` - uint16x4_t high_bits = vreinterpret_u16_u8(vshr_n_u8(input, 7)); - uint32x2_t paired16 = - vreinterpret_u32_u16(vsra_n_u16(high_bits, high_bits, 7)); - uint8x8_t paired32 = - vreinterpret_u8_u32(vsra_n_u32(paired16, paired16, 14)); - return vget_lane_u8(paired32, 0) | ((int) vget_lane_u8(paired32, 4) << 4); -#endif -} - -// Compute the absolute value of packed signed 32-bit integers in a, and store -// the unsigned results in dst. -// -// FOR j := 0 to 3 -// i := j*32 -// dst[i+31:i] := ABS(a[i+31:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_epi32 -FORCE_INLINE __m128i _mm_abs_epi32(__m128i a) -{ - return vreinterpretq_m128i_s32(vabsq_s32(vreinterpretq_s32_m128i(a))); -} - -// Compute the absolute value of packed signed 16-bit integers in a, and store -// the unsigned results in dst. -// -// FOR j := 0 to 7 -// i := j*16 -// dst[i+15:i] := ABS(a[i+15:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_epi16 -FORCE_INLINE __m128i _mm_abs_epi16(__m128i a) -{ - return vreinterpretq_m128i_s16(vabsq_s16(vreinterpretq_s16_m128i(a))); -} - -// Compute the absolute value of packed signed 8-bit integers in a, and store -// the unsigned results in dst. -// -// FOR j := 0 to 15 -// i := j*8 -// dst[i+7:i] := ABS(a[i+7:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_epi8 -FORCE_INLINE __m128i _mm_abs_epi8(__m128i a) -{ - return vreinterpretq_m128i_s8(vabsq_s8(vreinterpretq_s8_m128i(a))); -} - -// Compute the absolute value of packed signed 32-bit integers in a, and store -// the unsigned results in dst. -// -// FOR j := 0 to 1 -// i := j*32 -// dst[i+31:i] := ABS(a[i+31:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_pi32 -FORCE_INLINE __m64 _mm_abs_pi32(__m64 a) -{ - return vreinterpret_m64_s32(vabs_s32(vreinterpret_s32_m64(a))); -} - -// Compute the absolute value of packed signed 16-bit integers in a, and store -// the unsigned results in dst. -// -// FOR j := 0 to 3 -// i := j*16 -// dst[i+15:i] := ABS(a[i+15:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_pi16 -FORCE_INLINE __m64 _mm_abs_pi16(__m64 a) -{ - return vreinterpret_m64_s16(vabs_s16(vreinterpret_s16_m64(a))); -} - -// Compute the absolute value of packed signed 8-bit integers in a, and store -// the unsigned results in dst. -// -// FOR j := 0 to 7 -// i := j*8 -// dst[i+7:i] := ABS(a[i+7:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_pi8 -FORCE_INLINE __m64 _mm_abs_pi8(__m64 a) -{ - return vreinterpret_m64_s8(vabs_s8(vreinterpret_s8_m64(a))); -} - -// Concatenate 16-byte blocks in a and b into a 32-byte temporary result, shift -// the result right by imm8 bytes, and store the low 16 bytes in dst. -// -// tmp[255:0] := ((a[127:0] << 128)[255:0] OR b[127:0]) >> (imm8*8) -// dst[127:0] := tmp[127:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_alignr_epi8 -#define _mm_alignr_epi8(a, b, imm) \ - __extension__({ \ - __m128i ret; \ - if (unlikely((imm) >= 32)) { \ - ret = _mm_setzero_si128(); \ - } else { \ - uint8x16_t tmp_low, tmp_high; \ - if (imm >= 16) { \ - const int idx = imm - 16; \ - tmp_low = vreinterpretq_u8_m128i(a); \ - tmp_high = vdupq_n_u8(0); \ - ret = \ - vreinterpretq_m128i_u8(vextq_u8(tmp_low, tmp_high, idx)); \ - } else { \ - const int idx = imm; \ - tmp_low = vreinterpretq_u8_m128i(b); \ - tmp_high = vreinterpretq_u8_m128i(a); \ - ret = \ - vreinterpretq_m128i_u8(vextq_u8(tmp_low, tmp_high, idx)); \ - } \ - } \ - ret; \ - }) - -// Concatenate 8-byte blocks in a and b into a 16-byte temporary result, shift -// the result right by imm8 bytes, and store the low 8 bytes in dst. -// -// tmp[127:0] := ((a[63:0] << 64)[127:0] OR b[63:0]) >> (imm8*8) -// dst[63:0] := tmp[63:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_alignr_pi8 -#define _mm_alignr_pi8(a, b, imm) \ - __extension__({ \ - __m64 ret; \ - if (unlikely((imm) >= 16)) { \ - ret = vreinterpret_m64_s8(vdup_n_s8(0)); \ - } else { \ - uint8x8_t tmp_low, tmp_high; \ - if (imm >= 8) { \ - const int idx = imm - 8; \ - tmp_low = vreinterpret_u8_m64(a); \ - tmp_high = vdup_n_u8(0); \ - ret = vreinterpret_m64_u8(vext_u8(tmp_low, tmp_high, idx)); \ - } else { \ - const int idx = imm; \ - tmp_low = vreinterpret_u8_m64(b); \ - tmp_high = vreinterpret_u8_m64(a); \ - ret = vreinterpret_m64_u8(vext_u8(tmp_low, tmp_high, idx)); \ - } \ - } \ - ret; \ - }) +} fpcr_bitfield; // Takes the upper 64 bits of a and places it in the low end of the result // Takes the lower 64 bits of b and places it into the high end of the result. @@ -1908,6 +726,255 @@ FORCE_INLINE __m128 _mm_shuffle_ps_2032(__m128 a, __m128 b) return vreinterpretq_m128_f32(vcombine_f32(a32, b20)); } +// Kahan summation for accurate summation of floating-point numbers. +// http://blog.zachbjornson.com/2019/08/11/fast-float-summation.html +FORCE_INLINE void _sse2neon_kadd_f32(float *sum, float *c, float y) +{ + y -= *c; + float t = *sum + y; + *c = (t - *sum) - y; + *sum = t; +} + +#if defined(__ARM_FEATURE_CRYPTO) && \ + (defined(__aarch64__) || __has_builtin(__builtin_arm_crypto_vmullp64)) +// Wraps vmull_p64 +FORCE_INLINE uint64x2_t _sse2neon_vmull_p64(uint64x1_t _a, uint64x1_t _b) +{ + poly64_t a = vget_lane_p64(vreinterpret_p64_u64(_a), 0); + poly64_t b = vget_lane_p64(vreinterpret_p64_u64(_b), 0); + return vreinterpretq_u64_p128(vmull_p64(a, b)); +} +#else // ARMv7 polyfill +// ARMv7/some A64 lacks vmull_p64, but it has vmull_p8. +// +// vmull_p8 calculates 8 8-bit->16-bit polynomial multiplies, but we need a +// 64-bit->128-bit polynomial multiply. +// +// It needs some work and is somewhat slow, but it is still faster than all +// known scalar methods. +// +// Algorithm adapted to C from +// https://www.workofard.com/2017/07/ghash-for-low-end-cores/, which is adapted +// from "Fast Software Polynomial Multiplication on ARM Processors Using the +// NEON Engine" by Danilo Camara, Conrado Gouvea, Julio Lopez and Ricardo Dahab +// (https://hal.inria.fr/hal-01506572) +static uint64x2_t _sse2neon_vmull_p64(uint64x1_t _a, uint64x1_t _b) +{ + poly8x8_t a = vreinterpret_p8_u64(_a); + poly8x8_t b = vreinterpret_p8_u64(_b); + + // Masks + uint8x16_t k48_32 = vcombine_u8(vcreate_u8(0x0000ffffffffffff), + vcreate_u8(0x00000000ffffffff)); + uint8x16_t k16_00 = vcombine_u8(vcreate_u8(0x000000000000ffff), + vcreate_u8(0x0000000000000000)); + + // Do the multiplies, rotating with vext to get all combinations + uint8x16_t d = vreinterpretq_u8_p16(vmull_p8(a, b)); // D = A0 * B0 + uint8x16_t e = + vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 1))); // E = A0 * B1 + uint8x16_t f = + vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 1), b)); // F = A1 * B0 + uint8x16_t g = + vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 2))); // G = A0 * B2 + uint8x16_t h = + vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 2), b)); // H = A2 * B0 + uint8x16_t i = + vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 3))); // I = A0 * B3 + uint8x16_t j = + vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 3), b)); // J = A3 * B0 + uint8x16_t k = + vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 4))); // L = A0 * B4 + + // Add cross products + uint8x16_t l = veorq_u8(e, f); // L = E + F + uint8x16_t m = veorq_u8(g, h); // M = G + H + uint8x16_t n = veorq_u8(i, j); // N = I + J + + // Interleave. Using vzip1 and vzip2 prevents Clang from emitting TBL + // instructions. +#if defined(__aarch64__) + uint8x16_t lm_p0 = vreinterpretq_u8_u64( + vzip1q_u64(vreinterpretq_u64_u8(l), vreinterpretq_u64_u8(m))); + uint8x16_t lm_p1 = vreinterpretq_u8_u64( + vzip2q_u64(vreinterpretq_u64_u8(l), vreinterpretq_u64_u8(m))); + uint8x16_t nk_p0 = vreinterpretq_u8_u64( + vzip1q_u64(vreinterpretq_u64_u8(n), vreinterpretq_u64_u8(k))); + uint8x16_t nk_p1 = vreinterpretq_u8_u64( + vzip2q_u64(vreinterpretq_u64_u8(n), vreinterpretq_u64_u8(k))); +#else + uint8x16_t lm_p0 = vcombine_u8(vget_low_u8(l), vget_low_u8(m)); + uint8x16_t lm_p1 = vcombine_u8(vget_high_u8(l), vget_high_u8(m)); + uint8x16_t nk_p0 = vcombine_u8(vget_low_u8(n), vget_low_u8(k)); + uint8x16_t nk_p1 = vcombine_u8(vget_high_u8(n), vget_high_u8(k)); +#endif + // t0 = (L) (P0 + P1) << 8 + // t1 = (M) (P2 + P3) << 16 + uint8x16_t t0t1_tmp = veorq_u8(lm_p0, lm_p1); + uint8x16_t t0t1_h = vandq_u8(lm_p1, k48_32); + uint8x16_t t0t1_l = veorq_u8(t0t1_tmp, t0t1_h); + + // t2 = (N) (P4 + P5) << 24 + // t3 = (K) (P6 + P7) << 32 + uint8x16_t t2t3_tmp = veorq_u8(nk_p0, nk_p1); + uint8x16_t t2t3_h = vandq_u8(nk_p1, k16_00); + uint8x16_t t2t3_l = veorq_u8(t2t3_tmp, t2t3_h); + + // De-interleave +#if defined(__aarch64__) + uint8x16_t t0 = vreinterpretq_u8_u64( + vuzp1q_u64(vreinterpretq_u64_u8(t0t1_l), vreinterpretq_u64_u8(t0t1_h))); + uint8x16_t t1 = vreinterpretq_u8_u64( + vuzp2q_u64(vreinterpretq_u64_u8(t0t1_l), vreinterpretq_u64_u8(t0t1_h))); + uint8x16_t t2 = vreinterpretq_u8_u64( + vuzp1q_u64(vreinterpretq_u64_u8(t2t3_l), vreinterpretq_u64_u8(t2t3_h))); + uint8x16_t t3 = vreinterpretq_u8_u64( + vuzp2q_u64(vreinterpretq_u64_u8(t2t3_l), vreinterpretq_u64_u8(t2t3_h))); +#else + uint8x16_t t1 = vcombine_u8(vget_high_u8(t0t1_l), vget_high_u8(t0t1_h)); + uint8x16_t t0 = vcombine_u8(vget_low_u8(t0t1_l), vget_low_u8(t0t1_h)); + uint8x16_t t3 = vcombine_u8(vget_high_u8(t2t3_l), vget_high_u8(t2t3_h)); + uint8x16_t t2 = vcombine_u8(vget_low_u8(t2t3_l), vget_low_u8(t2t3_h)); +#endif + // Shift the cross products + uint8x16_t t0_shift = vextq_u8(t0, t0, 15); // t0 << 8 + uint8x16_t t1_shift = vextq_u8(t1, t1, 14); // t1 << 16 + uint8x16_t t2_shift = vextq_u8(t2, t2, 13); // t2 << 24 + uint8x16_t t3_shift = vextq_u8(t3, t3, 12); // t3 << 32 + + // Accumulate the products + uint8x16_t cross1 = veorq_u8(t0_shift, t1_shift); + uint8x16_t cross2 = veorq_u8(t2_shift, t3_shift); + uint8x16_t mix = veorq_u8(d, cross1); + uint8x16_t r = veorq_u8(mix, cross2); + return vreinterpretq_u64_u8(r); +} +#endif // ARMv7 polyfill + +// C equivalent: +// __m128i _mm_shuffle_epi32_default(__m128i a, +// __constrange(0, 255) int imm) { +// __m128i ret; +// ret[0] = a[imm & 0x3]; ret[1] = a[(imm >> 2) & 0x3]; +// ret[2] = a[(imm >> 4) & 0x03]; ret[3] = a[(imm >> 6) & 0x03]; +// return ret; +// } +#define _mm_shuffle_epi32_default(a, imm) \ + __extension__({ \ + int32x4_t ret; \ + ret = vmovq_n_s32( \ + vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm) & (0x3))); \ + ret = vsetq_lane_s32( \ + vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 2) & 0x3), \ + ret, 1); \ + ret = vsetq_lane_s32( \ + vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 4) & 0x3), \ + ret, 2); \ + ret = vsetq_lane_s32( \ + vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 6) & 0x3), \ + ret, 3); \ + vreinterpretq_m128i_s32(ret); \ + }) + +// Takes the upper 64 bits of a and places it in the low end of the result +// Takes the lower 64 bits of a and places it into the high end of the result. +FORCE_INLINE __m128i _mm_shuffle_epi_1032(__m128i a) +{ + int32x2_t a32 = vget_high_s32(vreinterpretq_s32_m128i(a)); + int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a)); + return vreinterpretq_m128i_s32(vcombine_s32(a32, a10)); +} + +// takes the lower two 32-bit values from a and swaps them and places in low end +// of result takes the higher two 32 bit values from a and swaps them and places +// in high end of result. +FORCE_INLINE __m128i _mm_shuffle_epi_2301(__m128i a) +{ + int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a))); + int32x2_t a23 = vrev64_s32(vget_high_s32(vreinterpretq_s32_m128i(a))); + return vreinterpretq_m128i_s32(vcombine_s32(a01, a23)); +} + +// rotates the least significant 32 bits into the most significant 32 bits, and +// shifts the rest down +FORCE_INLINE __m128i _mm_shuffle_epi_0321(__m128i a) +{ + return vreinterpretq_m128i_s32( + vextq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(a), 1)); +} + +// rotates the most significant 32 bits into the least significant 32 bits, and +// shifts the rest up +FORCE_INLINE __m128i _mm_shuffle_epi_2103(__m128i a) +{ + return vreinterpretq_m128i_s32( + vextq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(a), 3)); +} + +// gets the lower 64 bits of a, and places it in the upper 64 bits +// gets the lower 64 bits of a and places it in the lower 64 bits +FORCE_INLINE __m128i _mm_shuffle_epi_1010(__m128i a) +{ + int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a)); + return vreinterpretq_m128i_s32(vcombine_s32(a10, a10)); +} + +// gets the lower 64 bits of a, swaps the 0 and 1 elements, and places it in the +// lower 64 bits gets the lower 64 bits of a, and places it in the upper 64 bits +FORCE_INLINE __m128i _mm_shuffle_epi_1001(__m128i a) +{ + int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a))); + int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a)); + return vreinterpretq_m128i_s32(vcombine_s32(a01, a10)); +} + +// gets the lower 64 bits of a, swaps the 0 and 1 elements and places it in the +// upper 64 bits gets the lower 64 bits of a, swaps the 0 and 1 elements, and +// places it in the lower 64 bits +FORCE_INLINE __m128i _mm_shuffle_epi_0101(__m128i a) +{ + int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a))); + return vreinterpretq_m128i_s32(vcombine_s32(a01, a01)); +} + +FORCE_INLINE __m128i _mm_shuffle_epi_2211(__m128i a) +{ + int32x2_t a11 = vdup_lane_s32(vget_low_s32(vreinterpretq_s32_m128i(a)), 1); + int32x2_t a22 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 0); + return vreinterpretq_m128i_s32(vcombine_s32(a11, a22)); +} + +FORCE_INLINE __m128i _mm_shuffle_epi_0122(__m128i a) +{ + int32x2_t a22 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 0); + int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a))); + return vreinterpretq_m128i_s32(vcombine_s32(a22, a01)); +} + +FORCE_INLINE __m128i _mm_shuffle_epi_3332(__m128i a) +{ + int32x2_t a32 = vget_high_s32(vreinterpretq_s32_m128i(a)); + int32x2_t a33 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 1); + return vreinterpretq_m128i_s32(vcombine_s32(a32, a33)); +} + +// FORCE_INLINE __m128i _mm_shuffle_epi32_splat(__m128i a, __constrange(0,255) +// int imm) +#if defined(__aarch64__) +#define _mm_shuffle_epi32_splat(a, imm) \ + __extension__({ \ + vreinterpretq_m128i_s32( \ + vdupq_laneq_s32(vreinterpretq_s32_m128i(a), (imm))); \ + }) +#else +#define _mm_shuffle_epi32_splat(a, imm) \ + __extension__({ \ + vreinterpretq_m128i_s32( \ + vdupq_n_s32(vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm)))); \ + }) +#endif + // NEON does not support a general purpose permute intrinsic // Selects four specific single-precision, floating-point values from a and b, // based on the mask i. @@ -1939,17 +1006,1581 @@ FORCE_INLINE __m128 _mm_shuffle_ps_2032(__m128 a, __m128 b) vreinterpretq_m128_f32(ret); \ }) +// Shuffles the lower 4 signed or unsigned 16-bit integers in a as specified +// by imm. +// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/y41dkk37(v=vs.100) +// FORCE_INLINE __m128i _mm_shufflelo_epi16_function(__m128i a, +// __constrange(0,255) int +// imm) +#define _mm_shufflelo_epi16_function(a, imm) \ + __extension__({ \ + int16x8_t ret = vreinterpretq_s16_m128i(a); \ + int16x4_t lowBits = vget_low_s16(ret); \ + ret = vsetq_lane_s16(vget_lane_s16(lowBits, (imm) & (0x3)), ret, 0); \ + ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 2) & 0x3), ret, \ + 1); \ + ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 4) & 0x3), ret, \ + 2); \ + ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 6) & 0x3), ret, \ + 3); \ + vreinterpretq_m128i_s16(ret); \ + }) + +// Shuffles the upper 4 signed or unsigned 16-bit integers in a as specified +// by imm. +// https://msdn.microsoft.com/en-us/library/13ywktbs(v=vs.100).aspx +// FORCE_INLINE __m128i _mm_shufflehi_epi16_function(__m128i a, +// __constrange(0,255) int +// imm) +#define _mm_shufflehi_epi16_function(a, imm) \ + __extension__({ \ + int16x8_t ret = vreinterpretq_s16_m128i(a); \ + int16x4_t highBits = vget_high_s16(ret); \ + ret = vsetq_lane_s16(vget_lane_s16(highBits, (imm) & (0x3)), ret, 4); \ + ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 2) & 0x3), ret, \ + 5); \ + ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 4) & 0x3), ret, \ + 6); \ + ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 6) & 0x3), ret, \ + 7); \ + vreinterpretq_m128i_s16(ret); \ + }) + +/* MMX */ + +//_mm_empty is a no-op on arm +FORCE_INLINE void _mm_empty(void) {} + +/* SSE */ + +// Adds the four single-precision, floating-point values of a and b. +// +// r0 := a0 + b0 +// r1 := a1 + b1 +// r2 := a2 + b2 +// r3 := a3 + b3 +// +// https://msdn.microsoft.com/en-us/library/vstudio/c9848chc(v=vs.100).aspx +FORCE_INLINE __m128 _mm_add_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_f32( + vaddq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +} + +// adds the scalar single-precision floating point values of a and b. +// https://msdn.microsoft.com/en-us/library/be94x2y6(v=vs.100).aspx +FORCE_INLINE __m128 _mm_add_ss(__m128 a, __m128 b) +{ + float32_t b0 = vgetq_lane_f32(vreinterpretq_f32_m128(b), 0); + float32x4_t value = vsetq_lane_f32(b0, vdupq_n_f32(0), 0); + // the upper values in the result must be the remnants of . + return vreinterpretq_m128_f32(vaddq_f32(a, value)); +} + +// Computes the bitwise AND of the four single-precision, floating-point values +// of a and b. +// +// r0 := a0 & b0 +// r1 := a1 & b1 +// r2 := a2 & b2 +// r3 := a3 & b3 +// +// https://msdn.microsoft.com/en-us/library/vstudio/73ck1xc5(v=vs.100).aspx +FORCE_INLINE __m128 _mm_and_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_s32( + vandq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b))); +} + +// Computes the bitwise AND-NOT of the four single-precision, floating-point +// values of a and b. +// +// r0 := ~a0 & b0 +// r1 := ~a1 & b1 +// r2 := ~a2 & b2 +// r3 := ~a3 & b3 +// +// https://msdn.microsoft.com/en-us/library/vstudio/68h7wd02(v=vs.100).aspx +FORCE_INLINE __m128 _mm_andnot_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_s32( + vbicq_s32(vreinterpretq_s32_m128(b), + vreinterpretq_s32_m128(a))); // *NOTE* argument swap +} + +// Average packed unsigned 16-bit integers in a and b, and store the results in +// dst. +// +// FOR j := 0 to 3 +// i := j*16 +// dst[i+15:i] := (a[i+15:i] + b[i+15:i] + 1) >> 1 +// ENDFOR +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_avg_pu16 +FORCE_INLINE __m64 _mm_avg_pu16(__m64 a, __m64 b) +{ + return vreinterpret_m64_u16( + vrhadd_u16(vreinterpret_u16_m64(a), vreinterpret_u16_m64(b))); +} + +// Average packed unsigned 8-bit integers in a and b, and store the results in +// dst. +// +// FOR j := 0 to 7 +// i := j*8 +// dst[i+7:i] := (a[i+7:i] + b[i+7:i] + 1) >> 1 +// ENDFOR +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_avg_pu8 +FORCE_INLINE __m64 _mm_avg_pu8(__m64 a, __m64 b) +{ + return vreinterpret_m64_u8( + vrhadd_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b))); +} + +// Compares for equality. +// https://msdn.microsoft.com/en-us/library/vstudio/36aectz5(v=vs.100).aspx +FORCE_INLINE __m128 _mm_cmpeq_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_u32( + vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +} + +// Compares for equality. +// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/k423z28e(v=vs.100) +FORCE_INLINE __m128 _mm_cmpeq_ss(__m128 a, __m128 b) +{ + return _mm_move_ss(a, _mm_cmpeq_ps(a, b)); +} + +// Compares for greater than or equal. +// https://msdn.microsoft.com/en-us/library/vstudio/fs813y2t(v=vs.100).aspx +FORCE_INLINE __m128 _mm_cmpge_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_u32( + vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +} + +// Compares for greater than or equal. +// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/kesh3ddc(v=vs.100) +FORCE_INLINE __m128 _mm_cmpge_ss(__m128 a, __m128 b) +{ + return _mm_move_ss(a, _mm_cmpge_ps(a, b)); +} + +// Compares for greater than. +// +// r0 := (a0 > b0) ? 0xffffffff : 0x0 +// r1 := (a1 > b1) ? 0xffffffff : 0x0 +// r2 := (a2 > b2) ? 0xffffffff : 0x0 +// r3 := (a3 > b3) ? 0xffffffff : 0x0 +// +// https://msdn.microsoft.com/en-us/library/vstudio/11dy102s(v=vs.100).aspx +FORCE_INLINE __m128 _mm_cmpgt_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_u32( + vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +} + +// Compares for greater than. +// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/1xyyyy9e(v=vs.100) +FORCE_INLINE __m128 _mm_cmpgt_ss(__m128 a, __m128 b) +{ + return _mm_move_ss(a, _mm_cmpgt_ps(a, b)); +} + +// Compares for less than or equal. +// +// r0 := (a0 <= b0) ? 0xffffffff : 0x0 +// r1 := (a1 <= b1) ? 0xffffffff : 0x0 +// r2 := (a2 <= b2) ? 0xffffffff : 0x0 +// r3 := (a3 <= b3) ? 0xffffffff : 0x0 +// +// https://msdn.microsoft.com/en-us/library/vstudio/1s75w83z(v=vs.100).aspx +FORCE_INLINE __m128 _mm_cmple_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_u32( + vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +} + +// Compares for less than or equal. +// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/a7x0hbhw(v=vs.100) +FORCE_INLINE __m128 _mm_cmple_ss(__m128 a, __m128 b) +{ + return _mm_move_ss(a, _mm_cmple_ps(a, b)); +} + +// Compares for less than +// https://msdn.microsoft.com/en-us/library/vstudio/f330yhc8(v=vs.100).aspx +FORCE_INLINE __m128 _mm_cmplt_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_u32( + vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +} + +// Compares for less than +// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/fy94wye7(v=vs.100) +FORCE_INLINE __m128 _mm_cmplt_ss(__m128 a, __m128 b) +{ + return _mm_move_ss(a, _mm_cmplt_ps(a, b)); +} + +// Compares for inequality. +// https://msdn.microsoft.com/en-us/library/sf44thbx(v=vs.100).aspx +FORCE_INLINE __m128 _mm_cmpneq_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_u32(vmvnq_u32( + vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)))); +} + +// Compares for inequality. +// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ekya8fh4(v=vs.100) +FORCE_INLINE __m128 _mm_cmpneq_ss(__m128 a, __m128 b) +{ + return _mm_move_ss(a, _mm_cmpneq_ps(a, b)); +} + +// Compares for not greater than or equal. +// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/wsexys62(v=vs.100) +FORCE_INLINE __m128 _mm_cmpnge_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_u32(vmvnq_u32( + vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)))); +} + +// Compares for not greater than or equal. +// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/fk2y80s8(v=vs.100) +FORCE_INLINE __m128 _mm_cmpnge_ss(__m128 a, __m128 b) +{ + return _mm_move_ss(a, _mm_cmpnge_ps(a, b)); +} + +// Compares for not greater than. +// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/d0xh7w0s(v=vs.100) +FORCE_INLINE __m128 _mm_cmpngt_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_u32(vmvnq_u32( + vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)))); +} + +// Compares for not greater than. +// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/z7x9ydwh(v=vs.100) +FORCE_INLINE __m128 _mm_cmpngt_ss(__m128 a, __m128 b) +{ + return _mm_move_ss(a, _mm_cmpngt_ps(a, b)); +} + +// Compares for not less than or equal. +// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/6a330kxw(v=vs.100) +FORCE_INLINE __m128 _mm_cmpnle_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_u32(vmvnq_u32( + vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)))); +} + +// Compares for not less than or equal. +// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/z7x9ydwh(v=vs.100) +FORCE_INLINE __m128 _mm_cmpnle_ss(__m128 a, __m128 b) +{ + return _mm_move_ss(a, _mm_cmpnle_ps(a, b)); +} + +// Compares for not less than. +// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/4686bbdw(v=vs.100) +FORCE_INLINE __m128 _mm_cmpnlt_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_u32(vmvnq_u32( + vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)))); +} + +// Compares for not less than. +// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/56b9z2wf(v=vs.100) +FORCE_INLINE __m128 _mm_cmpnlt_ss(__m128 a, __m128 b) +{ + return _mm_move_ss(a, _mm_cmpnlt_ps(a, b)); +} + +// Compares the four 32-bit floats in a and b to check if any values are NaN. +// Ordered compare between each value returns true for "orderable" and false for +// "not orderable" (NaN). +// https://msdn.microsoft.com/en-us/library/vstudio/0h9w00fx(v=vs.100).aspx see +// also: +// http://stackoverflow.com/questions/8627331/what-does-ordered-unordered-comparison-mean +// http://stackoverflow.com/questions/29349621/neon-isnanval-intrinsics +FORCE_INLINE __m128 _mm_cmpord_ps(__m128 a, __m128 b) +{ + // Note: NEON does not have ordered compare builtin + // Need to compare a eq a and b eq b to check for NaN + // Do AND of results to get final + uint32x4_t ceqaa = + vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)); + uint32x4_t ceqbb = + vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b)); + return vreinterpretq_m128_u32(vandq_u32(ceqaa, ceqbb)); +} + +// Compares for ordered. +// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/343t62da(v=vs.100) +FORCE_INLINE __m128 _mm_cmpord_ss(__m128 a, __m128 b) +{ + return _mm_move_ss(a, _mm_cmpord_ps(a, b)); +} + +// Compares for unordered. +// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/khy6fk1t(v=vs.100) +FORCE_INLINE __m128 _mm_cmpunord_ps(__m128 a, __m128 b) +{ + uint32x4_t f32a = + vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)); + uint32x4_t f32b = + vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b)); + return vreinterpretq_m128_u32(vmvnq_u32(vandq_u32(f32a, f32b))); +} + +// Compares for unordered. +// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/2as2387b(v=vs.100) +FORCE_INLINE __m128 _mm_cmpunord_ss(__m128 a, __m128 b) +{ + return _mm_move_ss(a, _mm_cmpunord_ps(a, b)); +} + +// Compares the lower single-precision floating point scalar values of a and b +// using an equality operation. : +// https://msdn.microsoft.com/en-us/library/93yx2h2b(v=vs.100).aspx +FORCE_INLINE int _mm_comieq_ss(__m128 a, __m128 b) +{ + uint32x4_t a_eq_b = + vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)); + return vgetq_lane_u32(a_eq_b, 0) & 0x1; +} + +// Compares the lower single-precision floating point scalar values of a and b +// using a greater than or equal operation. : +// https://msdn.microsoft.com/en-us/library/8t80des6(v=vs.100).aspx +FORCE_INLINE int _mm_comige_ss(__m128 a, __m128 b) +{ + uint32x4_t a_ge_b = + vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)); + return vgetq_lane_u32(a_ge_b, 0) & 0x1; +} + +// Compares the lower single-precision floating point scalar values of a and b +// using a greater than operation. : +// https://msdn.microsoft.com/en-us/library/b0738e0t(v=vs.100).aspx +FORCE_INLINE int _mm_comigt_ss(__m128 a, __m128 b) +{ + uint32x4_t a_gt_b = + vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)); + return vgetq_lane_u32(a_gt_b, 0) & 0x1; +} + +// Compares the lower single-precision floating point scalar values of a and b +// using a less than or equal operation. : +// https://msdn.microsoft.com/en-us/library/1w4t7c57(v=vs.90).aspx +FORCE_INLINE int _mm_comile_ss(__m128 a, __m128 b) +{ + uint32x4_t a_le_b = + vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)); + return vgetq_lane_u32(a_le_b, 0) & 0x1; +} + +// Compares the lower single-precision floating point scalar values of a and b +// using a less than operation. : +// https://msdn.microsoft.com/en-us/library/2kwe606b(v=vs.90).aspx Important +// note!! The documentation on MSDN is incorrect! If either of the values is a +// NAN the docs say you will get a one, but in fact, it will return a zero!! +FORCE_INLINE int _mm_comilt_ss(__m128 a, __m128 b) +{ + uint32x4_t a_lt_b = + vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)); + return vgetq_lane_u32(a_lt_b, 0) & 0x1; +} + +// Compares the lower single-precision floating point scalar values of a and b +// using an inequality operation. : +// https://msdn.microsoft.com/en-us/library/bafh5e0a(v=vs.90).aspx +FORCE_INLINE int _mm_comineq_ss(__m128 a, __m128 b) +{ + return !_mm_comieq_ss(a, b); +} + +// Convert packed signed 32-bit integers in b to packed single-precision +// (32-bit) floating-point elements, store the results in the lower 2 elements +// of dst, and copy the upper 2 packed elements from a to the upper elements of +// dst. +// +// dst[31:0] := Convert_Int32_To_FP32(b[31:0]) +// dst[63:32] := Convert_Int32_To_FP32(b[63:32]) +// dst[95:64] := a[95:64] +// dst[127:96] := a[127:96] +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_pi2ps +FORCE_INLINE __m128 _mm_cvt_pi2ps(__m128 a, __m64 b) +{ + return vreinterpretq_m128_f32( + vcombine_f32(vcvt_f32_s32(vreinterpret_s32_m64(b)), + vget_high_f32(vreinterpretq_f32_m128(a)))); +} + +// Convert packed single-precision (32-bit) floating-point elements in a to +// packed 32-bit integers, and store the results in dst. +// +// FOR j := 0 to 1 +// i := 32*j +// dst[i+31:i] := Convert_FP32_To_Int32(a[i+31:i]) +// ENDFOR +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_ps2pi +FORCE_INLINE __m64 _mm_cvt_ps2pi(__m128 a) +{ +#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING) + return vreinterpret_m64_s32( + vget_low_s32(vcvtnq_s32_f32(vrndiq_f32(vreinterpretq_f32_m128(a))))); +#else + return vreinterpret_m64_s32(vcvt_s32_f32(vget_low_f32( + vreinterpretq_f32_m128(_mm_round_ps(a, _MM_FROUND_CUR_DIRECTION))))); +#endif +} + +// Convert the signed 32-bit integer b to a single-precision (32-bit) +// floating-point element, store the result in the lower element of dst, and +// copy the upper 3 packed elements from a to the upper elements of dst. +// +// dst[31:0] := Convert_Int32_To_FP32(b[31:0]) +// dst[127:32] := a[127:32] +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_si2ss +FORCE_INLINE __m128 _mm_cvt_si2ss(__m128 a, int b) +{ + return vreinterpretq_m128_f32( + vsetq_lane_f32((float) b, vreinterpretq_f32_m128(a), 0)); +} + +// Convert the lower single-precision (32-bit) floating-point element in a to a +// 32-bit integer, and store the result in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_ss2si +FORCE_INLINE int _mm_cvt_ss2si(__m128 a) +{ +#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING) + return vgetq_lane_s32(vcvtnq_s32_f32(vrndiq_f32(vreinterpretq_f32_m128(a))), + 0); +#else + float32_t data = vgetq_lane_f32( + vreinterpretq_f32_m128(_mm_round_ps(a, _MM_FROUND_CUR_DIRECTION)), 0); + return (int32_t) data; +#endif +} + +// Convert packed 16-bit integers in a to packed single-precision (32-bit) +// floating-point elements, and store the results in dst. +// +// FOR j := 0 to 3 +// i := j*16 +// m := j*32 +// dst[m+31:m] := Convert_Int16_To_FP32(a[i+15:i]) +// ENDFOR +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi16_ps +FORCE_INLINE __m128 _mm_cvtpi16_ps(__m64 a) +{ + return vreinterpretq_m128_f32( + vcvtq_f32_s32(vmovl_s16(vreinterpret_s16_m64(a)))); +} + +// Convert packed 32-bit integers in b to packed single-precision (32-bit) +// floating-point elements, store the results in the lower 2 elements of dst, +// and copy the upper 2 packed elements from a to the upper elements of dst. +// +// dst[31:0] := Convert_Int32_To_FP32(b[31:0]) +// dst[63:32] := Convert_Int32_To_FP32(b[63:32]) +// dst[95:64] := a[95:64] +// dst[127:96] := a[127:96] +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi32_ps +FORCE_INLINE __m128 _mm_cvtpi32_ps(__m128 a, __m64 b) +{ + return vreinterpretq_m128_f32( + vcombine_f32(vcvt_f32_s32(vreinterpret_s32_m64(b)), + vget_high_f32(vreinterpretq_f32_m128(a)))); +} + +// Convert packed signed 32-bit integers in a to packed single-precision +// (32-bit) floating-point elements, store the results in the lower 2 elements +// of dst, then convert the packed signed 32-bit integers in b to +// single-precision (32-bit) floating-point element, and store the results in +// the upper 2 elements of dst. +// +// dst[31:0] := Convert_Int32_To_FP32(a[31:0]) +// dst[63:32] := Convert_Int32_To_FP32(a[63:32]) +// dst[95:64] := Convert_Int32_To_FP32(b[31:0]) +// dst[127:96] := Convert_Int32_To_FP32(b[63:32]) +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi32x2_ps +FORCE_INLINE __m128 _mm_cvtpi32x2_ps(__m64 a, __m64 b) +{ + return vreinterpretq_m128_f32(vcvtq_f32_s32( + vcombine_s32(vreinterpret_s32_m64(a), vreinterpret_s32_m64(b)))); +} + +// Convert the lower packed 8-bit integers in a to packed single-precision +// (32-bit) floating-point elements, and store the results in dst. +// +// FOR j := 0 to 3 +// i := j*8 +// m := j*32 +// dst[m+31:m] := Convert_Int8_To_FP32(a[i+7:i]) +// ENDFOR +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi8_ps +FORCE_INLINE __m128 _mm_cvtpi8_ps(__m64 a) +{ + return vreinterpretq_m128_f32(vcvtq_f32_s32( + vmovl_s16(vget_low_s16(vmovl_s8(vreinterpret_s8_m64(a)))))); +} + +// Convert packed single-precision (32-bit) floating-point elements in a to +// packed 16-bit integers, and store the results in dst. Note: this intrinsic +// will generate 0x7FFF, rather than 0x8000, for input values between 0x7FFF and +// 0x7FFFFFFF. +// +// FOR j := 0 to 3 +// i := 16*j +// k := 32*j +// IF a[k+31:k] >= FP32(0x7FFF) && a[k+31:k] <= FP32(0x7FFFFFFF) +// dst[i+15:i] := 0x7FFF +// ELSE +// dst[i+15:i] := Convert_FP32_To_Int16(a[k+31:k]) +// FI +// ENDFOR +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_pi16 +FORCE_INLINE __m64 _mm_cvtps_pi16(__m128 a) +{ + return vreinterpret_m64_s16( + vqmovn_s32(vreinterpretq_s32_m128i(_mm_cvtps_epi32(a)))); +} + +// Convert packed single-precision (32-bit) floating-point elements in a to +// packed 32-bit integers, and store the results in dst. +// +// FOR j := 0 to 1 +// i := 32*j +// dst[i+31:i] := Convert_FP32_To_Int32(a[i+31:i]) +// ENDFOR +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_pi32 +#define _mm_cvtps_pi32(a) _mm_cvt_ps2pi(a) + +// Convert packed single-precision (32-bit) floating-point elements in a to +// packed 8-bit integers, and store the results in lower 4 elements of dst. +// Note: this intrinsic will generate 0x7F, rather than 0x80, for input values +// between 0x7F and 0x7FFFFFFF. +// +// FOR j := 0 to 3 +// i := 8*j +// k := 32*j +// IF a[k+31:k] >= FP32(0x7F) && a[k+31:k] <= FP32(0x7FFFFFFF) +// dst[i+7:i] := 0x7F +// ELSE +// dst[i+7:i] := Convert_FP32_To_Int8(a[k+31:k]) +// FI +// ENDFOR +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_pi8 +FORCE_INLINE __m64 _mm_cvtps_pi8(__m128 a) +{ + return vreinterpret_m64_s8(vqmovn_s16( + vcombine_s16(vreinterpret_s16_m64(_mm_cvtps_pi16(a)), vdup_n_s16(0)))); +} + +// Convert packed unsigned 16-bit integers in a to packed single-precision +// (32-bit) floating-point elements, and store the results in dst. +// +// FOR j := 0 to 3 +// i := j*16 +// m := j*32 +// dst[m+31:m] := Convert_UInt16_To_FP32(a[i+15:i]) +// ENDFOR +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpu16_ps +FORCE_INLINE __m128 _mm_cvtpu16_ps(__m64 a) +{ + return vreinterpretq_m128_f32( + vcvtq_f32_u32(vmovl_u16(vreinterpret_u16_m64(a)))); +} + +// Convert the lower packed unsigned 8-bit integers in a to packed +// single-precision (32-bit) floating-point elements, and store the results in +// dst. +// +// FOR j := 0 to 3 +// i := j*8 +// m := j*32 +// dst[m+31:m] := Convert_UInt8_To_FP32(a[i+7:i]) +// ENDFOR +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpu8_ps +FORCE_INLINE __m128 _mm_cvtpu8_ps(__m64 a) +{ + return vreinterpretq_m128_f32(vcvtq_f32_u32( + vmovl_u16(vget_low_u16(vmovl_u8(vreinterpret_u8_m64(a)))))); +} + +// Convert the signed 32-bit integer b to a single-precision (32-bit) +// floating-point element, store the result in the lower element of dst, and +// copy the upper 3 packed elements from a to the upper elements of dst. +// +// dst[31:0] := Convert_Int32_To_FP32(b[31:0]) +// dst[127:32] := a[127:32] +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi32_ss +#define _mm_cvtsi32_ss(a, b) _mm_cvt_si2ss(a, b) + +// Convert the signed 64-bit integer b to a single-precision (32-bit) +// floating-point element, store the result in the lower element of dst, and +// copy the upper 3 packed elements from a to the upper elements of dst. +// +// dst[31:0] := Convert_Int64_To_FP32(b[63:0]) +// dst[127:32] := a[127:32] +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi64_ss +FORCE_INLINE __m128 _mm_cvtsi64_ss(__m128 a, int64_t b) +{ + return vreinterpretq_m128_f32( + vsetq_lane_f32((float) b, vreinterpretq_f32_m128(a), 0)); +} + +// Copy the lower single-precision (32-bit) floating-point element of a to dst. +// +// dst[31:0] := a[31:0] +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_f32 +FORCE_INLINE float _mm_cvtss_f32(__m128 a) +{ + return vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); +} + +// Convert the lower single-precision (32-bit) floating-point element in a to a +// 32-bit integer, and store the result in dst. +// +// dst[31:0] := Convert_FP32_To_Int32(a[31:0]) +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_si32 +#define _mm_cvtss_si32(a) _mm_cvt_ss2si(a) + +// Convert the lower single-precision (32-bit) floating-point element in a to a +// 64-bit integer, and store the result in dst. +// +// dst[63:0] := Convert_FP32_To_Int64(a[31:0]) +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_si64 +FORCE_INLINE int64_t _mm_cvtss_si64(__m128 a) +{ +#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING) + return (int64_t) vgetq_lane_f32(vrndiq_f32(vreinterpretq_f32_m128(a)), 0); +#else + float32_t data = vgetq_lane_f32( + vreinterpretq_f32_m128(_mm_round_ps(a, _MM_FROUND_CUR_DIRECTION)), 0); + return (int64_t) data; +#endif +} + +// Convert packed single-precision (32-bit) floating-point elements in a to +// packed 32-bit integers with truncation, and store the results in dst. +// +// FOR j := 0 to 1 +// i := 32*j +// dst[i+31:i] := Convert_FP32_To_Int32_Truncate(a[i+31:i]) +// ENDFOR +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtt_ps2pi +FORCE_INLINE __m64 _mm_cvtt_ps2pi(__m128 a) +{ + return vreinterpret_m64_s32( + vget_low_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a)))); +} + +// Convert the lower single-precision (32-bit) floating-point element in a to a +// 32-bit integer with truncation, and store the result in dst. +// +// dst[31:0] := Convert_FP32_To_Int32_Truncate(a[31:0]) +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtt_ss2si +FORCE_INLINE int _mm_cvtt_ss2si(__m128 a) +{ + return vgetq_lane_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a)), 0); +} + +// Convert packed single-precision (32-bit) floating-point elements in a to +// packed 32-bit integers with truncation, and store the results in dst. +// +// FOR j := 0 to 1 +// i := 32*j +// dst[i+31:i] := Convert_FP32_To_Int32_Truncate(a[i+31:i]) +// ENDFOR +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttps_pi32 +#define _mm_cvttps_pi32(a) _mm_cvtt_ps2pi(a) + +// Convert the lower single-precision (32-bit) floating-point element in a to a +// 32-bit integer with truncation, and store the result in dst. +// +// dst[31:0] := Convert_FP32_To_Int32_Truncate(a[31:0]) +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttss_si32 +#define _mm_cvttss_si32(a) _mm_cvtt_ss2si(a) + +// Convert the lower single-precision (32-bit) floating-point element in a to a +// 64-bit integer with truncation, and store the result in dst. +// +// dst[63:0] := Convert_FP32_To_Int64_Truncate(a[31:0]) +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttss_si64 +FORCE_INLINE int64_t _mm_cvttss_si64(__m128 a) +{ + return (int64_t) vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); +} + +// Divides the four single-precision, floating-point values of a and b. +// +// r0 := a0 / b0 +// r1 := a1 / b1 +// r2 := a2 / b2 +// r3 := a3 / b3 +// +// https://msdn.microsoft.com/en-us/library/edaw8147(v=vs.100).aspx +FORCE_INLINE __m128 _mm_div_ps(__m128 a, __m128 b) +{ +#if defined(__aarch64__) && !SSE2NEON_PRECISE_DIV + return vreinterpretq_m128_f32( + vdivq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +#else + float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(b)); + recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(b))); +#if SSE2NEON_PRECISE_DIV + // Additional Netwon-Raphson iteration for accuracy + recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(b))); +#endif + return vreinterpretq_m128_f32(vmulq_f32(vreinterpretq_f32_m128(a), recip)); +#endif +} + +// Divides the scalar single-precision floating point value of a by b. +// https://msdn.microsoft.com/en-us/library/4y73xa49(v=vs.100).aspx +FORCE_INLINE __m128 _mm_div_ss(__m128 a, __m128 b) +{ + float32_t value = + vgetq_lane_f32(vreinterpretq_f32_m128(_mm_div_ps(a, b)), 0); + return vreinterpretq_m128_f32( + vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0)); +} + +// Extract a 16-bit integer from a, selected with imm8, and store the result in +// the lower element of dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_extract_pi16 +#define _mm_extract_pi16(a, imm) \ + (int32_t) vget_lane_u16(vreinterpret_u16_m64(a), (imm)) + +// Free aligned memory that was allocated with _mm_malloc. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_free +#if !defined(SSE2NEON_ALLOC_DEFINED) +FORCE_INLINE void _mm_free(void *addr) +{ + free(addr); +} +#endif + +// Macro: Get the flush zero bits from the MXCSR control and status register. +// The flush zero may contain any of the following flags: _MM_FLUSH_ZERO_ON or +// _MM_FLUSH_ZERO_OFF +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_MM_GET_FLUSH_ZERO_MODE +FORCE_INLINE unsigned int _sse2neon_mm_get_flush_zero_mode() +{ + union { + fpcr_bitfield field; +#if defined(__aarch64__) + uint64_t value; +#else + uint32_t value; +#endif + } r; + +#if defined(__aarch64__) + __asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */ +#else + __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ +#endif + + return r.field.bit24 ? _MM_FLUSH_ZERO_ON : _MM_FLUSH_ZERO_OFF; +} + +// Macro: Get the rounding mode bits from the MXCSR control and status register. +// The rounding mode may contain any of the following flags: _MM_ROUND_NEAREST, +// _MM_ROUND_DOWN, _MM_ROUND_UP, _MM_ROUND_TOWARD_ZERO +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_MM_GET_ROUNDING_MODE +FORCE_INLINE unsigned int _MM_GET_ROUNDING_MODE() +{ + union { + fpcr_bitfield field; +#if defined(__aarch64__) + uint64_t value; +#else + uint32_t value; +#endif + } r; + +#if defined(__aarch64__) + __asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */ +#else + __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ +#endif + + if (r.field.bit22) { + return r.field.bit23 ? _MM_ROUND_TOWARD_ZERO : _MM_ROUND_UP; + } else { + return r.field.bit23 ? _MM_ROUND_DOWN : _MM_ROUND_NEAREST; + } +} + +// Copy a to dst, and insert the 16-bit integer i into dst at the location +// specified by imm8. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_insert_pi16 +#define _mm_insert_pi16(a, b, imm) \ + __extension__({ \ + vreinterpret_m64_s16( \ + vset_lane_s16((b), vreinterpret_s16_m64(a), (imm))); \ + }) + +// Loads four single-precision, floating-point values. +// https://msdn.microsoft.com/en-us/library/vstudio/zzd50xxt(v=vs.100).aspx +FORCE_INLINE __m128 _mm_load_ps(const float *p) +{ + return vreinterpretq_m128_f32(vld1q_f32(p)); +} + +// Load a single-precision (32-bit) floating-point element from memory into all +// elements of dst. +// +// dst[31:0] := MEM[mem_addr+31:mem_addr] +// dst[63:32] := MEM[mem_addr+31:mem_addr] +// dst[95:64] := MEM[mem_addr+31:mem_addr] +// dst[127:96] := MEM[mem_addr+31:mem_addr] +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_ps1 +#define _mm_load_ps1 _mm_load1_ps + +// Loads an single - precision, floating - point value into the low word and +// clears the upper three words. +// https://msdn.microsoft.com/en-us/library/548bb9h4%28v=vs.90%29.aspx +FORCE_INLINE __m128 _mm_load_ss(const float *p) +{ + return vreinterpretq_m128_f32(vsetq_lane_f32(*p, vdupq_n_f32(0), 0)); +} + +// Loads a single single-precision, floating-point value, copying it into all +// four words +// https://msdn.microsoft.com/en-us/library/vstudio/5cdkf716(v=vs.100).aspx +FORCE_INLINE __m128 _mm_load1_ps(const float *p) +{ + return vreinterpretq_m128_f32(vld1q_dup_f32(p)); +} + +// Sets the upper two single-precision, floating-point values with 64 +// bits of data loaded from the address p; the lower two values are passed +// through from a. +// +// r0 := a0 +// r1 := a1 +// r2 := *p0 +// r3 := *p1 +// +// https://msdn.microsoft.com/en-us/library/w92wta0x(v%3dvs.100).aspx +FORCE_INLINE __m128 _mm_loadh_pi(__m128 a, __m64 const *p) +{ + return vreinterpretq_m128_f32( + vcombine_f32(vget_low_f32(a), vld1_f32((const float32_t *) p))); +} + +// Sets the lower two single-precision, floating-point values with 64 +// bits of data loaded from the address p; the upper two values are passed +// through from a. +// +// Return Value +// r0 := *p0 +// r1 := *p1 +// r2 := a2 +// r3 := a3 +// +// https://msdn.microsoft.com/en-us/library/s57cyak2(v=vs.100).aspx +FORCE_INLINE __m128 _mm_loadl_pi(__m128 a, __m64 const *p) +{ + return vreinterpretq_m128_f32( + vcombine_f32(vld1_f32((const float32_t *) p), vget_high_f32(a))); +} + +// Load 4 single-precision (32-bit) floating-point elements from memory into dst +// in reverse order. mem_addr must be aligned on a 16-byte boundary or a +// general-protection exception may be generated. +// +// dst[31:0] := MEM[mem_addr+127:mem_addr+96] +// dst[63:32] := MEM[mem_addr+95:mem_addr+64] +// dst[95:64] := MEM[mem_addr+63:mem_addr+32] +// dst[127:96] := MEM[mem_addr+31:mem_addr] +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadr_ps +FORCE_INLINE __m128 _mm_loadr_ps(const float *p) +{ + float32x4_t v = vrev64q_f32(vld1q_f32(p)); + return vreinterpretq_m128_f32(vextq_f32(v, v, 2)); +} + +// Loads four single-precision, floating-point values. +// https://msdn.microsoft.com/en-us/library/x1b16s7z%28v=vs.90%29.aspx +FORCE_INLINE __m128 _mm_loadu_ps(const float *p) +{ + // for neon, alignment doesn't matter, so _mm_load_ps and _mm_loadu_ps are + // equivalent for neon + return vreinterpretq_m128_f32(vld1q_f32(p)); +} + +// Load unaligned 16-bit integer from memory into the first element of dst. +// +// dst[15:0] := MEM[mem_addr+15:mem_addr] +// dst[MAX:16] := 0 +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_si16 +FORCE_INLINE __m128i _mm_loadu_si16(const void *p) +{ + return vreinterpretq_m128i_s16( + vsetq_lane_s16(*(const int16_t *) p, vdupq_n_s16(0), 0)); +} + +// Load unaligned 64-bit integer from memory into the first element of dst. +// +// dst[63:0] := MEM[mem_addr+63:mem_addr] +// dst[MAX:64] := 0 +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_si64 +FORCE_INLINE __m128i _mm_loadu_si64(const void *p) +{ + return vreinterpretq_m128i_s64( + vcombine_s64(vld1_s64((const int64_t *) p), vdup_n_s64(0))); +} + +// Allocate aligned blocks of memory. +// https://software.intel.com/en-us/ +// cpp-compiler-developer-guide-and-reference-allocating-and-freeing-aligned-memory-blocks +#if !defined(SSE2NEON_ALLOC_DEFINED) +FORCE_INLINE void *_mm_malloc(size_t size, size_t align) +{ + void *ptr; + if (align == 1) + return malloc(size); + if (align == 2 || (sizeof(void *) == 8 && align == 4)) + align = sizeof(void *); + if (!posix_memalign(&ptr, align, size)) + return ptr; + return NULL; +} +#endif + +// Conditionally store 8-bit integer elements from a into memory using mask +// (elements are not stored when the highest bit is not set in the corresponding +// element) and a non-temporal memory hint. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskmove_si64 +FORCE_INLINE void _mm_maskmove_si64(__m64 a, __m64 mask, char *mem_addr) +{ + int8x8_t shr_mask = vshr_n_s8(vreinterpret_s8_m64(mask), 7); + __m128 b = _mm_load_ps((const float *) mem_addr); + int8x8_t masked = + vbsl_s8(vreinterpret_u8_s8(shr_mask), vreinterpret_s8_m64(a), + vreinterpret_s8_u64(vget_low_u64(vreinterpretq_u64_m128(b)))); + vst1_s8((int8_t *) mem_addr, masked); +} + +// Conditionally store 8-bit integer elements from a into memory using mask +// (elements are not stored when the highest bit is not set in the corresponding +// element) and a non-temporal memory hint. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_maskmovq +#define _m_maskmovq(a, mask, mem_addr) _mm_maskmove_si64(a, mask, mem_addr) + +// Compare packed signed 16-bit integers in a and b, and store packed maximum +// values in dst. +// +// FOR j := 0 to 3 +// i := j*16 +// dst[i+15:i] := MAX(a[i+15:i], b[i+15:i]) +// ENDFOR +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_pi16 +FORCE_INLINE __m64 _mm_max_pi16(__m64 a, __m64 b) +{ + return vreinterpret_m64_s16( + vmax_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b))); +} + +// Computes the maximums of the four single-precision, floating-point values of +// a and b. +// https://msdn.microsoft.com/en-us/library/vstudio/ff5d607a(v=vs.100).aspx +FORCE_INLINE __m128 _mm_max_ps(__m128 a, __m128 b) +{ +#if SSE2NEON_PRECISE_MINMAX + float32x4_t _a = vreinterpretq_f32_m128(a); + float32x4_t _b = vreinterpretq_f32_m128(b); + return vreinterpretq_m128_f32(vbslq_f32(vcgtq_f32(_a, _b), _a, _b)); +#else + return vreinterpretq_m128_f32( + vmaxq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +#endif +} + +// Compare packed unsigned 8-bit integers in a and b, and store packed maximum +// values in dst. +// +// FOR j := 0 to 7 +// i := j*8 +// dst[i+7:i] := MAX(a[i+7:i], b[i+7:i]) +// ENDFOR +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_pu8 +FORCE_INLINE __m64 _mm_max_pu8(__m64 a, __m64 b) +{ + return vreinterpret_m64_u8( + vmax_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b))); +} + +// Computes the maximum of the two lower scalar single-precision floating point +// values of a and b. +// https://msdn.microsoft.com/en-us/library/s6db5esz(v=vs.100).aspx +FORCE_INLINE __m128 _mm_max_ss(__m128 a, __m128 b) +{ + float32_t value = vgetq_lane_f32(_mm_max_ps(a, b), 0); + return vreinterpretq_m128_f32( + vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0)); +} + +// Compare packed signed 16-bit integers in a and b, and store packed minimum +// values in dst. +// +// FOR j := 0 to 3 +// i := j*16 +// dst[i+15:i] := MIN(a[i+15:i], b[i+15:i]) +// ENDFOR +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_pi16 +FORCE_INLINE __m64 _mm_min_pi16(__m64 a, __m64 b) +{ + return vreinterpret_m64_s16( + vmin_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b))); +} + +// Computes the minima of the four single-precision, floating-point values of a +// and b. +// https://msdn.microsoft.com/en-us/library/vstudio/wh13kadz(v=vs.100).aspx +FORCE_INLINE __m128 _mm_min_ps(__m128 a, __m128 b) +{ +#if SSE2NEON_PRECISE_MINMAX + float32x4_t _a = vreinterpretq_f32_m128(a); + float32x4_t _b = vreinterpretq_f32_m128(b); + return vreinterpretq_m128_f32(vbslq_f32(vcltq_f32(_a, _b), _a, _b)); +#else + return vreinterpretq_m128_f32( + vminq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +#endif +} + +// Compare packed unsigned 8-bit integers in a and b, and store packed minimum +// values in dst. +// +// FOR j := 0 to 7 +// i := j*8 +// dst[i+7:i] := MIN(a[i+7:i], b[i+7:i]) +// ENDFOR +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_pu8 +FORCE_INLINE __m64 _mm_min_pu8(__m64 a, __m64 b) +{ + return vreinterpret_m64_u8( + vmin_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b))); +} + +// Computes the minimum of the two lower scalar single-precision floating point +// values of a and b. +// https://msdn.microsoft.com/en-us/library/0a9y7xaa(v=vs.100).aspx +FORCE_INLINE __m128 _mm_min_ss(__m128 a, __m128 b) +{ + float32_t value = vgetq_lane_f32(_mm_min_ps(a, b), 0); + return vreinterpretq_m128_f32( + vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0)); +} + +// Sets the low word to the single-precision, floating-point value of b +// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/35hdzazd(v=vs.100) +FORCE_INLINE __m128 _mm_move_ss(__m128 a, __m128 b) +{ + return vreinterpretq_m128_f32( + vsetq_lane_f32(vgetq_lane_f32(vreinterpretq_f32_m128(b), 0), + vreinterpretq_f32_m128(a), 0)); +} + +// Moves the upper two values of B into the lower two values of A. +// +// r3 := a3 +// r2 := a2 +// r1 := b3 +// r0 := b2 +FORCE_INLINE __m128 _mm_movehl_ps(__m128 __A, __m128 __B) +{ + float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(__A)); + float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(__B)); + return vreinterpretq_m128_f32(vcombine_f32(b32, a32)); +} + +// Moves the lower two values of B into the upper two values of A. +// +// r3 := b1 +// r2 := b0 +// r1 := a1 +// r0 := a0 +FORCE_INLINE __m128 _mm_movelh_ps(__m128 __A, __m128 __B) +{ + float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(__A)); + float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(__B)); + return vreinterpretq_m128_f32(vcombine_f32(a10, b10)); +} + +// Create mask from the most significant bit of each 8-bit element in a, and +// store the result in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movemask_pi8 +FORCE_INLINE int _mm_movemask_pi8(__m64 a) +{ + uint8x8_t input = vreinterpret_u8_m64(a); +#if defined(__aarch64__) + static const int8x8_t shift = {0, 1, 2, 3, 4, 5, 6, 7}; + uint8x8_t tmp = vshr_n_u8(input, 7); + return vaddv_u8(vshl_u8(tmp, shift)); +#else + // Refer the implementation of `_mm_movemask_epi8` + uint16x4_t high_bits = vreinterpret_u16_u8(vshr_n_u8(input, 7)); + uint32x2_t paired16 = + vreinterpret_u32_u16(vsra_n_u16(high_bits, high_bits, 7)); + uint8x8_t paired32 = + vreinterpret_u8_u32(vsra_n_u32(paired16, paired16, 14)); + return vget_lane_u8(paired32, 0) | ((int) vget_lane_u8(paired32, 4) << 4); +#endif +} + +// NEON does not provide this method +// Creates a 4-bit mask from the most significant bits of the four +// single-precision, floating-point values. +// https://msdn.microsoft.com/en-us/library/vstudio/4490ys29(v=vs.100).aspx +FORCE_INLINE int _mm_movemask_ps(__m128 a) +{ + uint32x4_t input = vreinterpretq_u32_m128(a); +#if defined(__aarch64__) + static const int32x4_t shift = {0, 1, 2, 3}; + uint32x4_t tmp = vshrq_n_u32(input, 31); + return vaddvq_u32(vshlq_u32(tmp, shift)); +#else + // Uses the exact same method as _mm_movemask_epi8, see that for details. + // Shift out everything but the sign bits with a 32-bit unsigned shift + // right. + uint64x2_t high_bits = vreinterpretq_u64_u32(vshrq_n_u32(input, 31)); + // Merge the two pairs together with a 64-bit unsigned shift right + add. + uint8x16_t paired = + vreinterpretq_u8_u64(vsraq_n_u64(high_bits, high_bits, 31)); + // Extract the result. + return vgetq_lane_u8(paired, 0) | (vgetq_lane_u8(paired, 8) << 2); +#endif +} + +// Multiplies the four single-precision, floating-point values of a and b. +// +// r0 := a0 * b0 +// r1 := a1 * b1 +// r2 := a2 * b2 +// r3 := a3 * b3 +// +// https://msdn.microsoft.com/en-us/library/vstudio/22kbk6t9(v=vs.100).aspx +FORCE_INLINE __m128 _mm_mul_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_f32( + vmulq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +} + +// Multiply the lower single-precision (32-bit) floating-point element in a and +// b, store the result in the lower element of dst, and copy the upper 3 packed +// elements from a to the upper elements of dst. +// +// dst[31:0] := a[31:0] * b[31:0] +// dst[127:32] := a[127:32] +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mul_ss +FORCE_INLINE __m128 _mm_mul_ss(__m128 a, __m128 b) +{ + return _mm_move_ss(a, _mm_mul_ps(a, b)); +} + +// Multiply the packed unsigned 16-bit integers in a and b, producing +// intermediate 32-bit integers, and store the high 16 bits of the intermediate +// integers in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mulhi_pu16 +FORCE_INLINE __m64 _mm_mulhi_pu16(__m64 a, __m64 b) +{ + return vreinterpret_m64_u16(vshrn_n_u32( + vmull_u16(vreinterpret_u16_m64(a), vreinterpret_u16_m64(b)), 16)); +} + +// Computes the bitwise OR of the four single-precision, floating-point values +// of a and b. +// https://msdn.microsoft.com/en-us/library/vstudio/7ctdsyy0(v=vs.100).aspx +FORCE_INLINE __m128 _mm_or_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_s32( + vorrq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b))); +} + +// Average packed unsigned 8-bit integers in a and b, and store the results in +// dst. +// +// FOR j := 0 to 7 +// i := j*8 +// dst[i+7:i] := (a[i+7:i] + b[i+7:i] + 1) >> 1 +// ENDFOR +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pavgb +#define _m_pavgb(a, b) _mm_avg_pu8(a, b) + +// Average packed unsigned 16-bit integers in a and b, and store the results in +// dst. +// +// FOR j := 0 to 3 +// i := j*16 +// dst[i+15:i] := (a[i+15:i] + b[i+15:i] + 1) >> 1 +// ENDFOR +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pavgw +#define _m_pavgw(a, b) _mm_avg_pu16(a, b) + +// Extract a 16-bit integer from a, selected with imm8, and store the result in +// the lower element of dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pextrw +#define _m_pextrw(a, imm) _mm_extract_pi16(a, imm) + +// Copy a to dst, and insert the 16-bit integer i into dst at the location +// specified by imm8. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=m_pinsrw +#define _m_pinsrw(a, i, imm) _mm_insert_pi16(a, i, imm) + +// Compare packed signed 16-bit integers in a and b, and store packed maximum +// values in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmaxsw +#define _m_pmaxsw(a, b) _mm_max_pi16(a, b) + +// Compare packed unsigned 8-bit integers in a and b, and store packed maximum +// values in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmaxub +#define _m_pmaxub(a, b) _mm_max_pu8(a, b) + +// Compare packed signed 16-bit integers in a and b, and store packed minimum +// values in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pminsw +#define _m_pminsw(a, b) _mm_min_pi16(a, b) + +// Compare packed unsigned 8-bit integers in a and b, and store packed minimum +// values in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pminub +#define _m_pminub(a, b) _mm_min_pu8(a, b) + +// Create mask from the most significant bit of each 8-bit element in a, and +// store the result in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmovmskb +#define _m_pmovmskb(a) _mm_movemask_pi8(a) + +// Multiply the packed unsigned 16-bit integers in a and b, producing +// intermediate 32-bit integers, and store the high 16 bits of the intermediate +// integers in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmulhuw +#define _m_pmulhuw(a, b) _mm_mulhi_pu16(a, b) + +// Loads one cache line of data from address p to a location closer to the +// processor. https://msdn.microsoft.com/en-us/library/84szxsww(v=vs.100).aspx +FORCE_INLINE void _mm_prefetch(const void *p, int i) +{ + (void) i; + __builtin_prefetch(p); +} + +// Compute the absolute differences of packed unsigned 8-bit integers in a and +// b, then horizontally sum each consecutive 8 differences to produce four +// unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low +// 16 bits of dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=m_psadbw +#define _m_psadbw(a, b) _mm_sad_pu8(a, b) + +// Shuffle 16-bit integers in a using the control in imm8, and store the results +// in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pshufw +#define _m_pshufw(a, imm) _mm_shuffle_pi16(a, imm) + +// Compute the approximate reciprocal of packed single-precision (32-bit) +// floating-point elements in a, and store the results in dst. The maximum +// relative error for this approximation is less than 1.5*2^-12. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_rcp_ps +FORCE_INLINE __m128 _mm_rcp_ps(__m128 in) +{ + float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(in)); + recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(in))); +#if SSE2NEON_PRECISE_DIV + // Additional Netwon-Raphson iteration for accuracy + recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(in))); +#endif + return vreinterpretq_m128_f32(recip); +} + +// Compute the approximate reciprocal of the lower single-precision (32-bit) +// floating-point element in a, store the result in the lower element of dst, +// and copy the upper 3 packed elements from a to the upper elements of dst. The +// maximum relative error for this approximation is less than 1.5*2^-12. +// +// dst[31:0] := (1.0 / a[31:0]) +// dst[127:32] := a[127:32] +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_rcp_ss +FORCE_INLINE __m128 _mm_rcp_ss(__m128 a) +{ + return _mm_move_ss(a, _mm_rcp_ps(a)); +} + +// Computes the approximations of the reciprocal square roots of the four +// single-precision floating point values of in. +// The current precision is 1% error. +// https://msdn.microsoft.com/en-us/library/22hfsh53(v=vs.100).aspx +FORCE_INLINE __m128 _mm_rsqrt_ps(__m128 in) +{ + float32x4_t out = vrsqrteq_f32(vreinterpretq_f32_m128(in)); +#if SSE2NEON_PRECISE_SQRT + // Additional Netwon-Raphson iteration for accuracy + out = vmulq_f32( + out, vrsqrtsq_f32(vmulq_f32(vreinterpretq_f32_m128(in), out), out)); + out = vmulq_f32( + out, vrsqrtsq_f32(vmulq_f32(vreinterpretq_f32_m128(in), out), out)); +#endif + return vreinterpretq_m128_f32(out); +} + +// Compute the approximate reciprocal square root of the lower single-precision +// (32-bit) floating-point element in a, store the result in the lower element +// of dst, and copy the upper 3 packed elements from a to the upper elements of +// dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_rsqrt_ss +FORCE_INLINE __m128 _mm_rsqrt_ss(__m128 in) +{ + return vsetq_lane_f32(vgetq_lane_f32(_mm_rsqrt_ps(in), 0), in, 0); +} + +// Compute the absolute differences of packed unsigned 8-bit integers in a and +// b, then horizontally sum each consecutive 8 differences to produce four +// unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low +// 16 bits of dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sad_pu8 +FORCE_INLINE __m64 _mm_sad_pu8(__m64 a, __m64 b) +{ + uint64x1_t t = vpaddl_u32(vpaddl_u16( + vpaddl_u8(vabd_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b))))); + return vreinterpret_m64_u16( + vset_lane_u16(vget_lane_u64(t, 0), vdup_n_u16(0), 0)); +} + +// Macro: Set the flush zero bits of the MXCSR control and status register to +// the value in unsigned 32-bit integer a. The flush zero may contain any of the +// following flags: _MM_FLUSH_ZERO_ON or _MM_FLUSH_ZERO_OFF +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_MM_SET_FLUSH_ZERO_MODE +FORCE_INLINE void _sse2neon_mm_set_flush_zero_mode(unsigned int flag) +{ + // AArch32 Advanced SIMD arithmetic always uses the Flush-to-zero setting, + // regardless of the value of the FZ bit. + union { + fpcr_bitfield field; +#if defined(__aarch64__) + uint64_t value; +#else + uint32_t value; +#endif + } r; + +#if defined(__aarch64__) + __asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */ +#else + __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ +#endif + + r.field.bit24 = (flag & _MM_FLUSH_ZERO_MASK) == _MM_FLUSH_ZERO_ON; + +#if defined(__aarch64__) + __asm__ __volatile__("msr FPCR, %0" ::"r"(r)); /* write */ +#else + __asm__ __volatile__("vmsr FPSCR, %0" ::"r"(r)); /* write */ +#endif +} + +// Sets the four single-precision, floating-point values to the four inputs. +// https://msdn.microsoft.com/en-us/library/vstudio/afh0zf75(v=vs.100).aspx +FORCE_INLINE __m128 _mm_set_ps(float w, float z, float y, float x) +{ + float ALIGN_STRUCT(16) data[4] = {x, y, z, w}; + return vreinterpretq_m128_f32(vld1q_f32(data)); +} + +// Sets the four single-precision, floating-point values to w. +// https://msdn.microsoft.com/en-us/library/vstudio/2x1se8ha(v=vs.100).aspx +FORCE_INLINE __m128 _mm_set_ps1(float _w) +{ + return vreinterpretq_m128_f32(vdupq_n_f32(_w)); +} + +// Macro: Set the rounding mode bits of the MXCSR control and status register to +// the value in unsigned 32-bit integer a. The rounding mode may contain any of +// the following flags: _MM_ROUND_NEAREST, _MM_ROUND_DOWN, _MM_ROUND_UP, +// _MM_ROUND_TOWARD_ZERO +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_MM_SET_ROUNDING_MODE +FORCE_INLINE void _MM_SET_ROUNDING_MODE(int rounding) +{ + union { + fpcr_bitfield field; +#if defined(__aarch64__) + uint64_t value; +#else + uint32_t value; +#endif + } r; + +#if defined(__aarch64__) + __asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */ +#else + __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ +#endif + + switch (rounding) { + case _MM_ROUND_TOWARD_ZERO: + r.field.bit22 = 1; + r.field.bit23 = 1; + break; + case _MM_ROUND_DOWN: + r.field.bit22 = 0; + r.field.bit23 = 1; + break; + case _MM_ROUND_UP: + r.field.bit22 = 1; + r.field.bit23 = 0; + break; + default: //_MM_ROUND_NEAREST + r.field.bit22 = 0; + r.field.bit23 = 0; + } + +#if defined(__aarch64__) + __asm__ __volatile__("msr FPCR, %0" ::"r"(r)); /* write */ +#else + __asm__ __volatile__("vmsr FPSCR, %0" ::"r"(r)); /* write */ +#endif +} + +// Copy single-precision (32-bit) floating-point element a to the lower element +// of dst, and zero the upper 3 elements. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_ss +FORCE_INLINE __m128 _mm_set_ss(float a) +{ + float ALIGN_STRUCT(16) data[4] = {a, 0, 0, 0}; + return vreinterpretq_m128_f32(vld1q_f32(data)); +} + +// Sets the four single-precision, floating-point values to w. +// +// r0 := r1 := r2 := r3 := w +// +// https://msdn.microsoft.com/en-us/library/vstudio/2x1se8ha(v=vs.100).aspx +FORCE_INLINE __m128 _mm_set1_ps(float _w) +{ + return vreinterpretq_m128_f32(vdupq_n_f32(_w)); +} + +// FIXME: _mm_setcsr() implementation supports changing the rounding mode only. +FORCE_INLINE void _mm_setcsr(unsigned int a) +{ + _MM_SET_ROUNDING_MODE(a); +} + +// FIXME: _mm_getcsr() implementation supports reading the rounding mode only. +FORCE_INLINE unsigned int _mm_getcsr() +{ + return _MM_GET_ROUNDING_MODE(); +} + +// Sets the four single-precision, floating-point values to the four inputs in +// reverse order. +// https://msdn.microsoft.com/en-us/library/vstudio/d2172ct3(v=vs.100).aspx +FORCE_INLINE __m128 _mm_setr_ps(float w, float z, float y, float x) +{ + float ALIGN_STRUCT(16) data[4] = {w, z, y, x}; + return vreinterpretq_m128_f32(vld1q_f32(data)); +} + +// Clears the four single-precision, floating-point values. +// https://msdn.microsoft.com/en-us/library/vstudio/tk1t2tbz(v=vs.100).aspx +FORCE_INLINE __m128 _mm_setzero_ps(void) +{ + return vreinterpretq_m128_f32(vdupq_n_f32(0)); +} + +// Shuffle 16-bit integers in a using the control in imm8, and store the results +// in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_pi16 +#ifdef _sse2neon_shuffle +#define _mm_shuffle_pi16(a, imm) \ + __extension__({ \ + vreinterpret_m64_s16(vshuffle_s16( \ + vreinterpret_s16_m64(a), vreinterpret_s16_m64(a), (imm & 0x3), \ + ((imm >> 2) & 0x3), ((imm >> 4) & 0x3), ((imm >> 6) & 0x3))); \ + }) +#else +#define _mm_shuffle_pi16(a, imm) \ + __extension__({ \ + int16x4_t ret; \ + ret = \ + vmov_n_s16(vget_lane_s16(vreinterpret_s16_m64(a), (imm) & (0x3))); \ + ret = vset_lane_s16( \ + vget_lane_s16(vreinterpret_s16_m64(a), ((imm) >> 2) & 0x3), ret, \ + 1); \ + ret = vset_lane_s16( \ + vget_lane_s16(vreinterpret_s16_m64(a), ((imm) >> 4) & 0x3), ret, \ + 2); \ + ret = vset_lane_s16( \ + vget_lane_s16(vreinterpret_s16_m64(a), ((imm) >> 6) & 0x3), ret, \ + 3); \ + vreinterpret_m64_s16(ret); \ + }) +#endif + +// Guarantees that every preceding store is globally visible before any +// subsequent store. +// https://msdn.microsoft.com/en-us/library/5h2w73d1%28v=vs.90%29.aspx +FORCE_INLINE void _mm_sfence(void) +{ + __sync_synchronize(); +} + // FORCE_INLINE __m128 _mm_shuffle_ps(__m128 a, __m128 b, __constrange(0,255) // int imm) -#if __has_builtin(__builtin_shufflevector) -#define _mm_shuffle_ps(a, b, imm) \ - __extension__({ \ - float32x4_t _input1 = vreinterpretq_f32_m128(a); \ - float32x4_t _input2 = vreinterpretq_f32_m128(b); \ - float32x4_t _shuf = __builtin_shufflevector( \ - _input1, _input2, (imm) & (0x3), ((imm) >> 2) & 0x3, \ - (((imm) >> 4) & 0x3) + 4, (((imm) >> 6) & 0x3) + 4); \ - vreinterpretq_m128_f32(_shuf); \ +#ifdef _sse2neon_shuffle +#define _mm_shuffle_ps(a, b, imm) \ + __extension__({ \ + float32x4_t _input1 = vreinterpretq_f32_m128(a); \ + float32x4_t _input2 = vreinterpretq_f32_m128(b); \ + float32x4_t _shuf = \ + vshuffleq_s32(_input1, _input2, (imm) & (0x3), ((imm) >> 2) & 0x3, \ + (((imm) >> 4) & 0x3) + 4, (((imm) >> 6) & 0x3) + 4); \ + vreinterpretq_m128_f32(_shuf); \ }) #else // generic #define _mm_shuffle_ps(a, b, imm) \ @@ -2015,733 +2646,2137 @@ FORCE_INLINE __m128 _mm_shuffle_ps_2032(__m128 a, __m128 b) }) #endif -// Takes the upper 64 bits of a and places it in the low end of the result -// Takes the lower 64 bits of a and places it into the high end of the result. -FORCE_INLINE __m128i _mm_shuffle_epi_1032(__m128i a) +// Computes the approximations of square roots of the four single-precision, +// floating-point values of a. First computes reciprocal square roots and then +// reciprocals of the four values. +// +// r0 := sqrt(a0) +// r1 := sqrt(a1) +// r2 := sqrt(a2) +// r3 := sqrt(a3) +// +// https://msdn.microsoft.com/en-us/library/vstudio/8z67bwwk(v=vs.100).aspx +FORCE_INLINE __m128 _mm_sqrt_ps(__m128 in) { - int32x2_t a32 = vget_high_s32(vreinterpretq_s32_m128i(a)); - int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a)); - return vreinterpretq_m128i_s32(vcombine_s32(a32, a10)); -} +#if SSE2NEON_PRECISE_SQRT + float32x4_t recip = vrsqrteq_f32(vreinterpretq_f32_m128(in)); -// takes the lower two 32-bit values from a and swaps them and places in low end -// of result takes the higher two 32 bit values from a and swaps them and places -// in high end of result. -FORCE_INLINE __m128i _mm_shuffle_epi_2301(__m128i a) -{ - int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a))); - int32x2_t a23 = vrev64_s32(vget_high_s32(vreinterpretq_s32_m128i(a))); - return vreinterpretq_m128i_s32(vcombine_s32(a01, a23)); -} + // Test for vrsqrteq_f32(0) -> positive infinity case. + // Change to zero, so that s * 1/sqrt(s) result is zero too. + const uint32x4_t pos_inf = vdupq_n_u32(0x7F800000); + const uint32x4_t div_by_zero = + vceqq_u32(pos_inf, vreinterpretq_u32_f32(recip)); + recip = vreinterpretq_f32_u32( + vandq_u32(vmvnq_u32(div_by_zero), vreinterpretq_u32_f32(recip))); -// rotates the least significant 32 bits into the most signficant 32 bits, and -// shifts the rest down -FORCE_INLINE __m128i _mm_shuffle_epi_0321(__m128i a) -{ - return vreinterpretq_m128i_s32( - vextq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(a), 1)); -} + // Additional Netwon-Raphson iteration for accuracy + recip = vmulq_f32( + vrsqrtsq_f32(vmulq_f32(recip, recip), vreinterpretq_f32_m128(in)), + recip); + recip = vmulq_f32( + vrsqrtsq_f32(vmulq_f32(recip, recip), vreinterpretq_f32_m128(in)), + recip); -// rotates the most significant 32 bits into the least signficant 32 bits, and -// shifts the rest up -FORCE_INLINE __m128i _mm_shuffle_epi_2103(__m128i a) -{ - return vreinterpretq_m128i_s32( - vextq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(a), 3)); -} - -// gets the lower 64 bits of a, and places it in the upper 64 bits -// gets the lower 64 bits of a and places it in the lower 64 bits -FORCE_INLINE __m128i _mm_shuffle_epi_1010(__m128i a) -{ - int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a)); - return vreinterpretq_m128i_s32(vcombine_s32(a10, a10)); -} - -// gets the lower 64 bits of a, swaps the 0 and 1 elements, and places it in the -// lower 64 bits gets the lower 64 bits of a, and places it in the upper 64 bits -FORCE_INLINE __m128i _mm_shuffle_epi_1001(__m128i a) -{ - int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a))); - int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a)); - return vreinterpretq_m128i_s32(vcombine_s32(a01, a10)); -} - -// gets the lower 64 bits of a, swaps the 0 and 1 elements and places it in the -// upper 64 bits gets the lower 64 bits of a, swaps the 0 and 1 elements, and -// places it in the lower 64 bits -FORCE_INLINE __m128i _mm_shuffle_epi_0101(__m128i a) -{ - int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a))); - return vreinterpretq_m128i_s32(vcombine_s32(a01, a01)); -} - -FORCE_INLINE __m128i _mm_shuffle_epi_2211(__m128i a) -{ - int32x2_t a11 = vdup_lane_s32(vget_low_s32(vreinterpretq_s32_m128i(a)), 1); - int32x2_t a22 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 0); - return vreinterpretq_m128i_s32(vcombine_s32(a11, a22)); -} - -FORCE_INLINE __m128i _mm_shuffle_epi_0122(__m128i a) -{ - int32x2_t a22 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 0); - int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a))); - return vreinterpretq_m128i_s32(vcombine_s32(a22, a01)); -} - -FORCE_INLINE __m128i _mm_shuffle_epi_3332(__m128i a) -{ - int32x2_t a32 = vget_high_s32(vreinterpretq_s32_m128i(a)); - int32x2_t a33 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 1); - return vreinterpretq_m128i_s32(vcombine_s32(a32, a33)); -} - -// Shuffle packed 8-bit integers in a according to shuffle control mask in the -// corresponding 8-bit element of b, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_epi8 -FORCE_INLINE __m128i _mm_shuffle_epi8(__m128i a, __m128i b) -{ - int8x16_t tbl = vreinterpretq_s8_m128i(a); // input a - uint8x16_t idx = vreinterpretq_u8_m128i(b); // input b - uint8x16_t idx_masked = - vandq_u8(idx, vdupq_n_u8(0x8F)); // avoid using meaningless bits -#if defined(__aarch64__) - return vreinterpretq_m128i_s8(vqtbl1q_s8(tbl, idx_masked)); -#elif defined(__GNUC__) - int8x16_t ret; - // %e and %f represent the even and odd D registers - // respectively. - __asm__ __volatile__( - "vtbl.8 %e[ret], {%e[tbl], %f[tbl]}, %e[idx]\n" - "vtbl.8 %f[ret], {%e[tbl], %f[tbl]}, %f[idx]\n" - : [ret] "=&w"(ret) - : [tbl] "w"(tbl), [idx] "w"(idx_masked)); - return vreinterpretq_m128i_s8(ret); + // sqrt(s) = s * 1/sqrt(s) + return vreinterpretq_m128_f32(vmulq_f32(vreinterpretq_f32_m128(in), recip)); +#elif defined(__aarch64__) + return vreinterpretq_m128_f32(vsqrtq_f32(vreinterpretq_f32_m128(in))); #else - // use this line if testing on aarch64 - int8x8x2_t a_split = {vget_low_s8(tbl), vget_high_s8(tbl)}; + float32x4_t recipsq = vrsqrteq_f32(vreinterpretq_f32_m128(in)); + float32x4_t sq = vrecpeq_f32(recipsq); + return vreinterpretq_m128_f32(sq); +#endif +} + +// Computes the approximation of the square root of the scalar single-precision +// floating point value of in. +// https://msdn.microsoft.com/en-us/library/ahfsc22d(v=vs.100).aspx +FORCE_INLINE __m128 _mm_sqrt_ss(__m128 in) +{ + float32_t value = + vgetq_lane_f32(vreinterpretq_f32_m128(_mm_sqrt_ps(in)), 0); + return vreinterpretq_m128_f32( + vsetq_lane_f32(value, vreinterpretq_f32_m128(in), 0)); +} + +// Stores four single-precision, floating-point values. +// https://msdn.microsoft.com/en-us/library/vstudio/s3h4ay6y(v=vs.100).aspx +FORCE_INLINE void _mm_store_ps(float *p, __m128 a) +{ + vst1q_f32(p, vreinterpretq_f32_m128(a)); +} + +// Store the lower single-precision (32-bit) floating-point element from a into +// 4 contiguous elements in memory. mem_addr must be aligned on a 16-byte +// boundary or a general-protection exception may be generated. +// +// MEM[mem_addr+31:mem_addr] := a[31:0] +// MEM[mem_addr+63:mem_addr+32] := a[31:0] +// MEM[mem_addr+95:mem_addr+64] := a[31:0] +// MEM[mem_addr+127:mem_addr+96] := a[31:0] +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store_ps1 +FORCE_INLINE void _mm_store_ps1(float *p, __m128 a) +{ + float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); + vst1q_f32(p, vdupq_n_f32(a0)); +} + +// Stores the lower single - precision, floating - point value. +// https://msdn.microsoft.com/en-us/library/tzz10fbx(v=vs.100).aspx +FORCE_INLINE void _mm_store_ss(float *p, __m128 a) +{ + vst1q_lane_f32(p, vreinterpretq_f32_m128(a), 0); +} + +// Store the lower single-precision (32-bit) floating-point element from a into +// 4 contiguous elements in memory. mem_addr must be aligned on a 16-byte +// boundary or a general-protection exception may be generated. +// +// MEM[mem_addr+31:mem_addr] := a[31:0] +// MEM[mem_addr+63:mem_addr+32] := a[31:0] +// MEM[mem_addr+95:mem_addr+64] := a[31:0] +// MEM[mem_addr+127:mem_addr+96] := a[31:0] +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store1_ps +#define _mm_store1_ps _mm_store_ps1 + +// Stores the upper two single-precision, floating-point values of a to the +// address p. +// +// *p0 := a2 +// *p1 := a3 +// +// https://msdn.microsoft.com/en-us/library/a7525fs8(v%3dvs.90).aspx +FORCE_INLINE void _mm_storeh_pi(__m64 *p, __m128 a) +{ + *p = vreinterpret_m64_f32(vget_high_f32(a)); +} + +// Stores the lower two single-precision floating point values of a to the +// address p. +// +// *p0 := a0 +// *p1 := a1 +// +// https://msdn.microsoft.com/en-us/library/h54t98ks(v=vs.90).aspx +FORCE_INLINE void _mm_storel_pi(__m64 *p, __m128 a) +{ + *p = vreinterpret_m64_f32(vget_low_f32(a)); +} + +// Store 4 single-precision (32-bit) floating-point elements from a into memory +// in reverse order. mem_addr must be aligned on a 16-byte boundary or a +// general-protection exception may be generated. +// +// MEM[mem_addr+31:mem_addr] := a[127:96] +// MEM[mem_addr+63:mem_addr+32] := a[95:64] +// MEM[mem_addr+95:mem_addr+64] := a[63:32] +// MEM[mem_addr+127:mem_addr+96] := a[31:0] +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storer_ps +FORCE_INLINE void _mm_storer_ps(float *p, __m128 a) +{ + float32x4_t tmp = vrev64q_f32(vreinterpretq_f32_m128(a)); + float32x4_t rev = vextq_f32(tmp, tmp, 2); + vst1q_f32(p, rev); +} + +// Stores four single-precision, floating-point values. +// https://msdn.microsoft.com/en-us/library/44e30x22(v=vs.100).aspx +FORCE_INLINE void _mm_storeu_ps(float *p, __m128 a) +{ + vst1q_f32(p, vreinterpretq_f32_m128(a)); +} + +// Stores 16-bits of integer data a at the address p. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_si16 +FORCE_INLINE void _mm_storeu_si16(void *p, __m128i a) +{ + vst1q_lane_s16((int16_t *) p, vreinterpretq_s16_m128i(a), 0); +} + +// Stores 64-bits of integer data a at the address p. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_si64 +FORCE_INLINE void _mm_storeu_si64(void *p, __m128i a) +{ + vst1q_lane_s64((int64_t *) p, vreinterpretq_s64_m128i(a), 0); +} + +// Store 64-bits of integer data from a into memory using a non-temporal memory +// hint. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_pi +FORCE_INLINE void _mm_stream_pi(__m64 *p, __m64 a) +{ + vst1_s64((int64_t *) p, vreinterpret_s64_m64(a)); +} + +// Store 128-bits (composed of 4 packed single-precision (32-bit) floating- +// point elements) from a into memory using a non-temporal memory hint. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_ps +FORCE_INLINE void _mm_stream_ps(float *p, __m128 a) +{ +#if __has_builtin(__builtin_nontemporal_store) + __builtin_nontemporal_store(a, (float32x4_t *) p); +#else + vst1q_f32(p, vreinterpretq_f32_m128(a)); +#endif +} + +// Subtracts the four single-precision, floating-point values of a and b. +// +// r0 := a0 - b0 +// r1 := a1 - b1 +// r2 := a2 - b2 +// r3 := a3 - b3 +// +// https://msdn.microsoft.com/en-us/library/vstudio/1zad2k61(v=vs.100).aspx +FORCE_INLINE __m128 _mm_sub_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_f32( + vsubq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +} + +// Subtract the lower single-precision (32-bit) floating-point element in b from +// the lower single-precision (32-bit) floating-point element in a, store the +// result in the lower element of dst, and copy the upper 3 packed elements from +// a to the upper elements of dst. +// +// dst[31:0] := a[31:0] - b[31:0] +// dst[127:32] := a[127:32] +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_ss +FORCE_INLINE __m128 _mm_sub_ss(__m128 a, __m128 b) +{ + return _mm_move_ss(a, _mm_sub_ps(a, b)); +} + +// Macro: Transpose the 4x4 matrix formed by the 4 rows of single-precision +// (32-bit) floating-point elements in row0, row1, row2, and row3, and store the +// transposed matrix in these vectors (row0 now contains column 0, etc.). +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=MM_TRANSPOSE4_PS +#define _MM_TRANSPOSE4_PS(row0, row1, row2, row3) \ + do { \ + float32x4x2_t ROW01 = vtrnq_f32(row0, row1); \ + float32x4x2_t ROW23 = vtrnq_f32(row2, row3); \ + row0 = vcombine_f32(vget_low_f32(ROW01.val[0]), \ + vget_low_f32(ROW23.val[0])); \ + row1 = vcombine_f32(vget_low_f32(ROW01.val[1]), \ + vget_low_f32(ROW23.val[1])); \ + row2 = vcombine_f32(vget_high_f32(ROW01.val[0]), \ + vget_high_f32(ROW23.val[0])); \ + row3 = vcombine_f32(vget_high_f32(ROW01.val[1]), \ + vget_high_f32(ROW23.val[1])); \ + } while (0) + +// according to the documentation, these intrinsics behave the same as the +// non-'u' versions. We'll just alias them here. +#define _mm_ucomieq_ss _mm_comieq_ss +#define _mm_ucomige_ss _mm_comige_ss +#define _mm_ucomigt_ss _mm_comigt_ss +#define _mm_ucomile_ss _mm_comile_ss +#define _mm_ucomilt_ss _mm_comilt_ss +#define _mm_ucomineq_ss _mm_comineq_ss + +// Return vector of type __m128i with undefined elements. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_undefined_si128 +FORCE_INLINE __m128i _mm_undefined_si128(void) +{ +#if defined(__GNUC__) || defined(__clang__) +#pragma GCC diagnostic push +#pragma GCC diagnostic ignored "-Wuninitialized" +#endif + __m128i a; + return a; +#if defined(__GNUC__) || defined(__clang__) +#pragma GCC diagnostic pop +#endif +} + +// Return vector of type __m128 with undefined elements. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_undefined_ps +FORCE_INLINE __m128 _mm_undefined_ps(void) +{ +#if defined(__GNUC__) || defined(__clang__) +#pragma GCC diagnostic push +#pragma GCC diagnostic ignored "-Wuninitialized" +#endif + __m128 a; + return a; +#if defined(__GNUC__) || defined(__clang__) +#pragma GCC diagnostic pop +#endif +} + +// Selects and interleaves the upper two single-precision, floating-point values +// from a and b. +// +// r0 := a2 +// r1 := b2 +// r2 := a3 +// r3 := b3 +// +// https://msdn.microsoft.com/en-us/library/skccxx7d%28v=vs.90%29.aspx +FORCE_INLINE __m128 _mm_unpackhi_ps(__m128 a, __m128 b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128_f32( + vzip2q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +#else + float32x2_t a1 = vget_high_f32(vreinterpretq_f32_m128(a)); + float32x2_t b1 = vget_high_f32(vreinterpretq_f32_m128(b)); + float32x2x2_t result = vzip_f32(a1, b1); + return vreinterpretq_m128_f32(vcombine_f32(result.val[0], result.val[1])); +#endif +} + +// Selects and interleaves the lower two single-precision, floating-point values +// from a and b. +// +// r0 := a0 +// r1 := b0 +// r2 := a1 +// r3 := b1 +// +// https://msdn.microsoft.com/en-us/library/25st103b%28v=vs.90%29.aspx +FORCE_INLINE __m128 _mm_unpacklo_ps(__m128 a, __m128 b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128_f32( + vzip1q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +#else + float32x2_t a1 = vget_low_f32(vreinterpretq_f32_m128(a)); + float32x2_t b1 = vget_low_f32(vreinterpretq_f32_m128(b)); + float32x2x2_t result = vzip_f32(a1, b1); + return vreinterpretq_m128_f32(vcombine_f32(result.val[0], result.val[1])); +#endif +} + +// Computes bitwise EXOR (exclusive-or) of the four single-precision, +// floating-point values of a and b. +// https://msdn.microsoft.com/en-us/library/ss6k3wk8(v=vs.100).aspx +FORCE_INLINE __m128 _mm_xor_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_s32( + veorq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b))); +} + +/* SSE2 */ + +// Adds the 8 signed or unsigned 16-bit integers in a to the 8 signed or +// unsigned 16-bit integers in b. +// https://msdn.microsoft.com/en-us/library/fceha5k4(v=vs.100).aspx +FORCE_INLINE __m128i _mm_add_epi16(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s16( + vaddq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); +} + +// Adds the 4 signed or unsigned 32-bit integers in a to the 4 signed or +// unsigned 32-bit integers in b. +// +// r0 := a0 + b0 +// r1 := a1 + b1 +// r2 := a2 + b2 +// r3 := a3 + b3 +// +// https://msdn.microsoft.com/en-us/library/vstudio/09xs4fkk(v=vs.100).aspx +FORCE_INLINE __m128i _mm_add_epi32(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s32( + vaddq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); +} + +// Adds the 4 signed or unsigned 64-bit integers in a to the 4 signed or +// unsigned 32-bit integers in b. +// https://msdn.microsoft.com/en-us/library/vstudio/09xs4fkk(v=vs.100).aspx +FORCE_INLINE __m128i _mm_add_epi64(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s64( + vaddq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b))); +} + +// Adds the 16 signed or unsigned 8-bit integers in a to the 16 signed or +// unsigned 8-bit integers in b. +// https://technet.microsoft.com/en-us/subscriptions/yc7tcyzs(v=vs.90) +FORCE_INLINE __m128i _mm_add_epi8(__m128i a, __m128i b) +{ return vreinterpretq_m128i_s8( - vcombine_s8(vtbl2_s8(a_split, vget_low_u8(idx_masked)), - vtbl2_s8(a_split, vget_high_u8(idx_masked)))); + vaddq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); +} + +// Add packed double-precision (64-bit) floating-point elements in a and b, and +// store the results in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_add_pd +FORCE_INLINE __m128d _mm_add_pd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_f64( + vaddq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); +#else + double *da = (double *) &a; + double *db = (double *) &b; + double c[2]; + c[0] = da[0] + db[0]; + c[1] = da[1] + db[1]; + return vld1q_f32((float32_t *) c); #endif } -// C equivalent: -// __m128i _mm_shuffle_epi32_default(__m128i a, -// __constrange(0, 255) int imm) { -// __m128i ret; -// ret[0] = a[imm & 0x3]; ret[1] = a[(imm >> 2) & 0x3]; -// ret[2] = a[(imm >> 4) & 0x03]; ret[3] = a[(imm >> 6) & 0x03]; -// return ret; -// } -#define _mm_shuffle_epi32_default(a, imm) \ - __extension__({ \ - int32x4_t ret; \ - ret = vmovq_n_s32( \ - vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm) & (0x3))); \ - ret = vsetq_lane_s32( \ - vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 2) & 0x3), \ - ret, 1); \ - ret = vsetq_lane_s32( \ - vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 4) & 0x3), \ - ret, 2); \ - ret = vsetq_lane_s32( \ - vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 6) & 0x3), \ - ret, 3); \ - vreinterpretq_m128i_s32(ret); \ - }) - -// FORCE_INLINE __m128i _mm_shuffle_epi32_splat(__m128i a, __constrange(0,255) -// int imm) +// Add the lower double-precision (64-bit) floating-point element in a and b, +// store the result in the lower element of dst, and copy the upper element from +// a to the upper element of dst. +// +// dst[63:0] := a[63:0] + b[63:0] +// dst[127:64] := a[127:64] +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_add_sd +FORCE_INLINE __m128d _mm_add_sd(__m128d a, __m128d b) +{ #if defined(__aarch64__) -#define _mm_shuffle_epi32_splat(a, imm) \ - __extension__({ \ - vreinterpretq_m128i_s32( \ - vdupq_laneq_s32(vreinterpretq_s32_m128i(a), (imm))); \ - }) + return _mm_move_sd(a, _mm_add_pd(a, b)); #else -#define _mm_shuffle_epi32_splat(a, imm) \ - __extension__({ \ - vreinterpretq_m128i_s32( \ - vdupq_n_s32(vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm)))); \ - }) + double *da = (double *) &a; + double *db = (double *) &b; + double c[2]; + c[0] = da[0] + db[0]; + c[1] = da[1]; + return vld1q_f32((float32_t *) c); #endif +} -// Shuffles the 4 signed or unsigned 32-bit integers in a as specified by imm. -// https://msdn.microsoft.com/en-us/library/56f67xbk%28v=vs.90%29.aspx -// FORCE_INLINE __m128i _mm_shuffle_epi32(__m128i a, -// __constrange(0,255) int imm) -#if __has_builtin(__builtin_shufflevector) -#define _mm_shuffle_epi32(a, imm) \ - __extension__({ \ - int32x4_t _input = vreinterpretq_s32_m128i(a); \ - int32x4_t _shuf = __builtin_shufflevector( \ - _input, _input, (imm) & (0x3), ((imm) >> 2) & 0x3, \ - ((imm) >> 4) & 0x3, ((imm) >> 6) & 0x3); \ - vreinterpretq_m128i_s32(_shuf); \ - }) -#else // generic -#define _mm_shuffle_epi32(a, imm) \ - __extension__({ \ - __m128i ret; \ - switch (imm) { \ - case _MM_SHUFFLE(1, 0, 3, 2): \ - ret = _mm_shuffle_epi_1032((a)); \ - break; \ - case _MM_SHUFFLE(2, 3, 0, 1): \ - ret = _mm_shuffle_epi_2301((a)); \ - break; \ - case _MM_SHUFFLE(0, 3, 2, 1): \ - ret = _mm_shuffle_epi_0321((a)); \ - break; \ - case _MM_SHUFFLE(2, 1, 0, 3): \ - ret = _mm_shuffle_epi_2103((a)); \ - break; \ - case _MM_SHUFFLE(1, 0, 1, 0): \ - ret = _mm_shuffle_epi_1010((a)); \ - break; \ - case _MM_SHUFFLE(1, 0, 0, 1): \ - ret = _mm_shuffle_epi_1001((a)); \ - break; \ - case _MM_SHUFFLE(0, 1, 0, 1): \ - ret = _mm_shuffle_epi_0101((a)); \ - break; \ - case _MM_SHUFFLE(2, 2, 1, 1): \ - ret = _mm_shuffle_epi_2211((a)); \ - break; \ - case _MM_SHUFFLE(0, 1, 2, 2): \ - ret = _mm_shuffle_epi_0122((a)); \ - break; \ - case _MM_SHUFFLE(3, 3, 3, 2): \ - ret = _mm_shuffle_epi_3332((a)); \ - break; \ - case _MM_SHUFFLE(0, 0, 0, 0): \ - ret = _mm_shuffle_epi32_splat((a), 0); \ - break; \ - case _MM_SHUFFLE(1, 1, 1, 1): \ - ret = _mm_shuffle_epi32_splat((a), 1); \ - break; \ - case _MM_SHUFFLE(2, 2, 2, 2): \ - ret = _mm_shuffle_epi32_splat((a), 2); \ - break; \ - case _MM_SHUFFLE(3, 3, 3, 3): \ - ret = _mm_shuffle_epi32_splat((a), 3); \ - break; \ - default: \ - ret = _mm_shuffle_epi32_default((a), (imm)); \ - break; \ - } \ - ret; \ - }) -#endif - -// Shuffles the lower 4 signed or unsigned 16-bit integers in a as specified -// by imm. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/y41dkk37(v=vs.100) -// FORCE_INLINE __m128i _mm_shufflelo_epi16_function(__m128i a, -// __constrange(0,255) int -// imm) -#define _mm_shufflelo_epi16_function(a, imm) \ - __extension__({ \ - int16x8_t ret = vreinterpretq_s16_m128i(a); \ - int16x4_t lowBits = vget_low_s16(ret); \ - ret = vsetq_lane_s16(vget_lane_s16(lowBits, (imm) & (0x3)), ret, 0); \ - ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 2) & 0x3), ret, \ - 1); \ - ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 4) & 0x3), ret, \ - 2); \ - ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 6) & 0x3), ret, \ - 3); \ - vreinterpretq_m128i_s16(ret); \ - }) - -// FORCE_INLINE __m128i _mm_shufflelo_epi16(__m128i a, -// __constrange(0,255) int imm) -#if __has_builtin(__builtin_shufflevector) -#define _mm_shufflelo_epi16(a, imm) \ - __extension__({ \ - int16x8_t _input = vreinterpretq_s16_m128i(a); \ - int16x8_t _shuf = __builtin_shufflevector( \ - _input, _input, ((imm) & (0x3)), (((imm) >> 2) & 0x3), \ - (((imm) >> 4) & 0x3), (((imm) >> 6) & 0x3), 4, 5, 6, 7); \ - vreinterpretq_m128i_s16(_shuf); \ - }) -#else // generic -#define _mm_shufflelo_epi16(a, imm) _mm_shufflelo_epi16_function((a), (imm)) -#endif - -// Shuffles the upper 4 signed or unsigned 16-bit integers in a as specified -// by imm. -// https://msdn.microsoft.com/en-us/library/13ywktbs(v=vs.100).aspx -// FORCE_INLINE __m128i _mm_shufflehi_epi16_function(__m128i a, -// __constrange(0,255) int -// imm) -#define _mm_shufflehi_epi16_function(a, imm) \ - __extension__({ \ - int16x8_t ret = vreinterpretq_s16_m128i(a); \ - int16x4_t highBits = vget_high_s16(ret); \ - ret = vsetq_lane_s16(vget_lane_s16(highBits, (imm) & (0x3)), ret, 4); \ - ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 2) & 0x3), ret, \ - 5); \ - ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 4) & 0x3), ret, \ - 6); \ - ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 6) & 0x3), ret, \ - 7); \ - vreinterpretq_m128i_s16(ret); \ - }) - -// FORCE_INLINE __m128i _mm_shufflehi_epi16(__m128i a, -// __constrange(0,255) int imm) -#if __has_builtin(__builtin_shufflevector) -#define _mm_shufflehi_epi16(a, imm) \ - __extension__({ \ - int16x8_t _input = vreinterpretq_s16_m128i(a); \ - int16x8_t _shuf = __builtin_shufflevector( \ - _input, _input, 0, 1, 2, 3, ((imm) & (0x3)) + 4, \ - (((imm) >> 2) & 0x3) + 4, (((imm) >> 4) & 0x3) + 4, \ - (((imm) >> 6) & 0x3) + 4); \ - vreinterpretq_m128i_s16(_shuf); \ - }) -#else // generic -#define _mm_shufflehi_epi16(a, imm) _mm_shufflehi_epi16_function((a), (imm)) -#endif - -// Shuffle double-precision (64-bit) floating-point elements using the control -// in imm8, and store the results in dst. +// Add 64-bit integers a and b, and store the result in dst. // -// dst[63:0] := (imm8[0] == 0) ? a[63:0] : a[127:64] -// dst[127:64] := (imm8[1] == 0) ? b[63:0] : b[127:64] +// dst[63:0] := a[63:0] + b[63:0] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_pd -#if __has_builtin(__builtin_shufflevector) -#define _mm_shuffle_pd(a, b, imm8) \ - vreinterpretq_m128d_s64(__builtin_shufflevector( \ - vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b), imm8 & 0x1, \ - ((imm8 & 0x2) >> 1) + 2)) -#else -#define _mm_shuffle_pd(a, b, imm8) \ - _mm_castsi128_pd(_mm_set_epi64x( \ - vgetq_lane_s64(vreinterpretq_s64_m128d(b), (imm8 & 0x2) >> 1), \ - vgetq_lane_s64(vreinterpretq_s64_m128d(a), imm8 & 0x1))) -#endif +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_add_si64 +FORCE_INLINE __m64 _mm_add_si64(__m64 a, __m64 b) +{ + return vreinterpret_m64_s64( + vadd_s64(vreinterpret_s64_m64(a), vreinterpret_s64_m64(b))); +} -// Blend packed 16-bit integers from a and b using control mask imm8, and store -// the results in dst. +// Adds the 8 signed 16-bit integers in a to the 8 signed 16-bit integers in b +// and saturates. // -// FOR j := 0 to 7 -// i := j*16 -// IF imm8[j] -// dst[i+15:i] := b[i+15:i] -// ELSE -// dst[i+15:i] := a[i+15:i] -// FI -// ENDFOR -// FORCE_INLINE __m128i _mm_blend_epi16(__m128i a, __m128i b, -// __constrange(0,255) int imm) -#define _mm_blend_epi16(a, b, imm) \ - __extension__({ \ - const uint16_t _mask[8] = {((imm) & (1 << 0)) ? (uint16_t) -1 : 0x0, \ - ((imm) & (1 << 1)) ? (uint16_t) -1 : 0x0, \ - ((imm) & (1 << 2)) ? (uint16_t) -1 : 0x0, \ - ((imm) & (1 << 3)) ? (uint16_t) -1 : 0x0, \ - ((imm) & (1 << 4)) ? (uint16_t) -1 : 0x0, \ - ((imm) & (1 << 5)) ? (uint16_t) -1 : 0x0, \ - ((imm) & (1 << 6)) ? (uint16_t) -1 : 0x0, \ - ((imm) & (1 << 7)) ? (uint16_t) -1 : 0x0}; \ - uint16x8_t _mask_vec = vld1q_u16(_mask); \ - uint16x8_t _a = vreinterpretq_u16_m128i(a); \ - uint16x8_t _b = vreinterpretq_u16_m128i(b); \ - vreinterpretq_m128i_u16(vbslq_u16(_mask_vec, _b, _a)); \ - }) +// r0 := SignedSaturate(a0 + b0) +// r1 := SignedSaturate(a1 + b1) +// ... +// r7 := SignedSaturate(a7 + b7) +// +// https://msdn.microsoft.com/en-us/library/1a306ef8(v=vs.100).aspx +FORCE_INLINE __m128i _mm_adds_epi16(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s16( + vqaddq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); +} -// Blend packed double-precision (64-bit) floating-point elements from a and b -// using control mask imm8, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_blend_pd -#define _mm_blend_pd(a, b, imm) \ - __extension__({ \ - const uint64_t _mask[2] = { \ - ((imm) & (1 << 0)) ? ~UINT64_C(0) : UINT64_C(0), \ - ((imm) & (1 << 1)) ? ~UINT64_C(0) : UINT64_C(0)}; \ - uint64x2_t _mask_vec = vld1q_u64(_mask); \ - uint64x2_t _a = vreinterpretq_u64_m128d(a); \ - uint64x2_t _b = vreinterpretq_u64_m128d(b); \ - vreinterpretq_m128d_u64(vbslq_u64(_mask_vec, _b, _a)); \ - }) - -// Blend packed 8-bit integers from a and b using mask, and store the results in -// dst. +// Add packed signed 8-bit integers in a and b using saturation, and store the +// results in dst. // // FOR j := 0 to 15 -// i := j*8 -// IF mask[i+7] -// dst[i+7:i] := b[i+7:i] -// ELSE -// dst[i+7:i] := a[i+7:i] -// FI -// ENDFOR -FORCE_INLINE __m128i _mm_blendv_epi8(__m128i _a, __m128i _b, __m128i _mask) -{ - // Use a signed shift right to create a mask with the sign bit - uint8x16_t mask = - vreinterpretq_u8_s8(vshrq_n_s8(vreinterpretq_s8_m128i(_mask), 7)); - uint8x16_t a = vreinterpretq_u8_m128i(_a); - uint8x16_t b = vreinterpretq_u8_m128i(_b); - return vreinterpretq_m128i_u8(vbslq_u8(mask, b, a)); -} - -/* Shifts */ - - -// Shift packed 16-bit integers in a right by imm while shifting in sign -// bits, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srai_epi16 -FORCE_INLINE __m128i _mm_srai_epi16(__m128i a, int imm) -{ - const int count = (imm & ~15) ? 15 : imm; - return (__m128i) vshlq_s16((int16x8_t) a, vdupq_n_s16(-count)); -} - -// Shifts the 8 signed or unsigned 16-bit integers in a left by count bits while -// shifting in zeros. -// -// r0 := a0 << count -// r1 := a1 << count -// ... -// r7 := a7 << count -// -// https://msdn.microsoft.com/en-us/library/es73bcsy(v=vs.90).aspx -#define _mm_slli_epi16(a, imm) \ - __extension__({ \ - __m128i ret; \ - if (unlikely((imm)) <= 0) { \ - ret = a; \ - } \ - if (unlikely((imm) > 15)) { \ - ret = _mm_setzero_si128(); \ - } else { \ - ret = vreinterpretq_m128i_s16( \ - vshlq_n_s16(vreinterpretq_s16_m128i(a), (imm))); \ - } \ - ret; \ - }) - -// Shifts the 4 signed or unsigned 32-bit integers in a left by count bits while -// shifting in zeros. : -// https://msdn.microsoft.com/en-us/library/z2k3bbtb%28v=vs.90%29.aspx -// FORCE_INLINE __m128i _mm_slli_epi32(__m128i a, __constrange(0,255) int imm) -FORCE_INLINE __m128i _mm_slli_epi32(__m128i a, int imm) -{ - if (unlikely(imm <= 0)) /* TODO: add constant range macro: [0, 255] */ - return a; - if (unlikely(imm > 31)) - return _mm_setzero_si128(); - return vreinterpretq_m128i_s32( - vshlq_s32(vreinterpretq_s32_m128i(a), vdupq_n_s32(imm))); -} - -// Shift packed 64-bit integers in a left by imm8 while shifting in zeros, and -// store the results in dst. -FORCE_INLINE __m128i _mm_slli_epi64(__m128i a, int imm) -{ - if (unlikely(imm <= 0)) /* TODO: add constant range macro: [0, 255] */ - return a; - if (unlikely(imm > 63)) - return _mm_setzero_si128(); - return vreinterpretq_m128i_s64( - vshlq_s64(vreinterpretq_s64_m128i(a), vdupq_n_s64(imm))); -} - -// Shift packed 16-bit integers in a right by imm8 while shifting in zeros, and -// store the results in dst. -// -// FOR j := 0 to 7 -// i := j*16 -// IF imm8[7:0] > 15 -// dst[i+15:i] := 0 -// ELSE -// dst[i+15:i] := ZeroExtend16(a[i+15:i] >> imm8[7:0]) -// FI +// i := j*8 +// dst[i+7:i] := Saturate8( a[i+7:i] + b[i+7:i] ) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_epi16 -#define _mm_srli_epi16(a, imm) \ - __extension__({ \ - __m128i ret; \ - if (unlikely(imm) == 0) { \ - ret = a; \ - } else if (likely(0 < (imm) && (imm) < 16)) { \ - ret = vreinterpretq_m128i_u16( \ - vshlq_u16(vreinterpretq_u16_m128i(a), vdupq_n_s16(-imm))); \ - } else { \ - ret = _mm_setzero_si128(); \ - } \ - ret; \ - }) +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_adds_epi8 +FORCE_INLINE __m128i _mm_adds_epi8(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s8( + vqaddq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); +} -// Shift packed 32-bit integers in a right by imm8 while shifting in zeros, and -// store the results in dst. -// -// FOR j := 0 to 3 -// i := j*32 -// IF imm8[7:0] > 31 -// dst[i+31:i] := 0 -// ELSE -// dst[i+31:i] := ZeroExtend32(a[i+31:i] >> imm8[7:0]) -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_epi32 -// FORCE_INLINE __m128i _mm_srli_epi32(__m128i a, __constrange(0,255) int imm) -#define _mm_srli_epi32(a, imm) \ - __extension__({ \ - __m128i ret; \ - if (unlikely((imm) == 0)) { \ - ret = a; \ - } else if (likely(0 < (imm) && (imm) < 32)) { \ - ret = vreinterpretq_m128i_u32( \ - vshlq_u32(vreinterpretq_u32_m128i(a), vdupq_n_s32(-imm))); \ - } else { \ - ret = _mm_setzero_si128(); \ - } \ - ret; \ - }) +// Add packed unsigned 16-bit integers in a and b using saturation, and store +// the results in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_adds_epu16 +FORCE_INLINE __m128i _mm_adds_epu16(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_u16( + vqaddq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b))); +} -// Shift packed 64-bit integers in a right by imm8 while shifting in zeros, and -// store the results in dst. +// Adds the 16 unsigned 8-bit integers in a to the 16 unsigned 8-bit integers in +// b and saturates.. +// https://msdn.microsoft.com/en-us/library/9hahyddy(v=vs.100).aspx +FORCE_INLINE __m128i _mm_adds_epu8(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_u8( + vqaddq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b))); +} + +// Compute the bitwise AND of packed double-precision (64-bit) floating-point +// elements in a and b, and store the results in dst. // // FOR j := 0 to 1 // i := j*64 -// IF imm8[7:0] > 63 -// dst[i+63:i] := 0 -// ELSE -// dst[i+63:i] := ZeroExtend64(a[i+63:i] >> imm8[7:0]) -// FI +// dst[i+63:i] := a[i+63:i] AND b[i+63:i] // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_epi64 -#define _mm_srli_epi64(a, imm) \ - __extension__({ \ - __m128i ret; \ - if (unlikely((imm) == 0)) { \ - ret = a; \ - } else if (likely(0 < (imm) && (imm) < 64)) { \ - ret = vreinterpretq_m128i_u64( \ - vshlq_u64(vreinterpretq_u64_m128i(a), vdupq_n_s64(-imm))); \ - } else { \ - ret = _mm_setzero_si128(); \ - } \ - ret; \ - }) +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_and_pd +FORCE_INLINE __m128d _mm_and_pd(__m128d a, __m128d b) +{ + return vreinterpretq_m128d_s64( + vandq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b))); +} -// Shift packed 32-bit integers in a right by imm8 while shifting in sign bits, -// and store the results in dst. +// Computes the bitwise AND of the 128-bit value in a and the 128-bit value in +// b. // -// FOR j := 0 to 3 -// i := j*32 -// IF imm8[7:0] > 31 -// dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0x0) -// ELSE -// dst[i+31:i] := SignExtend32(a[i+31:i] >> imm8[7:0]) -// FI +// r := a & b +// +// https://msdn.microsoft.com/en-us/library/vstudio/6d1txsa8(v=vs.100).aspx +FORCE_INLINE __m128i _mm_and_si128(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s32( + vandq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); +} + +// Compute the bitwise NOT of packed double-precision (64-bit) floating-point +// elements in a and then AND with b, and store the results in dst. +// +// FOR j := 0 to 1 +// i := j*64 +// dst[i+63:i] := ((NOT a[i+63:i]) AND b[i+63:i]) // ENDFOR // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srai_epi32 -// FORCE_INLINE __m128i _mm_srai_epi32(__m128i a, __constrange(0,255) int imm) -#define _mm_srai_epi32(a, imm) \ - __extension__({ \ - __m128i ret; \ - if (unlikely((imm) == 0)) { \ - ret = a; \ - } else if (likely(0 < (imm) && (imm) < 32)) { \ - ret = vreinterpretq_m128i_s32( \ - vshlq_s32(vreinterpretq_s32_m128i(a), vdupq_n_s32(-imm))); \ - } else { \ - ret = vreinterpretq_m128i_s32( \ - vshrq_n_s32(vreinterpretq_s32_m128i(a), 31)); \ - } \ - ret; \ - }) +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_andnot_pd +FORCE_INLINE __m128d _mm_andnot_pd(__m128d a, __m128d b) +{ + // *NOTE* argument swap + return vreinterpretq_m128d_s64( + vbicq_s64(vreinterpretq_s64_m128d(b), vreinterpretq_s64_m128d(a))); +} -// Shifts the 128 - bit value in a right by imm bytes while shifting in -// zeros.imm must be an immediate. +// Computes the bitwise AND of the 128-bit value in b and the bitwise NOT of the +// 128-bit value in a. // -// r := srl(a, imm*8) +// r := (~a) & b // -// https://msdn.microsoft.com/en-us/library/305w28yz(v=vs.100).aspx -// FORCE_INLINE _mm_srli_si128(__m128i a, __constrange(0,255) int imm) -#define _mm_srli_si128(a, imm) \ - __extension__({ \ - __m128i ret; \ - if (unlikely((imm) <= 0)) { \ - ret = a; \ - } \ - if (unlikely((imm) > 15)) { \ - ret = _mm_setzero_si128(); \ - } else { \ - ret = vreinterpretq_m128i_s8( \ - vextq_s8(vreinterpretq_s8_m128i(a), vdupq_n_s8(0), (imm))); \ - } \ - ret; \ - }) +// https://msdn.microsoft.com/en-us/library/vstudio/1beaceh8(v=vs.100).aspx +FORCE_INLINE __m128i _mm_andnot_si128(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s32( + vbicq_s32(vreinterpretq_s32_m128i(b), + vreinterpretq_s32_m128i(a))); // *NOTE* argument swap +} -// Shifts the 128-bit value in a left by imm bytes while shifting in zeros. imm -// must be an immediate. +// Computes the average of the 8 unsigned 16-bit integers in a and the 8 +// unsigned 16-bit integers in b and rounds. // -// r := a << (imm * 8) +// r0 := (a0 + b0) / 2 +// r1 := (a1 + b1) / 2 +// ... +// r7 := (a7 + b7) / 2 // -// https://msdn.microsoft.com/en-us/library/34d3k2kt(v=vs.100).aspx -// FORCE_INLINE __m128i _mm_slli_si128(__m128i a, __constrange(0,255) int imm) -#define _mm_slli_si128(a, imm) \ - __extension__({ \ - __m128i ret; \ - if (unlikely((imm) <= 0)) { \ - ret = a; \ - } \ - if (unlikely((imm) > 15)) { \ - ret = _mm_setzero_si128(); \ - } else { \ - ret = vreinterpretq_m128i_s8(vextq_s8( \ - vdupq_n_s8(0), vreinterpretq_s8_m128i(a), 16 - (imm))); \ - } \ - ret; \ - }) +// https://msdn.microsoft.com/en-us/library/vstudio/y13ca3c8(v=vs.90).aspx +FORCE_INLINE __m128i _mm_avg_epu16(__m128i a, __m128i b) +{ + return (__m128i) vrhaddq_u16(vreinterpretq_u16_m128i(a), + vreinterpretq_u16_m128i(b)); +} -// Compute the square root of packed double-precision (64-bit) floating-point -// elements in a, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sqrt_pd -FORCE_INLINE __m128d _mm_sqrt_pd(__m128d a) +// Computes the average of the 16 unsigned 8-bit integers in a and the 16 +// unsigned 8-bit integers in b and rounds. +// +// r0 := (a0 + b0) / 2 +// r1 := (a1 + b1) / 2 +// ... +// r15 := (a15 + b15) / 2 +// +// https://msdn.microsoft.com/en-us/library/vstudio/8zwh554a(v%3dvs.90).aspx +FORCE_INLINE __m128i _mm_avg_epu8(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_u8( + vrhaddq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b))); +} + +// Shift a left by imm8 bytes while shifting in zeros, and store the results in +// dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_bslli_si128 +#define _mm_bslli_si128(a, imm) _mm_slli_si128(a, imm) + +// Shift a right by imm8 bytes while shifting in zeros, and store the results in +// dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_bsrli_si128 +#define _mm_bsrli_si128(a, imm) _mm_srli_si128(a, imm) + +// Cast vector of type __m128d to type __m128. This intrinsic is only used for +// compilation and does not generate any instructions, thus it has zero latency. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castpd_ps +FORCE_INLINE __m128 _mm_castpd_ps(__m128d a) +{ + return vreinterpretq_m128_s64(vreinterpretq_s64_m128d(a)); +} + +// Cast vector of type __m128d to type __m128i. This intrinsic is only used for +// compilation and does not generate any instructions, thus it has zero latency. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castpd_si128 +FORCE_INLINE __m128i _mm_castpd_si128(__m128d a) +{ + return vreinterpretq_m128i_s64(vreinterpretq_s64_m128d(a)); +} + +// Cast vector of type __m128 to type __m128d. This intrinsic is only used for +// compilation and does not generate any instructions, thus it has zero latency. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castps_pd +FORCE_INLINE __m128d _mm_castps_pd(__m128 a) +{ + return vreinterpretq_m128d_s32(vreinterpretq_s32_m128(a)); +} + +// Applies a type cast to reinterpret four 32-bit floating point values passed +// in as a 128-bit parameter as packed 32-bit integers. +// https://msdn.microsoft.com/en-us/library/bb514099.aspx +FORCE_INLINE __m128i _mm_castps_si128(__m128 a) +{ + return vreinterpretq_m128i_s32(vreinterpretq_s32_m128(a)); +} + +// Cast vector of type __m128i to type __m128d. This intrinsic is only used for +// compilation and does not generate any instructions, thus it has zero latency. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castsi128_pd +FORCE_INLINE __m128d _mm_castsi128_pd(__m128i a) { #if defined(__aarch64__) - return vreinterpretq_m128d_f64(vsqrtq_f64(vreinterpretq_f64_m128d(a))); + return vreinterpretq_m128d_f64(vreinterpretq_f64_m128i(a)); #else - double a0 = sqrt(((double *) &a)[0]); - double a1 = sqrt(((double *) &a)[1]); + return vreinterpretq_m128d_f32(vreinterpretq_f32_m128i(a)); +#endif +} + +// Applies a type cast to reinterpret four 32-bit integers passed in as a +// 128-bit parameter as packed 32-bit floating point values. +// https://msdn.microsoft.com/en-us/library/bb514029.aspx +FORCE_INLINE __m128 _mm_castsi128_ps(__m128i a) +{ + return vreinterpretq_m128_s32(vreinterpretq_s32_m128i(a)); +} + +// Cache line containing p is flushed and invalidated from all caches in the +// coherency domain. : +// https://msdn.microsoft.com/en-us/library/ba08y07y(v=vs.100).aspx +FORCE_INLINE void _mm_clflush(void const *p) +{ + (void) p; + // no corollary for Neon? +} + +// Compares the 8 signed or unsigned 16-bit integers in a and the 8 signed or +// unsigned 16-bit integers in b for equality. +// https://msdn.microsoft.com/en-us/library/2ay060te(v=vs.100).aspx +FORCE_INLINE __m128i _mm_cmpeq_epi16(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_u16( + vceqq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); +} + +// Compare packed 32-bit integers in a and b for equality, and store the results +// in dst +FORCE_INLINE __m128i _mm_cmpeq_epi32(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_u32( + vceqq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); +} + +// Compares the 16 signed or unsigned 8-bit integers in a and the 16 signed or +// unsigned 8-bit integers in b for equality. +// https://msdn.microsoft.com/en-us/library/windows/desktop/bz5xk21a(v=vs.90).aspx +FORCE_INLINE __m128i _mm_cmpeq_epi8(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_u8( + vceqq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); +} + +// Compare packed double-precision (64-bit) floating-point elements in a and b +// for equality, and store the results in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpeq_pd +FORCE_INLINE __m128d _mm_cmpeq_pd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_u64( + vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); +#else + // (a == b) -> (a_lo == b_lo) && (a_hi == b_hi) + uint32x4_t cmp = + vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(b)); + uint32x4_t swapped = vrev64q_u32(cmp); + return vreinterpretq_m128d_u32(vandq_u32(cmp, swapped)); +#endif +} + +// Compare the lower double-precision (64-bit) floating-point elements in a and +// b for equality, store the result in the lower element of dst, and copy the +// upper element from a to the upper element of dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpeq_sd +FORCE_INLINE __m128d _mm_cmpeq_sd(__m128d a, __m128d b) +{ + return _mm_move_sd(a, _mm_cmpeq_pd(a, b)); +} + +// Compare packed double-precision (64-bit) floating-point elements in a and b +// for greater-than-or-equal, and store the results in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpge_pd +FORCE_INLINE __m128d _mm_cmpge_pd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_u64( + vcgeq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); +#else + uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); + uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); + uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); + uint64_t d[2]; + d[0] = (*(double *) &a0) >= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); + d[1] = (*(double *) &a1) >= (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0); + + return vreinterpretq_m128d_u64(vld1q_u64(d)); +#endif +} + +// Compare the lower double-precision (64-bit) floating-point elements in a and +// b for greater-than-or-equal, store the result in the lower element of dst, +// and copy the upper element from a to the upper element of dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpge_sd +FORCE_INLINE __m128d _mm_cmpge_sd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return _mm_move_sd(a, _mm_cmpge_pd(a, b)); +#else + // expand "_mm_cmpge_pd()" to reduce unnecessary operations + uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); + uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); + uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + uint64_t d[2]; + d[0] = (*(double *) &a0) >= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); + d[1] = a1; + + return vreinterpretq_m128d_u64(vld1q_u64(d)); +#endif +} + +// Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers +// in b for greater than. +// +// r0 := (a0 > b0) ? 0xffff : 0x0 +// r1 := (a1 > b1) ? 0xffff : 0x0 +// ... +// r7 := (a7 > b7) ? 0xffff : 0x0 +// +// https://technet.microsoft.com/en-us/library/xd43yfsa(v=vs.100).aspx +FORCE_INLINE __m128i _mm_cmpgt_epi16(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_u16( + vcgtq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); +} + +// Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers +// in b for greater than. +// https://msdn.microsoft.com/en-us/library/vstudio/1s9f2z0y(v=vs.100).aspx +FORCE_INLINE __m128i _mm_cmpgt_epi32(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_u32( + vcgtq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); +} + +// Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers +// in b for greater than. +// +// r0 := (a0 > b0) ? 0xff : 0x0 +// r1 := (a1 > b1) ? 0xff : 0x0 +// ... +// r15 := (a15 > b15) ? 0xff : 0x0 +// +// https://msdn.microsoft.com/zh-tw/library/wf45zt2b(v=vs.100).aspx +FORCE_INLINE __m128i _mm_cmpgt_epi8(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_u8( + vcgtq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); +} + +// Compare packed double-precision (64-bit) floating-point elements in a and b +// for greater-than, and store the results in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpgt_pd +FORCE_INLINE __m128d _mm_cmpgt_pd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_u64( + vcgtq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); +#else + uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); + uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); + uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); + uint64_t d[2]; + d[0] = (*(double *) &a0) > (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); + d[1] = (*(double *) &a1) > (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0); + + return vreinterpretq_m128d_u64(vld1q_u64(d)); +#endif +} + +// Compare the lower double-precision (64-bit) floating-point elements in a and +// b for greater-than, store the result in the lower element of dst, and copy +// the upper element from a to the upper element of dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpgt_sd +FORCE_INLINE __m128d _mm_cmpgt_sd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return _mm_move_sd(a, _mm_cmpgt_pd(a, b)); +#else + // expand "_mm_cmpge_pd()" to reduce unnecessary operations + uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); + uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); + uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + uint64_t d[2]; + d[0] = (*(double *) &a0) > (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); + d[1] = a1; + + return vreinterpretq_m128d_u64(vld1q_u64(d)); +#endif +} + +// Compare packed double-precision (64-bit) floating-point elements in a and b +// for less-than-or-equal, and store the results in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmple_pd +FORCE_INLINE __m128d _mm_cmple_pd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_u64( + vcleq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); +#else + uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); + uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); + uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); + uint64_t d[2]; + d[0] = (*(double *) &a0) <= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); + d[1] = (*(double *) &a1) <= (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0); + + return vreinterpretq_m128d_u64(vld1q_u64(d)); +#endif +} + +// Compare the lower double-precision (64-bit) floating-point elements in a and +// b for less-than-or-equal, store the result in the lower element of dst, and +// copy the upper element from a to the upper element of dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmple_sd +FORCE_INLINE __m128d _mm_cmple_sd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return _mm_move_sd(a, _mm_cmple_pd(a, b)); +#else + // expand "_mm_cmpge_pd()" to reduce unnecessary operations + uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); + uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); + uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + uint64_t d[2]; + d[0] = (*(double *) &a0) <= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); + d[1] = a1; + + return vreinterpretq_m128d_u64(vld1q_u64(d)); +#endif +} + +// Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers +// in b for less than. +// +// r0 := (a0 < b0) ? 0xffff : 0x0 +// r1 := (a1 < b1) ? 0xffff : 0x0 +// ... +// r7 := (a7 < b7) ? 0xffff : 0x0 +// +// https://technet.microsoft.com/en-us/library/t863edb2(v=vs.100).aspx +FORCE_INLINE __m128i _mm_cmplt_epi16(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_u16( + vcltq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); +} + + +// Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers +// in b for less than. +// https://msdn.microsoft.com/en-us/library/vstudio/4ak0bf5d(v=vs.100).aspx +FORCE_INLINE __m128i _mm_cmplt_epi32(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_u32( + vcltq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); +} + +// Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers +// in b for lesser than. +// https://msdn.microsoft.com/en-us/library/windows/desktop/9s46csht(v=vs.90).aspx +FORCE_INLINE __m128i _mm_cmplt_epi8(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_u8( + vcltq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); +} + +// Compare packed double-precision (64-bit) floating-point elements in a and b +// for less-than, and store the results in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmplt_pd +FORCE_INLINE __m128d _mm_cmplt_pd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_u64( + vcltq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); +#else + uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); + uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); + uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); + uint64_t d[2]; + d[0] = (*(double *) &a0) < (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); + d[1] = (*(double *) &a1) < (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0); + + return vreinterpretq_m128d_u64(vld1q_u64(d)); +#endif +} + +// Compare the lower double-precision (64-bit) floating-point elements in a and +// b for less-than, store the result in the lower element of dst, and copy the +// upper element from a to the upper element of dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmplt_sd +FORCE_INLINE __m128d _mm_cmplt_sd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return _mm_move_sd(a, _mm_cmplt_pd(a, b)); +#else + uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); + uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); + uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + uint64_t d[2]; + d[0] = (*(double *) &a0) < (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); + d[1] = a1; + + return vreinterpretq_m128d_u64(vld1q_u64(d)); +#endif +} + +// Compare packed double-precision (64-bit) floating-point elements in a and b +// for not-equal, and store the results in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpneq_pd +FORCE_INLINE __m128d _mm_cmpneq_pd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_s32(vmvnq_s32(vreinterpretq_s32_u64( + vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))))); +#else + // (a == b) -> (a_lo == b_lo) && (a_hi == b_hi) + uint32x4_t cmp = + vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(b)); + uint32x4_t swapped = vrev64q_u32(cmp); + return vreinterpretq_m128d_u32(vmvnq_u32(vandq_u32(cmp, swapped))); +#endif +} + +// Compare the lower double-precision (64-bit) floating-point elements in a and +// b for not-equal, store the result in the lower element of dst, and copy the +// upper element from a to the upper element of dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpneq_sd +FORCE_INLINE __m128d _mm_cmpneq_sd(__m128d a, __m128d b) +{ + return _mm_move_sd(a, _mm_cmpneq_pd(a, b)); +} + +// Compare packed double-precision (64-bit) floating-point elements in a and b +// for not-greater-than-or-equal, and store the results in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnge_pd +FORCE_INLINE __m128d _mm_cmpnge_pd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_u64(veorq_u64( + vcgeq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)), + vdupq_n_u64(UINT64_MAX))); +#else + uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); + uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); + uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); + uint64_t d[2]; + d[0] = + !((*(double *) &a0) >= (*(double *) &b0)) ? ~UINT64_C(0) : UINT64_C(0); + d[1] = + !((*(double *) &a1) >= (*(double *) &b1)) ? ~UINT64_C(0) : UINT64_C(0); + + return vreinterpretq_m128d_u64(vld1q_u64(d)); +#endif +} + +// Compare the lower double-precision (64-bit) floating-point elements in a and +// b for not-greater-than-or-equal, store the result in the lower element of +// dst, and copy the upper element from a to the upper element of dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnge_sd +FORCE_INLINE __m128d _mm_cmpnge_sd(__m128d a, __m128d b) +{ + return _mm_move_sd(a, _mm_cmpnge_pd(a, b)); +} + +// Compare packed double-precision (64-bit) floating-point elements in a and b +// for not-greater-than, and store the results in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_cmpngt_pd +FORCE_INLINE __m128d _mm_cmpngt_pd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_u64(veorq_u64( + vcgtq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)), + vdupq_n_u64(UINT64_MAX))); +#else + uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); + uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); + uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); + uint64_t d[2]; + d[0] = + !((*(double *) &a0) > (*(double *) &b0)) ? ~UINT64_C(0) : UINT64_C(0); + d[1] = + !((*(double *) &a1) > (*(double *) &b1)) ? ~UINT64_C(0) : UINT64_C(0); + + return vreinterpretq_m128d_u64(vld1q_u64(d)); +#endif +} + +// Compare the lower double-precision (64-bit) floating-point elements in a and +// b for not-greater-than, store the result in the lower element of dst, and +// copy the upper element from a to the upper element of dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpngt_sd +FORCE_INLINE __m128d _mm_cmpngt_sd(__m128d a, __m128d b) +{ + return _mm_move_sd(a, _mm_cmpngt_pd(a, b)); +} + +// Compare packed double-precision (64-bit) floating-point elements in a and b +// for not-less-than-or-equal, and store the results in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnle_pd +FORCE_INLINE __m128d _mm_cmpnle_pd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_u64(veorq_u64( + vcleq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)), + vdupq_n_u64(UINT64_MAX))); +#else + uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); + uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); + uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); + uint64_t d[2]; + d[0] = + !((*(double *) &a0) <= (*(double *) &b0)) ? ~UINT64_C(0) : UINT64_C(0); + d[1] = + !((*(double *) &a1) <= (*(double *) &b1)) ? ~UINT64_C(0) : UINT64_C(0); + + return vreinterpretq_m128d_u64(vld1q_u64(d)); +#endif +} + +// Compare the lower double-precision (64-bit) floating-point elements in a and +// b for not-less-than-or-equal, store the result in the lower element of dst, +// and copy the upper element from a to the upper element of dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnle_sd +FORCE_INLINE __m128d _mm_cmpnle_sd(__m128d a, __m128d b) +{ + return _mm_move_sd(a, _mm_cmpnle_pd(a, b)); +} + +// Compare packed double-precision (64-bit) floating-point elements in a and b +// for not-less-than, and store the results in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnlt_pd +FORCE_INLINE __m128d _mm_cmpnlt_pd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_u64(veorq_u64( + vcltq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)), + vdupq_n_u64(UINT64_MAX))); +#else + uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); + uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); + uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); + uint64_t d[2]; + d[0] = + !((*(double *) &a0) < (*(double *) &b0)) ? ~UINT64_C(0) : UINT64_C(0); + d[1] = + !((*(double *) &a1) < (*(double *) &b1)) ? ~UINT64_C(0) : UINT64_C(0); + + return vreinterpretq_m128d_u64(vld1q_u64(d)); +#endif +} + +// Compare the lower double-precision (64-bit) floating-point elements in a and +// b for not-less-than, store the result in the lower element of dst, and copy +// the upper element from a to the upper element of dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnlt_sd +FORCE_INLINE __m128d _mm_cmpnlt_sd(__m128d a, __m128d b) +{ + return _mm_move_sd(a, _mm_cmpnlt_pd(a, b)); +} + +// Compare packed double-precision (64-bit) floating-point elements in a and b +// to see if neither is NaN, and store the results in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpord_pd +FORCE_INLINE __m128d _mm_cmpord_pd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + // Excluding NaNs, any two floating point numbers can be compared. + uint64x2_t not_nan_a = + vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(a)); + uint64x2_t not_nan_b = + vceqq_f64(vreinterpretq_f64_m128d(b), vreinterpretq_f64_m128d(b)); + return vreinterpretq_m128d_u64(vandq_u64(not_nan_a, not_nan_b)); +#else + uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); + uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); + uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); + uint64_t d[2]; + d[0] = ((*(double *) &a0) == (*(double *) &a0) && + (*(double *) &b0) == (*(double *) &b0)) + ? ~UINT64_C(0) + : UINT64_C(0); + d[1] = ((*(double *) &a1) == (*(double *) &a1) && + (*(double *) &b1) == (*(double *) &b1)) + ? ~UINT64_C(0) + : UINT64_C(0); + + return vreinterpretq_m128d_u64(vld1q_u64(d)); +#endif +} + +// Compare the lower double-precision (64-bit) floating-point elements in a and +// b to see if neither is NaN, store the result in the lower element of dst, and +// copy the upper element from a to the upper element of dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpord_sd +FORCE_INLINE __m128d _mm_cmpord_sd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return _mm_move_sd(a, _mm_cmpord_pd(a, b)); +#else + uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); + uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); + uint64_t d[2]; + d[0] = ((*(double *) &a0) == (*(double *) &a0) && + (*(double *) &b0) == (*(double *) &b0)) + ? ~UINT64_C(0) + : UINT64_C(0); + d[1] = a1; + + return vreinterpretq_m128d_u64(vld1q_u64(d)); +#endif +} + +// Compare packed double-precision (64-bit) floating-point elements in a and b +// to see if either is NaN, and store the results in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpunord_pd +FORCE_INLINE __m128d _mm_cmpunord_pd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + // Two NaNs are not equal in comparison operation. + uint64x2_t not_nan_a = + vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(a)); + uint64x2_t not_nan_b = + vceqq_f64(vreinterpretq_f64_m128d(b), vreinterpretq_f64_m128d(b)); + return vreinterpretq_m128d_s32( + vmvnq_s32(vreinterpretq_s32_u64(vandq_u64(not_nan_a, not_nan_b)))); +#else + uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); + uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); + uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); + uint64_t d[2]; + d[0] = ((*(double *) &a0) == (*(double *) &a0) && + (*(double *) &b0) == (*(double *) &b0)) + ? UINT64_C(0) + : ~UINT64_C(0); + d[1] = ((*(double *) &a1) == (*(double *) &a1) && + (*(double *) &b1) == (*(double *) &b1)) + ? UINT64_C(0) + : ~UINT64_C(0); + + return vreinterpretq_m128d_u64(vld1q_u64(d)); +#endif +} + +// Compare the lower double-precision (64-bit) floating-point elements in a and +// b to see if either is NaN, store the result in the lower element of dst, and +// copy the upper element from a to the upper element of dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpunord_sd +FORCE_INLINE __m128d _mm_cmpunord_sd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return _mm_move_sd(a, _mm_cmpunord_pd(a, b)); +#else + uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); + uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); + uint64_t d[2]; + d[0] = ((*(double *) &a0) == (*(double *) &a0) && + (*(double *) &b0) == (*(double *) &b0)) + ? UINT64_C(0) + : ~UINT64_C(0); + d[1] = a1; + + return vreinterpretq_m128d_u64(vld1q_u64(d)); +#endif +} + +// Compare the lower double-precision (64-bit) floating-point element in a and b +// for greater-than-or-equal, and return the boolean result (0 or 1). +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comige_sd +FORCE_INLINE int _mm_comige_sd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return vgetq_lane_u64(vcgeq_f64(a, b), 0) & 0x1; +#else + uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); + uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + + return (*(double *) &a0 >= *(double *) &b0); +#endif +} + +// Compare the lower double-precision (64-bit) floating-point element in a and b +// for greater-than, and return the boolean result (0 or 1). +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comigt_sd +FORCE_INLINE int _mm_comigt_sd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return vgetq_lane_u64(vcgtq_f64(a, b), 0) & 0x1; +#else + uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); + uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + + return (*(double *) &a0 > *(double *) &b0); +#endif +} + +// Compare the lower double-precision (64-bit) floating-point element in a and b +// for less-than-or-equal, and return the boolean result (0 or 1). +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comile_sd +FORCE_INLINE int _mm_comile_sd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return vgetq_lane_u64(vcleq_f64(a, b), 0) & 0x1; +#else + uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); + uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + + return (*(double *) &a0 <= *(double *) &b0); +#endif +} + +// Compare the lower double-precision (64-bit) floating-point element in a and b +// for less-than, and return the boolean result (0 or 1). +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comilt_sd +FORCE_INLINE int _mm_comilt_sd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return vgetq_lane_u64(vcltq_f64(a, b), 0) & 0x1; +#else + uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); + uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + + return (*(double *) &a0 < *(double *) &b0); +#endif +} + +// Compare the lower double-precision (64-bit) floating-point element in a and b +// for equality, and return the boolean result (0 or 1). +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comieq_sd +FORCE_INLINE int _mm_comieq_sd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return vgetq_lane_u64(vceqq_f64(a, b), 0) & 0x1; +#else + uint32x4_t a_not_nan = + vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(a)); + uint32x4_t b_not_nan = + vceqq_u32(vreinterpretq_u32_m128d(b), vreinterpretq_u32_m128d(b)); + uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan); + uint32x4_t a_eq_b = + vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(b)); + uint64x2_t and_results = vandq_u64(vreinterpretq_u64_u32(a_and_b_not_nan), + vreinterpretq_u64_u32(a_eq_b)); + return vgetq_lane_u64(and_results, 0) & 0x1; +#endif +} + +// Compare the lower double-precision (64-bit) floating-point element in a and b +// for not-equal, and return the boolean result (0 or 1). +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comineq_sd +FORCE_INLINE int _mm_comineq_sd(__m128d a, __m128d b) +{ + return !_mm_comieq_sd(a, b); +} + +// Convert packed signed 32-bit integers in a to packed double-precision +// (64-bit) floating-point elements, and store the results in dst. +// +// FOR j := 0 to 1 +// i := j*32 +// m := j*64 +// dst[m+63:m] := Convert_Int32_To_FP64(a[i+31:i]) +// ENDFOR +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtepi32_pd +FORCE_INLINE __m128d _mm_cvtepi32_pd(__m128i a) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_f64( + vcvtq_f64_s64(vmovl_s32(vget_low_s32(vreinterpretq_s32_m128i(a))))); +#else + double a0 = (double) vgetq_lane_s32(vreinterpretq_s32_m128i(a), 0); + double a1 = (double) vgetq_lane_s32(vreinterpretq_s32_m128i(a), 1); return _mm_set_pd(a1, a0); #endif } -// Compute the square root of the lower double-precision (64-bit) floating-point -// element in b, store the result in the lower element of dst, and copy the -// upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sqrt_sd -FORCE_INLINE __m128d _mm_sqrt_sd(__m128d a, __m128d b) +// Converts the four signed 32-bit integer values of a to single-precision, +// floating-point values +// https://msdn.microsoft.com/en-us/library/vstudio/36bwxcx5(v=vs.100).aspx +FORCE_INLINE __m128 _mm_cvtepi32_ps(__m128i a) { -#if defined(__aarch64__) - return _mm_move_sd(a, _mm_sqrt_pd(b)); + return vreinterpretq_m128_f32(vcvtq_f32_s32(vreinterpretq_s32_m128i(a))); +} + +// Convert packed double-precision (64-bit) floating-point elements in a to +// packed 32-bit integers, and store the results in dst. +// +// FOR j := 0 to 1 +// i := 32*j +// k := 64*j +// dst[i+31:i] := Convert_FP64_To_Int32(a[k+63:k]) +// ENDFOR +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpd_epi32 +FORCE_INLINE __m128i _mm_cvtpd_epi32(__m128d a) +{ +// vrnd32xq_f64 not supported on clang +#if defined(__ARM_FEATURE_FRINT) && !defined(__clang__) + float64x2_t rounded = vrnd32xq_f64(vreinterpretq_f64_m128d(a)); + int64x2_t integers = vcvtq_s64_f64(rounded); + return vreinterpretq_m128i_s32( + vcombine_s32(vmovn_s64(integers), vdup_n_s32(0))); #else - return _mm_set_pd(((double *) &a)[1], sqrt(((double *) &b)[0])); + __m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION); + double d0 = ((double *) &rnd)[0]; + double d1 = ((double *) &rnd)[1]; + return _mm_set_epi32(0, 0, (int32_t) d1, (int32_t) d0); #endif } -// Shifts the 8 signed or unsigned 16-bit integers in a left by count bits while -// shifting in zeros. +// Convert packed double-precision (64-bit) floating-point elements in a to +// packed 32-bit integers, and store the results in dst. // -// r0 := a0 << count -// r1 := a1 << count -// ... -// r7 := a7 << count +// FOR j := 0 to 1 +// i := 32*j +// k := 64*j +// dst[i+31:i] := Convert_FP64_To_Int32(a[k+63:k]) +// ENDFOR // -// https://msdn.microsoft.com/en-us/library/c79w388h(v%3dvs.90).aspx -FORCE_INLINE __m128i _mm_sll_epi16(__m128i a, __m128i count) +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpd_pi32 +FORCE_INLINE __m64 _mm_cvtpd_pi32(__m128d a) { - uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); - if (unlikely(c > 15)) - return _mm_setzero_si128(); - - int16x8_t vc = vdupq_n_s16((int16_t) c); - return vreinterpretq_m128i_s16(vshlq_s16(vreinterpretq_s16_m128i(a), vc)); + __m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION); + double d0 = ((double *) &rnd)[0]; + double d1 = ((double *) &rnd)[1]; + int32_t ALIGN_STRUCT(16) data[2] = {(int32_t) d0, (int32_t) d1}; + return vreinterpret_m64_s32(vld1_s32(data)); } -// Shifts the 4 signed or unsigned 32-bit integers in a left by count bits while -// shifting in zeros. +// Convert packed double-precision (64-bit) floating-point elements in a to +// packed single-precision (32-bit) floating-point elements, and store the +// results in dst. // -// r0 := a0 << count -// r1 := a1 << count -// r2 := a2 << count -// r3 := a3 << count +// FOR j := 0 to 1 +// i := 32*j +// k := 64*j +// dst[i+31:i] := Convert_FP64_To_FP32(a[k+64:k]) +// ENDFOR +// dst[127:64] := 0 // -// https://msdn.microsoft.com/en-us/library/6fe5a6s9(v%3dvs.90).aspx -FORCE_INLINE __m128i _mm_sll_epi32(__m128i a, __m128i count) +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpd_ps +FORCE_INLINE __m128 _mm_cvtpd_ps(__m128d a) { - uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); - if (unlikely(c > 31)) - return _mm_setzero_si128(); - - int32x4_t vc = vdupq_n_s32((int32_t) c); - return vreinterpretq_m128i_s32(vshlq_s32(vreinterpretq_s32_m128i(a), vc)); +#if defined(__aarch64__) + float32x2_t tmp = vcvt_f32_f64(vreinterpretq_f64_m128d(a)); + return vreinterpretq_m128_f32(vcombine_f32(tmp, vdup_n_f32(0))); +#else + float a0 = (float) ((double *) &a)[0]; + float a1 = (float) ((double *) &a)[1]; + return _mm_set_ps(0, 0, a1, a0); +#endif } -// Shifts the 2 signed or unsigned 64-bit integers in a left by count bits while -// shifting in zeros. +// Convert packed signed 32-bit integers in a to packed double-precision +// (64-bit) floating-point elements, and store the results in dst. // -// r0 := a0 << count -// r1 := a1 << count +// FOR j := 0 to 1 +// i := j*32 +// m := j*64 +// dst[m+63:m] := Convert_Int32_To_FP64(a[i+31:i]) +// ENDFOR // -// https://msdn.microsoft.com/en-us/library/6ta9dffd(v%3dvs.90).aspx -FORCE_INLINE __m128i _mm_sll_epi64(__m128i a, __m128i count) +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi32_pd +FORCE_INLINE __m128d _mm_cvtpi32_pd(__m64 a) { - uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); - if (unlikely(c > 63)) - return _mm_setzero_si128(); - - int64x2_t vc = vdupq_n_s64((int64_t) c); - return vreinterpretq_m128i_s64(vshlq_s64(vreinterpretq_s64_m128i(a), vc)); +#if defined(__aarch64__) + return vreinterpretq_m128d_f64( + vcvtq_f64_s64(vmovl_s32(vreinterpret_s32_m64(a)))); +#else + double a0 = (double) vget_lane_s32(vreinterpret_s32_m64(a), 0); + double a1 = (double) vget_lane_s32(vreinterpret_s32_m64(a), 1); + return _mm_set_pd(a1, a0); +#endif } -// Shifts the 8 signed or unsigned 16-bit integers in a right by count bits -// while shifting in zeros. +// Converts the four single-precision, floating-point values of a to signed +// 32-bit integer values. // -// r0 := srl(a0, count) -// r1 := srl(a1, count) -// ... -// r7 := srl(a7, count) +// r0 := (int) a0 +// r1 := (int) a1 +// r2 := (int) a2 +// r3 := (int) a3 // -// https://msdn.microsoft.com/en-us/library/wd5ax830(v%3dvs.90).aspx -FORCE_INLINE __m128i _mm_srl_epi16(__m128i a, __m128i count) +// https://msdn.microsoft.com/en-us/library/vstudio/xdc42k5e(v=vs.100).aspx +// *NOTE*. The default rounding mode on SSE is 'round to even', which ARMv7-A +// does not support! It is supported on ARMv8-A however. +FORCE_INLINE __m128i _mm_cvtps_epi32(__m128 a) { - uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); - if (unlikely(c > 15)) - return _mm_setzero_si128(); - - int16x8_t vc = vdupq_n_s16(-(int16_t) c); - return vreinterpretq_m128i_u16(vshlq_u16(vreinterpretq_u16_m128i(a), vc)); +#if defined(__ARM_FEATURE_FRINT) + return vreinterpretq_m128i_s32(vcvtq_s32_f32(vrnd32xq_f32(a))); +#elif defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING) + switch (_MM_GET_ROUNDING_MODE()) { + case _MM_ROUND_NEAREST: + return vreinterpretq_m128i_s32(vcvtnq_s32_f32(a)); + case _MM_ROUND_DOWN: + return vreinterpretq_m128i_s32(vcvtmq_s32_f32(a)); + case _MM_ROUND_UP: + return vreinterpretq_m128i_s32(vcvtpq_s32_f32(a)); + default: // _MM_ROUND_TOWARD_ZERO + return vreinterpretq_m128i_s32(vcvtq_s32_f32(a)); + } +#else + float *f = (float *) &a; + switch (_MM_GET_ROUNDING_MODE()) { + case _MM_ROUND_NEAREST: { + uint32x4_t signmask = vdupq_n_u32(0x80000000); + float32x4_t half = vbslq_f32(signmask, vreinterpretq_f32_m128(a), + vdupq_n_f32(0.5f)); /* +/- 0.5 */ + int32x4_t r_normal = vcvtq_s32_f32(vaddq_f32( + vreinterpretq_f32_m128(a), half)); /* round to integer: [a + 0.5]*/ + int32x4_t r_trunc = vcvtq_s32_f32( + vreinterpretq_f32_m128(a)); /* truncate to integer: [a] */ + int32x4_t plusone = vreinterpretq_s32_u32(vshrq_n_u32( + vreinterpretq_u32_s32(vnegq_s32(r_trunc)), 31)); /* 1 or 0 */ + int32x4_t r_even = vbicq_s32(vaddq_s32(r_trunc, plusone), + vdupq_n_s32(1)); /* ([a] + {0,1}) & ~1 */ + float32x4_t delta = vsubq_f32( + vreinterpretq_f32_m128(a), + vcvtq_f32_s32(r_trunc)); /* compute delta: delta = (a - [a]) */ + uint32x4_t is_delta_half = + vceqq_f32(delta, half); /* delta == +/- 0.5 */ + return vreinterpretq_m128i_s32( + vbslq_s32(is_delta_half, r_even, r_normal)); + } + case _MM_ROUND_DOWN: + return _mm_set_epi32(floorf(f[3]), floorf(f[2]), floorf(f[1]), + floorf(f[0])); + case _MM_ROUND_UP: + return _mm_set_epi32(ceilf(f[3]), ceilf(f[2]), ceilf(f[1]), + ceilf(f[0])); + default: // _MM_ROUND_TOWARD_ZERO + return _mm_set_epi32((int32_t) f[3], (int32_t) f[2], (int32_t) f[1], + (int32_t) f[0]); + } +#endif } -// Shifts the 4 signed or unsigned 32-bit integers in a right by count bits -// while shifting in zeros. +// Convert packed single-precision (32-bit) floating-point elements in a to +// packed double-precision (64-bit) floating-point elements, and store the +// results in dst. // -// r0 := srl(a0, count) -// r1 := srl(a1, count) -// r2 := srl(a2, count) -// r3 := srl(a3, count) +// FOR j := 0 to 1 +// i := 64*j +// k := 32*j +// dst[i+63:i] := Convert_FP32_To_FP64(a[k+31:k]) +// ENDFOR // -// https://msdn.microsoft.com/en-us/library/a9cbttf4(v%3dvs.90).aspx -FORCE_INLINE __m128i _mm_srl_epi32(__m128i a, __m128i count) +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_pd +FORCE_INLINE __m128d _mm_cvtps_pd(__m128 a) { - uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); - if (unlikely(c > 31)) - return _mm_setzero_si128(); - - int32x4_t vc = vdupq_n_s32(-(int32_t) c); - return vreinterpretq_m128i_u32(vshlq_u32(vreinterpretq_u32_m128i(a), vc)); +#if defined(__aarch64__) + return vreinterpretq_m128d_f64( + vcvt_f64_f32(vget_low_f32(vreinterpretq_f32_m128(a)))); +#else + double a0 = (double) vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); + double a1 = (double) vgetq_lane_f32(vreinterpretq_f32_m128(a), 1); + return _mm_set_pd(a1, a0); +#endif } -// Shifts the 2 signed or unsigned 64-bit integers in a right by count bits -// while shifting in zeros. +// Copy the lower double-precision (64-bit) floating-point element of a to dst. // -// r0 := srl(a0, count) -// r1 := srl(a1, count) +// dst[63:0] := a[63:0] // -// https://msdn.microsoft.com/en-us/library/yf6cf9k8(v%3dvs.90).aspx -FORCE_INLINE __m128i _mm_srl_epi64(__m128i a, __m128i count) +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_f64 +FORCE_INLINE double _mm_cvtsd_f64(__m128d a) { - uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); - if (unlikely(c > 63)) - return _mm_setzero_si128(); +#if defined(__aarch64__) + return (double) vgetq_lane_f64(vreinterpretq_f64_m128d(a), 0); +#else + return ((double *) &a)[0]; +#endif +} - int64x2_t vc = vdupq_n_s64(-(int64_t) c); - return vreinterpretq_m128i_u64(vshlq_u64(vreinterpretq_u64_m128i(a), vc)); +// Convert the lower double-precision (64-bit) floating-point element in a to a +// 32-bit integer, and store the result in dst. +// +// dst[31:0] := Convert_FP64_To_Int32(a[63:0]) +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_si32 +FORCE_INLINE int32_t _mm_cvtsd_si32(__m128d a) +{ +#if defined(__aarch64__) + return (int32_t) vgetq_lane_f64(vrndiq_f64(vreinterpretq_f64_m128d(a)), 0); +#else + __m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION); + double ret = ((double *) &rnd)[0]; + return (int32_t) ret; +#endif +} + +// Convert the lower double-precision (64-bit) floating-point element in a to a +// 64-bit integer, and store the result in dst. +// +// dst[63:0] := Convert_FP64_To_Int64(a[63:0]) +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_si64 +FORCE_INLINE int64_t _mm_cvtsd_si64(__m128d a) +{ +#if defined(__aarch64__) + return (int64_t) vgetq_lane_f64(vrndiq_f64(vreinterpretq_f64_m128d(a)), 0); +#else + __m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION); + double ret = ((double *) &rnd)[0]; + return (int64_t) ret; +#endif +} + +// Convert the lower double-precision (64-bit) floating-point element in a to a +// 64-bit integer, and store the result in dst. +// +// dst[63:0] := Convert_FP64_To_Int64(a[63:0]) +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_si64x +#define _mm_cvtsd_si64x _mm_cvtsd_si64 + +// Convert the lower double-precision (64-bit) floating-point element in b to a +// single-precision (32-bit) floating-point element, store the result in the +// lower element of dst, and copy the upper 3 packed elements from a to the +// upper elements of dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_ss +FORCE_INLINE __m128 _mm_cvtsd_ss(__m128 a, __m128d b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128_f32(vsetq_lane_f32( + vget_lane_f32(vcvt_f32_f64(vreinterpretq_f64_m128d(b)), 0), + vreinterpretq_f32_m128(a), 0)); +#else + return vreinterpretq_m128_f32(vsetq_lane_f32((float) ((double *) &b)[0], + vreinterpretq_f32_m128(a), 0)); +#endif +} + +// Copy the lower 32-bit integer in a to dst. +// +// dst[31:0] := a[31:0] +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si32 +FORCE_INLINE int _mm_cvtsi128_si32(__m128i a) +{ + return vgetq_lane_s32(vreinterpretq_s32_m128i(a), 0); +} + +// Copy the lower 64-bit integer in a to dst. +// +// dst[63:0] := a[63:0] +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si64 +FORCE_INLINE int64_t _mm_cvtsi128_si64(__m128i a) +{ + return vgetq_lane_s64(vreinterpretq_s64_m128i(a), 0); +} + +// Copy the lower 64-bit integer in a to dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si64x +#define _mm_cvtsi128_si64x(a) _mm_cvtsi128_si64(a) + +// Convert the signed 32-bit integer b to a double-precision (64-bit) +// floating-point element, store the result in the lower element of dst, and +// copy the upper element from a to the upper element of dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi32_sd +FORCE_INLINE __m128d _mm_cvtsi32_sd(__m128d a, int32_t b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_f64( + vsetq_lane_f64((double) b, vreinterpretq_f64_m128d(a), 0)); +#else + double bf = (double) b; + return vreinterpretq_m128d_s64( + vsetq_lane_s64(*(int64_t *) &bf, vreinterpretq_s64_m128d(a), 0)); +#endif +} + +// Copy the lower 64-bit integer in a to dst. +// +// dst[63:0] := a[63:0] +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si64x +#define _mm_cvtsi128_si64x(a) _mm_cvtsi128_si64(a) + +// Moves 32-bit integer a to the least significant 32 bits of an __m128 object, +// zero extending the upper bits. +// +// r0 := a +// r1 := 0x0 +// r2 := 0x0 +// r3 := 0x0 +// +// https://msdn.microsoft.com/en-us/library/ct3539ha%28v=vs.90%29.aspx +FORCE_INLINE __m128i _mm_cvtsi32_si128(int a) +{ + return vreinterpretq_m128i_s32(vsetq_lane_s32(a, vdupq_n_s32(0), 0)); +} + +// Convert the signed 64-bit integer b to a double-precision (64-bit) +// floating-point element, store the result in the lower element of dst, and +// copy the upper element from a to the upper element of dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi64_sd +FORCE_INLINE __m128d _mm_cvtsi64_sd(__m128d a, int64_t b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_f64( + vsetq_lane_f64((double) b, vreinterpretq_f64_m128d(a), 0)); +#else + double bf = (double) b; + return vreinterpretq_m128d_s64( + vsetq_lane_s64(*(int64_t *) &bf, vreinterpretq_s64_m128d(a), 0)); +#endif +} + +// Moves 64-bit integer a to the least significant 64 bits of an __m128 object, +// zero extending the upper bits. +// +// r0 := a +// r1 := 0x0 +FORCE_INLINE __m128i _mm_cvtsi64_si128(int64_t a) +{ + return vreinterpretq_m128i_s64(vsetq_lane_s64(a, vdupq_n_s64(0), 0)); +} + +// Copy 64-bit integer a to the lower element of dst, and zero the upper +// element. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi64x_si128 +#define _mm_cvtsi64x_si128(a) _mm_cvtsi64_si128(a) + +// Convert the signed 64-bit integer b to a double-precision (64-bit) +// floating-point element, store the result in the lower element of dst, and +// copy the upper element from a to the upper element of dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi64x_sd +#define _mm_cvtsi64x_sd(a, b) _mm_cvtsi64_sd(a, b) + +// Convert the lower single-precision (32-bit) floating-point element in b to a +// double-precision (64-bit) floating-point element, store the result in the +// lower element of dst, and copy the upper element from a to the upper element +// of dst. +// +// dst[63:0] := Convert_FP32_To_FP64(b[31:0]) +// dst[127:64] := a[127:64] +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_sd +FORCE_INLINE __m128d _mm_cvtss_sd(__m128d a, __m128 b) +{ + double d = (double) vgetq_lane_f32(vreinterpretq_f32_m128(b), 0); +#if defined(__aarch64__) + return vreinterpretq_m128d_f64( + vsetq_lane_f64(d, vreinterpretq_f64_m128d(a), 0)); +#else + return vreinterpretq_m128d_s64( + vsetq_lane_s64(*(int64_t *) &d, vreinterpretq_s64_m128d(a), 0)); +#endif +} + +// Convert packed double-precision (64-bit) floating-point elements in a to +// packed 32-bit integers with truncation, and store the results in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttpd_epi32 +FORCE_INLINE __m128i _mm_cvttpd_epi32(__m128d a) +{ + double a0 = ((double *) &a)[0]; + double a1 = ((double *) &a)[1]; + return _mm_set_epi32(0, 0, (int32_t) a1, (int32_t) a0); +} + +// Convert packed double-precision (64-bit) floating-point elements in a to +// packed 32-bit integers with truncation, and store the results in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttpd_pi32 +FORCE_INLINE __m64 _mm_cvttpd_pi32(__m128d a) +{ + double a0 = ((double *) &a)[0]; + double a1 = ((double *) &a)[1]; + int32_t ALIGN_STRUCT(16) data[2] = {(int32_t) a0, (int32_t) a1}; + return vreinterpret_m64_s32(vld1_s32(data)); +} + +// Converts the four single-precision, floating-point values of a to signed +// 32-bit integer values using truncate. +// https://msdn.microsoft.com/en-us/library/vstudio/1h005y6x(v=vs.100).aspx +FORCE_INLINE __m128i _mm_cvttps_epi32(__m128 a) +{ + return vreinterpretq_m128i_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a))); +} + +// Convert the lower double-precision (64-bit) floating-point element in a to a +// 32-bit integer with truncation, and store the result in dst. +// +// dst[63:0] := Convert_FP64_To_Int32_Truncate(a[63:0]) +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttsd_si32 +FORCE_INLINE int32_t _mm_cvttsd_si32(__m128d a) +{ + double ret = *((double *) &a); + return (int32_t) ret; +} + +// Convert the lower double-precision (64-bit) floating-point element in a to a +// 64-bit integer with truncation, and store the result in dst. +// +// dst[63:0] := Convert_FP64_To_Int64_Truncate(a[63:0]) +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttsd_si64 +FORCE_INLINE int64_t _mm_cvttsd_si64(__m128d a) +{ +#if defined(__aarch64__) + return vgetq_lane_s64(vcvtq_s64_f64(vreinterpretq_f64_m128d(a)), 0); +#else + double ret = *((double *) &a); + return (int64_t) ret; +#endif +} + +// Convert the lower double-precision (64-bit) floating-point element in a to a +// 64-bit integer with truncation, and store the result in dst. +// +// dst[63:0] := Convert_FP64_To_Int64_Truncate(a[63:0]) +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttsd_si64x +#define _mm_cvttsd_si64x(a) _mm_cvttsd_si64(a) + +// Divide packed double-precision (64-bit) floating-point elements in a by +// packed elements in b, and store the results in dst. +// +// FOR j := 0 to 1 +// i := 64*j +// dst[i+63:i] := a[i+63:i] / b[i+63:i] +// ENDFOR +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_div_pd +FORCE_INLINE __m128d _mm_div_pd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_f64( + vdivq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); +#else + double *da = (double *) &a; + double *db = (double *) &b; + double c[2]; + c[0] = da[0] / db[0]; + c[1] = da[1] / db[1]; + return vld1q_f32((float32_t *) c); +#endif +} + +// Divide the lower double-precision (64-bit) floating-point element in a by the +// lower double-precision (64-bit) floating-point element in b, store the result +// in the lower element of dst, and copy the upper element from a to the upper +// element of dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_div_sd +FORCE_INLINE __m128d _mm_div_sd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + float64x2_t tmp = + vdivq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)); + return vreinterpretq_m128d_f64( + vsetq_lane_f64(vgetq_lane_f64(vreinterpretq_f64_m128d(a), 1), tmp, 1)); +#else + return _mm_move_sd(a, _mm_div_pd(a, b)); +#endif +} + +// Extracts the selected signed or unsigned 16-bit integer from a and zero +// extends. +// https://msdn.microsoft.com/en-us/library/6dceta0c(v=vs.100).aspx +// FORCE_INLINE int _mm_extract_epi16(__m128i a, __constrange(0,8) int imm) +#define _mm_extract_epi16(a, imm) \ + vgetq_lane_u16(vreinterpretq_u16_m128i(a), (imm)) + +// Inserts the least significant 16 bits of b into the selected 16-bit integer +// of a. +// https://msdn.microsoft.com/en-us/library/kaze8hz1%28v=vs.100%29.aspx +// FORCE_INLINE __m128i _mm_insert_epi16(__m128i a, int b, +// __constrange(0,8) int imm) +#define _mm_insert_epi16(a, b, imm) \ + __extension__({ \ + vreinterpretq_m128i_s16( \ + vsetq_lane_s16((b), vreinterpretq_s16_m128i(a), (imm))); \ + }) + +// Loads two double-precision from 16-byte aligned memory, floating-point +// values. +// +// dst[127:0] := MEM[mem_addr+127:mem_addr] +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_pd +FORCE_INLINE __m128d _mm_load_pd(const double *p) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_f64(vld1q_f64(p)); +#else + const float *fp = (const float *) p; + float ALIGN_STRUCT(16) data[4] = {fp[0], fp[1], fp[2], fp[3]}; + return vreinterpretq_m128d_f32(vld1q_f32(data)); +#endif +} + +// Load a double-precision (64-bit) floating-point element from memory into both +// elements of dst. +// +// dst[63:0] := MEM[mem_addr+63:mem_addr] +// dst[127:64] := MEM[mem_addr+63:mem_addr] +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_pd1 +#define _mm_load_pd1 _mm_load1_pd + +// Load a double-precision (64-bit) floating-point element from memory into the +// lower of dst, and zero the upper element. mem_addr does not need to be +// aligned on any particular boundary. +// +// dst[63:0] := MEM[mem_addr+63:mem_addr] +// dst[127:64] := 0 +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_sd +FORCE_INLINE __m128d _mm_load_sd(const double *p) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_f64(vsetq_lane_f64(*p, vdupq_n_f64(0), 0)); +#else + const float *fp = (const float *) p; + float ALIGN_STRUCT(16) data[4] = {fp[0], fp[1], 0, 0}; + return vreinterpretq_m128d_f32(vld1q_f32(data)); +#endif +} + +// Loads 128-bit value. : +// https://msdn.microsoft.com/en-us/library/atzzad1h(v=vs.80).aspx +FORCE_INLINE __m128i _mm_load_si128(const __m128i *p) +{ + return vreinterpretq_m128i_s32(vld1q_s32((const int32_t *) p)); +} + +// Load a double-precision (64-bit) floating-point element from memory into both +// elements of dst. +// +// dst[63:0] := MEM[mem_addr+63:mem_addr] +// dst[127:64] := MEM[mem_addr+63:mem_addr] +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load1_pd +FORCE_INLINE __m128d _mm_load1_pd(const double *p) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_f64(vld1q_dup_f64(p)); +#else + return vreinterpretq_m128d_s64(vdupq_n_s64(*(const int64_t *) p)); +#endif +} + +// Load a double-precision (64-bit) floating-point element from memory into the +// upper element of dst, and copy the lower element from a to dst. mem_addr does +// not need to be aligned on any particular boundary. +// +// dst[63:0] := a[63:0] +// dst[127:64] := MEM[mem_addr+63:mem_addr] +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadh_pd +FORCE_INLINE __m128d _mm_loadh_pd(__m128d a, const double *p) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_f64( + vcombine_f64(vget_low_f64(vreinterpretq_f64_m128d(a)), vld1_f64(p))); +#else + return vreinterpretq_m128d_f32(vcombine_f32( + vget_low_f32(vreinterpretq_f32_m128d(a)), vld1_f32((const float *) p))); +#endif +} + +// Load 64-bit integer from memory into the first element of dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadl_epi64 +FORCE_INLINE __m128i _mm_loadl_epi64(__m128i const *p) +{ + /* Load the lower 64 bits of the value pointed to by p into the + * lower 64 bits of the result, zeroing the upper 64 bits of the result. + */ + return vreinterpretq_m128i_s32( + vcombine_s32(vld1_s32((int32_t const *) p), vcreate_s32(0))); +} + +// Load a double-precision (64-bit) floating-point element from memory into the +// lower element of dst, and copy the upper element from a to dst. mem_addr does +// not need to be aligned on any particular boundary. +// +// dst[63:0] := MEM[mem_addr+63:mem_addr] +// dst[127:64] := a[127:64] +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadl_pd +FORCE_INLINE __m128d _mm_loadl_pd(__m128d a, const double *p) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_f64( + vcombine_f64(vld1_f64(p), vget_high_f64(vreinterpretq_f64_m128d(a)))); +#else + return vreinterpretq_m128d_f32( + vcombine_f32(vld1_f32((const float *) p), + vget_high_f32(vreinterpretq_f32_m128d(a)))); +#endif +} + +// Load 2 double-precision (64-bit) floating-point elements from memory into dst +// in reverse order. mem_addr must be aligned on a 16-byte boundary or a +// general-protection exception may be generated. +// +// dst[63:0] := MEM[mem_addr+127:mem_addr+64] +// dst[127:64] := MEM[mem_addr+63:mem_addr] +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadr_pd +FORCE_INLINE __m128d _mm_loadr_pd(const double *p) +{ +#if defined(__aarch64__) + float64x2_t v = vld1q_f64(p); + return vreinterpretq_m128d_f64(vextq_f64(v, v, 1)); +#else + int64x2_t v = vld1q_s64((const int64_t *) p); + return vreinterpretq_m128d_s64(vextq_s64(v, v, 1)); +#endif +} + +// Loads two double-precision from unaligned memory, floating-point values. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_pd +FORCE_INLINE __m128d _mm_loadu_pd(const double *p) +{ + return _mm_load_pd(p); +} + +// Loads 128-bit value. : +// https://msdn.microsoft.com/zh-cn/library/f4k12ae8(v=vs.90).aspx +FORCE_INLINE __m128i _mm_loadu_si128(const __m128i *p) +{ + return vreinterpretq_m128i_s32(vld1q_s32((const int32_t *) p)); +} + +// Load unaligned 32-bit integer from memory into the first element of dst. +// +// dst[31:0] := MEM[mem_addr+31:mem_addr] +// dst[MAX:32] := 0 +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_si32 +FORCE_INLINE __m128i _mm_loadu_si32(const void *p) +{ + return vreinterpretq_m128i_s32( + vsetq_lane_s32(*(const int32_t *) p, vdupq_n_s32(0), 0)); +} + +// Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit +// integers from b. +// +// r0 := (a0 * b0) + (a1 * b1) +// r1 := (a2 * b2) + (a3 * b3) +// r2 := (a4 * b4) + (a5 * b5) +// r3 := (a6 * b6) + (a7 * b7) +// https://msdn.microsoft.com/en-us/library/yht36sa6(v=vs.90).aspx +FORCE_INLINE __m128i _mm_madd_epi16(__m128i a, __m128i b) +{ + int32x4_t low = vmull_s16(vget_low_s16(vreinterpretq_s16_m128i(a)), + vget_low_s16(vreinterpretq_s16_m128i(b))); + int32x4_t high = vmull_s16(vget_high_s16(vreinterpretq_s16_m128i(a)), + vget_high_s16(vreinterpretq_s16_m128i(b))); + + int32x2_t low_sum = vpadd_s32(vget_low_s32(low), vget_high_s32(low)); + int32x2_t high_sum = vpadd_s32(vget_low_s32(high), vget_high_s32(high)); + + return vreinterpretq_m128i_s32(vcombine_s32(low_sum, high_sum)); +} + +// Conditionally store 8-bit integer elements from a into memory using mask +// (elements are not stored when the highest bit is not set in the corresponding +// element) and a non-temporal memory hint. mem_addr does not need to be aligned +// on any particular boundary. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskmoveu_si128 +FORCE_INLINE void _mm_maskmoveu_si128(__m128i a, __m128i mask, char *mem_addr) +{ + int8x16_t shr_mask = vshrq_n_s8(vreinterpretq_s8_m128i(mask), 7); + __m128 b = _mm_load_ps((const float *) mem_addr); + int8x16_t masked = + vbslq_s8(vreinterpretq_u8_s8(shr_mask), vreinterpretq_s8_m128i(a), + vreinterpretq_s8_m128(b)); + vst1q_s8((int8_t *) mem_addr, masked); +} + +// Computes the pairwise maxima of the 8 signed 16-bit integers from a and the 8 +// signed 16-bit integers from b. +// https://msdn.microsoft.com/en-us/LIBRary/3x060h7c(v=vs.100).aspx +FORCE_INLINE __m128i _mm_max_epi16(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s16( + vmaxq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); +} + +// Computes the pairwise maxima of the 16 unsigned 8-bit integers from a and the +// 16 unsigned 8-bit integers from b. +// https://msdn.microsoft.com/en-us/library/st6634za(v=vs.100).aspx +FORCE_INLINE __m128i _mm_max_epu8(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_u8( + vmaxq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b))); +} + +// Compare packed double-precision (64-bit) floating-point elements in a and b, +// and store packed maximum values in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_pd +FORCE_INLINE __m128d _mm_max_pd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) +#if SSE2NEON_PRECISE_MINMAX + float64x2_t _a = vreinterpretq_f64_m128d(a); + float64x2_t _b = vreinterpretq_f64_m128d(b); + return vreinterpretq_m128d_f64(vbslq_f64(vcgtq_f64(_a, _b), _a, _b)); +#else + return vreinterpretq_m128d_f64( + vmaxq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); +#endif +#else + uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); + uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); + uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); + uint64_t d[2]; + d[0] = (*(double *) &a0) > (*(double *) &b0) ? a0 : b0; + d[1] = (*(double *) &a1) > (*(double *) &b1) ? a1 : b1; + + return vreinterpretq_m128d_u64(vld1q_u64(d)); +#endif +} + +// Compare the lower double-precision (64-bit) floating-point elements in a and +// b, store the maximum value in the lower element of dst, and copy the upper +// element from a to the upper element of dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_sd +FORCE_INLINE __m128d _mm_max_sd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return _mm_move_sd(a, _mm_max_pd(a, b)); +#else + double *da = (double *) &a; + double *db = (double *) &b; + double c[2] = {da[0] > db[0] ? da[0] : db[0], da[1]}; + return vreinterpretq_m128d_f32(vld1q_f32((float32_t *) c)); +#endif +} + +// Computes the pairwise minima of the 8 signed 16-bit integers from a and the 8 +// signed 16-bit integers from b. +// https://msdn.microsoft.com/en-us/library/vstudio/6te997ew(v=vs.100).aspx +FORCE_INLINE __m128i _mm_min_epi16(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s16( + vminq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); +} + +// Computes the pairwise minima of the 16 unsigned 8-bit integers from a and the +// 16 unsigned 8-bit integers from b. +// https://msdn.microsoft.com/ko-kr/library/17k8cf58(v=vs.100).aspxx +FORCE_INLINE __m128i _mm_min_epu8(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_u8( + vminq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b))); +} + +// Compare packed double-precision (64-bit) floating-point elements in a and b, +// and store packed minimum values in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_pd +FORCE_INLINE __m128d _mm_min_pd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) +#if SSE2NEON_PRECISE_MINMAX + float64x2_t _a = vreinterpretq_f64_m128d(a); + float64x2_t _b = vreinterpretq_f64_m128d(b); + return vreinterpretq_m128d_f64(vbslq_f64(vcltq_f64(_a, _b), _a, _b)); +#else + return vreinterpretq_m128d_f64( + vminq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); +#endif +#else + uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); + uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); + uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); + uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); + uint64_t d[2]; + d[0] = (*(double *) &a0) < (*(double *) &b0) ? a0 : b0; + d[1] = (*(double *) &a1) < (*(double *) &b1) ? a1 : b1; + return vreinterpretq_m128d_u64(vld1q_u64(d)); +#endif +} + +// Compare the lower double-precision (64-bit) floating-point elements in a and +// b, store the minimum value in the lower element of dst, and copy the upper +// element from a to the upper element of dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_sd +FORCE_INLINE __m128d _mm_min_sd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return _mm_move_sd(a, _mm_min_pd(a, b)); +#else + double *da = (double *) &a; + double *db = (double *) &b; + double c[2] = {da[0] < db[0] ? da[0] : db[0], da[1]}; + return vreinterpretq_m128d_f32(vld1q_f32((float32_t *) c)); +#endif +} + +// Copy the lower 64-bit integer in a to the lower element of dst, and zero the +// upper element. +// +// dst[63:0] := a[63:0] +// dst[127:64] := 0 +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_move_epi64 +FORCE_INLINE __m128i _mm_move_epi64(__m128i a) +{ + return vreinterpretq_m128i_s64( + vsetq_lane_s64(0, vreinterpretq_s64_m128i(a), 1)); +} + +// Move the lower double-precision (64-bit) floating-point element from b to the +// lower element of dst, and copy the upper element from a to the upper element +// of dst. +// +// dst[63:0] := b[63:0] +// dst[127:64] := a[127:64] +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_move_sd +FORCE_INLINE __m128d _mm_move_sd(__m128d a, __m128d b) +{ + return vreinterpretq_m128d_f32( + vcombine_f32(vget_low_f32(vreinterpretq_f32_m128d(b)), + vget_high_f32(vreinterpretq_f32_m128d(a)))); } // NEON does not provide a version of this function. @@ -2861,88 +4896,1200 @@ FORCE_INLINE __m128i _mm_movpi64_epi64(__m64 a) vcombine_s64(vreinterpret_s64_m64(a), vdup_n_s64(0))); } -// NEON does not provide this method -// Creates a 4-bit mask from the most significant bits of the four -// single-precision, floating-point values. -// https://msdn.microsoft.com/en-us/library/vstudio/4490ys29(v=vs.100).aspx -FORCE_INLINE int _mm_movemask_ps(__m128 a) +// Multiply the low unsigned 32-bit integers from each packed 64-bit element in +// a and b, and store the unsigned 64-bit results in dst. +// +// r0 := (a0 & 0xFFFFFFFF) * (b0 & 0xFFFFFFFF) +// r1 := (a2 & 0xFFFFFFFF) * (b2 & 0xFFFFFFFF) +FORCE_INLINE __m128i _mm_mul_epu32(__m128i a, __m128i b) +{ + // vmull_u32 upcasts instead of masking, so we downcast. + uint32x2_t a_lo = vmovn_u64(vreinterpretq_u64_m128i(a)); + uint32x2_t b_lo = vmovn_u64(vreinterpretq_u64_m128i(b)); + return vreinterpretq_m128i_u64(vmull_u32(a_lo, b_lo)); +} + +// Multiply packed double-precision (64-bit) floating-point elements in a and b, +// and store the results in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mul_pd +FORCE_INLINE __m128d _mm_mul_pd(__m128d a, __m128d b) { - uint32x4_t input = vreinterpretq_u32_m128(a); #if defined(__aarch64__) - static const int32x4_t shift = {0, 1, 2, 3}; - uint32x4_t tmp = vshrq_n_u32(input, 31); - return vaddvq_u32(vshlq_u32(tmp, shift)); + return vreinterpretq_m128d_f64( + vmulq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); #else - // Uses the exact same method as _mm_movemask_epi8, see that for details. - // Shift out everything but the sign bits with a 32-bit unsigned shift - // right. - uint64x2_t high_bits = vreinterpretq_u64_u32(vshrq_n_u32(input, 31)); - // Merge the two pairs together with a 64-bit unsigned shift right + add. - uint8x16_t paired = - vreinterpretq_u8_u64(vsraq_n_u64(high_bits, high_bits, 31)); - // Extract the result. - return vgetq_lane_u8(paired, 0) | (vgetq_lane_u8(paired, 8) << 2); + double *da = (double *) &a; + double *db = (double *) &b; + double c[2]; + c[0] = da[0] * db[0]; + c[1] = da[1] * db[1]; + return vld1q_f32((float32_t *) c); #endif } -// Compute the bitwise NOT of a and then AND with a 128-bit vector containing -// all 1's, and return 1 if the result is zero, otherwise return 0. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_test_all_ones -FORCE_INLINE int _mm_test_all_ones(__m128i a) +// Multiply the lower double-precision (64-bit) floating-point element in a and +// b, store the result in the lower element of dst, and copy the upper element +// from a to the upper element of dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_mul_sd +FORCE_INLINE __m128d _mm_mul_sd(__m128d a, __m128d b) { - return (uint64_t)(vgetq_lane_s64(a, 0) & vgetq_lane_s64(a, 1)) == - ~(uint64_t) 0; + return _mm_move_sd(a, _mm_mul_pd(a, b)); } -// Compute the bitwise AND of 128 bits (representing integer data) in a and -// mask, and return 1 if the result is zero, otherwise return 0. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_test_all_zeros -FORCE_INLINE int _mm_test_all_zeros(__m128i a, __m128i mask) +// Multiply the low unsigned 32-bit integers from a and b, and store the +// unsigned 64-bit result in dst. +// +// dst[63:0] := a[31:0] * b[31:0] +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mul_su32 +FORCE_INLINE __m64 _mm_mul_su32(__m64 a, __m64 b) { - int64x2_t a_and_mask = - vandq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(mask)); - return (vgetq_lane_s64(a_and_mask, 0) | vgetq_lane_s64(a_and_mask, 1)) ? 0 - : 1; + return vreinterpret_m64_u64(vget_low_u64( + vmull_u32(vreinterpret_u32_m64(a), vreinterpret_u32_m64(b)))); } -/* Math operations */ - -// Subtracts the four single-precision, floating-point values of a and b. +// Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit +// integers from b. // -// r0 := a0 - b0 -// r1 := a1 - b1 -// r2 := a2 - b2 -// r3 := a3 - b3 +// r0 := (a0 * b0)[31:16] +// r1 := (a1 * b1)[31:16] +// ... +// r7 := (a7 * b7)[31:16] // -// https://msdn.microsoft.com/en-us/library/vstudio/1zad2k61(v=vs.100).aspx -FORCE_INLINE __m128 _mm_sub_ps(__m128 a, __m128 b) +// https://msdn.microsoft.com/en-us/library/vstudio/59hddw1d(v=vs.100).aspx +FORCE_INLINE __m128i _mm_mulhi_epi16(__m128i a, __m128i b) { - return vreinterpretq_m128_f32( - vsubq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); + /* FIXME: issue with large values because of result saturation */ + // int16x8_t ret = vqdmulhq_s16(vreinterpretq_s16_m128i(a), + // vreinterpretq_s16_m128i(b)); /* =2*a*b */ return + // vreinterpretq_m128i_s16(vshrq_n_s16(ret, 1)); + int16x4_t a3210 = vget_low_s16(vreinterpretq_s16_m128i(a)); + int16x4_t b3210 = vget_low_s16(vreinterpretq_s16_m128i(b)); + int32x4_t ab3210 = vmull_s16(a3210, b3210); /* 3333222211110000 */ + int16x4_t a7654 = vget_high_s16(vreinterpretq_s16_m128i(a)); + int16x4_t b7654 = vget_high_s16(vreinterpretq_s16_m128i(b)); + int32x4_t ab7654 = vmull_s16(a7654, b7654); /* 7777666655554444 */ + uint16x8x2_t r = + vuzpq_u16(vreinterpretq_u16_s32(ab3210), vreinterpretq_u16_s32(ab7654)); + return vreinterpretq_m128i_u16(r.val[1]); } -// Subtract the lower single-precision (32-bit) floating-point element in b from -// the lower single-precision (32-bit) floating-point element in a, store the -// result in the lower element of dst, and copy the upper 3 packed elements from -// a to the upper elements of dst. -// -// dst[31:0] := a[31:0] - b[31:0] -// dst[127:32] := a[127:32] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_ss -FORCE_INLINE __m128 _mm_sub_ss(__m128 a, __m128 b) +// Multiply the packed unsigned 16-bit integers in a and b, producing +// intermediate 32-bit integers, and store the high 16 bits of the intermediate +// integers in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mulhi_epu16 +FORCE_INLINE __m128i _mm_mulhi_epu16(__m128i a, __m128i b) { - return _mm_move_ss(a, _mm_sub_ps(a, b)); + uint16x4_t a3210 = vget_low_u16(vreinterpretq_u16_m128i(a)); + uint16x4_t b3210 = vget_low_u16(vreinterpretq_u16_m128i(b)); + uint32x4_t ab3210 = vmull_u16(a3210, b3210); +#if defined(__aarch64__) + uint32x4_t ab7654 = + vmull_high_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)); + uint16x8_t r = vuzp2q_u16(vreinterpretq_u16_u32(ab3210), + vreinterpretq_u16_u32(ab7654)); + return vreinterpretq_m128i_u16(r); +#else + uint16x4_t a7654 = vget_high_u16(vreinterpretq_u16_m128i(a)); + uint16x4_t b7654 = vget_high_u16(vreinterpretq_u16_m128i(b)); + uint32x4_t ab7654 = vmull_u16(a7654, b7654); + uint16x8x2_t r = + vuzpq_u16(vreinterpretq_u16_u32(ab3210), vreinterpretq_u16_u32(ab7654)); + return vreinterpretq_m128i_u16(r.val[1]); +#endif } -// Subtract 2 packed 64-bit integers in b from 2 packed 64-bit integers in a, -// and store the results in dst. -// r0 := a0 - b0 -// r1 := a1 - b1 -FORCE_INLINE __m128i _mm_sub_epi64(__m128i a, __m128i b) +// Multiplies the 8 signed or unsigned 16-bit integers from a by the 8 signed or +// unsigned 16-bit integers from b. +// +// r0 := (a0 * b0)[15:0] +// r1 := (a1 * b1)[15:0] +// ... +// r7 := (a7 * b7)[15:0] +// +// https://msdn.microsoft.com/en-us/library/vstudio/9ks1472s(v=vs.100).aspx +FORCE_INLINE __m128i _mm_mullo_epi16(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s16( + vmulq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); +} + +// Compute the bitwise OR of packed double-precision (64-bit) floating-point +// elements in a and b, and store the results in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_or_pd +FORCE_INLINE __m128d _mm_or_pd(__m128d a, __m128d b) +{ + return vreinterpretq_m128d_s64( + vorrq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b))); +} + +// Computes the bitwise OR of the 128-bit value in a and the 128-bit value in b. +// +// r := a | b +// +// https://msdn.microsoft.com/en-us/library/vstudio/ew8ty0db(v=vs.100).aspx +FORCE_INLINE __m128i _mm_or_si128(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s32( + vorrq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); +} + +// Packs the 16 signed 16-bit integers from a and b into 8-bit integers and +// saturates. +// https://msdn.microsoft.com/en-us/library/k4y4f7w5%28v=vs.90%29.aspx +FORCE_INLINE __m128i _mm_packs_epi16(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s8( + vcombine_s8(vqmovn_s16(vreinterpretq_s16_m128i(a)), + vqmovn_s16(vreinterpretq_s16_m128i(b)))); +} + +// Packs the 8 signed 32-bit integers from a and b into signed 16-bit integers +// and saturates. +// +// r0 := SignedSaturate(a0) +// r1 := SignedSaturate(a1) +// r2 := SignedSaturate(a2) +// r3 := SignedSaturate(a3) +// r4 := SignedSaturate(b0) +// r5 := SignedSaturate(b1) +// r6 := SignedSaturate(b2) +// r7 := SignedSaturate(b3) +// +// https://msdn.microsoft.com/en-us/library/393t56f9%28v=vs.90%29.aspx +FORCE_INLINE __m128i _mm_packs_epi32(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s16( + vcombine_s16(vqmovn_s32(vreinterpretq_s32_m128i(a)), + vqmovn_s32(vreinterpretq_s32_m128i(b)))); +} + +// Packs the 16 signed 16 - bit integers from a and b into 8 - bit unsigned +// integers and saturates. +// +// r0 := UnsignedSaturate(a0) +// r1 := UnsignedSaturate(a1) +// ... +// r7 := UnsignedSaturate(a7) +// r8 := UnsignedSaturate(b0) +// r9 := UnsignedSaturate(b1) +// ... +// r15 := UnsignedSaturate(b7) +// +// https://msdn.microsoft.com/en-us/library/07ad1wx4(v=vs.100).aspx +FORCE_INLINE __m128i _mm_packus_epi16(const __m128i a, const __m128i b) +{ + return vreinterpretq_m128i_u8( + vcombine_u8(vqmovun_s16(vreinterpretq_s16_m128i(a)), + vqmovun_s16(vreinterpretq_s16_m128i(b)))); +} + +// Pause the processor. This is typically used in spin-wait loops and depending +// on the x86 processor typical values are in the 40-100 cycle range. The +// 'yield' instruction isn't a good fit because it's effectively a nop on most +// Arm cores. Experience with several databases has shown has shown an 'isb' is +// a reasonable approximation. +FORCE_INLINE void _mm_pause() +{ + __asm__ __volatile__("isb\n"); +} + +// Compute the absolute differences of packed unsigned 8-bit integers in a and +// b, then horizontally sum each consecutive 8 differences to produce two +// unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low +// 16 bits of 64-bit elements in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sad_epu8 +FORCE_INLINE __m128i _mm_sad_epu8(__m128i a, __m128i b) +{ + uint16x8_t t = vpaddlq_u8(vabdq_u8((uint8x16_t) a, (uint8x16_t) b)); + return vreinterpretq_m128i_u64(vpaddlq_u32(vpaddlq_u16(t))); +} + +// Sets the 8 signed 16-bit integer values. +// https://msdn.microsoft.com/en-au/library/3e0fek84(v=vs.90).aspx +FORCE_INLINE __m128i _mm_set_epi16(short i7, + short i6, + short i5, + short i4, + short i3, + short i2, + short i1, + short i0) +{ + int16_t ALIGN_STRUCT(16) data[8] = {i0, i1, i2, i3, i4, i5, i6, i7}; + return vreinterpretq_m128i_s16(vld1q_s16(data)); +} + +// Sets the 4 signed 32-bit integer values. +// https://msdn.microsoft.com/en-us/library/vstudio/019beekt(v=vs.100).aspx +FORCE_INLINE __m128i _mm_set_epi32(int i3, int i2, int i1, int i0) +{ + int32_t ALIGN_STRUCT(16) data[4] = {i0, i1, i2, i3}; + return vreinterpretq_m128i_s32(vld1q_s32(data)); +} + +// Returns the __m128i structure with its two 64-bit integer values +// initialized to the values of the two 64-bit integers passed in. +// https://msdn.microsoft.com/en-us/library/dk2sdw0h(v=vs.120).aspx +FORCE_INLINE __m128i _mm_set_epi64(__m64 i1, __m64 i2) +{ + return _mm_set_epi64x((int64_t) i1, (int64_t) i2); +} + +// Returns the __m128i structure with its two 64-bit integer values +// initialized to the values of the two 64-bit integers passed in. +// https://msdn.microsoft.com/en-us/library/dk2sdw0h(v=vs.120).aspx +FORCE_INLINE __m128i _mm_set_epi64x(int64_t i1, int64_t i2) { return vreinterpretq_m128i_s64( - vsubq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b))); + vcombine_s64(vcreate_s64(i2), vcreate_s64(i1))); +} + +// Sets the 16 signed 8-bit integer values. +// https://msdn.microsoft.com/en-us/library/x0cx8zd3(v=vs.90).aspx +FORCE_INLINE __m128i _mm_set_epi8(signed char b15, + signed char b14, + signed char b13, + signed char b12, + signed char b11, + signed char b10, + signed char b9, + signed char b8, + signed char b7, + signed char b6, + signed char b5, + signed char b4, + signed char b3, + signed char b2, + signed char b1, + signed char b0) +{ + int8_t ALIGN_STRUCT(16) + data[16] = {(int8_t) b0, (int8_t) b1, (int8_t) b2, (int8_t) b3, + (int8_t) b4, (int8_t) b5, (int8_t) b6, (int8_t) b7, + (int8_t) b8, (int8_t) b9, (int8_t) b10, (int8_t) b11, + (int8_t) b12, (int8_t) b13, (int8_t) b14, (int8_t) b15}; + return (__m128i) vld1q_s8(data); +} + +// Set packed double-precision (64-bit) floating-point elements in dst with the +// supplied values. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_pd +FORCE_INLINE __m128d _mm_set_pd(double e1, double e0) +{ + double ALIGN_STRUCT(16) data[2] = {e0, e1}; +#if defined(__aarch64__) + return vreinterpretq_m128d_f64(vld1q_f64((float64_t *) data)); +#else + return vreinterpretq_m128d_f32(vld1q_f32((float32_t *) data)); +#endif +} + +// Broadcast double-precision (64-bit) floating-point value a to all elements of +// dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_pd1 +#define _mm_set_pd1 _mm_set1_pd + +// Copy double-precision (64-bit) floating-point element a to the lower element +// of dst, and zero the upper element. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_sd +FORCE_INLINE __m128d _mm_set_sd(double a) +{ + return _mm_set_pd(0, a); +} + +// Sets the 8 signed 16-bit integer values to w. +// +// r0 := w +// r1 := w +// ... +// r7 := w +// +// https://msdn.microsoft.com/en-us/library/k0ya3x0e(v=vs.90).aspx +FORCE_INLINE __m128i _mm_set1_epi16(short w) +{ + return vreinterpretq_m128i_s16(vdupq_n_s16(w)); +} + +// Sets the 4 signed 32-bit integer values to i. +// +// r0 := i +// r1 := i +// r2 := i +// r3 := I +// +// https://msdn.microsoft.com/en-us/library/vstudio/h4xscxat(v=vs.100).aspx +FORCE_INLINE __m128i _mm_set1_epi32(int _i) +{ + return vreinterpretq_m128i_s32(vdupq_n_s32(_i)); +} + +// Sets the 2 signed 64-bit integer values to i. +// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/whtfzhzk(v=vs.100) +FORCE_INLINE __m128i _mm_set1_epi64(__m64 _i) +{ + return vreinterpretq_m128i_s64(vdupq_n_s64((int64_t) _i)); +} + +// Sets the 2 signed 64-bit integer values to i. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set1_epi64x +FORCE_INLINE __m128i _mm_set1_epi64x(int64_t _i) +{ + return vreinterpretq_m128i_s64(vdupq_n_s64(_i)); +} + +// Sets the 16 signed 8-bit integer values to b. +// +// r0 := b +// r1 := b +// ... +// r15 := b +// +// https://msdn.microsoft.com/en-us/library/6e14xhyf(v=vs.100).aspx +FORCE_INLINE __m128i _mm_set1_epi8(signed char w) +{ + return vreinterpretq_m128i_s8(vdupq_n_s8(w)); +} + +// Broadcast double-precision (64-bit) floating-point value a to all elements of +// dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set1_pd +FORCE_INLINE __m128d _mm_set1_pd(double d) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_f64(vdupq_n_f64(d)); +#else + return vreinterpretq_m128d_s64(vdupq_n_s64(*(int64_t *) &d)); +#endif +} + +// Sets the 8 signed 16-bit integer values in reverse order. +// +// Return Value +// r0 := w0 +// r1 := w1 +// ... +// r7 := w7 +FORCE_INLINE __m128i _mm_setr_epi16(short w0, + short w1, + short w2, + short w3, + short w4, + short w5, + short w6, + short w7) +{ + int16_t ALIGN_STRUCT(16) data[8] = {w0, w1, w2, w3, w4, w5, w6, w7}; + return vreinterpretq_m128i_s16(vld1q_s16((int16_t *) data)); +} + +// Sets the 4 signed 32-bit integer values in reverse order +// https://technet.microsoft.com/en-us/library/security/27yb3ee5(v=vs.90).aspx +FORCE_INLINE __m128i _mm_setr_epi32(int i3, int i2, int i1, int i0) +{ + int32_t ALIGN_STRUCT(16) data[4] = {i3, i2, i1, i0}; + return vreinterpretq_m128i_s32(vld1q_s32(data)); +} + +// Set packed 64-bit integers in dst with the supplied values in reverse order. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_setr_epi64 +FORCE_INLINE __m128i _mm_setr_epi64(__m64 e1, __m64 e0) +{ + return vreinterpretq_m128i_s64(vcombine_s64(e1, e0)); +} + +// Sets the 16 signed 8-bit integer values in reverse order. +// https://msdn.microsoft.com/en-us/library/2khb9c7k(v=vs.90).aspx +FORCE_INLINE __m128i _mm_setr_epi8(signed char b0, + signed char b1, + signed char b2, + signed char b3, + signed char b4, + signed char b5, + signed char b6, + signed char b7, + signed char b8, + signed char b9, + signed char b10, + signed char b11, + signed char b12, + signed char b13, + signed char b14, + signed char b15) +{ + int8_t ALIGN_STRUCT(16) + data[16] = {(int8_t) b0, (int8_t) b1, (int8_t) b2, (int8_t) b3, + (int8_t) b4, (int8_t) b5, (int8_t) b6, (int8_t) b7, + (int8_t) b8, (int8_t) b9, (int8_t) b10, (int8_t) b11, + (int8_t) b12, (int8_t) b13, (int8_t) b14, (int8_t) b15}; + return (__m128i) vld1q_s8(data); +} + +// Set packed double-precision (64-bit) floating-point elements in dst with the +// supplied values in reverse order. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_setr_pd +FORCE_INLINE __m128d _mm_setr_pd(double e1, double e0) +{ + return _mm_set_pd(e0, e1); +} + +// Return vector of type __m128d with all elements set to zero. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_setzero_pd +FORCE_INLINE __m128d _mm_setzero_pd(void) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_f64(vdupq_n_f64(0)); +#else + return vreinterpretq_m128d_f32(vdupq_n_f32(0)); +#endif +} + +// Sets the 128-bit value to zero +// https://msdn.microsoft.com/en-us/library/vstudio/ys7dw0kh(v=vs.100).aspx +FORCE_INLINE __m128i _mm_setzero_si128(void) +{ + return vreinterpretq_m128i_s32(vdupq_n_s32(0)); +} + +// Shuffles the 4 signed or unsigned 32-bit integers in a as specified by imm. +// https://msdn.microsoft.com/en-us/library/56f67xbk%28v=vs.90%29.aspx +// FORCE_INLINE __m128i _mm_shuffle_epi32(__m128i a, +// __constrange(0,255) int imm) +#ifdef _sse2neon_shuffle +#define _mm_shuffle_epi32(a, imm) \ + __extension__({ \ + int32x4_t _input = vreinterpretq_s32_m128i(a); \ + int32x4_t _shuf = \ + vshuffleq_s32(_input, _input, (imm) & (0x3), ((imm) >> 2) & 0x3, \ + ((imm) >> 4) & 0x3, ((imm) >> 6) & 0x3); \ + vreinterpretq_m128i_s32(_shuf); \ + }) +#else // generic +#define _mm_shuffle_epi32(a, imm) \ + __extension__({ \ + __m128i ret; \ + switch (imm) { \ + case _MM_SHUFFLE(1, 0, 3, 2): \ + ret = _mm_shuffle_epi_1032((a)); \ + break; \ + case _MM_SHUFFLE(2, 3, 0, 1): \ + ret = _mm_shuffle_epi_2301((a)); \ + break; \ + case _MM_SHUFFLE(0, 3, 2, 1): \ + ret = _mm_shuffle_epi_0321((a)); \ + break; \ + case _MM_SHUFFLE(2, 1, 0, 3): \ + ret = _mm_shuffle_epi_2103((a)); \ + break; \ + case _MM_SHUFFLE(1, 0, 1, 0): \ + ret = _mm_shuffle_epi_1010((a)); \ + break; \ + case _MM_SHUFFLE(1, 0, 0, 1): \ + ret = _mm_shuffle_epi_1001((a)); \ + break; \ + case _MM_SHUFFLE(0, 1, 0, 1): \ + ret = _mm_shuffle_epi_0101((a)); \ + break; \ + case _MM_SHUFFLE(2, 2, 1, 1): \ + ret = _mm_shuffle_epi_2211((a)); \ + break; \ + case _MM_SHUFFLE(0, 1, 2, 2): \ + ret = _mm_shuffle_epi_0122((a)); \ + break; \ + case _MM_SHUFFLE(3, 3, 3, 2): \ + ret = _mm_shuffle_epi_3332((a)); \ + break; \ + case _MM_SHUFFLE(0, 0, 0, 0): \ + ret = _mm_shuffle_epi32_splat((a), 0); \ + break; \ + case _MM_SHUFFLE(1, 1, 1, 1): \ + ret = _mm_shuffle_epi32_splat((a), 1); \ + break; \ + case _MM_SHUFFLE(2, 2, 2, 2): \ + ret = _mm_shuffle_epi32_splat((a), 2); \ + break; \ + case _MM_SHUFFLE(3, 3, 3, 3): \ + ret = _mm_shuffle_epi32_splat((a), 3); \ + break; \ + default: \ + ret = _mm_shuffle_epi32_default((a), (imm)); \ + break; \ + } \ + ret; \ + }) +#endif + +// Shuffle double-precision (64-bit) floating-point elements using the control +// in imm8, and store the results in dst. +// +// dst[63:0] := (imm8[0] == 0) ? a[63:0] : a[127:64] +// dst[127:64] := (imm8[1] == 0) ? b[63:0] : b[127:64] +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_pd +#ifdef _sse2neon_shuffle +#define _mm_shuffle_pd(a, b, imm8) \ + vreinterpretq_m128d_s64( \ + vshuffleq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b), \ + imm8 & 0x1, ((imm8 & 0x2) >> 1) + 2)) +#else +#define _mm_shuffle_pd(a, b, imm8) \ + _mm_castsi128_pd(_mm_set_epi64x( \ + vgetq_lane_s64(vreinterpretq_s64_m128d(b), (imm8 & 0x2) >> 1), \ + vgetq_lane_s64(vreinterpretq_s64_m128d(a), imm8 & 0x1))) +#endif + +// FORCE_INLINE __m128i _mm_shufflehi_epi16(__m128i a, +// __constrange(0,255) int imm) +#ifdef _sse2neon_shuffle +#define _mm_shufflehi_epi16(a, imm) \ + __extension__({ \ + int16x8_t _input = vreinterpretq_s16_m128i(a); \ + int16x8_t _shuf = \ + vshuffleq_s16(_input, _input, 0, 1, 2, 3, ((imm) & (0x3)) + 4, \ + (((imm) >> 2) & 0x3) + 4, (((imm) >> 4) & 0x3) + 4, \ + (((imm) >> 6) & 0x3) + 4); \ + vreinterpretq_m128i_s16(_shuf); \ + }) +#else // generic +#define _mm_shufflehi_epi16(a, imm) _mm_shufflehi_epi16_function((a), (imm)) +#endif + +// FORCE_INLINE __m128i _mm_shufflelo_epi16(__m128i a, +// __constrange(0,255) int imm) +#ifdef _sse2neon_shuffle +#define _mm_shufflelo_epi16(a, imm) \ + __extension__({ \ + int16x8_t _input = vreinterpretq_s16_m128i(a); \ + int16x8_t _shuf = vshuffleq_s16( \ + _input, _input, ((imm) & (0x3)), (((imm) >> 2) & 0x3), \ + (((imm) >> 4) & 0x3), (((imm) >> 6) & 0x3), 4, 5, 6, 7); \ + vreinterpretq_m128i_s16(_shuf); \ + }) +#else // generic +#define _mm_shufflelo_epi16(a, imm) _mm_shufflelo_epi16_function((a), (imm)) +#endif + +// Shift packed 16-bit integers in a left by count while shifting in zeros, and +// store the results in dst. +// +// FOR j := 0 to 7 +// i := j*16 +// IF count[63:0] > 15 +// dst[i+15:i] := 0 +// ELSE +// dst[i+15:i] := ZeroExtend16(a[i+15:i] << count[63:0]) +// FI +// ENDFOR +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sll_epi16 +FORCE_INLINE __m128i _mm_sll_epi16(__m128i a, __m128i count) +{ + uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); + if (_sse2neon_unlikely(c & ~15)) + return _mm_setzero_si128(); + + int16x8_t vc = vdupq_n_s16((int16_t) c); + return vreinterpretq_m128i_s16(vshlq_s16(vreinterpretq_s16_m128i(a), vc)); +} + +// Shift packed 32-bit integers in a left by count while shifting in zeros, and +// store the results in dst. +// +// FOR j := 0 to 3 +// i := j*32 +// IF count[63:0] > 31 +// dst[i+31:i] := 0 +// ELSE +// dst[i+31:i] := ZeroExtend32(a[i+31:i] << count[63:0]) +// FI +// ENDFOR +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sll_epi32 +FORCE_INLINE __m128i _mm_sll_epi32(__m128i a, __m128i count) +{ + uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); + if (_sse2neon_unlikely(c & ~31)) + return _mm_setzero_si128(); + + int32x4_t vc = vdupq_n_s32((int32_t) c); + return vreinterpretq_m128i_s32(vshlq_s32(vreinterpretq_s32_m128i(a), vc)); +} + +// Shift packed 64-bit integers in a left by count while shifting in zeros, and +// store the results in dst. +// +// FOR j := 0 to 1 +// i := j*64 +// IF count[63:0] > 63 +// dst[i+63:i] := 0 +// ELSE +// dst[i+63:i] := ZeroExtend64(a[i+63:i] << count[63:0]) +// FI +// ENDFOR +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sll_epi64 +FORCE_INLINE __m128i _mm_sll_epi64(__m128i a, __m128i count) +{ + uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); + if (_sse2neon_unlikely(c & ~63)) + return _mm_setzero_si128(); + + int64x2_t vc = vdupq_n_s64((int64_t) c); + return vreinterpretq_m128i_s64(vshlq_s64(vreinterpretq_s64_m128i(a), vc)); +} + +// Shift packed 16-bit integers in a left by imm8 while shifting in zeros, and +// store the results in dst. +// +// FOR j := 0 to 7 +// i := j*16 +// IF imm8[7:0] > 15 +// dst[i+15:i] := 0 +// ELSE +// dst[i+15:i] := ZeroExtend16(a[i+15:i] << imm8[7:0]) +// FI +// ENDFOR +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_slli_epi16 +FORCE_INLINE __m128i _mm_slli_epi16(__m128i a, int imm) +{ + if (_sse2neon_unlikely(imm & ~15)) + return _mm_setzero_si128(); + return vreinterpretq_m128i_s16( + vshlq_s16(vreinterpretq_s16_m128i(a), vdupq_n_s16(imm))); +} + +// Shift packed 32-bit integers in a left by imm8 while shifting in zeros, and +// store the results in dst. +// +// FOR j := 0 to 3 +// i := j*32 +// IF imm8[7:0] > 31 +// dst[i+31:i] := 0 +// ELSE +// dst[i+31:i] := ZeroExtend32(a[i+31:i] << imm8[7:0]) +// FI +// ENDFOR +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_slli_epi32 +FORCE_INLINE __m128i _mm_slli_epi32(__m128i a, int imm) +{ + if (_sse2neon_unlikely(imm & ~31)) + return _mm_setzero_si128(); + return vreinterpretq_m128i_s32( + vshlq_s32(vreinterpretq_s32_m128i(a), vdupq_n_s32(imm))); +} + +// Shift packed 64-bit integers in a left by imm8 while shifting in zeros, and +// store the results in dst. +// +// FOR j := 0 to 1 +// i := j*64 +// IF imm8[7:0] > 63 +// dst[i+63:i] := 0 +// ELSE +// dst[i+63:i] := ZeroExtend64(a[i+63:i] << imm8[7:0]) +// FI +// ENDFOR +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_slli_epi64 +FORCE_INLINE __m128i _mm_slli_epi64(__m128i a, int imm) +{ + if (_sse2neon_unlikely(imm & ~63)) + return _mm_setzero_si128(); + return vreinterpretq_m128i_s64( + vshlq_s64(vreinterpretq_s64_m128i(a), vdupq_n_s64(imm))); +} + +// Shift a left by imm8 bytes while shifting in zeros, and store the results in +// dst. +// +// tmp := imm8[7:0] +// IF tmp > 15 +// tmp := 16 +// FI +// dst[127:0] := a[127:0] << (tmp*8) +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_slli_si128 +#define _mm_slli_si128(a, imm) \ + __extension__({ \ + int8x16_t ret; \ + if (_sse2neon_unlikely(imm == 0)) \ + ret = vreinterpretq_s8_m128i(a); \ + else if (_sse2neon_unlikely((imm) & ~15)) \ + ret = vdupq_n_s8(0); \ + else \ + ret = vextq_s8(vdupq_n_s8(0), vreinterpretq_s8_m128i(a), \ + ((imm <= 0 || imm > 15) ? 0 : (16 - imm))); \ + vreinterpretq_m128i_s8(ret); \ + }) + +// Compute the square root of packed double-precision (64-bit) floating-point +// elements in a, and store the results in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sqrt_pd +FORCE_INLINE __m128d _mm_sqrt_pd(__m128d a) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_f64(vsqrtq_f64(vreinterpretq_f64_m128d(a))); +#else + double a0 = sqrt(((double *) &a)[0]); + double a1 = sqrt(((double *) &a)[1]); + return _mm_set_pd(a1, a0); +#endif +} + +// Compute the square root of the lower double-precision (64-bit) floating-point +// element in b, store the result in the lower element of dst, and copy the +// upper element from a to the upper element of dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sqrt_sd +FORCE_INLINE __m128d _mm_sqrt_sd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return _mm_move_sd(a, _mm_sqrt_pd(b)); +#else + return _mm_set_pd(((double *) &a)[1], sqrt(((double *) &b)[0])); +#endif +} + +// Shift packed 16-bit integers in a right by count while shifting in sign bits, +// and store the results in dst. +// +// FOR j := 0 to 7 +// i := j*16 +// IF count[63:0] > 15 +// dst[i+15:i] := (a[i+15] ? 0xFFFF : 0x0) +// ELSE +// dst[i+15:i] := SignExtend16(a[i+15:i] >> count[63:0]) +// FI +// ENDFOR +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sra_epi16 +FORCE_INLINE __m128i _mm_sra_epi16(__m128i a, __m128i count) +{ + int64_t c = (int64_t) vget_low_s64((int64x2_t) count); + if (_sse2neon_unlikely(c & ~15)) + return _mm_cmplt_epi16(a, _mm_setzero_si128()); + return vreinterpretq_m128i_s16(vshlq_s16((int16x8_t) a, vdupq_n_s16(-c))); +} + +// Shift packed 32-bit integers in a right by count while shifting in sign bits, +// and store the results in dst. +// +// FOR j := 0 to 3 +// i := j*32 +// IF count[63:0] > 31 +// dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0x0) +// ELSE +// dst[i+31:i] := SignExtend32(a[i+31:i] >> count[63:0]) +// FI +// ENDFOR +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sra_epi32 +FORCE_INLINE __m128i _mm_sra_epi32(__m128i a, __m128i count) +{ + int64_t c = (int64_t) vget_low_s64((int64x2_t) count); + if (_sse2neon_unlikely(c & ~31)) + return _mm_cmplt_epi32(a, _mm_setzero_si128()); + return vreinterpretq_m128i_s32(vshlq_s32((int32x4_t) a, vdupq_n_s32(-c))); +} + +// Shift packed 16-bit integers in a right by imm8 while shifting in sign +// bits, and store the results in dst. +// +// FOR j := 0 to 7 +// i := j*16 +// IF imm8[7:0] > 15 +// dst[i+15:i] := (a[i+15] ? 0xFFFF : 0x0) +// ELSE +// dst[i+15:i] := SignExtend16(a[i+15:i] >> imm8[7:0]) +// FI +// ENDFOR +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srai_epi16 +FORCE_INLINE __m128i _mm_srai_epi16(__m128i a, int imm) +{ + const int count = (imm & ~15) ? 15 : imm; + return (__m128i) vshlq_s16((int16x8_t) a, vdupq_n_s16(-count)); +} + +// Shift packed 32-bit integers in a right by imm8 while shifting in sign bits, +// and store the results in dst. +// +// FOR j := 0 to 3 +// i := j*32 +// IF imm8[7:0] > 31 +// dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0x0) +// ELSE +// dst[i+31:i] := SignExtend32(a[i+31:i] >> imm8[7:0]) +// FI +// ENDFOR +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srai_epi32 +// FORCE_INLINE __m128i _mm_srai_epi32(__m128i a, __constrange(0,255) int imm) +#define _mm_srai_epi32(a, imm) \ + __extension__({ \ + __m128i ret; \ + if (_sse2neon_unlikely((imm) == 0)) { \ + ret = a; \ + } else if (_sse2neon_likely(0 < (imm) && (imm) < 32)) { \ + ret = vreinterpretq_m128i_s32( \ + vshlq_s32(vreinterpretq_s32_m128i(a), vdupq_n_s32(-(imm)))); \ + } else { \ + ret = vreinterpretq_m128i_s32( \ + vshrq_n_s32(vreinterpretq_s32_m128i(a), 31)); \ + } \ + ret; \ + }) + +// Shift packed 16-bit integers in a right by count while shifting in zeros, and +// store the results in dst. +// +// FOR j := 0 to 7 +// i := j*16 +// IF count[63:0] > 15 +// dst[i+15:i] := 0 +// ELSE +// dst[i+15:i] := ZeroExtend16(a[i+15:i] >> count[63:0]) +// FI +// ENDFOR +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srl_epi16 +FORCE_INLINE __m128i _mm_srl_epi16(__m128i a, __m128i count) +{ + uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); + if (_sse2neon_unlikely(c & ~15)) + return _mm_setzero_si128(); + + int16x8_t vc = vdupq_n_s16(-(int16_t) c); + return vreinterpretq_m128i_u16(vshlq_u16(vreinterpretq_u16_m128i(a), vc)); +} + +// Shift packed 32-bit integers in a right by count while shifting in zeros, and +// store the results in dst. +// +// FOR j := 0 to 3 +// i := j*32 +// IF count[63:0] > 31 +// dst[i+31:i] := 0 +// ELSE +// dst[i+31:i] := ZeroExtend32(a[i+31:i] >> count[63:0]) +// FI +// ENDFOR +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srl_epi32 +FORCE_INLINE __m128i _mm_srl_epi32(__m128i a, __m128i count) +{ + uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); + if (_sse2neon_unlikely(c & ~31)) + return _mm_setzero_si128(); + + int32x4_t vc = vdupq_n_s32(-(int32_t) c); + return vreinterpretq_m128i_u32(vshlq_u32(vreinterpretq_u32_m128i(a), vc)); +} + +// Shift packed 64-bit integers in a right by count while shifting in zeros, and +// store the results in dst. +// +// FOR j := 0 to 1 +// i := j*64 +// IF count[63:0] > 63 +// dst[i+63:i] := 0 +// ELSE +// dst[i+63:i] := ZeroExtend64(a[i+63:i] >> count[63:0]) +// FI +// ENDFOR +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srl_epi64 +FORCE_INLINE __m128i _mm_srl_epi64(__m128i a, __m128i count) +{ + uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); + if (_sse2neon_unlikely(c & ~63)) + return _mm_setzero_si128(); + + int64x2_t vc = vdupq_n_s64(-(int64_t) c); + return vreinterpretq_m128i_u64(vshlq_u64(vreinterpretq_u64_m128i(a), vc)); +} + +// Shift packed 16-bit integers in a right by imm8 while shifting in zeros, and +// store the results in dst. +// +// FOR j := 0 to 7 +// i := j*16 +// IF imm8[7:0] > 15 +// dst[i+15:i] := 0 +// ELSE +// dst[i+15:i] := ZeroExtend16(a[i+15:i] >> imm8[7:0]) +// FI +// ENDFOR +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_epi16 +#define _mm_srli_epi16(a, imm) \ + __extension__({ \ + __m128i ret; \ + if (_sse2neon_unlikely((imm) & ~15)) { \ + ret = _mm_setzero_si128(); \ + } else { \ + ret = vreinterpretq_m128i_u16( \ + vshlq_u16(vreinterpretq_u16_m128i(a), vdupq_n_s16(-(imm)))); \ + } \ + ret; \ + }) + +// Shift packed 32-bit integers in a right by imm8 while shifting in zeros, and +// store the results in dst. +// +// FOR j := 0 to 3 +// i := j*32 +// IF imm8[7:0] > 31 +// dst[i+31:i] := 0 +// ELSE +// dst[i+31:i] := ZeroExtend32(a[i+31:i] >> imm8[7:0]) +// FI +// ENDFOR +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_epi32 +// FORCE_INLINE __m128i _mm_srli_epi32(__m128i a, __constrange(0,255) int imm) +#define _mm_srli_epi32(a, imm) \ + __extension__({ \ + __m128i ret; \ + if (_sse2neon_unlikely((imm) & ~31)) { \ + ret = _mm_setzero_si128(); \ + } else { \ + ret = vreinterpretq_m128i_u32( \ + vshlq_u32(vreinterpretq_u32_m128i(a), vdupq_n_s32(-(imm)))); \ + } \ + ret; \ + }) + +// Shift packed 64-bit integers in a right by imm8 while shifting in zeros, and +// store the results in dst. +// +// FOR j := 0 to 1 +// i := j*64 +// IF imm8[7:0] > 63 +// dst[i+63:i] := 0 +// ELSE +// dst[i+63:i] := ZeroExtend64(a[i+63:i] >> imm8[7:0]) +// FI +// ENDFOR +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_epi64 +#define _mm_srli_epi64(a, imm) \ + __extension__({ \ + __m128i ret; \ + if (_sse2neon_unlikely((imm) & ~63)) { \ + ret = _mm_setzero_si128(); \ + } else { \ + ret = vreinterpretq_m128i_u64( \ + vshlq_u64(vreinterpretq_u64_m128i(a), vdupq_n_s64(-(imm)))); \ + } \ + ret; \ + }) + +// Shift a right by imm8 bytes while shifting in zeros, and store the results in +// dst. +// +// tmp := imm8[7:0] +// IF tmp > 15 +// tmp := 16 +// FI +// dst[127:0] := a[127:0] >> (tmp*8) +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_si128 +#define _mm_srli_si128(a, imm) \ + __extension__({ \ + int8x16_t ret; \ + if (_sse2neon_unlikely((imm) & ~15)) \ + ret = vdupq_n_s8(0); \ + else \ + ret = vextq_s8(vreinterpretq_s8_m128i(a), vdupq_n_s8(0), \ + (imm > 15 ? 0 : imm)); \ + vreinterpretq_m128i_s8(ret); \ + }) + +// Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point +// elements) from a into memory. mem_addr must be aligned on a 16-byte boundary +// or a general-protection exception may be generated. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store_pd +FORCE_INLINE void _mm_store_pd(double *mem_addr, __m128d a) +{ +#if defined(__aarch64__) + vst1q_f64((float64_t *) mem_addr, vreinterpretq_f64_m128d(a)); +#else + vst1q_f32((float32_t *) mem_addr, vreinterpretq_f32_m128d(a)); +#endif +} + +// Store the lower double-precision (64-bit) floating-point element from a into +// 2 contiguous elements in memory. mem_addr must be aligned on a 16-byte +// boundary or a general-protection exception may be generated. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store_pd1 +FORCE_INLINE void _mm_store_pd1(double *mem_addr, __m128d a) +{ +#if defined(__aarch64__) + float64x1_t a_low = vget_low_f64(vreinterpretq_f64_m128d(a)); + vst1q_f64((float64_t *) mem_addr, + vreinterpretq_f64_m128d(vcombine_f64(a_low, a_low))); +#else + float32x2_t a_low = vget_low_f32(vreinterpretq_f32_m128d(a)); + vst1q_f32((float32_t *) mem_addr, + vreinterpretq_f32_m128d(vcombine_f32(a_low, a_low))); +#endif +} + +// Store the lower double-precision (64-bit) floating-point element from a into +// memory. mem_addr does not need to be aligned on any particular boundary. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_store_sd +FORCE_INLINE void _mm_store_sd(double *mem_addr, __m128d a) +{ +#if defined(__aarch64__) + vst1_f64((float64_t *) mem_addr, vget_low_f64(vreinterpretq_f64_m128d(a))); +#else + vst1_u64((uint64_t *) mem_addr, vget_low_u64(vreinterpretq_u64_m128d(a))); +#endif +} + +// Stores four 32-bit integer values as (as a __m128i value) at the address p. +// https://msdn.microsoft.com/en-us/library/vstudio/edk11s13(v=vs.100).aspx +FORCE_INLINE void _mm_store_si128(__m128i *p, __m128i a) +{ + vst1q_s32((int32_t *) p, vreinterpretq_s32_m128i(a)); +} + +// Store the lower double-precision (64-bit) floating-point element from a into +// 2 contiguous elements in memory. mem_addr must be aligned on a 16-byte +// boundary or a general-protection exception may be generated. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#expand=9,526,5601&text=_mm_store1_pd +#define _mm_store1_pd _mm_store_pd1 + +// Store the upper double-precision (64-bit) floating-point element from a into +// memory. +// +// MEM[mem_addr+63:mem_addr] := a[127:64] +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeh_pd +FORCE_INLINE void _mm_storeh_pd(double *mem_addr, __m128d a) +{ +#if defined(__aarch64__) + vst1_f64((float64_t *) mem_addr, vget_high_f64(vreinterpretq_f64_m128d(a))); +#else + vst1_f32((float32_t *) mem_addr, vget_high_f32(vreinterpretq_f32_m128d(a))); +#endif +} + +// Reads the lower 64 bits of b and stores them into the lower 64 bits of a. +// https://msdn.microsoft.com/en-us/library/hhwf428f%28v=vs.90%29.aspx +FORCE_INLINE void _mm_storel_epi64(__m128i *a, __m128i b) +{ + vst1_u64((uint64_t *) a, vget_low_u64(vreinterpretq_u64_m128i(b))); +} + +// Store the lower double-precision (64-bit) floating-point element from a into +// memory. +// +// MEM[mem_addr+63:mem_addr] := a[63:0] +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storel_pd +FORCE_INLINE void _mm_storel_pd(double *mem_addr, __m128d a) +{ +#if defined(__aarch64__) + vst1_f64((float64_t *) mem_addr, vget_low_f64(vreinterpretq_f64_m128d(a))); +#else + vst1_f32((float32_t *) mem_addr, vget_low_f32(vreinterpretq_f32_m128d(a))); +#endif +} + +// Store 2 double-precision (64-bit) floating-point elements from a into memory +// in reverse order. mem_addr must be aligned on a 16-byte boundary or a +// general-protection exception may be generated. +// +// MEM[mem_addr+63:mem_addr] := a[127:64] +// MEM[mem_addr+127:mem_addr+64] := a[63:0] +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storer_pd +FORCE_INLINE void _mm_storer_pd(double *mem_addr, __m128d a) +{ + float32x4_t f = vreinterpretq_f32_m128d(a); + _mm_store_pd(mem_addr, vreinterpretq_m128d_f32(vextq_f32(f, f, 2))); +} + +// Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point +// elements) from a into memory. mem_addr does not need to be aligned on any +// particular boundary. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_pd +FORCE_INLINE void _mm_storeu_pd(double *mem_addr, __m128d a) +{ + _mm_store_pd(mem_addr, a); +} + +// Stores 128-bits of integer data a at the address p. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_si128 +FORCE_INLINE void _mm_storeu_si128(__m128i *p, __m128i a) +{ + vst1q_s32((int32_t *) p, vreinterpretq_s32_m128i(a)); +} + +// Stores 32-bits of integer data a at the address p. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_si32 +FORCE_INLINE void _mm_storeu_si32(void *p, __m128i a) +{ + vst1q_lane_s32((int32_t *) p, vreinterpretq_s32_m128i(a), 0); +} + +// Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point +// elements) from a into memory using a non-temporal memory hint. mem_addr must +// be aligned on a 16-byte boundary or a general-protection exception may be +// generated. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_pd +FORCE_INLINE void _mm_stream_pd(double *p, __m128d a) +{ +#if __has_builtin(__builtin_nontemporal_store) + __builtin_nontemporal_store(a, (float32x4_t *) p); +#elif defined(__aarch64__) + vst1q_f64(p, vreinterpretq_f64_m128d(a)); +#else + vst1q_s64((int64_t *) p, vreinterpretq_s64_m128d(a)); +#endif +} + +// Stores the data in a to the address p without polluting the caches. If the +// cache line containing address p is already in the cache, the cache will be +// updated. +// https://msdn.microsoft.com/en-us/library/ba08y07y%28v=vs.90%29.aspx +FORCE_INLINE void _mm_stream_si128(__m128i *p, __m128i a) +{ +#if __has_builtin(__builtin_nontemporal_store) + __builtin_nontemporal_store(a, p); +#else + vst1q_s64((int64_t *) p, vreinterpretq_s64_m128i(a)); +#endif +} + +// Store 32-bit integer a into memory using a non-temporal hint to minimize +// cache pollution. If the cache line containing address mem_addr is already in +// the cache, the cache will be updated. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_si32 +FORCE_INLINE void _mm_stream_si32(int *p, int a) +{ + vst1q_lane_s32((int32_t *) p, vdupq_n_s32(a), 0); +} + +// Store 64-bit integer a into memory using a non-temporal hint to minimize +// cache pollution. If the cache line containing address mem_addr is already in +// the cache, the cache will be updated. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_si64 +FORCE_INLINE void _mm_stream_si64(__int64 *p, __int64 a) +{ + vst1_s64((int64_t *) p, vdup_n_s64((int64_t) a)); +} + +// Subtract packed 16-bit integers in b from packed 16-bit integers in a, and +// store the results in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_epi16 +FORCE_INLINE __m128i _mm_sub_epi16(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s16( + vsubq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); } // Subtracts the 4 signed or unsigned 32-bit integers of b from the 4 signed or @@ -2960,13 +6107,14 @@ FORCE_INLINE __m128i _mm_sub_epi32(__m128i a, __m128i b) vsubq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); } -// Subtract packed 16-bit integers in b from packed 16-bit integers in a, and -// store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_epi16 -FORCE_INLINE __m128i _mm_sub_epi16(__m128i a, __m128i b) +// Subtract 2 packed 64-bit integers in b from 2 packed 64-bit integers in a, +// and store the results in dst. +// r0 := a0 - b0 +// r1 := a1 - b1 +FORCE_INLINE __m128i _mm_sub_epi64(__m128i a, __m128i b) { - return vreinterpretq_m128i_s16( - vsubq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); + return vreinterpretq_m128i_s64( + vsubq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b))); } // Subtract packed 8-bit integers in b from packed 8-bit integers in a, and @@ -2978,78 +6126,6 @@ FORCE_INLINE __m128i _mm_sub_epi8(__m128i a, __m128i b) vsubq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); } -// Subtract 64-bit integer b from 64-bit integer a, and store the result in dst. -// -// dst[63:0] := a[63:0] - b[63:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_si64 -FORCE_INLINE __m64 _mm_sub_si64(__m64 a, __m64 b) -{ - return vreinterpret_m64_s64( - vsub_s64(vreinterpret_s64_m64(a), vreinterpret_s64_m64(b))); -} - -// Subtracts the 8 unsigned 16-bit integers of bfrom the 8 unsigned 16-bit -// integers of a and saturates.. -// https://technet.microsoft.com/en-us/subscriptions/index/f44y0s19(v=vs.90).aspx -FORCE_INLINE __m128i _mm_subs_epu16(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_u16( - vqsubq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b))); -} - -// Subtracts the 16 unsigned 8-bit integers of b from the 16 unsigned 8-bit -// integers of a and saturates. -// -// r0 := UnsignedSaturate(a0 - b0) -// r1 := UnsignedSaturate(a1 - b1) -// ... -// r15 := UnsignedSaturate(a15 - b15) -// -// https://technet.microsoft.com/en-us/subscriptions/yadkxc18(v=vs.90) -FORCE_INLINE __m128i _mm_subs_epu8(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_u8( - vqsubq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b))); -} - -#define _mm_ucomieq_sd _mm_comieq_sd -#define _mm_ucomige_sd _mm_comige_sd -#define _mm_ucomigt_sd _mm_comigt_sd -#define _mm_ucomile_sd _mm_comile_sd -#define _mm_ucomilt_sd _mm_comilt_sd -#define _mm_ucomineq_sd _mm_comineq_sd - -// Subtracts the 16 signed 8-bit integers of b from the 16 signed 8-bit integers -// of a and saturates. -// -// r0 := SignedSaturate(a0 - b0) -// r1 := SignedSaturate(a1 - b1) -// ... -// r15 := SignedSaturate(a15 - b15) -// -// https://technet.microsoft.com/en-us/subscriptions/by7kzks1(v=vs.90) -FORCE_INLINE __m128i _mm_subs_epi8(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_s8( - vqsubq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); -} - -// Subtracts the 8 signed 16-bit integers of b from the 8 signed 16-bit integers -// of a and saturates. -// -// r0 := SignedSaturate(a0 - b0) -// r1 := SignedSaturate(a1 - b1) -// ... -// r7 := SignedSaturate(a7 - b7) -// -// https://technet.microsoft.com/en-us/subscriptions/3247z5b8(v=vs.90) -FORCE_INLINE __m128i _mm_subs_epi16(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_s16( - vqsubq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); -} - // Subtract packed double-precision (64-bit) floating-point elements in b from // packed double-precision (64-bit) floating-point elements in a, and store the // results in dst. @@ -3085,52 +6161,972 @@ FORCE_INLINE __m128d _mm_sub_sd(__m128d a, __m128d b) return _mm_move_sd(a, _mm_sub_pd(a, b)); } -// Add packed unsigned 16-bit integers in a and b using saturation, and store -// the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_adds_epu16 -FORCE_INLINE __m128i _mm_adds_epu16(__m128i a, __m128i b) +// Subtract 64-bit integer b from 64-bit integer a, and store the result in dst. +// +// dst[63:0] := a[63:0] - b[63:0] +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_si64 +FORCE_INLINE __m64 _mm_sub_si64(__m64 a, __m64 b) { - return vreinterpretq_m128i_u16( - vqaddq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b))); + return vreinterpret_m64_s64( + vsub_s64(vreinterpret_s64_m64(a), vreinterpret_s64_m64(b))); } -// Negate packed 8-bit integers in a when the corresponding signed -// 8-bit integer in b is negative, and store the results in dst. -// Element in dst are zeroed out when the corresponding element -// in b is zero. +// Subtracts the 8 signed 16-bit integers of b from the 8 signed 16-bit integers +// of a and saturates. // -// for i in 0..15 -// if b[i] < 0 -// r[i] := -a[i] -// else if b[i] == 0 -// r[i] := 0 -// else -// r[i] := a[i] -// fi -// done -FORCE_INLINE __m128i _mm_sign_epi8(__m128i _a, __m128i _b) +// r0 := SignedSaturate(a0 - b0) +// r1 := SignedSaturate(a1 - b1) +// ... +// r7 := SignedSaturate(a7 - b7) +// +// https://technet.microsoft.com/en-us/subscriptions/3247z5b8(v=vs.90) +FORCE_INLINE __m128i _mm_subs_epi16(__m128i a, __m128i b) { - int8x16_t a = vreinterpretq_s8_m128i(_a); - int8x16_t b = vreinterpretq_s8_m128i(_b); + return vreinterpretq_m128i_s16( + vqsubq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); +} - // signed shift right: faster than vclt - // (b < 0) ? 0xFF : 0 - uint8x16_t ltMask = vreinterpretq_u8_s8(vshrq_n_s8(b, 7)); +// Subtracts the 16 signed 8-bit integers of b from the 16 signed 8-bit integers +// of a and saturates. +// +// r0 := SignedSaturate(a0 - b0) +// r1 := SignedSaturate(a1 - b1) +// ... +// r15 := SignedSaturate(a15 - b15) +// +// https://technet.microsoft.com/en-us/subscriptions/by7kzks1(v=vs.90) +FORCE_INLINE __m128i _mm_subs_epi8(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s8( + vqsubq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); +} - // (b == 0) ? 0xFF : 0 -#if defined(__aarch64__) - int8x16_t zeroMask = vreinterpretq_s8_u8(vceqzq_s8(b)); -#else - int8x16_t zeroMask = vreinterpretq_s8_u8(vceqq_s8(b, vdupq_n_s8(0))); +// Subtracts the 8 unsigned 16-bit integers of bfrom the 8 unsigned 16-bit +// integers of a and saturates.. +// https://technet.microsoft.com/en-us/subscriptions/index/f44y0s19(v=vs.90).aspx +FORCE_INLINE __m128i _mm_subs_epu16(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_u16( + vqsubq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b))); +} + +// Subtracts the 16 unsigned 8-bit integers of b from the 16 unsigned 8-bit +// integers of a and saturates. +// +// r0 := UnsignedSaturate(a0 - b0) +// r1 := UnsignedSaturate(a1 - b1) +// ... +// r15 := UnsignedSaturate(a15 - b15) +// +// https://technet.microsoft.com/en-us/subscriptions/yadkxc18(v=vs.90) +FORCE_INLINE __m128i _mm_subs_epu8(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_u8( + vqsubq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b))); +} + +#define _mm_ucomieq_sd _mm_comieq_sd +#define _mm_ucomige_sd _mm_comige_sd +#define _mm_ucomigt_sd _mm_comigt_sd +#define _mm_ucomile_sd _mm_comile_sd +#define _mm_ucomilt_sd _mm_comilt_sd +#define _mm_ucomineq_sd _mm_comineq_sd + +// Return vector of type __m128d with undefined elements. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_undefined_pd +FORCE_INLINE __m128d _mm_undefined_pd(void) +{ +#if defined(__GNUC__) || defined(__clang__) +#pragma GCC diagnostic push +#pragma GCC diagnostic ignored "-Wuninitialized" #endif + __m128d a; + return a; +#if defined(__GNUC__) || defined(__clang__) +#pragma GCC diagnostic pop +#endif +} - // bitwise select either a or nagative 'a' (vnegq_s8(a) return nagative 'a') - // based on ltMask - int8x16_t masked = vbslq_s8(ltMask, vnegq_s8(a), a); - // res = masked & (~zeroMask) - int8x16_t res = vbicq_s8(masked, zeroMask); +// Interleaves the upper 4 signed or unsigned 16-bit integers in a with the +// upper 4 signed or unsigned 16-bit integers in b. +// +// r0 := a4 +// r1 := b4 +// r2 := a5 +// r3 := b5 +// r4 := a6 +// r5 := b6 +// r6 := a7 +// r7 := b7 +// +// https://msdn.microsoft.com/en-us/library/03196cz7(v=vs.100).aspx +FORCE_INLINE __m128i _mm_unpackhi_epi16(__m128i a, __m128i b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128i_s16( + vzip2q_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); +#else + int16x4_t a1 = vget_high_s16(vreinterpretq_s16_m128i(a)); + int16x4_t b1 = vget_high_s16(vreinterpretq_s16_m128i(b)); + int16x4x2_t result = vzip_s16(a1, b1); + return vreinterpretq_m128i_s16(vcombine_s16(result.val[0], result.val[1])); +#endif +} - return vreinterpretq_m128i_s8(res); +// Interleaves the upper 2 signed or unsigned 32-bit integers in a with the +// upper 2 signed or unsigned 32-bit integers in b. +// https://msdn.microsoft.com/en-us/library/65sa7cbs(v=vs.100).aspx +FORCE_INLINE __m128i _mm_unpackhi_epi32(__m128i a, __m128i b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128i_s32( + vzip2q_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); +#else + int32x2_t a1 = vget_high_s32(vreinterpretq_s32_m128i(a)); + int32x2_t b1 = vget_high_s32(vreinterpretq_s32_m128i(b)); + int32x2x2_t result = vzip_s32(a1, b1); + return vreinterpretq_m128i_s32(vcombine_s32(result.val[0], result.val[1])); +#endif +} + +// Interleaves the upper signed or unsigned 64-bit integer in a with the +// upper signed or unsigned 64-bit integer in b. +// +// r0 := a1 +// r1 := b1 +FORCE_INLINE __m128i _mm_unpackhi_epi64(__m128i a, __m128i b) +{ + int64x1_t a_h = vget_high_s64(vreinterpretq_s64_m128i(a)); + int64x1_t b_h = vget_high_s64(vreinterpretq_s64_m128i(b)); + return vreinterpretq_m128i_s64(vcombine_s64(a_h, b_h)); +} + +// Interleaves the upper 8 signed or unsigned 8-bit integers in a with the upper +// 8 signed or unsigned 8-bit integers in b. +// +// r0 := a8 +// r1 := b8 +// r2 := a9 +// r3 := b9 +// ... +// r14 := a15 +// r15 := b15 +// +// https://msdn.microsoft.com/en-us/library/t5h7783k(v=vs.100).aspx +FORCE_INLINE __m128i _mm_unpackhi_epi8(__m128i a, __m128i b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128i_s8( + vzip2q_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); +#else + int8x8_t a1 = + vreinterpret_s8_s16(vget_high_s16(vreinterpretq_s16_m128i(a))); + int8x8_t b1 = + vreinterpret_s8_s16(vget_high_s16(vreinterpretq_s16_m128i(b))); + int8x8x2_t result = vzip_s8(a1, b1); + return vreinterpretq_m128i_s8(vcombine_s8(result.val[0], result.val[1])); +#endif +} + +// Unpack and interleave double-precision (64-bit) floating-point elements from +// the high half of a and b, and store the results in dst. +// +// DEFINE INTERLEAVE_HIGH_QWORDS(src1[127:0], src2[127:0]) { +// dst[63:0] := src1[127:64] +// dst[127:64] := src2[127:64] +// RETURN dst[127:0] +// } +// dst[127:0] := INTERLEAVE_HIGH_QWORDS(a[127:0], b[127:0]) +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_unpackhi_pd +FORCE_INLINE __m128d _mm_unpackhi_pd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_f64( + vzip2q_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); +#else + return vreinterpretq_m128d_s64( + vcombine_s64(vget_high_s64(vreinterpretq_s64_m128d(a)), + vget_high_s64(vreinterpretq_s64_m128d(b)))); +#endif +} + +// Interleaves the lower 4 signed or unsigned 16-bit integers in a with the +// lower 4 signed or unsigned 16-bit integers in b. +// +// r0 := a0 +// r1 := b0 +// r2 := a1 +// r3 := b1 +// r4 := a2 +// r5 := b2 +// r6 := a3 +// r7 := b3 +// +// https://msdn.microsoft.com/en-us/library/btxb17bw%28v=vs.90%29.aspx +FORCE_INLINE __m128i _mm_unpacklo_epi16(__m128i a, __m128i b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128i_s16( + vzip1q_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); +#else + int16x4_t a1 = vget_low_s16(vreinterpretq_s16_m128i(a)); + int16x4_t b1 = vget_low_s16(vreinterpretq_s16_m128i(b)); + int16x4x2_t result = vzip_s16(a1, b1); + return vreinterpretq_m128i_s16(vcombine_s16(result.val[0], result.val[1])); +#endif +} + +// Interleaves the lower 2 signed or unsigned 32 - bit integers in a with the +// lower 2 signed or unsigned 32 - bit integers in b. +// +// r0 := a0 +// r1 := b0 +// r2 := a1 +// r3 := b1 +// +// https://msdn.microsoft.com/en-us/library/x8atst9d(v=vs.100).aspx +FORCE_INLINE __m128i _mm_unpacklo_epi32(__m128i a, __m128i b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128i_s32( + vzip1q_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); +#else + int32x2_t a1 = vget_low_s32(vreinterpretq_s32_m128i(a)); + int32x2_t b1 = vget_low_s32(vreinterpretq_s32_m128i(b)); + int32x2x2_t result = vzip_s32(a1, b1); + return vreinterpretq_m128i_s32(vcombine_s32(result.val[0], result.val[1])); +#endif +} + +FORCE_INLINE __m128i _mm_unpacklo_epi64(__m128i a, __m128i b) +{ + int64x1_t a_l = vget_low_s64(vreinterpretq_s64_m128i(a)); + int64x1_t b_l = vget_low_s64(vreinterpretq_s64_m128i(b)); + return vreinterpretq_m128i_s64(vcombine_s64(a_l, b_l)); +} + +// Interleaves the lower 8 signed or unsigned 8-bit integers in a with the lower +// 8 signed or unsigned 8-bit integers in b. +// +// r0 := a0 +// r1 := b0 +// r2 := a1 +// r3 := b1 +// ... +// r14 := a7 +// r15 := b7 +// +// https://msdn.microsoft.com/en-us/library/xf7k860c%28v=vs.90%29.aspx +FORCE_INLINE __m128i _mm_unpacklo_epi8(__m128i a, __m128i b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128i_s8( + vzip1q_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); +#else + int8x8_t a1 = vreinterpret_s8_s16(vget_low_s16(vreinterpretq_s16_m128i(a))); + int8x8_t b1 = vreinterpret_s8_s16(vget_low_s16(vreinterpretq_s16_m128i(b))); + int8x8x2_t result = vzip_s8(a1, b1); + return vreinterpretq_m128i_s8(vcombine_s8(result.val[0], result.val[1])); +#endif +} + +// Unpack and interleave double-precision (64-bit) floating-point elements from +// the low half of a and b, and store the results in dst. +// +// DEFINE INTERLEAVE_QWORDS(src1[127:0], src2[127:0]) { +// dst[63:0] := src1[63:0] +// dst[127:64] := src2[63:0] +// RETURN dst[127:0] +// } +// dst[127:0] := INTERLEAVE_QWORDS(a[127:0], b[127:0]) +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_unpacklo_pd +FORCE_INLINE __m128d _mm_unpacklo_pd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_f64( + vzip1q_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); +#else + return vreinterpretq_m128d_s64( + vcombine_s64(vget_low_s64(vreinterpretq_s64_m128d(a)), + vget_low_s64(vreinterpretq_s64_m128d(b)))); +#endif +} + +// Compute the bitwise XOR of packed double-precision (64-bit) floating-point +// elements in a and b, and store the results in dst. +// +// FOR j := 0 to 1 +// i := j*64 +// dst[i+63:i] := a[i+63:i] XOR b[i+63:i] +// ENDFOR +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_xor_pd +FORCE_INLINE __m128d _mm_xor_pd(__m128d a, __m128d b) +{ + return vreinterpretq_m128d_s64( + veorq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b))); +} + +// Computes the bitwise XOR of the 128-bit value in a and the 128-bit value in +// b. https://msdn.microsoft.com/en-us/library/fzt08www(v=vs.100).aspx +FORCE_INLINE __m128i _mm_xor_si128(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s32( + veorq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); +} + +/* SSE3 */ + +// Alternatively add and subtract packed double-precision (64-bit) +// floating-point elements in a to/from packed elements in b, and store the +// results in dst. +// +// FOR j := 0 to 1 +// i := j*64 +// IF ((j & 1) == 0) +// dst[i+63:i] := a[i+63:i] - b[i+63:i] +// ELSE +// dst[i+63:i] := a[i+63:i] + b[i+63:i] +// FI +// ENDFOR +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_addsub_pd +FORCE_INLINE __m128d _mm_addsub_pd(__m128d a, __m128d b) +{ + _sse2neon_const __m128d mask = _mm_set_pd(1.0f, -1.0f); +#if defined(__aarch64__) + return vreinterpretq_m128d_f64(vfmaq_f64(vreinterpretq_f64_m128d(a), + vreinterpretq_f64_m128d(b), + vreinterpretq_f64_m128d(mask))); +#else + return _mm_add_pd(_mm_mul_pd(b, mask), a); +#endif +} + +// Alternatively add and subtract packed single-precision (32-bit) +// floating-point elements in a to/from packed elements in b, and store the +// results in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=addsub_ps +FORCE_INLINE __m128 _mm_addsub_ps(__m128 a, __m128 b) +{ + _sse2neon_const __m128 mask = _mm_setr_ps(-1.0f, 1.0f, -1.0f, 1.0f); +#if defined(__aarch64__) || defined(__ARM_FEATURE_FMA) /* VFPv4+ */ + return vreinterpretq_m128_f32(vfmaq_f32(vreinterpretq_f32_m128(a), + vreinterpretq_f32_m128(mask), + vreinterpretq_f32_m128(b))); +#else + return _mm_add_ps(_mm_mul_ps(b, mask), a); +#endif +} + +// Horizontally add adjacent pairs of double-precision (64-bit) floating-point +// elements in a and b, and pack the results in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadd_pd +FORCE_INLINE __m128d _mm_hadd_pd(__m128d a, __m128d b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_f64( + vpaddq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); +#else + double *da = (double *) &a; + double *db = (double *) &b; + double c[] = {da[0] + da[1], db[0] + db[1]}; + return vreinterpretq_m128d_u64(vld1q_u64((uint64_t *) c)); +#endif +} + +// Computes pairwise add of each argument as single-precision, floating-point +// values a and b. +// https://msdn.microsoft.com/en-us/library/yd9wecaa.aspx +FORCE_INLINE __m128 _mm_hadd_ps(__m128 a, __m128 b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128_f32( + vpaddq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +#else + float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a)); + float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a)); + float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b)); + float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b)); + return vreinterpretq_m128_f32( + vcombine_f32(vpadd_f32(a10, a32), vpadd_f32(b10, b32))); +#endif +} + +// Horizontally subtract adjacent pairs of double-precision (64-bit) +// floating-point elements in a and b, and pack the results in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsub_pd +FORCE_INLINE __m128d _mm_hsub_pd(__m128d _a, __m128d _b) +{ +#if defined(__aarch64__) + float64x2_t a = vreinterpretq_f64_m128d(_a); + float64x2_t b = vreinterpretq_f64_m128d(_b); + return vreinterpretq_m128d_f64( + vsubq_f64(vuzp1q_f64(a, b), vuzp2q_f64(a, b))); +#else + double *da = (double *) &_a; + double *db = (double *) &_b; + double c[] = {da[0] - da[1], db[0] - db[1]}; + return vreinterpretq_m128d_u64(vld1q_u64((uint64_t *) c)); +#endif +} + +// Horizontally subtract adjacent pairs of single-precision (32-bit) +// floating-point elements in a and b, and pack the results in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsub_ps +FORCE_INLINE __m128 _mm_hsub_ps(__m128 _a, __m128 _b) +{ + float32x4_t a = vreinterpretq_f32_m128(_a); + float32x4_t b = vreinterpretq_f32_m128(_b); +#if defined(__aarch64__) + return vreinterpretq_m128_f32( + vsubq_f32(vuzp1q_f32(a, b), vuzp2q_f32(a, b))); +#else + float32x4x2_t c = vuzpq_f32(a, b); + return vreinterpretq_m128_f32(vsubq_f32(c.val[0], c.val[1])); +#endif +} + +// Load 128-bits of integer data from unaligned memory into dst. This intrinsic +// may perform better than _mm_loadu_si128 when the data crosses a cache line +// boundary. +// +// dst[127:0] := MEM[mem_addr+127:mem_addr] +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_lddqu_si128 +#define _mm_lddqu_si128 _mm_loadu_si128 + +// Load a double-precision (64-bit) floating-point element from memory into both +// elements of dst. +// +// dst[63:0] := MEM[mem_addr+63:mem_addr] +// dst[127:64] := MEM[mem_addr+63:mem_addr] +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loaddup_pd +#define _mm_loaddup_pd _mm_load1_pd + +// Duplicate the low double-precision (64-bit) floating-point element from a, +// and store the results in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movedup_pd +FORCE_INLINE __m128d _mm_movedup_pd(__m128d a) +{ +#if defined(__aarch64__) + return vreinterpretq_m128d_f64( + vdupq_laneq_f64(vreinterpretq_f64_m128d(a), 0)); +#else + return vreinterpretq_m128d_u64( + vdupq_n_u64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0))); +#endif +} + +// Duplicate odd-indexed single-precision (32-bit) floating-point elements +// from a, and store the results in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movehdup_ps +FORCE_INLINE __m128 _mm_movehdup_ps(__m128 a) +{ +#ifdef _sse2neon_shuffle + return vreinterpretq_m128_f32(vshuffleq_s32( + vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 1, 1, 3, 3)); +#else + float32_t a1 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 1); + float32_t a3 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 3); + float ALIGN_STRUCT(16) data[4] = {a1, a1, a3, a3}; + return vreinterpretq_m128_f32(vld1q_f32(data)); +#endif +} + +// Duplicate even-indexed single-precision (32-bit) floating-point elements +// from a, and store the results in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_moveldup_ps +FORCE_INLINE __m128 _mm_moveldup_ps(__m128 a) +{ +#ifdef _sse2neon_shuffle + return vreinterpretq_m128_f32(vshuffleq_s32( + vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 0, 0, 2, 2)); +#else + float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); + float32_t a2 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 2); + float ALIGN_STRUCT(16) data[4] = {a0, a0, a2, a2}; + return vreinterpretq_m128_f32(vld1q_f32(data)); +#endif +} + +/* SSSE3 */ + +// Compute the absolute value of packed signed 16-bit integers in a, and store +// the unsigned results in dst. +// +// FOR j := 0 to 7 +// i := j*16 +// dst[i+15:i] := ABS(a[i+15:i]) +// ENDFOR +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_epi16 +FORCE_INLINE __m128i _mm_abs_epi16(__m128i a) +{ + return vreinterpretq_m128i_s16(vabsq_s16(vreinterpretq_s16_m128i(a))); +} + +// Compute the absolute value of packed signed 32-bit integers in a, and store +// the unsigned results in dst. +// +// FOR j := 0 to 3 +// i := j*32 +// dst[i+31:i] := ABS(a[i+31:i]) +// ENDFOR +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_epi32 +FORCE_INLINE __m128i _mm_abs_epi32(__m128i a) +{ + return vreinterpretq_m128i_s32(vabsq_s32(vreinterpretq_s32_m128i(a))); +} + +// Compute the absolute value of packed signed 8-bit integers in a, and store +// the unsigned results in dst. +// +// FOR j := 0 to 15 +// i := j*8 +// dst[i+7:i] := ABS(a[i+7:i]) +// ENDFOR +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_epi8 +FORCE_INLINE __m128i _mm_abs_epi8(__m128i a) +{ + return vreinterpretq_m128i_s8(vabsq_s8(vreinterpretq_s8_m128i(a))); +} + +// Compute the absolute value of packed signed 16-bit integers in a, and store +// the unsigned results in dst. +// +// FOR j := 0 to 3 +// i := j*16 +// dst[i+15:i] := ABS(a[i+15:i]) +// ENDFOR +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_pi16 +FORCE_INLINE __m64 _mm_abs_pi16(__m64 a) +{ + return vreinterpret_m64_s16(vabs_s16(vreinterpret_s16_m64(a))); +} + +// Compute the absolute value of packed signed 32-bit integers in a, and store +// the unsigned results in dst. +// +// FOR j := 0 to 1 +// i := j*32 +// dst[i+31:i] := ABS(a[i+31:i]) +// ENDFOR +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_pi32 +FORCE_INLINE __m64 _mm_abs_pi32(__m64 a) +{ + return vreinterpret_m64_s32(vabs_s32(vreinterpret_s32_m64(a))); +} + +// Compute the absolute value of packed signed 8-bit integers in a, and store +// the unsigned results in dst. +// +// FOR j := 0 to 7 +// i := j*8 +// dst[i+7:i] := ABS(a[i+7:i]) +// ENDFOR +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_pi8 +FORCE_INLINE __m64 _mm_abs_pi8(__m64 a) +{ + return vreinterpret_m64_s8(vabs_s8(vreinterpret_s8_m64(a))); +} + +// Concatenate 16-byte blocks in a and b into a 32-byte temporary result, shift +// the result right by imm8 bytes, and store the low 16 bytes in dst. +// +// tmp[255:0] := ((a[127:0] << 128)[255:0] OR b[127:0]) >> (imm8*8) +// dst[127:0] := tmp[127:0] +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_alignr_epi8 +#define _mm_alignr_epi8(a, b, imm) \ + __extension__({ \ + uint8x16_t _a = vreinterpretq_u8_m128i(a); \ + uint8x16_t _b = vreinterpretq_u8_m128i(b); \ + __m128i ret; \ + if (_sse2neon_unlikely((imm) & ~31)) \ + ret = vreinterpretq_m128i_u8(vdupq_n_u8(0)); \ + else if (imm >= 16) \ + ret = _mm_srli_si128(a, imm >= 16 ? imm - 16 : 0); \ + else \ + ret = \ + vreinterpretq_m128i_u8(vextq_u8(_b, _a, imm < 16 ? imm : 0)); \ + ret; \ + }) + +// Concatenate 8-byte blocks in a and b into a 16-byte temporary result, shift +// the result right by imm8 bytes, and store the low 8 bytes in dst. +// +// tmp[127:0] := ((a[63:0] << 64)[127:0] OR b[63:0]) >> (imm8*8) +// dst[63:0] := tmp[63:0] +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_alignr_pi8 +#define _mm_alignr_pi8(a, b, imm) \ + __extension__({ \ + __m64 ret; \ + if (_sse2neon_unlikely((imm) >= 16)) { \ + ret = vreinterpret_m64_s8(vdup_n_s8(0)); \ + } else { \ + uint8x8_t tmp_low, tmp_high; \ + if ((imm) >= 8) { \ + const int idx = (imm) -8; \ + tmp_low = vreinterpret_u8_m64(a); \ + tmp_high = vdup_n_u8(0); \ + ret = vreinterpret_m64_u8(vext_u8(tmp_low, tmp_high, idx)); \ + } else { \ + const int idx = (imm); \ + tmp_low = vreinterpret_u8_m64(b); \ + tmp_high = vreinterpret_u8_m64(a); \ + ret = vreinterpret_m64_u8(vext_u8(tmp_low, tmp_high, idx)); \ + } \ + } \ + ret; \ + }) + +// Computes pairwise add of each argument as a 16-bit signed or unsigned integer +// values a and b. +FORCE_INLINE __m128i _mm_hadd_epi16(__m128i _a, __m128i _b) +{ + int16x8_t a = vreinterpretq_s16_m128i(_a); + int16x8_t b = vreinterpretq_s16_m128i(_b); +#if defined(__aarch64__) + return vreinterpretq_m128i_s16(vpaddq_s16(a, b)); +#else + return vreinterpretq_m128i_s16( + vcombine_s16(vpadd_s16(vget_low_s16(a), vget_high_s16(a)), + vpadd_s16(vget_low_s16(b), vget_high_s16(b)))); +#endif +} + +// Computes pairwise add of each argument as a 32-bit signed or unsigned integer +// values a and b. +FORCE_INLINE __m128i _mm_hadd_epi32(__m128i _a, __m128i _b) +{ + int32x4_t a = vreinterpretq_s32_m128i(_a); + int32x4_t b = vreinterpretq_s32_m128i(_b); + return vreinterpretq_m128i_s32( + vcombine_s32(vpadd_s32(vget_low_s32(a), vget_high_s32(a)), + vpadd_s32(vget_low_s32(b), vget_high_s32(b)))); +} + +// Horizontally add adjacent pairs of 16-bit integers in a and b, and pack the +// signed 16-bit results in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadd_pi16 +FORCE_INLINE __m64 _mm_hadd_pi16(__m64 a, __m64 b) +{ + return vreinterpret_m64_s16( + vpadd_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b))); +} + +// Horizontally add adjacent pairs of 32-bit integers in a and b, and pack the +// signed 32-bit results in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadd_pi32 +FORCE_INLINE __m64 _mm_hadd_pi32(__m64 a, __m64 b) +{ + return vreinterpret_m64_s32( + vpadd_s32(vreinterpret_s32_m64(a), vreinterpret_s32_m64(b))); +} + +// Computes saturated pairwise sub of each argument as a 16-bit signed +// integer values a and b. +FORCE_INLINE __m128i _mm_hadds_epi16(__m128i _a, __m128i _b) +{ +#if defined(__aarch64__) + int16x8_t a = vreinterpretq_s16_m128i(_a); + int16x8_t b = vreinterpretq_s16_m128i(_b); + return vreinterpretq_s64_s16( + vqaddq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b))); +#else + int32x4_t a = vreinterpretq_s32_m128i(_a); + int32x4_t b = vreinterpretq_s32_m128i(_b); + // Interleave using vshrn/vmovn + // [a0|a2|a4|a6|b0|b2|b4|b6] + // [a1|a3|a5|a7|b1|b3|b5|b7] + int16x8_t ab0246 = vcombine_s16(vmovn_s32(a), vmovn_s32(b)); + int16x8_t ab1357 = vcombine_s16(vshrn_n_s32(a, 16), vshrn_n_s32(b, 16)); + // Saturated add + return vreinterpretq_m128i_s16(vqaddq_s16(ab0246, ab1357)); +#endif +} + +// Horizontally add adjacent pairs of signed 16-bit integers in a and b using +// saturation, and pack the signed 16-bit results in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadds_pi16 +FORCE_INLINE __m64 _mm_hadds_pi16(__m64 _a, __m64 _b) +{ + int16x4_t a = vreinterpret_s16_m64(_a); + int16x4_t b = vreinterpret_s16_m64(_b); +#if defined(__aarch64__) + return vreinterpret_s64_s16(vqadd_s16(vuzp1_s16(a, b), vuzp2_s16(a, b))); +#else + int16x4x2_t res = vuzp_s16(a, b); + return vreinterpret_s64_s16(vqadd_s16(res.val[0], res.val[1])); +#endif +} + +// Horizontally subtract adjacent pairs of 16-bit integers in a and b, and pack +// the signed 16-bit results in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsub_epi16 +FORCE_INLINE __m128i _mm_hsub_epi16(__m128i _a, __m128i _b) +{ + int16x8_t a = vreinterpretq_s16_m128i(_a); + int16x8_t b = vreinterpretq_s16_m128i(_b); +#if defined(__aarch64__) + return vreinterpretq_m128i_s16( + vsubq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b))); +#else + int16x8x2_t c = vuzpq_s16(a, b); + return vreinterpretq_m128i_s16(vsubq_s16(c.val[0], c.val[1])); +#endif +} + +// Horizontally subtract adjacent pairs of 32-bit integers in a and b, and pack +// the signed 32-bit results in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsub_epi32 +FORCE_INLINE __m128i _mm_hsub_epi32(__m128i _a, __m128i _b) +{ + int32x4_t a = vreinterpretq_s32_m128i(_a); + int32x4_t b = vreinterpretq_s32_m128i(_b); +#if defined(__aarch64__) + return vreinterpretq_m128i_s32( + vsubq_s32(vuzp1q_s32(a, b), vuzp2q_s32(a, b))); +#else + int32x4x2_t c = vuzpq_s32(a, b); + return vreinterpretq_m128i_s32(vsubq_s32(c.val[0], c.val[1])); +#endif +} + +// Horizontally subtract adjacent pairs of 16-bit integers in a and b, and pack +// the signed 16-bit results in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsub_pi16 +FORCE_INLINE __m64 _mm_hsub_pi16(__m64 _a, __m64 _b) +{ + int16x4_t a = vreinterpret_s16_m64(_a); + int16x4_t b = vreinterpret_s16_m64(_b); +#if defined(__aarch64__) + return vreinterpret_m64_s16(vsub_s16(vuzp1_s16(a, b), vuzp2_s16(a, b))); +#else + int16x4x2_t c = vuzp_s16(a, b); + return vreinterpret_m64_s16(vsub_s16(c.val[0], c.val[1])); +#endif +} + +// Horizontally subtract adjacent pairs of 32-bit integers in a and b, and pack +// the signed 32-bit results in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_hsub_pi32 +FORCE_INLINE __m64 _mm_hsub_pi32(__m64 _a, __m64 _b) +{ + int32x2_t a = vreinterpret_s32_m64(_a); + int32x2_t b = vreinterpret_s32_m64(_b); +#if defined(__aarch64__) + return vreinterpret_m64_s32(vsub_s32(vuzp1_s32(a, b), vuzp2_s32(a, b))); +#else + int32x2x2_t c = vuzp_s32(a, b); + return vreinterpret_m64_s32(vsub_s32(c.val[0], c.val[1])); +#endif +} + +// Computes saturated pairwise difference of each argument as a 16-bit signed +// integer values a and b. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsubs_epi16 +FORCE_INLINE __m128i _mm_hsubs_epi16(__m128i _a, __m128i _b) +{ + int16x8_t a = vreinterpretq_s16_m128i(_a); + int16x8_t b = vreinterpretq_s16_m128i(_b); +#if defined(__aarch64__) + return vreinterpretq_m128i_s16( + vqsubq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b))); +#else + int16x8x2_t c = vuzpq_s16(a, b); + return vreinterpretq_m128i_s16(vqsubq_s16(c.val[0], c.val[1])); +#endif +} + +// Horizontally subtract adjacent pairs of signed 16-bit integers in a and b +// using saturation, and pack the signed 16-bit results in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsubs_pi16 +FORCE_INLINE __m64 _mm_hsubs_pi16(__m64 _a, __m64 _b) +{ + int16x4_t a = vreinterpret_s16_m64(_a); + int16x4_t b = vreinterpret_s16_m64(_b); +#if defined(__aarch64__) + return vreinterpret_m64_s16(vqsub_s16(vuzp1_s16(a, b), vuzp2_s16(a, b))); +#else + int16x4x2_t c = vuzp_s16(a, b); + return vreinterpret_m64_s16(vqsub_s16(c.val[0], c.val[1])); +#endif +} + +// Vertically multiply each unsigned 8-bit integer from a with the corresponding +// signed 8-bit integer from b, producing intermediate signed 16-bit integers. +// Horizontally add adjacent pairs of intermediate signed 16-bit integers, +// and pack the saturated results in dst. +// +// FOR j := 0 to 7 +// i := j*16 +// dst[i+15:i] := Saturate_To_Int16( a[i+15:i+8]*b[i+15:i+8] + +// a[i+7:i]*b[i+7:i] ) +// ENDFOR +FORCE_INLINE __m128i _mm_maddubs_epi16(__m128i _a, __m128i _b) +{ +#if defined(__aarch64__) + uint8x16_t a = vreinterpretq_u8_m128i(_a); + int8x16_t b = vreinterpretq_s8_m128i(_b); + int16x8_t tl = vmulq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(a))), + vmovl_s8(vget_low_s8(b))); + int16x8_t th = vmulq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(a))), + vmovl_s8(vget_high_s8(b))); + return vreinterpretq_m128i_s16( + vqaddq_s16(vuzp1q_s16(tl, th), vuzp2q_s16(tl, th))); +#else + // This would be much simpler if x86 would choose to zero extend OR sign + // extend, not both. This could probably be optimized better. + uint16x8_t a = vreinterpretq_u16_m128i(_a); + int16x8_t b = vreinterpretq_s16_m128i(_b); + + // Zero extend a + int16x8_t a_odd = vreinterpretq_s16_u16(vshrq_n_u16(a, 8)); + int16x8_t a_even = vreinterpretq_s16_u16(vbicq_u16(a, vdupq_n_u16(0xff00))); + + // Sign extend by shifting left then shifting right. + int16x8_t b_even = vshrq_n_s16(vshlq_n_s16(b, 8), 8); + int16x8_t b_odd = vshrq_n_s16(b, 8); + + // multiply + int16x8_t prod1 = vmulq_s16(a_even, b_even); + int16x8_t prod2 = vmulq_s16(a_odd, b_odd); + + // saturated add + return vreinterpretq_m128i_s16(vqaddq_s16(prod1, prod2)); +#endif +} + +// Vertically multiply each unsigned 8-bit integer from a with the corresponding +// signed 8-bit integer from b, producing intermediate signed 16-bit integers. +// Horizontally add adjacent pairs of intermediate signed 16-bit integers, and +// pack the saturated results in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maddubs_pi16 +FORCE_INLINE __m64 _mm_maddubs_pi16(__m64 _a, __m64 _b) +{ + uint16x4_t a = vreinterpret_u16_m64(_a); + int16x4_t b = vreinterpret_s16_m64(_b); + + // Zero extend a + int16x4_t a_odd = vreinterpret_s16_u16(vshr_n_u16(a, 8)); + int16x4_t a_even = vreinterpret_s16_u16(vand_u16(a, vdup_n_u16(0xff))); + + // Sign extend by shifting left then shifting right. + int16x4_t b_even = vshr_n_s16(vshl_n_s16(b, 8), 8); + int16x4_t b_odd = vshr_n_s16(b, 8); + + // multiply + int16x4_t prod1 = vmul_s16(a_even, b_even); + int16x4_t prod2 = vmul_s16(a_odd, b_odd); + + // saturated add + return vreinterpret_m64_s16(vqadd_s16(prod1, prod2)); +} + +// Multiply packed signed 16-bit integers in a and b, producing intermediate +// signed 32-bit integers. Shift right by 15 bits while rounding up, and store +// the packed 16-bit integers in dst. +// +// r0 := Round(((int32_t)a0 * (int32_t)b0) >> 15) +// r1 := Round(((int32_t)a1 * (int32_t)b1) >> 15) +// r2 := Round(((int32_t)a2 * (int32_t)b2) >> 15) +// ... +// r7 := Round(((int32_t)a7 * (int32_t)b7) >> 15) +FORCE_INLINE __m128i _mm_mulhrs_epi16(__m128i a, __m128i b) +{ + // Has issues due to saturation + // return vreinterpretq_m128i_s16(vqrdmulhq_s16(a, b)); + + // Multiply + int32x4_t mul_lo = vmull_s16(vget_low_s16(vreinterpretq_s16_m128i(a)), + vget_low_s16(vreinterpretq_s16_m128i(b))); + int32x4_t mul_hi = vmull_s16(vget_high_s16(vreinterpretq_s16_m128i(a)), + vget_high_s16(vreinterpretq_s16_m128i(b))); + + // Rounding narrowing shift right + // narrow = (int16_t)((mul + 16384) >> 15); + int16x4_t narrow_lo = vrshrn_n_s32(mul_lo, 15); + int16x4_t narrow_hi = vrshrn_n_s32(mul_hi, 15); + + // Join together + return vreinterpretq_m128i_s16(vcombine_s16(narrow_lo, narrow_hi)); +} + +// Multiply packed signed 16-bit integers in a and b, producing intermediate +// signed 32-bit integers. Truncate each intermediate integer to the 18 most +// significant bits, round by adding 1, and store bits [16:1] to dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mulhrs_pi16 +FORCE_INLINE __m64 _mm_mulhrs_pi16(__m64 a, __m64 b) +{ + int32x4_t mul_extend = + vmull_s16((vreinterpret_s16_m64(a)), (vreinterpret_s16_m64(b))); + + // Rounding narrowing shift right + return vreinterpret_m64_s16(vrshrn_n_s32(mul_extend, 15)); +} + +// Shuffle packed 8-bit integers in a according to shuffle control mask in the +// corresponding 8-bit element of b, and store the results in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_epi8 +FORCE_INLINE __m128i _mm_shuffle_epi8(__m128i a, __m128i b) +{ + int8x16_t tbl = vreinterpretq_s8_m128i(a); // input a + uint8x16_t idx = vreinterpretq_u8_m128i(b); // input b + uint8x16_t idx_masked = + vandq_u8(idx, vdupq_n_u8(0x8F)); // avoid using meaningless bits +#if defined(__aarch64__) + return vreinterpretq_m128i_s8(vqtbl1q_s8(tbl, idx_masked)); +#elif defined(__GNUC__) + int8x16_t ret; + // %e and %f represent the even and odd D registers + // respectively. + __asm__ __volatile__( + "vtbl.8 %e[ret], {%e[tbl], %f[tbl]}, %e[idx]\n" + "vtbl.8 %f[ret], {%e[tbl], %f[tbl]}, %f[idx]\n" + : [ret] "=&w"(ret) + : [tbl] "w"(tbl), [idx] "w"(idx_masked)); + return vreinterpretq_m128i_s8(ret); +#else + // use this line if testing on aarch64 + int8x8x2_t a_split = {vget_low_s8(tbl), vget_high_s8(tbl)}; + return vreinterpretq_m128i_s8( + vcombine_s8(vtbl2_s8(a_split, vget_low_u8(idx_masked)), + vtbl2_s8(a_split, vget_high_u8(idx_masked)))); +#endif +} + +// Shuffle packed 8-bit integers in a according to shuffle control mask in the +// corresponding 8-bit element of b, and store the results in dst. +// +// FOR j := 0 to 7 +// i := j*8 +// IF b[i+7] == 1 +// dst[i+7:i] := 0 +// ELSE +// index[2:0] := b[i+2:i] +// dst[i+7:i] := a[index*8+7:index*8] +// FI +// ENDFOR +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_pi8 +FORCE_INLINE __m64 _mm_shuffle_pi8(__m64 a, __m64 b) +{ + const int8x8_t controlMask = + vand_s8(vreinterpret_s8_m64(b), vdup_n_s8((int8_t) (0x1 << 7 | 0x07))); + int8x8_t res = vtbl1_s8(vreinterpret_s8_m64(a), controlMask); + return vreinterpret_m64_s8(res); } // Negate packed 16-bit integers in a when the corresponding signed @@ -3208,6 +7204,45 @@ FORCE_INLINE __m128i _mm_sign_epi32(__m128i _a, __m128i _b) return vreinterpretq_m128i_s32(res); } +// Negate packed 8-bit integers in a when the corresponding signed +// 8-bit integer in b is negative, and store the results in dst. +// Element in dst are zeroed out when the corresponding element +// in b is zero. +// +// for i in 0..15 +// if b[i] < 0 +// r[i] := -a[i] +// else if b[i] == 0 +// r[i] := 0 +// else +// r[i] := a[i] +// fi +// done +FORCE_INLINE __m128i _mm_sign_epi8(__m128i _a, __m128i _b) +{ + int8x16_t a = vreinterpretq_s8_m128i(_a); + int8x16_t b = vreinterpretq_s8_m128i(_b); + + // signed shift right: faster than vclt + // (b < 0) ? 0xFF : 0 + uint8x16_t ltMask = vreinterpretq_u8_s8(vshrq_n_s8(b, 7)); + + // (b == 0) ? 0xFF : 0 +#if defined(__aarch64__) + int8x16_t zeroMask = vreinterpretq_s8_u8(vceqzq_s8(b)); +#else + int8x16_t zeroMask = vreinterpretq_s8_u8(vceqq_s8(b, vdupq_n_s8(0))); +#endif + + // bitwise select either a or negative 'a' (vnegq_s8(a) return negative 'a') + // based on ltMask + int8x16_t masked = vbslq_s8(ltMask, vnegq_s8(a), a); + // res = masked & (~zeroMask) + int8x16_t res = vbicq_s8(masked, zeroMask); + + return vreinterpretq_m128i_s8(res); +} + // Negate packed 16-bit integers in a when the corresponding signed 16-bit // integer in b is negative, and store the results in dst. Element in dst are // zeroed out when the corresponding element in b is zero. @@ -3240,7 +7275,7 @@ FORCE_INLINE __m64 _mm_sign_pi16(__m64 _a, __m64 _b) int16x4_t zeroMask = vreinterpret_s16_u16(vceq_s16(b, vdup_n_s16(0))); #endif - // bitwise select either a or nagative 'a' (vneg_s16(a) return nagative 'a') + // bitwise select either a or negative 'a' (vneg_s16(a) return negative 'a') // based on ltMask int16x4_t masked = vbsl_s16(ltMask, vneg_s16(a), a); // res = masked & (~zeroMask) @@ -3281,7 +7316,7 @@ FORCE_INLINE __m64 _mm_sign_pi32(__m64 _a, __m64 _b) int32x2_t zeroMask = vreinterpret_s32_u32(vceq_s32(b, vdup_n_s32(0))); #endif - // bitwise select either a or nagative 'a' (vneg_s32(a) return nagative 'a') + // bitwise select either a or negative 'a' (vneg_s32(a) return negative 'a') // based on ltMask int32x2_t masked = vbsl_s32(ltMask, vneg_s32(a), a); // res = masked & (~zeroMask) @@ -3322,7 +7357,7 @@ FORCE_INLINE __m64 _mm_sign_pi8(__m64 _a, __m64 _b) int8x8_t zeroMask = vreinterpret_s8_u8(vceq_s8(b, vdup_n_s8(0))); #endif - // bitwise select either a or nagative 'a' (vneg_s8(a) return nagative 'a') + // bitwise select either a or negative 'a' (vneg_s8(a) return negative 'a') // based on ltMask int8x8_t masked = vbsl_s8(ltMask, vneg_s8(a), a); // res = masked & (~zeroMask) @@ -3331,1423 +7366,346 @@ FORCE_INLINE __m64 _mm_sign_pi8(__m64 _a, __m64 _b) return vreinterpret_m64_s8(res); } -// Average packed unsigned 16-bit integers in a and b, and store the results in -// dst. -// -// FOR j := 0 to 3 -// i := j*16 -// dst[i+15:i] := (a[i+15:i] + b[i+15:i] + 1) >> 1 -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_avg_pu16 -FORCE_INLINE __m64 _mm_avg_pu16(__m64 a, __m64 b) -{ - return vreinterpret_m64_u16( - vrhadd_u16(vreinterpret_u16_m64(a), vreinterpret_u16_m64(b))); -} +/* SSE4.1 */ -// Average packed unsigned 8-bit integers in a and b, and store the results in -// dst. +// Blend packed 16-bit integers from a and b using control mask imm8, and store +// the results in dst. // // FOR j := 0 to 7 -// i := j*8 -// dst[i+7:i] := (a[i+7:i] + b[i+7:i] + 1) >> 1 +// i := j*16 +// IF imm8[j] +// dst[i+15:i] := b[i+15:i] +// ELSE +// dst[i+15:i] := a[i+15:i] +// FI // ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_avg_pu8 -FORCE_INLINE __m64 _mm_avg_pu8(__m64 a, __m64 b) +// FORCE_INLINE __m128i _mm_blend_epi16(__m128i a, __m128i b, +// __constrange(0,255) int imm) +#define _mm_blend_epi16(a, b, imm) \ + __extension__({ \ + const uint16_t _mask[8] = {((imm) & (1 << 0)) ? (uint16_t) -1 : 0x0, \ + ((imm) & (1 << 1)) ? (uint16_t) -1 : 0x0, \ + ((imm) & (1 << 2)) ? (uint16_t) -1 : 0x0, \ + ((imm) & (1 << 3)) ? (uint16_t) -1 : 0x0, \ + ((imm) & (1 << 4)) ? (uint16_t) -1 : 0x0, \ + ((imm) & (1 << 5)) ? (uint16_t) -1 : 0x0, \ + ((imm) & (1 << 6)) ? (uint16_t) -1 : 0x0, \ + ((imm) & (1 << 7)) ? (uint16_t) -1 : 0x0}; \ + uint16x8_t _mask_vec = vld1q_u16(_mask); \ + uint16x8_t _a = vreinterpretq_u16_m128i(a); \ + uint16x8_t _b = vreinterpretq_u16_m128i(b); \ + vreinterpretq_m128i_u16(vbslq_u16(_mask_vec, _b, _a)); \ + }) + +// Blend packed double-precision (64-bit) floating-point elements from a and b +// using control mask imm8, and store the results in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_blend_pd +#define _mm_blend_pd(a, b, imm) \ + __extension__({ \ + const uint64_t _mask[2] = { \ + ((imm) & (1 << 0)) ? ~UINT64_C(0) : UINT64_C(0), \ + ((imm) & (1 << 1)) ? ~UINT64_C(0) : UINT64_C(0)}; \ + uint64x2_t _mask_vec = vld1q_u64(_mask); \ + uint64x2_t _a = vreinterpretq_u64_m128d(a); \ + uint64x2_t _b = vreinterpretq_u64_m128d(b); \ + vreinterpretq_m128d_u64(vbslq_u64(_mask_vec, _b, _a)); \ + }) + +// Blend packed single-precision (32-bit) floating-point elements from a and b +// using mask, and store the results in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_blend_ps +FORCE_INLINE __m128 _mm_blend_ps(__m128 _a, __m128 _b, const char imm8) { - return vreinterpret_m64_u8( - vrhadd_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b))); + const uint32_t ALIGN_STRUCT(16) + data[4] = {((imm8) & (1 << 0)) ? UINT32_MAX : 0, + ((imm8) & (1 << 1)) ? UINT32_MAX : 0, + ((imm8) & (1 << 2)) ? UINT32_MAX : 0, + ((imm8) & (1 << 3)) ? UINT32_MAX : 0}; + uint32x4_t mask = vld1q_u32(data); + float32x4_t a = vreinterpretq_f32_m128(_a); + float32x4_t b = vreinterpretq_f32_m128(_b); + return vreinterpretq_m128_f32(vbslq_f32(mask, b, a)); } -// Average packed unsigned 8-bit integers in a and b, and store the results in +// Blend packed 8-bit integers from a and b using mask, and store the results in // dst. // -// FOR j := 0 to 7 -// i := j*8 -// dst[i+7:i] := (a[i+7:i] + b[i+7:i] + 1) >> 1 -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pavgb -#define _m_pavgb(a, b) _mm_avg_pu8(a, b) - -// Average packed unsigned 16-bit integers in a and b, and store the results in -// dst. -// -// FOR j := 0 to 3 -// i := j*16 -// dst[i+15:i] := (a[i+15:i] + b[i+15:i] + 1) >> 1 -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pavgw -#define _m_pavgw(a, b) _mm_avg_pu16(a, b) - -// Extract a 16-bit integer from a, selected with imm8, and store the result in -// the lower element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pextrw -#define _m_pextrw(a, imm) _mm_extract_pi16(a, imm) - -// Copy a to dst, and insert the 16-bit integer i into dst at the location -// specified by imm8. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=m_pinsrw -#define _m_pinsrw(a, i, imm) _mm_insert_pi16(a, i, imm) - -// Compare packed signed 16-bit integers in a and b, and store packed maximum -// values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmaxsw -#define _m_pmaxsw(a, b) _mm_max_pi16(a, b) - -// Compare packed unsigned 8-bit integers in a and b, and store packed maximum -// values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmaxub -#define _m_pmaxub(a, b) _mm_max_pu8(a, b) - -// Compare packed signed 16-bit integers in a and b, and store packed minimum -// values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pminsw -#define _m_pminsw(a, b) _mm_min_pi16(a, b) - -// Compare packed unsigned 8-bit integers in a and b, and store packed minimum -// values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pminub -#define _m_pminub(a, b) _mm_min_pu8(a, b) - -// Create mask from the most significant bit of each 8-bit element in a, and -// store the result in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmovmskb -#define _m_pmovmskb(a) _mm_movemask_pi8(a) - -// Multiply the packed unsigned 16-bit integers in a and b, producing -// intermediate 32-bit integers, and store the high 16 bits of the intermediate -// integers in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmulhuw -#define _m_pmulhuw(a, b) _mm_mulhi_pu16(a, b) - -// Compute the absolute differences of packed unsigned 8-bit integers in a and -// b, then horizontally sum each consecutive 8 differences to produce four -// unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low -// 16 bits of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=m_psadbw -#define _m_psadbw(a, b) _mm_sad_pu8(a, b) - -// Computes the average of the 16 unsigned 8-bit integers in a and the 16 -// unsigned 8-bit integers in b and rounds. -// -// r0 := (a0 + b0) / 2 -// r1 := (a1 + b1) / 2 -// ... -// r15 := (a15 + b15) / 2 -// -// https://msdn.microsoft.com/en-us/library/vstudio/8zwh554a(v%3dvs.90).aspx -FORCE_INLINE __m128i _mm_avg_epu8(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_u8( - vrhaddq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b))); -} - -// Shift a left by imm8 bytes while shifting in zeros, and store the results in -// dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_bslli_si128 -#define _mm_bslli_si128(a, imm) _mm_slli_si128(a, imm) - -// Shift a right by imm8 bytes while shifting in zeros, and store the results in -// dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_bsrli_si128 -#define _mm_bsrli_si128(a, imm) _mm_srli_si128(a, imm) - -// Computes the average of the 8 unsigned 16-bit integers in a and the 8 -// unsigned 16-bit integers in b and rounds. -// -// r0 := (a0 + b0) / 2 -// r1 := (a1 + b1) / 2 -// ... -// r7 := (a7 + b7) / 2 -// -// https://msdn.microsoft.com/en-us/library/vstudio/y13ca3c8(v=vs.90).aspx -FORCE_INLINE __m128i _mm_avg_epu16(__m128i a, __m128i b) -{ - return (__m128i) vrhaddq_u16(vreinterpretq_u16_m128i(a), - vreinterpretq_u16_m128i(b)); -} - -// Adds the four single-precision, floating-point values of a and b. -// -// r0 := a0 + b0 -// r1 := a1 + b1 -// r2 := a2 + b2 -// r3 := a3 + b3 -// -// https://msdn.microsoft.com/en-us/library/vstudio/c9848chc(v=vs.100).aspx -FORCE_INLINE __m128 _mm_add_ps(__m128 a, __m128 b) -{ - return vreinterpretq_m128_f32( - vaddq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); -} - -// Add packed double-precision (64-bit) floating-point elements in a and b, and -// store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_add_pd -FORCE_INLINE __m128d _mm_add_pd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) - return vreinterpretq_m128d_f64( - vaddq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); -#else - double *da = (double *) &a; - double *db = (double *) &b; - double c[2]; - c[0] = da[0] + db[0]; - c[1] = da[1] + db[1]; - return vld1q_f32((float32_t *) c); -#endif -} - -// Add the lower double-precision (64-bit) floating-point element in a and b, -// store the result in the lower element of dst, and copy the upper element from -// a to the upper element of dst. -// -// dst[63:0] := a[63:0] + b[63:0] -// dst[127:64] := a[127:64] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_add_sd -FORCE_INLINE __m128d _mm_add_sd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) - return _mm_move_sd(a, _mm_add_pd(a, b)); -#else - double *da = (double *) &a; - double *db = (double *) &b; - double c[2]; - c[0] = da[0] + db[0]; - c[1] = da[1]; - return vld1q_f32((float32_t *) c); -#endif -} - -// Add 64-bit integers a and b, and store the result in dst. -// -// dst[63:0] := a[63:0] + b[63:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_add_si64 -FORCE_INLINE __m64 _mm_add_si64(__m64 a, __m64 b) -{ - return vreinterpret_m64_s64( - vadd_s64(vreinterpret_s64_m64(a), vreinterpret_s64_m64(b))); -} - -// adds the scalar single-precision floating point values of a and b. -// https://msdn.microsoft.com/en-us/library/be94x2y6(v=vs.100).aspx -FORCE_INLINE __m128 _mm_add_ss(__m128 a, __m128 b) -{ - float32_t b0 = vgetq_lane_f32(vreinterpretq_f32_m128(b), 0); - float32x4_t value = vsetq_lane_f32(b0, vdupq_n_f32(0), 0); - // the upper values in the result must be the remnants of . - return vreinterpretq_m128_f32(vaddq_f32(a, value)); -} - -// Adds the 4 signed or unsigned 64-bit integers in a to the 4 signed or -// unsigned 32-bit integers in b. -// https://msdn.microsoft.com/en-us/library/vstudio/09xs4fkk(v=vs.100).aspx -FORCE_INLINE __m128i _mm_add_epi64(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_s64( - vaddq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b))); -} - -// Adds the 4 signed or unsigned 32-bit integers in a to the 4 signed or -// unsigned 32-bit integers in b. -// -// r0 := a0 + b0 -// r1 := a1 + b1 -// r2 := a2 + b2 -// r3 := a3 + b3 -// -// https://msdn.microsoft.com/en-us/library/vstudio/09xs4fkk(v=vs.100).aspx -FORCE_INLINE __m128i _mm_add_epi32(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_s32( - vaddq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); -} - -// Adds the 8 signed or unsigned 16-bit integers in a to the 8 signed or -// unsigned 16-bit integers in b. -// https://msdn.microsoft.com/en-us/library/fceha5k4(v=vs.100).aspx -FORCE_INLINE __m128i _mm_add_epi16(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_s16( - vaddq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); -} - -// Adds the 16 signed or unsigned 8-bit integers in a to the 16 signed or -// unsigned 8-bit integers in b. -// https://technet.microsoft.com/en-us/subscriptions/yc7tcyzs(v=vs.90) -FORCE_INLINE __m128i _mm_add_epi8(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_s8( - vaddq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); -} - -// Adds the 8 signed 16-bit integers in a to the 8 signed 16-bit integers in b -// and saturates. -// -// r0 := SignedSaturate(a0 + b0) -// r1 := SignedSaturate(a1 + b1) -// ... -// r7 := SignedSaturate(a7 + b7) -// -// https://msdn.microsoft.com/en-us/library/1a306ef8(v=vs.100).aspx -FORCE_INLINE __m128i _mm_adds_epi16(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_s16( - vqaddq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); -} - -// Add packed signed 8-bit integers in a and b using saturation, and store the -// results in dst. -// // FOR j := 0 to 15 -// i := j*8 -// dst[i+7:i] := Saturate8( a[i+7:i] + b[i+7:i] ) +// i := j*8 +// IF mask[i+7] +// dst[i+7:i] := b[i+7:i] +// ELSE +// dst[i+7:i] := a[i+7:i] +// FI // ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_adds_epi8 -FORCE_INLINE __m128i _mm_adds_epi8(__m128i a, __m128i b) +FORCE_INLINE __m128i _mm_blendv_epi8(__m128i _a, __m128i _b, __m128i _mask) { - return vreinterpretq_m128i_s8( - vqaddq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); -} - -// Adds the 16 unsigned 8-bit integers in a to the 16 unsigned 8-bit integers in -// b and saturates.. -// https://msdn.microsoft.com/en-us/library/9hahyddy(v=vs.100).aspx -FORCE_INLINE __m128i _mm_adds_epu8(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_u8( - vqaddq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b))); -} - -// Multiplies the 8 signed or unsigned 16-bit integers from a by the 8 signed or -// unsigned 16-bit integers from b. -// -// r0 := (a0 * b0)[15:0] -// r1 := (a1 * b1)[15:0] -// ... -// r7 := (a7 * b7)[15:0] -// -// https://msdn.microsoft.com/en-us/library/vstudio/9ks1472s(v=vs.100).aspx -FORCE_INLINE __m128i _mm_mullo_epi16(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_s16( - vmulq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); -} - -// Multiplies the 4 signed or unsigned 32-bit integers from a by the 4 signed or -// unsigned 32-bit integers from b. -// https://msdn.microsoft.com/en-us/library/vstudio/bb531409(v=vs.100).aspx -FORCE_INLINE __m128i _mm_mullo_epi32(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_s32( - vmulq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); -} - -// Multiply the packed unsigned 16-bit integers in a and b, producing -// intermediate 32-bit integers, and store the high 16 bits of the intermediate -// integers in dst. -// -// FOR j := 0 to 3 -// i := j*16 -// tmp[31:0] := a[i+15:i] * b[i+15:i] -// dst[i+15:i] := tmp[31:16] -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmulhuw -#define _m_pmulhuw(a, b) _mm_mulhi_pu16(a, b) - -// Multiplies the four single-precision, floating-point values of a and b. -// -// r0 := a0 * b0 -// r1 := a1 * b1 -// r2 := a2 * b2 -// r3 := a3 * b3 -// -// https://msdn.microsoft.com/en-us/library/vstudio/22kbk6t9(v=vs.100).aspx -FORCE_INLINE __m128 _mm_mul_ps(__m128 a, __m128 b) -{ - return vreinterpretq_m128_f32( - vmulq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); -} - -// Multiply packed double-precision (64-bit) floating-point elements in a and b, -// and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mul_pd -FORCE_INLINE __m128d _mm_mul_pd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) - return vreinterpretq_m128d_f64( - vmulq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); -#else - double *da = (double *) &a; - double *db = (double *) &b; - double c[2]; - c[0] = da[0] * db[0]; - c[1] = da[1] * db[1]; - return vld1q_f32((float32_t *) c); -#endif -} - -// Multiply the lower double-precision (64-bit) floating-point element in a and -// b, store the result in the lower element of dst, and copy the upper element -// from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_mul_sd -FORCE_INLINE __m128d _mm_mul_sd(__m128d a, __m128d b) -{ - return _mm_move_sd(a, _mm_mul_pd(a, b)); -} - -// Multiply the lower single-precision (32-bit) floating-point element in a and -// b, store the result in the lower element of dst, and copy the upper 3 packed -// elements from a to the upper elements of dst. -// -// dst[31:0] := a[31:0] * b[31:0] -// dst[127:32] := a[127:32] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mul_ss -FORCE_INLINE __m128 _mm_mul_ss(__m128 a, __m128 b) -{ - return _mm_move_ss(a, _mm_mul_ps(a, b)); -} - -// Multiply the low unsigned 32-bit integers from each packed 64-bit element in -// a and b, and store the unsigned 64-bit results in dst. -// -// r0 := (a0 & 0xFFFFFFFF) * (b0 & 0xFFFFFFFF) -// r1 := (a2 & 0xFFFFFFFF) * (b2 & 0xFFFFFFFF) -FORCE_INLINE __m128i _mm_mul_epu32(__m128i a, __m128i b) -{ - // vmull_u32 upcasts instead of masking, so we downcast. - uint32x2_t a_lo = vmovn_u64(vreinterpretq_u64_m128i(a)); - uint32x2_t b_lo = vmovn_u64(vreinterpretq_u64_m128i(b)); - return vreinterpretq_m128i_u64(vmull_u32(a_lo, b_lo)); -} - -// Multiply the low unsigned 32-bit integers from a and b, and store the -// unsigned 64-bit result in dst. -// -// dst[63:0] := a[31:0] * b[31:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mul_su32 -FORCE_INLINE __m64 _mm_mul_su32(__m64 a, __m64 b) -{ - return vreinterpret_m64_u64(vget_low_u64( - vmull_u32(vreinterpret_u32_m64(a), vreinterpret_u32_m64(b)))); -} - -// Multiply the low signed 32-bit integers from each packed 64-bit element in -// a and b, and store the signed 64-bit results in dst. -// -// r0 := (int64_t)(int32_t)a0 * (int64_t)(int32_t)b0 -// r1 := (int64_t)(int32_t)a2 * (int64_t)(int32_t)b2 -FORCE_INLINE __m128i _mm_mul_epi32(__m128i a, __m128i b) -{ - // vmull_s32 upcasts instead of masking, so we downcast. - int32x2_t a_lo = vmovn_s64(vreinterpretq_s64_m128i(a)); - int32x2_t b_lo = vmovn_s64(vreinterpretq_s64_m128i(b)); - return vreinterpretq_m128i_s64(vmull_s32(a_lo, b_lo)); -} - -// Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit -// integers from b. -// -// r0 := (a0 * b0) + (a1 * b1) -// r1 := (a2 * b2) + (a3 * b3) -// r2 := (a4 * b4) + (a5 * b5) -// r3 := (a6 * b6) + (a7 * b7) -// https://msdn.microsoft.com/en-us/library/yht36sa6(v=vs.90).aspx -FORCE_INLINE __m128i _mm_madd_epi16(__m128i a, __m128i b) -{ - int32x4_t low = vmull_s16(vget_low_s16(vreinterpretq_s16_m128i(a)), - vget_low_s16(vreinterpretq_s16_m128i(b))); - int32x4_t high = vmull_s16(vget_high_s16(vreinterpretq_s16_m128i(a)), - vget_high_s16(vreinterpretq_s16_m128i(b))); - - int32x2_t low_sum = vpadd_s32(vget_low_s32(low), vget_high_s32(low)); - int32x2_t high_sum = vpadd_s32(vget_low_s32(high), vget_high_s32(high)); - - return vreinterpretq_m128i_s32(vcombine_s32(low_sum, high_sum)); -} - -// Conditionally store 8-bit integer elements from a into memory using mask -// (elements are not stored when the highest bit is not set in the corresponding -// element) and a non-temporal memory hint. mem_addr does not need to be aligned -// on any particular boundary. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskmoveu_si128 -FORCE_INLINE void _mm_maskmoveu_si128(__m128i a, __m128i mask, char *mem_addr) -{ - int8x16_t shr_mask = vshrq_n_s8(vreinterpretq_s8_m128i(mask), 7); - __m128 b = _mm_load_ps((const float *) mem_addr); - int8x16_t masked = - vbslq_s8(vreinterpretq_u8_s8(shr_mask), vreinterpretq_s8_m128i(a), - vreinterpretq_s8_m128(b)); - vst1q_s8((int8_t *) mem_addr, masked); -} - -// Multiply packed signed 16-bit integers in a and b, producing intermediate -// signed 32-bit integers. Shift right by 15 bits while rounding up, and store -// the packed 16-bit integers in dst. -// -// r0 := Round(((int32_t)a0 * (int32_t)b0) >> 15) -// r1 := Round(((int32_t)a1 * (int32_t)b1) >> 15) -// r2 := Round(((int32_t)a2 * (int32_t)b2) >> 15) -// ... -// r7 := Round(((int32_t)a7 * (int32_t)b7) >> 15) -FORCE_INLINE __m128i _mm_mulhrs_epi16(__m128i a, __m128i b) -{ - // Has issues due to saturation - // return vreinterpretq_m128i_s16(vqrdmulhq_s16(a, b)); - - // Multiply - int32x4_t mul_lo = vmull_s16(vget_low_s16(vreinterpretq_s16_m128i(a)), - vget_low_s16(vreinterpretq_s16_m128i(b))); - int32x4_t mul_hi = vmull_s16(vget_high_s16(vreinterpretq_s16_m128i(a)), - vget_high_s16(vreinterpretq_s16_m128i(b))); - - // Rounding narrowing shift right - // narrow = (int16_t)((mul + 16384) >> 15); - int16x4_t narrow_lo = vrshrn_n_s32(mul_lo, 15); - int16x4_t narrow_hi = vrshrn_n_s32(mul_hi, 15); - - // Join together - return vreinterpretq_m128i_s16(vcombine_s16(narrow_lo, narrow_hi)); -} - -// Vertically multiply each unsigned 8-bit integer from a with the corresponding -// signed 8-bit integer from b, producing intermediate signed 16-bit integers. -// Horizontally add adjacent pairs of intermediate signed 16-bit integers, -// and pack the saturated results in dst. -// -// FOR j := 0 to 7 -// i := j*16 -// dst[i+15:i] := Saturate_To_Int16( a[i+15:i+8]*b[i+15:i+8] + -// a[i+7:i]*b[i+7:i] ) -// ENDFOR -FORCE_INLINE __m128i _mm_maddubs_epi16(__m128i _a, __m128i _b) -{ -#if defined(__aarch64__) + // Use a signed shift right to create a mask with the sign bit + uint8x16_t mask = + vreinterpretq_u8_s8(vshrq_n_s8(vreinterpretq_s8_m128i(_mask), 7)); uint8x16_t a = vreinterpretq_u8_m128i(_a); - int8x16_t b = vreinterpretq_s8_m128i(_b); - int16x8_t tl = vmulq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(a))), - vmovl_s8(vget_low_s8(b))); - int16x8_t th = vmulq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(a))), - vmovl_s8(vget_high_s8(b))); - return vreinterpretq_m128i_s16( - vqaddq_s16(vuzp1q_s16(tl, th), vuzp2q_s16(tl, th))); + uint8x16_t b = vreinterpretq_u8_m128i(_b); + return vreinterpretq_m128i_u8(vbslq_u8(mask, b, a)); +} + +// Blend packed double-precision (64-bit) floating-point elements from a and b +// using mask, and store the results in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_blendv_pd +FORCE_INLINE __m128d _mm_blendv_pd(__m128d _a, __m128d _b, __m128d _mask) +{ + uint64x2_t mask = + vreinterpretq_u64_s64(vshrq_n_s64(vreinterpretq_s64_m128d(_mask), 63)); +#if defined(__aarch64__) + float64x2_t a = vreinterpretq_f64_m128d(_a); + float64x2_t b = vreinterpretq_f64_m128d(_b); + return vreinterpretq_m128d_f64(vbslq_f64(mask, b, a)); #else - // This would be much simpler if x86 would choose to zero extend OR sign - // extend, not both. This could probably be optimized better. - uint16x8_t a = vreinterpretq_u16_m128i(_a); - int16x8_t b = vreinterpretq_s16_m128i(_b); - - // Zero extend a - int16x8_t a_odd = vreinterpretq_s16_u16(vshrq_n_u16(a, 8)); - int16x8_t a_even = vreinterpretq_s16_u16(vbicq_u16(a, vdupq_n_u16(0xff00))); - - // Sign extend by shifting left then shifting right. - int16x8_t b_even = vshrq_n_s16(vshlq_n_s16(b, 8), 8); - int16x8_t b_odd = vshrq_n_s16(b, 8); - - // multiply - int16x8_t prod1 = vmulq_s16(a_even, b_even); - int16x8_t prod2 = vmulq_s16(a_odd, b_odd); - - // saturated add - return vreinterpretq_m128i_s16(vqaddq_s16(prod1, prod2)); + uint64x2_t a = vreinterpretq_u64_m128d(_a); + uint64x2_t b = vreinterpretq_u64_m128d(_b); + return vreinterpretq_m128d_u64(vbslq_u64(mask, b, a)); #endif } -// Computes the fused multiple add product of 32-bit floating point numbers. -// -// Return Value -// Multiplies A and B, and adds C to the temporary result before returning it. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fmadd -FORCE_INLINE __m128 _mm_fmadd_ps(__m128 a, __m128 b, __m128 c) +// Blend packed single-precision (32-bit) floating-point elements from a and b +// using mask, and store the results in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_blendv_ps +FORCE_INLINE __m128 _mm_blendv_ps(__m128 _a, __m128 _b, __m128 _mask) +{ + // Use a signed shift right to create a mask with the sign bit + uint32x4_t mask = + vreinterpretq_u32_s32(vshrq_n_s32(vreinterpretq_s32_m128(_mask), 31)); + float32x4_t a = vreinterpretq_f32_m128(_a); + float32x4_t b = vreinterpretq_f32_m128(_b); + return vreinterpretq_m128_f32(vbslq_f32(mask, b, a)); +} + +// Round the packed double-precision (64-bit) floating-point elements in a up +// to an integer value, and store the results as packed double-precision +// floating-point elements in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ceil_pd +FORCE_INLINE __m128d _mm_ceil_pd(__m128d a) { #if defined(__aarch64__) - return vreinterpretq_m128_f32(vfmaq_f32(vreinterpretq_f32_m128(c), - vreinterpretq_f32_m128(b), - vreinterpretq_f32_m128(a))); + return vreinterpretq_m128d_f64(vrndpq_f64(vreinterpretq_f64_m128d(a))); #else - return _mm_add_ps(_mm_mul_ps(a, b), c); + double *f = (double *) &a; + return _mm_set_pd(ceil(f[1]), ceil(f[0])); #endif } -// Alternatively add and subtract packed double-precision (64-bit) -// floating-point elements in a to/from packed elements in b, and store the -// results in dst. -// -// FOR j := 0 to 1 -// i := j*64 -// IF ((j & 1) == 0) -// dst[i+63:i] := a[i+63:i] - b[i+63:i] -// ELSE -// dst[i+63:i] := a[i+63:i] + b[i+63:i] -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_addsub_pd -FORCE_INLINE __m128d _mm_addsub_pd(__m128d a, __m128d b) +// Round the packed single-precision (32-bit) floating-point elements in a up to +// an integer value, and store the results as packed single-precision +// floating-point elements in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ceil_ps +FORCE_INLINE __m128 _mm_ceil_ps(__m128 a) { - __m128d mask = _mm_set_pd(1.0f, -1.0f); -#if defined(__aarch64__) - return vreinterpretq_m128d_f64(vfmaq_f64(vreinterpretq_f64_m128d(a), - vreinterpretq_f64_m128d(b), - vreinterpretq_f64_m128d(mask))); +#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING) + return vreinterpretq_m128_f32(vrndpq_f32(vreinterpretq_f32_m128(a))); #else - return _mm_add_pd(_mm_mul_pd(b, mask), a); + float *f = (float *) &a; + return _mm_set_ps(ceilf(f[3]), ceilf(f[2]), ceilf(f[1]), ceilf(f[0])); #endif } -// Alternatively add and subtract packed single-precision (32-bit) -// floating-point elements in a to/from packed elements in b, and store the -// results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=addsub_ps -FORCE_INLINE __m128 _mm_addsub_ps(__m128 a, __m128 b) +// Round the lower double-precision (64-bit) floating-point element in b up to +// an integer value, store the result as a double-precision floating-point +// element in the lower element of dst, and copy the upper element from a to the +// upper element of dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ceil_sd +FORCE_INLINE __m128d _mm_ceil_sd(__m128d a, __m128d b) { - __m128 mask = {-1.0f, 1.0f, -1.0f, 1.0f}; - return _mm_fmadd_ps(b, mask, a); + return _mm_move_sd(a, _mm_ceil_pd(b)); } -// Horizontally add adjacent pairs of double-precision (64-bit) floating-point -// elements in a and b, and pack the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadd_pd -FORCE_INLINE __m128d _mm_hadd_pd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) - return vreinterpretq_m128d_f64( - vpaddq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); -#else - double *da = (double *) &a; - double *db = (double *) &b; - double c[] = {da[0] + da[1], db[0] + db[1]}; - return vreinterpretq_m128d_u64(vld1q_u64((uint64_t *) c)); -#endif -} - -// Compute the absolute differences of packed unsigned 8-bit integers in a and -// b, then horizontally sum each consecutive 8 differences to produce two -// unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low -// 16 bits of 64-bit elements in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sad_epu8 -FORCE_INLINE __m128i _mm_sad_epu8(__m128i a, __m128i b) -{ - uint16x8_t t = vpaddlq_u8(vabdq_u8((uint8x16_t) a, (uint8x16_t) b)); - uint16_t r0 = t[0] + t[1] + t[2] + t[3]; - uint16_t r4 = t[4] + t[5] + t[6] + t[7]; - uint16x8_t r = vsetq_lane_u16(r0, vdupq_n_u16(0), 0); - return (__m128i) vsetq_lane_u16(r4, r, 4); -} - -// Compute the absolute differences of packed unsigned 8-bit integers in a and -// b, then horizontally sum each consecutive 8 differences to produce four -// unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low -// 16 bits of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sad_pu8 -FORCE_INLINE __m64 _mm_sad_pu8(__m64 a, __m64 b) -{ - uint16x4_t t = - vpaddl_u8(vabd_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b))); - uint16_t r0 = t[0] + t[1] + t[2] + t[3]; - return vreinterpret_m64_u16(vset_lane_u16(r0, vdup_n_u16(0), 0)); -} - -// Compute the absolute differences of packed unsigned 8-bit integers in a and -// b, then horizontally sum each consecutive 8 differences to produce four -// unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low -// 16 bits of dst. +// Round the lower single-precision (32-bit) floating-point element in b up to +// an integer value, store the result as a single-precision floating-point +// element in the lower element of dst, and copy the upper 3 packed elements +// from a to the upper elements of dst. // -// FOR j := 0 to 7 -// i := j*8 -// tmp[i+7:i] := ABS(a[i+7:i] - b[i+7:i]) -// ENDFOR -// dst[15:0] := tmp[7:0] + tmp[15:8] + tmp[23:16] + tmp[31:24] + tmp[39:32] + -// tmp[47:40] + tmp[55:48] + tmp[63:56] dst[63:16] := 0 -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_psadbw -#define _m_psadbw(a, b) _mm_sad_pu8(a, b) - -// Divides the four single-precision, floating-point values of a and b. -// -// r0 := a0 / b0 -// r1 := a1 / b1 -// r2 := a2 / b2 -// r3 := a3 / b3 -// -// https://msdn.microsoft.com/en-us/library/edaw8147(v=vs.100).aspx -FORCE_INLINE __m128 _mm_div_ps(__m128 a, __m128 b) -{ -#if defined(__aarch64__) && !SSE2NEON_PRECISE_DIV - return vreinterpretq_m128_f32( - vdivq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); -#else - float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(b)); - recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(b))); -#if SSE2NEON_PRECISE_DIV - // Additional Netwon-Raphson iteration for accuracy - recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(b))); -#endif - return vreinterpretq_m128_f32(vmulq_f32(vreinterpretq_f32_m128(a), recip)); -#endif -} - -// Divides the scalar single-precision floating point value of a by b. -// https://msdn.microsoft.com/en-us/library/4y73xa49(v=vs.100).aspx -FORCE_INLINE __m128 _mm_div_ss(__m128 a, __m128 b) -{ - float32_t value = - vgetq_lane_f32(vreinterpretq_f32_m128(_mm_div_ps(a, b)), 0); - return vreinterpretq_m128_f32( - vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0)); -} - -// Divide packed double-precision (64-bit) floating-point elements in a by -// packed elements in b, and store the results in dst. -// -// FOR j := 0 to 1 -// i := 64*j -// dst[i+63:i] := a[i+63:i] / b[i+63:i] -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_div_pd -FORCE_INLINE __m128d _mm_div_pd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) - return vreinterpretq_m128d_f64( - vdivq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); -#else - double *da = (double *) &a; - double *db = (double *) &b; - double c[2]; - c[0] = da[0] / db[0]; - c[1] = da[1] / db[1]; - return vld1q_f32((float32_t *) c); -#endif -} - -// Divide the lower double-precision (64-bit) floating-point element in a by the -// lower double-precision (64-bit) floating-point element in b, store the result -// in the lower element of dst, and copy the upper element from a to the upper -// element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_div_sd -FORCE_INLINE __m128d _mm_div_sd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) - float64x2_t tmp = - vdivq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)); - return vreinterpretq_m128d_f64( - vsetq_lane_f64(vgetq_lane_f64(vreinterpretq_f64_m128d(a), 1), tmp, 1)); -#else - return _mm_move_sd(a, _mm_div_pd(a, b)); -#endif -} - -// Compute the approximate reciprocal of packed single-precision (32-bit) -// floating-point elements in a, and store the results in dst. The maximum -// relative error for this approximation is less than 1.5*2^-12. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_rcp_ps -FORCE_INLINE __m128 _mm_rcp_ps(__m128 in) -{ - float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(in)); - recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(in))); -#if SSE2NEON_PRECISE_DIV - // Additional Netwon-Raphson iteration for accuracy - recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(in))); -#endif - return vreinterpretq_m128_f32(recip); -} - -// Compute the approximate reciprocal of the lower single-precision (32-bit) -// floating-point element in a, store the result in the lower element of dst, -// and copy the upper 3 packed elements from a to the upper elements of dst. The -// maximum relative error for this approximation is less than 1.5*2^-12. -// -// dst[31:0] := (1.0 / a[31:0]) +// dst[31:0] := CEIL(b[31:0]) // dst[127:32] := a[127:32] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_rcp_ss -FORCE_INLINE __m128 _mm_rcp_ss(__m128 a) +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ceil_ss +FORCE_INLINE __m128 _mm_ceil_ss(__m128 a, __m128 b) { - return _mm_move_ss(a, _mm_rcp_ps(a)); + return _mm_move_ss(a, _mm_ceil_ps(b)); } -// Computes the approximations of square roots of the four single-precision, -// floating-point values of a. First computes reciprocal square roots and then -// reciprocals of the four values. -// -// r0 := sqrt(a0) -// r1 := sqrt(a1) -// r2 := sqrt(a2) -// r3 := sqrt(a3) -// -// https://msdn.microsoft.com/en-us/library/vstudio/8z67bwwk(v=vs.100).aspx -FORCE_INLINE __m128 _mm_sqrt_ps(__m128 in) -{ -#if SSE2NEON_PRECISE_SQRT - float32x4_t recip = vrsqrteq_f32(vreinterpretq_f32_m128(in)); - - // Test for vrsqrteq_f32(0) -> positive infinity case. - // Change to zero, so that s * 1/sqrt(s) result is zero too. - const uint32x4_t pos_inf = vdupq_n_u32(0x7F800000); - const uint32x4_t div_by_zero = - vceqq_u32(pos_inf, vreinterpretq_u32_f32(recip)); - recip = vreinterpretq_f32_u32( - vandq_u32(vmvnq_u32(div_by_zero), vreinterpretq_u32_f32(recip))); - - // Additional Netwon-Raphson iteration for accuracy - recip = vmulq_f32( - vrsqrtsq_f32(vmulq_f32(recip, recip), vreinterpretq_f32_m128(in)), - recip); - recip = vmulq_f32( - vrsqrtsq_f32(vmulq_f32(recip, recip), vreinterpretq_f32_m128(in)), - recip); - - // sqrt(s) = s * 1/sqrt(s) - return vreinterpretq_m128_f32(vmulq_f32(vreinterpretq_f32_m128(in), recip)); -#elif defined(__aarch64__) - return vreinterpretq_m128_f32(vsqrtq_f32(vreinterpretq_f32_m128(in))); -#else - float32x4_t recipsq = vrsqrteq_f32(vreinterpretq_f32_m128(in)); - float32x4_t sq = vrecpeq_f32(recipsq); - return vreinterpretq_m128_f32(sq); -#endif -} - -// Computes the approximation of the square root of the scalar single-precision -// floating point value of in. -// https://msdn.microsoft.com/en-us/library/ahfsc22d(v=vs.100).aspx -FORCE_INLINE __m128 _mm_sqrt_ss(__m128 in) -{ - float32_t value = - vgetq_lane_f32(vreinterpretq_f32_m128(_mm_sqrt_ps(in)), 0); - return vreinterpretq_m128_f32( - vsetq_lane_f32(value, vreinterpretq_f32_m128(in), 0)); -} - -// Computes the approximations of the reciprocal square roots of the four -// single-precision floating point values of in. -// The current precision is 1% error. -// https://msdn.microsoft.com/en-us/library/22hfsh53(v=vs.100).aspx -FORCE_INLINE __m128 _mm_rsqrt_ps(__m128 in) -{ - float32x4_t out = vrsqrteq_f32(vreinterpretq_f32_m128(in)); -#if SSE2NEON_PRECISE_SQRT - // Additional Netwon-Raphson iteration for accuracy - out = vmulq_f32( - out, vrsqrtsq_f32(vmulq_f32(vreinterpretq_f32_m128(in), out), out)); - out = vmulq_f32( - out, vrsqrtsq_f32(vmulq_f32(vreinterpretq_f32_m128(in), out), out)); -#endif - return vreinterpretq_m128_f32(out); -} - -// Compute the approximate reciprocal square root of the lower single-precision -// (32-bit) floating-point element in a, store the result in the lower element -// of dst, and copy the upper 3 packed elements from a to the upper elements of -// dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_rsqrt_ss -FORCE_INLINE __m128 _mm_rsqrt_ss(__m128 in) -{ - return vsetq_lane_f32(vgetq_lane_f32(_mm_rsqrt_ps(in), 0), in, 0); -} - -// Compare packed signed 16-bit integers in a and b, and store packed maximum -// values in dst. -// -// FOR j := 0 to 3 -// i := j*16 -// dst[i+15:i] := MAX(a[i+15:i], b[i+15:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_pi16 -FORCE_INLINE __m64 _mm_max_pi16(__m64 a, __m64 b) -{ - return vreinterpret_m64_s16( - vmax_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b))); -} - -// Compare packed signed 16-bit integers in a and b, and store packed maximum -// values in dst. -// -// FOR j := 0 to 3 -// i := j*16 -// dst[i+15:i] := MAX(a[i+15:i], b[i+15:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_pi16 -#define _m_pmaxsw(a, b) _mm_max_pi16(a, b) - -// Computes the maximums of the four single-precision, floating-point values of -// a and b. -// https://msdn.microsoft.com/en-us/library/vstudio/ff5d607a(v=vs.100).aspx -FORCE_INLINE __m128 _mm_max_ps(__m128 a, __m128 b) -{ -#if SSE2NEON_PRECISE_MINMAX - float32x4_t _a = vreinterpretq_f32_m128(a); - float32x4_t _b = vreinterpretq_f32_m128(b); - return vbslq_f32(vcltq_f32(_b, _a), _a, _b); -#else - return vreinterpretq_m128_f32( - vmaxq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); -#endif -} - -// Compare packed unsigned 8-bit integers in a and b, and store packed maximum -// values in dst. -// -// FOR j := 0 to 7 -// i := j*8 -// dst[i+7:i] := MAX(a[i+7:i], b[i+7:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_pu8 -FORCE_INLINE __m64 _mm_max_pu8(__m64 a, __m64 b) -{ - return vreinterpret_m64_u8( - vmax_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b))); -} - -// Compare packed unsigned 8-bit integers in a and b, and store packed maximum -// values in dst. -// -// FOR j := 0 to 7 -// i := j*8 -// dst[i+7:i] := MAX(a[i+7:i], b[i+7:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_pu8 -#define _m_pmaxub(a, b) _mm_max_pu8(a, b) - -// Compare packed signed 16-bit integers in a and b, and store packed minimum -// values in dst. -// -// FOR j := 0 to 3 -// i := j*16 -// dst[i+15:i] := MIN(a[i+15:i], b[i+15:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_pi16 -FORCE_INLINE __m64 _mm_min_pi16(__m64 a, __m64 b) -{ - return vreinterpret_m64_s16( - vmin_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b))); -} - -// Compare packed signed 16-bit integers in a and b, and store packed minimum -// values in dst. -// -// FOR j := 0 to 3 -// i := j*16 -// dst[i+15:i] := MIN(a[i+15:i], b[i+15:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_pi16 -#define _m_pminsw(a, b) _mm_min_pi16(a, b) - -// Computes the minima of the four single-precision, floating-point values of a -// and b. -// https://msdn.microsoft.com/en-us/library/vstudio/wh13kadz(v=vs.100).aspx -FORCE_INLINE __m128 _mm_min_ps(__m128 a, __m128 b) -{ -#if SSE2NEON_PRECISE_MINMAX - float32x4_t _a = vreinterpretq_f32_m128(a); - float32x4_t _b = vreinterpretq_f32_m128(b); - return vbslq_f32(vcltq_f32(_a, _b), _a, _b); -#else - return vreinterpretq_m128_f32( - vminq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); -#endif -} - -// Compare packed unsigned 8-bit integers in a and b, and store packed minimum -// values in dst. -// -// FOR j := 0 to 7 -// i := j*8 -// dst[i+7:i] := MIN(a[i+7:i], b[i+7:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_pu8 -FORCE_INLINE __m64 _mm_min_pu8(__m64 a, __m64 b) -{ - return vreinterpret_m64_u8( - vmin_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b))); -} - -// Compare packed unsigned 8-bit integers in a and b, and store packed minimum -// values in dst. -// -// FOR j := 0 to 7 -// i := j*8 -// dst[i+7:i] := MIN(a[i+7:i], b[i+7:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_pu8 -#define _m_pminub(a, b) _mm_min_pu8(a, b) - -// Computes the maximum of the two lower scalar single-precision floating point -// values of a and b. -// https://msdn.microsoft.com/en-us/library/s6db5esz(v=vs.100).aspx -FORCE_INLINE __m128 _mm_max_ss(__m128 a, __m128 b) -{ - float32_t value = vgetq_lane_f32(_mm_max_ps(a, b), 0); - return vreinterpretq_m128_f32( - vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0)); -} - -// Computes the minimum of the two lower scalar single-precision floating point -// values of a and b. -// https://msdn.microsoft.com/en-us/library/0a9y7xaa(v=vs.100).aspx -FORCE_INLINE __m128 _mm_min_ss(__m128 a, __m128 b) -{ - float32_t value = vgetq_lane_f32(_mm_min_ps(a, b), 0); - return vreinterpretq_m128_f32( - vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0)); -} - -// Computes the pairwise maxima of the 16 unsigned 8-bit integers from a and the -// 16 unsigned 8-bit integers from b. -// https://msdn.microsoft.com/en-us/library/st6634za(v=vs.100).aspx -FORCE_INLINE __m128i _mm_max_epu8(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_u8( - vmaxq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b))); -} - -// Compare packed double-precision (64-bit) floating-point elements in a and b, -// and store packed maximum values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_pd -FORCE_INLINE __m128d _mm_max_pd(__m128d a, __m128d b) +// Compare packed 64-bit integers in a and b for equality, and store the results +// in dst +FORCE_INLINE __m128i _mm_cmpeq_epi64(__m128i a, __m128i b) { #if defined(__aarch64__) - return vreinterpretq_m128d_f64( - vmaxq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); + return vreinterpretq_m128i_u64( + vceqq_u64(vreinterpretq_u64_m128i(a), vreinterpretq_u64_m128i(b))); #else - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); - uint64_t d[2]; - d[0] = (*(double *) &a0) > (*(double *) &b0) ? a0 : b0; - d[1] = (*(double *) &a1) > (*(double *) &b1) ? a1 : b1; - - return vreinterpretq_m128d_u64(vld1q_u64(d)); + // ARMv7 lacks vceqq_u64 + // (a == b) -> (a_lo == b_lo) && (a_hi == b_hi) + uint32x4_t cmp = + vceqq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b)); + uint32x4_t swapped = vrev64q_u32(cmp); + return vreinterpretq_m128i_u32(vandq_u32(cmp, swapped)); #endif } -// Compare the lower double-precision (64-bit) floating-point elements in a and -// b, store the maximum value in the lower element of dst, and copy the upper -// element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_sd -FORCE_INLINE __m128d _mm_max_sd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) - return _mm_move_sd(a, _mm_max_pd(a, b)); -#else - double *da = (double *) &a; - double *db = (double *) &b; - double c[2] = {fmax(da[0], db[0]), da[1]}; - return vld1q_f32((float32_t *) c); -#endif -} - -// Computes the pairwise minima of the 16 unsigned 8-bit integers from a and the -// 16 unsigned 8-bit integers from b. -// https://msdn.microsoft.com/ko-kr/library/17k8cf58(v=vs.100).aspxx -FORCE_INLINE __m128i _mm_min_epu8(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_u8( - vminq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b))); -} - -// Compare packed double-precision (64-bit) floating-point elements in a and b, -// and store packed minimum values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_pd -FORCE_INLINE __m128d _mm_min_pd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) - return vreinterpretq_m128d_f64( - vminq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); -#else - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); - uint64_t d[2]; - d[0] = (*(double *) &a0) < (*(double *) &b0) ? a0 : b0; - d[1] = (*(double *) &a1) < (*(double *) &b1) ? a1 : b1; - return vreinterpretq_m128d_u64(vld1q_u64(d)); -#endif -} - -// Compare the lower double-precision (64-bit) floating-point elements in a and -// b, store the minimum value in the lower element of dst, and copy the upper -// element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_sd -FORCE_INLINE __m128d _mm_min_sd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) - return _mm_move_sd(a, _mm_min_pd(a, b)); -#else - double *da = (double *) &a; - double *db = (double *) &b; - double c[2] = {fmin(da[0], db[0]), da[1]}; - return vld1q_f32((float32_t *) c); -#endif -} - -// Computes the pairwise minima of the 8 signed 16-bit integers from a and the 8 -// signed 16-bit integers from b. -// https://msdn.microsoft.com/en-us/library/vstudio/6te997ew(v=vs.100).aspx -FORCE_INLINE __m128i _mm_min_epi16(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_s16( - vminq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); -} - -// Compare packed signed 8-bit integers in a and b, and store packed maximum -// values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epi8 -FORCE_INLINE __m128i _mm_max_epi8(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_s8( - vmaxq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); -} - -// Compare packed unsigned 16-bit integers in a and b, and store packed maximum -// values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epu16 -FORCE_INLINE __m128i _mm_max_epu16(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_u16( - vmaxq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b))); -} - -// Compare packed signed 8-bit integers in a and b, and store packed minimum -// values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_epi8 -FORCE_INLINE __m128i _mm_min_epi8(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_s8( - vminq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); -} - -// Compare packed unsigned 16-bit integers in a and b, and store packed minimum -// values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_epu16 -FORCE_INLINE __m128i _mm_min_epu16(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_u16( - vminq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b))); -} - -// Computes the pairwise maxima of the 8 signed 16-bit integers from a and the 8 -// signed 16-bit integers from b. -// https://msdn.microsoft.com/en-us/LIBRary/3x060h7c(v=vs.100).aspx -FORCE_INLINE __m128i _mm_max_epi16(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_s16( - vmaxq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); -} - -// epi versions of min/max -// Computes the pariwise maximums of the four signed 32-bit integer values of a -// and b. -// -// A 128-bit parameter that can be defined with the following equations: -// r0 := (a0 > b0) ? a0 : b0 -// r1 := (a1 > b1) ? a1 : b1 -// r2 := (a2 > b2) ? a2 : b2 -// r3 := (a3 > b3) ? a3 : b3 -// -// https://msdn.microsoft.com/en-us/library/vstudio/bb514055(v=vs.100).aspx -FORCE_INLINE __m128i _mm_max_epi32(__m128i a, __m128i b) +// Converts the four signed 16-bit integers in the lower 64 bits to four signed +// 32-bit integers. +FORCE_INLINE __m128i _mm_cvtepi16_epi32(__m128i a) { return vreinterpretq_m128i_s32( - vmaxq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); + vmovl_s16(vget_low_s16(vreinterpretq_s16_m128i(a)))); } -// Computes the pariwise minima of the four signed 32-bit integer values of a -// and b. -// -// A 128-bit parameter that can be defined with the following equations: -// r0 := (a0 < b0) ? a0 : b0 -// r1 := (a1 < b1) ? a1 : b1 -// r2 := (a2 < b2) ? a2 : b2 -// r3 := (a3 < b3) ? a3 : b3 -// -// https://msdn.microsoft.com/en-us/library/vstudio/bb531476(v=vs.100).aspx -FORCE_INLINE __m128i _mm_min_epi32(__m128i a, __m128i b) +// Converts the two signed 16-bit integers in the lower 32 bits two signed +// 32-bit integers. +FORCE_INLINE __m128i _mm_cvtepi16_epi64(__m128i a) { - return vreinterpretq_m128i_s32( - vminq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); + int16x8_t s16x8 = vreinterpretq_s16_m128i(a); /* xxxx xxxx xxxx 0B0A */ + int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000x 000x 000B 000A */ + int64x2_t s64x2 = vmovl_s32(vget_low_s32(s32x4)); /* 0000 000B 0000 000A */ + return vreinterpretq_m128i_s64(s64x2); } -// Compare packed unsigned 32-bit integers in a and b, and store packed maximum -// values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epu32 -FORCE_INLINE __m128i _mm_max_epu32(__m128i a, __m128i b) +// Converts the two signed 32-bit integers in the lower 64 bits to two signed +// 64-bit integers. +FORCE_INLINE __m128i _mm_cvtepi32_epi64(__m128i a) +{ + return vreinterpretq_m128i_s64( + vmovl_s32(vget_low_s32(vreinterpretq_s32_m128i(a)))); +} + +// Converts the four unsigned 8-bit integers in the lower 16 bits to four +// unsigned 32-bit integers. +FORCE_INLINE __m128i _mm_cvtepi8_epi16(__m128i a) +{ + int8x16_t s8x16 = vreinterpretq_s8_m128i(a); /* xxxx xxxx xxxx DCBA */ + int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16)); /* 0x0x 0x0x 0D0C 0B0A */ + return vreinterpretq_m128i_s16(s16x8); +} + +// Converts the four unsigned 8-bit integers in the lower 32 bits to four +// unsigned 32-bit integers. +FORCE_INLINE __m128i _mm_cvtepi8_epi32(__m128i a) +{ + int8x16_t s8x16 = vreinterpretq_s8_m128i(a); /* xxxx xxxx xxxx DCBA */ + int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16)); /* 0x0x 0x0x 0D0C 0B0A */ + int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000D 000C 000B 000A */ + return vreinterpretq_m128i_s32(s32x4); +} + +// Converts the two signed 8-bit integers in the lower 32 bits to four +// signed 64-bit integers. +FORCE_INLINE __m128i _mm_cvtepi8_epi64(__m128i a) +{ + int8x16_t s8x16 = vreinterpretq_s8_m128i(a); /* xxxx xxxx xxxx xxBA */ + int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16)); /* 0x0x 0x0x 0x0x 0B0A */ + int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000x 000x 000B 000A */ + int64x2_t s64x2 = vmovl_s32(vget_low_s32(s32x4)); /* 0000 000B 0000 000A */ + return vreinterpretq_m128i_s64(s64x2); +} + +// Converts the four unsigned 16-bit integers in the lower 64 bits to four +// unsigned 32-bit integers. +FORCE_INLINE __m128i _mm_cvtepu16_epi32(__m128i a) { return vreinterpretq_m128i_u32( - vmaxq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b))); + vmovl_u16(vget_low_u16(vreinterpretq_u16_m128i(a)))); } -// Compare packed unsigned 32-bit integers in a and b, and store packed minimum -// values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epu32 -FORCE_INLINE __m128i _mm_min_epu32(__m128i a, __m128i b) +// Converts the two unsigned 16-bit integers in the lower 32 bits to two +// unsigned 64-bit integers. +FORCE_INLINE __m128i _mm_cvtepu16_epi64(__m128i a) { - return vreinterpretq_m128i_u32( - vminq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b))); + uint16x8_t u16x8 = vreinterpretq_u16_m128i(a); /* xxxx xxxx xxxx 0B0A */ + uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000x 000x 000B 000A */ + uint64x2_t u64x2 = vmovl_u32(vget_low_u32(u32x4)); /* 0000 000B 0000 000A */ + return vreinterpretq_m128i_u64(u64x2); } -// Multiply the packed unsigned 16-bit integers in a and b, producing -// intermediate 32-bit integers, and store the high 16 bits of the intermediate -// integers in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mulhi_pu16 -FORCE_INLINE __m64 _mm_mulhi_pu16(__m64 a, __m64 b) +// Converts the two unsigned 32-bit integers in the lower 64 bits to two +// unsigned 64-bit integers. +FORCE_INLINE __m128i _mm_cvtepu32_epi64(__m128i a) { - return vreinterpret_m64_u16(vshrn_n_u32( - vmull_u16(vreinterpret_u16_m64(a), vreinterpret_u16_m64(b)), 16)); + return vreinterpretq_m128i_u64( + vmovl_u32(vget_low_u32(vreinterpretq_u32_m128i(a)))); } -// Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit -// integers from b. -// -// r0 := (a0 * b0)[31:16] -// r1 := (a1 * b1)[31:16] -// ... -// r7 := (a7 * b7)[31:16] -// -// https://msdn.microsoft.com/en-us/library/vstudio/59hddw1d(v=vs.100).aspx -FORCE_INLINE __m128i _mm_mulhi_epi16(__m128i a, __m128i b) +// Zero extend packed unsigned 8-bit integers in a to packed 16-bit integers, +// and store the results in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtepu8_epi16 +FORCE_INLINE __m128i _mm_cvtepu8_epi16(__m128i a) { - /* FIXME: issue with large values because of result saturation */ - // int16x8_t ret = vqdmulhq_s16(vreinterpretq_s16_m128i(a), - // vreinterpretq_s16_m128i(b)); /* =2*a*b */ return - // vreinterpretq_m128i_s16(vshrq_n_s16(ret, 1)); - int16x4_t a3210 = vget_low_s16(vreinterpretq_s16_m128i(a)); - int16x4_t b3210 = vget_low_s16(vreinterpretq_s16_m128i(b)); - int32x4_t ab3210 = vmull_s16(a3210, b3210); /* 3333222211110000 */ - int16x4_t a7654 = vget_high_s16(vreinterpretq_s16_m128i(a)); - int16x4_t b7654 = vget_high_s16(vreinterpretq_s16_m128i(b)); - int32x4_t ab7654 = vmull_s16(a7654, b7654); /* 7777666655554444 */ - uint16x8x2_t r = - vuzpq_u16(vreinterpretq_u16_s32(ab3210), vreinterpretq_u16_s32(ab7654)); - return vreinterpretq_m128i_u16(r.val[1]); + uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx HGFE DCBA */ + uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16)); /* 0H0G 0F0E 0D0C 0B0A */ + return vreinterpretq_m128i_u16(u16x8); } -// Multiply the packed unsigned 16-bit integers in a and b, producing -// intermediate 32-bit integers, and store the high 16 bits of the intermediate -// integers in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mulhi_epu16 -FORCE_INLINE __m128i _mm_mulhi_epu16(__m128i a, __m128i b) +// Converts the four unsigned 8-bit integers in the lower 32 bits to four +// unsigned 32-bit integers. +// https://msdn.microsoft.com/en-us/library/bb531467%28v=vs.100%29.aspx +FORCE_INLINE __m128i _mm_cvtepu8_epi32(__m128i a) { - uint16x4_t a3210 = vget_low_u16(vreinterpretq_u16_m128i(a)); - uint16x4_t b3210 = vget_low_u16(vreinterpretq_u16_m128i(b)); - uint32x4_t ab3210 = vmull_u16(a3210, b3210); -#if defined(__aarch64__) - uint32x4_t ab7654 = - vmull_high_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)); - uint16x8_t r = vuzp2q_u16(vreinterpretq_u16_u32(ab3210), - vreinterpretq_u16_u32(ab7654)); - return vreinterpretq_m128i_u16(r); -#else - uint16x4_t a7654 = vget_high_u16(vreinterpretq_u16_m128i(a)); - uint16x4_t b7654 = vget_high_u16(vreinterpretq_u16_m128i(b)); - uint32x4_t ab7654 = vmull_u16(a7654, b7654); - uint16x8x2_t r = - vuzpq_u16(vreinterpretq_u16_u32(ab3210), vreinterpretq_u16_u32(ab7654)); - return vreinterpretq_m128i_u16(r.val[1]); + uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx xxxx DCBA */ + uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16)); /* 0x0x 0x0x 0D0C 0B0A */ + uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000D 000C 000B 000A */ + return vreinterpretq_m128i_u32(u32x4); +} + +// Converts the two unsigned 8-bit integers in the lower 16 bits to two +// unsigned 64-bit integers. +FORCE_INLINE __m128i _mm_cvtepu8_epi64(__m128i a) +{ + uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx xxxx xxBA */ + uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16)); /* 0x0x 0x0x 0x0x 0B0A */ + uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000x 000x 000B 000A */ + uint64x2_t u64x2 = vmovl_u32(vget_low_u32(u32x4)); /* 0000 000B 0000 000A */ + return vreinterpretq_m128i_u64(u64x2); +} + +// Conditionally multiply the packed double-precision (64-bit) floating-point +// elements in a and b using the high 4 bits in imm8, sum the four products, and +// conditionally store the sum in dst using the low 4 bits of imm8. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_dp_pd +FORCE_INLINE __m128d _mm_dp_pd(__m128d a, __m128d b, const int imm) +{ + // Generate mask value from constant immediate bit value + const int64_t bit0Mask = imm & 0x01 ? UINT64_MAX : 0; + const int64_t bit1Mask = imm & 0x02 ? UINT64_MAX : 0; +#if !SSE2NEON_PRECISE_DP + const int64_t bit4Mask = imm & 0x10 ? UINT64_MAX : 0; + const int64_t bit5Mask = imm & 0x20 ? UINT64_MAX : 0; #endif -} - -// Computes pairwise add of each argument as single-precision, floating-point -// values a and b. -// https://msdn.microsoft.com/en-us/library/yd9wecaa.aspx -FORCE_INLINE __m128 _mm_hadd_ps(__m128 a, __m128 b) -{ -#if defined(__aarch64__) - return vreinterpretq_m128_f32( - vpaddq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); + // Conditional multiplication +#if !SSE2NEON_PRECISE_DP + __m128d mul = _mm_mul_pd(a, b); + const __m128d mulMask = + _mm_castsi128_pd(_mm_set_epi64x(bit5Mask, bit4Mask)); + __m128d tmp = _mm_and_pd(mul, mulMask); #else - float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a)); - float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a)); - float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b)); - float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b)); - return vreinterpretq_m128_f32( - vcombine_f32(vpadd_f32(a10, a32), vpadd_f32(b10, b32))); -#endif -} - -// Computes pairwise add of each argument as a 16-bit signed or unsigned integer -// values a and b. -FORCE_INLINE __m128i _mm_hadd_epi16(__m128i _a, __m128i _b) -{ - int16x8_t a = vreinterpretq_s16_m128i(_a); - int16x8_t b = vreinterpretq_s16_m128i(_b); #if defined(__aarch64__) - return vreinterpretq_m128i_s16(vpaddq_s16(a, b)); + double d0 = (imm & 0x10) ? vgetq_lane_f64(vreinterpretq_f64_m128d(a), 0) * + vgetq_lane_f64(vreinterpretq_f64_m128d(b), 0) + : 0; + double d1 = (imm & 0x20) ? vgetq_lane_f64(vreinterpretq_f64_m128d(a), 1) * + vgetq_lane_f64(vreinterpretq_f64_m128d(b), 1) + : 0; #else - return vreinterpretq_m128i_s16( - vcombine_s16(vpadd_s16(vget_low_s16(a), vget_high_s16(a)), - vpadd_s16(vget_low_s16(b), vget_high_s16(b)))); + double d0 = (imm & 0x10) ? ((double *) &a)[0] * ((double *) &b)[0] : 0; + double d1 = (imm & 0x20) ? ((double *) &a)[1] * ((double *) &b)[1] : 0; #endif -} - -// Horizontally subtract adjacent pairs of double-precision (64-bit) -// floating-point elements in a and b, and pack the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsub_pd -FORCE_INLINE __m128d _mm_hsub_pd(__m128d _a, __m128d _b) -{ + __m128d tmp = _mm_set_pd(d1, d0); +#endif + // Sum the products #if defined(__aarch64__) - return vreinterpretq_m128d_f64(vsubq_f64( - vuzp1q_f64(vreinterpretq_f64_m128d(_a), vreinterpretq_f64_m128d(_b)), - vuzp2q_f64(vreinterpretq_f64_m128d(_a), vreinterpretq_f64_m128d(_b)))); + double sum = vpaddd_f64(vreinterpretq_f64_m128d(tmp)); #else - double *da = (double *) &_a; - double *db = (double *) &_b; - double c[] = {da[0] - da[1], db[0] - db[1]}; - return vreinterpretq_m128d_u64(vld1q_u64((uint64_t *) c)); + double sum = *((double *) &tmp) + *(((double *) &tmp) + 1); #endif -} - -// Horizontally substract adjacent pairs of single-precision (32-bit) -// floating-point elements in a and b, and pack the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsub_ps -FORCE_INLINE __m128 _mm_hsub_ps(__m128 _a, __m128 _b) -{ -#if defined(__aarch64__) - return vreinterpretq_m128_f32(vsubq_f32( - vuzp1q_f32(vreinterpretq_f32_m128(_a), vreinterpretq_f32_m128(_b)), - vuzp2q_f32(vreinterpretq_f32_m128(_a), vreinterpretq_f32_m128(_b)))); -#else - float32x4x2_t c = - vuzpq_f32(vreinterpretq_f32_m128(_a), vreinterpretq_f32_m128(_b)); - return vreinterpretq_m128_f32(vsubq_f32(c.val[0], c.val[1])); -#endif -} - -// Horizontally add adjacent pairs of 16-bit integers in a and b, and pack the -// signed 16-bit results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadd_pi16 -FORCE_INLINE __m64 _mm_hadd_pi16(__m64 a, __m64 b) -{ - return vreinterpret_m64_s16( - vpadd_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b))); -} - -// Horizontally add adjacent pairs of 32-bit integers in a and b, and pack the -// signed 32-bit results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadd_pi32 -FORCE_INLINE __m64 _mm_hadd_pi32(__m64 a, __m64 b) -{ - return vreinterpret_m64_s32( - vpadd_s32(vreinterpret_s32_m64(a), vreinterpret_s32_m64(b))); -} - -// Computes pairwise difference of each argument as a 16-bit signed or unsigned -// integer values a and b. -FORCE_INLINE __m128i _mm_hsub_epi16(__m128i _a, __m128i _b) -{ - int32x4_t a = vreinterpretq_s32_m128i(_a); - int32x4_t b = vreinterpretq_s32_m128i(_b); - // Interleave using vshrn/vmovn - // [a0|a2|a4|a6|b0|b2|b4|b6] - // [a1|a3|a5|a7|b1|b3|b5|b7] - int16x8_t ab0246 = vcombine_s16(vmovn_s32(a), vmovn_s32(b)); - int16x8_t ab1357 = vcombine_s16(vshrn_n_s32(a, 16), vshrn_n_s32(b, 16)); - // Subtract - return vreinterpretq_m128i_s16(vsubq_s16(ab0246, ab1357)); -} - -// Computes saturated pairwise sub of each argument as a 16-bit signed -// integer values a and b. -FORCE_INLINE __m128i _mm_hadds_epi16(__m128i _a, __m128i _b) -{ -#if defined(__aarch64__) - int16x8_t a = vreinterpretq_s16_m128i(_a); - int16x8_t b = vreinterpretq_s16_m128i(_b); - return vreinterpretq_s64_s16( - vqaddq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b))); -#else - int32x4_t a = vreinterpretq_s32_m128i(_a); - int32x4_t b = vreinterpretq_s32_m128i(_b); - // Interleave using vshrn/vmovn - // [a0|a2|a4|a6|b0|b2|b4|b6] - // [a1|a3|a5|a7|b1|b3|b5|b7] - int16x8_t ab0246 = vcombine_s16(vmovn_s32(a), vmovn_s32(b)); - int16x8_t ab1357 = vcombine_s16(vshrn_n_s32(a, 16), vshrn_n_s32(b, 16)); - // Saturated add - return vreinterpretq_m128i_s16(vqaddq_s16(ab0246, ab1357)); -#endif -} - -// Computes saturated pairwise difference of each argument as a 16-bit signed -// integer values a and b. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsubs_epi16 -FORCE_INLINE __m128i _mm_hsubs_epi16(__m128i _a, __m128i _b) -{ -#if defined(__aarch64__) - int16x8_t a = vreinterpretq_s16_m128i(_a); - int16x8_t b = vreinterpretq_s16_m128i(_b); - return vreinterpretq_s64_s16( - vqsubq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b))); -#else - int32x4_t a = vreinterpretq_s32_m128i(_a); - int32x4_t b = vreinterpretq_s32_m128i(_b); - // Interleave using vshrn/vmovn - // [a0|a2|a4|a6|b0|b2|b4|b6] - // [a1|a3|a5|a7|b1|b3|b5|b7] - int16x8_t ab0246 = vcombine_s16(vmovn_s32(a), vmovn_s32(b)); - int16x8_t ab1357 = vcombine_s16(vshrn_n_s32(a, 16), vshrn_n_s32(b, 16)); - // Saturated subtract - return vreinterpretq_m128i_s16(vqsubq_s16(ab0246, ab1357)); -#endif -} - -// Computes pairwise add of each argument as a 32-bit signed or unsigned integer -// values a and b. -FORCE_INLINE __m128i _mm_hadd_epi32(__m128i _a, __m128i _b) -{ - int32x4_t a = vreinterpretq_s32_m128i(_a); - int32x4_t b = vreinterpretq_s32_m128i(_b); - return vreinterpretq_m128i_s32( - vcombine_s32(vpadd_s32(vget_low_s32(a), vget_high_s32(a)), - vpadd_s32(vget_low_s32(b), vget_high_s32(b)))); -} - -// Computes pairwise difference of each argument as a 32-bit signed or unsigned -// integer values a and b. -FORCE_INLINE __m128i _mm_hsub_epi32(__m128i _a, __m128i _b) -{ - int64x2_t a = vreinterpretq_s64_m128i(_a); - int64x2_t b = vreinterpretq_s64_m128i(_b); - // Interleave using vshrn/vmovn - // [a0|a2|b0|b2] - // [a1|a2|b1|b3] - int32x4_t ab02 = vcombine_s32(vmovn_s64(a), vmovn_s64(b)); - int32x4_t ab13 = vcombine_s32(vshrn_n_s64(a, 32), vshrn_n_s64(b, 32)); - // Subtract - return vreinterpretq_m128i_s32(vsubq_s32(ab02, ab13)); -} - -// Kahan summation for accurate summation of floating-point numbers. -// http://blog.zachbjornson.com/2019/08/11/fast-float-summation.html -FORCE_INLINE void _sse2neon_kadd_f32(float *sum, float *c, float y) -{ - y -= *c; - float t = *sum + y; - *c = (t - *sum) - y; - *sum = t; + // Conditionally store the sum + const __m128d sumMask = + _mm_castsi128_pd(_mm_set_epi64x(bit1Mask, bit0Mask)); + __m128d res = _mm_and_pd(_mm_set_pd1(sum), sumMask); + return res; } // Conditionally multiply the packed single-precision (32-bit) floating-point @@ -4794,1616 +7752,64 @@ FORCE_INLINE __m128 _mm_dp_ps(__m128 a, __m128 b, const int imm) return vreinterpretq_m128_f32(res); } -/* Compare operations */ - -// Compares for less than -// https://msdn.microsoft.com/en-us/library/vstudio/f330yhc8(v=vs.100).aspx -FORCE_INLINE __m128 _mm_cmplt_ps(__m128 a, __m128 b) -{ - return vreinterpretq_m128_u32( - vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); -} - -// Compares for less than -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/fy94wye7(v=vs.100) -FORCE_INLINE __m128 _mm_cmplt_ss(__m128 a, __m128 b) -{ - return _mm_move_ss(a, _mm_cmplt_ps(a, b)); -} - -// Compares for greater than. -// -// r0 := (a0 > b0) ? 0xffffffff : 0x0 -// r1 := (a1 > b1) ? 0xffffffff : 0x0 -// r2 := (a2 > b2) ? 0xffffffff : 0x0 -// r3 := (a3 > b3) ? 0xffffffff : 0x0 -// -// https://msdn.microsoft.com/en-us/library/vstudio/11dy102s(v=vs.100).aspx -FORCE_INLINE __m128 _mm_cmpgt_ps(__m128 a, __m128 b) -{ - return vreinterpretq_m128_u32( - vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); -} - -// Compares for greater than. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/1xyyyy9e(v=vs.100) -FORCE_INLINE __m128 _mm_cmpgt_ss(__m128 a, __m128 b) -{ - return _mm_move_ss(a, _mm_cmpgt_ps(a, b)); -} - -// Compares for greater than or equal. -// https://msdn.microsoft.com/en-us/library/vstudio/fs813y2t(v=vs.100).aspx -FORCE_INLINE __m128 _mm_cmpge_ps(__m128 a, __m128 b) -{ - return vreinterpretq_m128_u32( - vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); -} - -// Compares for greater than or equal. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/kesh3ddc(v=vs.100) -FORCE_INLINE __m128 _mm_cmpge_ss(__m128 a, __m128 b) -{ - return _mm_move_ss(a, _mm_cmpge_ps(a, b)); -} - -// Compares for less than or equal. -// -// r0 := (a0 <= b0) ? 0xffffffff : 0x0 -// r1 := (a1 <= b1) ? 0xffffffff : 0x0 -// r2 := (a2 <= b2) ? 0xffffffff : 0x0 -// r3 := (a3 <= b3) ? 0xffffffff : 0x0 -// -// https://msdn.microsoft.com/en-us/library/vstudio/1s75w83z(v=vs.100).aspx -FORCE_INLINE __m128 _mm_cmple_ps(__m128 a, __m128 b) -{ - return vreinterpretq_m128_u32( - vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); -} - -// Compares for less than or equal. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/a7x0hbhw(v=vs.100) -FORCE_INLINE __m128 _mm_cmple_ss(__m128 a, __m128 b) -{ - return _mm_move_ss(a, _mm_cmple_ps(a, b)); -} - -// Compares for equality. -// https://msdn.microsoft.com/en-us/library/vstudio/36aectz5(v=vs.100).aspx -FORCE_INLINE __m128 _mm_cmpeq_ps(__m128 a, __m128 b) -{ - return vreinterpretq_m128_u32( - vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); -} - -// Compares for equality. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/k423z28e(v=vs.100) -FORCE_INLINE __m128 _mm_cmpeq_ss(__m128 a, __m128 b) -{ - return _mm_move_ss(a, _mm_cmpeq_ps(a, b)); -} - -// Compares for inequality. -// https://msdn.microsoft.com/en-us/library/sf44thbx(v=vs.100).aspx -FORCE_INLINE __m128 _mm_cmpneq_ps(__m128 a, __m128 b) -{ - return vreinterpretq_m128_u32(vmvnq_u32( - vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)))); -} - -// Compares for inequality. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ekya8fh4(v=vs.100) -FORCE_INLINE __m128 _mm_cmpneq_ss(__m128 a, __m128 b) -{ - return _mm_move_ss(a, _mm_cmpneq_ps(a, b)); -} - -// Compares for not greater than or equal. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/wsexys62(v=vs.100) -FORCE_INLINE __m128 _mm_cmpnge_ps(__m128 a, __m128 b) -{ - return _mm_cmplt_ps(a, b); -} - -// Compares for not greater than or equal. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/fk2y80s8(v=vs.100) -FORCE_INLINE __m128 _mm_cmpnge_ss(__m128 a, __m128 b) -{ - return _mm_cmplt_ss(a, b); -} - -// Compares for not greater than. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/d0xh7w0s(v=vs.100) -FORCE_INLINE __m128 _mm_cmpngt_ps(__m128 a, __m128 b) -{ - return _mm_cmple_ps(a, b); -} - -// Compares for not greater than. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/z7x9ydwh(v=vs.100) -FORCE_INLINE __m128 _mm_cmpngt_ss(__m128 a, __m128 b) -{ - return _mm_cmple_ss(a, b); -} - -// Compares for not less than or equal. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/6a330kxw(v=vs.100) -FORCE_INLINE __m128 _mm_cmpnle_ps(__m128 a, __m128 b) -{ - return _mm_cmpgt_ps(a, b); -} - -// Compares for not less than or equal. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/z7x9ydwh(v=vs.100) -FORCE_INLINE __m128 _mm_cmpnle_ss(__m128 a, __m128 b) -{ - return _mm_cmpgt_ss(a, b); -} - -// Compares for not less than. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/4686bbdw(v=vs.100) -FORCE_INLINE __m128 _mm_cmpnlt_ps(__m128 a, __m128 b) -{ - return _mm_cmpge_ps(a, b); -} - -// Compares for not less than. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/56b9z2wf(v=vs.100) -FORCE_INLINE __m128 _mm_cmpnlt_ss(__m128 a, __m128 b) -{ - return _mm_cmpge_ss(a, b); -} - -// Compares the 16 signed or unsigned 8-bit integers in a and the 16 signed or -// unsigned 8-bit integers in b for equality. -// https://msdn.microsoft.com/en-us/library/windows/desktop/bz5xk21a(v=vs.90).aspx -FORCE_INLINE __m128i _mm_cmpeq_epi8(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_u8( - vceqq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); -} - -// Compare packed double-precision (64-bit) floating-point elements in a and b -// for equality, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpeq_pd -FORCE_INLINE __m128d _mm_cmpeq_pd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) - return vreinterpretq_m128d_u64( - vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); -#else - // (a == b) -> (a_lo == b_lo) && (a_hi == b_hi) - uint32x4_t cmp = - vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(b)); - uint32x4_t swapped = vrev64q_u32(cmp); - return vreinterpretq_m128d_u32(vandq_u32(cmp, swapped)); -#endif -} - -// Compare the lower double-precision (64-bit) floating-point elements in a and -// b for equality, store the result in the lower element of dst, and copy the -// upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpeq_sd -FORCE_INLINE __m128d _mm_cmpeq_sd(__m128d a, __m128d b) -{ - return _mm_move_sd(a, _mm_cmpeq_pd(a, b)); -} - -// Compare packed double-precision (64-bit) floating-point elements in a and b -// for greater-than-or-equal, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpge_pd -FORCE_INLINE __m128d _mm_cmpge_pd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) - return vreinterpretq_m128d_u64( - vcgeq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); -#else - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); - uint64_t d[2]; - d[0] = (*(double *) &a0) >= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); - d[1] = (*(double *) &a1) >= (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0); - - return vreinterpretq_m128d_u64(vld1q_u64(d)); -#endif -} - -// Compare the lower double-precision (64-bit) floating-point elements in a and -// b for greater-than-or-equal, store the result in the lower element of dst, -// and copy the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpge_sd -FORCE_INLINE __m128d _mm_cmpge_sd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) - return _mm_move_sd(a, _mm_cmpge_pd(a, b)); -#else - // expand "_mm_cmpge_pd()" to reduce unnecessary operations - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - uint64_t d[2]; - d[0] = (*(double *) &a0) >= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); - d[1] = a1; - - return vreinterpretq_m128d_u64(vld1q_u64(d)); -#endif -} - -// Compares the 8 signed or unsigned 16-bit integers in a and the 8 signed or -// unsigned 16-bit integers in b for equality. -// https://msdn.microsoft.com/en-us/library/2ay060te(v=vs.100).aspx -FORCE_INLINE __m128i _mm_cmpeq_epi16(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_u16( - vceqq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); -} - -// Compare packed 32-bit integers in a and b for equality, and store the results -// in dst -FORCE_INLINE __m128i _mm_cmpeq_epi32(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_u32( - vceqq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); -} - -// Compare packed 64-bit integers in a and b for equality, and store the results -// in dst -FORCE_INLINE __m128i _mm_cmpeq_epi64(__m128i a, __m128i b) -{ -#if defined(__aarch64__) - return vreinterpretq_m128i_u64( - vceqq_u64(vreinterpretq_u64_m128i(a), vreinterpretq_u64_m128i(b))); -#else - // ARMv7 lacks vceqq_u64 - // (a == b) -> (a_lo == b_lo) && (a_hi == b_hi) - uint32x4_t cmp = - vceqq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b)); - uint32x4_t swapped = vrev64q_u32(cmp); - return vreinterpretq_m128i_u32(vandq_u32(cmp, swapped)); -#endif -} - -// Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers -// in b for lesser than. -// https://msdn.microsoft.com/en-us/library/windows/desktop/9s46csht(v=vs.90).aspx -FORCE_INLINE __m128i _mm_cmplt_epi8(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_u8( - vcltq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); -} - -// Compare packed double-precision (64-bit) floating-point elements in a and b -// for less-than, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmplt_pd -FORCE_INLINE __m128d _mm_cmplt_pd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) - return vreinterpretq_m128d_u64( - vcltq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); -#else - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); - uint64_t d[2]; - d[0] = (*(double *) &a0) < (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); - d[1] = (*(double *) &a1) < (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0); - - return vreinterpretq_m128d_u64(vld1q_u64(d)); -#endif -} - -// Compare the lower double-precision (64-bit) floating-point elements in a and -// b for less-than, store the result in the lower element of dst, and copy the -// upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmplt_sd -FORCE_INLINE __m128d _mm_cmplt_sd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) - return _mm_move_sd(a, _mm_cmplt_pd(a, b)); -#else - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - uint64_t d[2]; - d[0] = (*(double *) &a0) < (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); - d[1] = a1; - - return vreinterpretq_m128d_u64(vld1q_u64(d)); -#endif -} - -// Compare packed double-precision (64-bit) floating-point elements in a and b -// for not-equal, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpneq_pd -FORCE_INLINE __m128d _mm_cmpneq_pd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) - return vreinterpretq_m128d_s32(vmvnq_s32(vreinterpretq_s32_u64( - vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))))); -#else - // (a == b) -> (a_lo == b_lo) && (a_hi == b_hi) - uint32x4_t cmp = - vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(b)); - uint32x4_t swapped = vrev64q_u32(cmp); - return vreinterpretq_m128d_u32(vmvnq_u32(vandq_u32(cmp, swapped))); -#endif -} - -// Compare the lower double-precision (64-bit) floating-point elements in a and -// b for not-equal, store the result in the lower element of dst, and copy the -// upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpneq_sd -FORCE_INLINE __m128d _mm_cmpneq_sd(__m128d a, __m128d b) -{ - return _mm_move_sd(a, _mm_cmpneq_pd(a, b)); -} - -// Compare packed double-precision (64-bit) floating-point elements in a and b -// for not-greater-than-or-equal, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnge_pd -FORCE_INLINE __m128d _mm_cmpnge_pd(__m128d a, __m128d b) -{ - return _mm_cmplt_pd(a, b); -} - -// Compare the lower double-precision (64-bit) floating-point elements in a and -// b for not-greater-than-or-equal, store the result in the lower element of -// dst, and copy the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnge_sd -FORCE_INLINE __m128d _mm_cmpnge_sd(__m128d a, __m128d b) -{ - return _mm_cmplt_sd(a, b); -} - -// Compare packed double-precision (64-bit) floating-point elements in a and b -// for not-greater-than, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_cmpngt_pd -#define _mm_cmpngt_pd(a, b) _mm_cmple_pd(a, b) - -// Compare the lower double-precision (64-bit) floating-point element in a and b -// for equality, and return the boolean result (0 or 1). -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comieq_sd -FORCE_INLINE int _mm_comieq_sd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) - return !!vgetq_lane_u64(vceqq_f64(a, b), 0); -#else - uint32x4_t a_not_nan = - vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(a)); - uint32x4_t b_not_nan = - vceqq_u32(vreinterpretq_u32_m128d(b), vreinterpretq_u32_m128d(b)); - uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan); - uint32x4_t a_eq_b = - vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(b)); - uint64x2_t and_results = vandq_u64(vreinterpretq_u64_u32(a_and_b_not_nan), - vreinterpretq_u64_u32(a_eq_b)); - return !!vgetq_lane_u64(and_results, 0); -#endif -} - -// Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers -// in b for greater than. -// -// r0 := (a0 > b0) ? 0xff : 0x0 -// r1 := (a1 > b1) ? 0xff : 0x0 -// ... -// r15 := (a15 > b15) ? 0xff : 0x0 -// -// https://msdn.microsoft.com/zh-tw/library/wf45zt2b(v=vs.100).aspx -FORCE_INLINE __m128i _mm_cmpgt_epi8(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_u8( - vcgtq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); -} - -// Compare packed double-precision (64-bit) floating-point elements in a and b -// for greater-than, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpgt_pd -FORCE_INLINE __m128d _mm_cmpgt_pd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) - return vreinterpretq_m128d_u64( - vcgtq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); -#else - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); - uint64_t d[2]; - d[0] = (*(double *) &a0) > (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); - d[1] = (*(double *) &a1) > (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0); - - return vreinterpretq_m128d_u64(vld1q_u64(d)); -#endif -} - -// Compare the lower double-precision (64-bit) floating-point elements in a and -// b for greater-than, store the result in the lower element of dst, and copy -// the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpgt_sd -FORCE_INLINE __m128d _mm_cmpgt_sd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) - return _mm_move_sd(a, _mm_cmpgt_pd(a, b)); -#else - // expand "_mm_cmpge_pd()" to reduce unnecessary operations - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - uint64_t d[2]; - d[0] = (*(double *) &a0) > (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); - d[1] = a1; - - return vreinterpretq_m128d_u64(vld1q_u64(d)); -#endif -} - -// Compare packed double-precision (64-bit) floating-point elements in a and b -// for less-than-or-equal, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmple_pd -FORCE_INLINE __m128d _mm_cmple_pd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) - return vreinterpretq_m128d_u64( - vcleq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); -#else - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b)); - uint64_t d[2]; - d[0] = (*(double *) &a0) <= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); - d[1] = (*(double *) &a1) <= (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0); - - return vreinterpretq_m128d_u64(vld1q_u64(d)); -#endif -} - -// Compare the lower double-precision (64-bit) floating-point elements in a and -// b for less-than-or-equal, store the result in the lower element of dst, and -// copy the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmple_sd -FORCE_INLINE __m128d _mm_cmple_sd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) - return _mm_move_sd(a, _mm_cmple_pd(a, b)); -#else - // expand "_mm_cmpge_pd()" to reduce unnecessary operations - uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a)); - uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a)); - uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b)); - uint64_t d[2]; - d[0] = (*(double *) &a0) <= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0); - d[1] = a1; - - return vreinterpretq_m128d_u64(vld1q_u64(d)); -#endif -} - -// Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers -// in b for less than. -// -// r0 := (a0 < b0) ? 0xffff : 0x0 -// r1 := (a1 < b1) ? 0xffff : 0x0 -// ... -// r7 := (a7 < b7) ? 0xffff : 0x0 -// -// https://technet.microsoft.com/en-us/library/t863edb2(v=vs.100).aspx -FORCE_INLINE __m128i _mm_cmplt_epi16(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_u16( - vcltq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); -} - -// Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers -// in b for greater than. -// -// r0 := (a0 > b0) ? 0xffff : 0x0 -// r1 := (a1 > b1) ? 0xffff : 0x0 -// ... -// r7 := (a7 > b7) ? 0xffff : 0x0 -// -// https://technet.microsoft.com/en-us/library/xd43yfsa(v=vs.100).aspx -FORCE_INLINE __m128i _mm_cmpgt_epi16(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_u16( - vcgtq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); -} - - -// Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers -// in b for less than. -// https://msdn.microsoft.com/en-us/library/vstudio/4ak0bf5d(v=vs.100).aspx -FORCE_INLINE __m128i _mm_cmplt_epi32(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_u32( - vcltq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); -} - -// Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers -// in b for greater than. -// https://msdn.microsoft.com/en-us/library/vstudio/1s9f2z0y(v=vs.100).aspx -FORCE_INLINE __m128i _mm_cmpgt_epi32(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_u32( - vcgtq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); -} - -// Compares the 2 signed 64-bit integers in a and the 2 signed 64-bit integers -// in b for greater than. -FORCE_INLINE __m128i _mm_cmpgt_epi64(__m128i a, __m128i b) -{ -#if defined(__aarch64__) - return vreinterpretq_m128i_u64( - vcgtq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b))); -#else - return vreinterpretq_m128i_s64(vshrq_n_s64( - vqsubq_s64(vreinterpretq_s64_m128i(b), vreinterpretq_s64_m128i(a)), - 63)); -#endif -} - -// Compares the four 32-bit floats in a and b to check if any values are NaN. -// Ordered compare between each value returns true for "orderable" and false for -// "not orderable" (NaN). -// https://msdn.microsoft.com/en-us/library/vstudio/0h9w00fx(v=vs.100).aspx see -// also: -// http://stackoverflow.com/questions/8627331/what-does-ordered-unordered-comparison-mean -// http://stackoverflow.com/questions/29349621/neon-isnanval-intrinsics -FORCE_INLINE __m128 _mm_cmpord_ps(__m128 a, __m128 b) -{ - // Note: NEON does not have ordered compare builtin - // Need to compare a eq a and b eq b to check for NaN - // Do AND of results to get final - uint32x4_t ceqaa = - vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)); - uint32x4_t ceqbb = - vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b)); - return vreinterpretq_m128_u32(vandq_u32(ceqaa, ceqbb)); -} - -// Compares for ordered. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/343t62da(v=vs.100) -FORCE_INLINE __m128 _mm_cmpord_ss(__m128 a, __m128 b) -{ - return _mm_move_ss(a, _mm_cmpord_ps(a, b)); -} - -// Compares for unordered. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/khy6fk1t(v=vs.100) -FORCE_INLINE __m128 _mm_cmpunord_ps(__m128 a, __m128 b) -{ - uint32x4_t f32a = - vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)); - uint32x4_t f32b = - vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b)); - return vreinterpretq_m128_u32(vmvnq_u32(vandq_u32(f32a, f32b))); -} - -// Compares for unordered. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/2as2387b(v=vs.100) -FORCE_INLINE __m128 _mm_cmpunord_ss(__m128 a, __m128 b) -{ - return _mm_move_ss(a, _mm_cmpunord_ps(a, b)); -} - -// Compares the lower single-precision floating point scalar values of a and b -// using a less than operation. : -// https://msdn.microsoft.com/en-us/library/2kwe606b(v=vs.90).aspx Important -// note!! The documentation on MSDN is incorrect! If either of the values is a -// NAN the docs say you will get a one, but in fact, it will return a zero!! -FORCE_INLINE int _mm_comilt_ss(__m128 a, __m128 b) -{ - uint32x4_t a_not_nan = - vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)); - uint32x4_t b_not_nan = - vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b)); - uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan); - uint32x4_t a_lt_b = - vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)); - return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_lt_b), 0) != 0) ? 1 : 0; -} - -// Compares the lower single-precision floating point scalar values of a and b -// using a greater than operation. : -// https://msdn.microsoft.com/en-us/library/b0738e0t(v=vs.100).aspx -FORCE_INLINE int _mm_comigt_ss(__m128 a, __m128 b) -{ - // return vgetq_lane_u32(vcgtq_f32(vreinterpretq_f32_m128(a), - // vreinterpretq_f32_m128(b)), 0); - uint32x4_t a_not_nan = - vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)); - uint32x4_t b_not_nan = - vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b)); - uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan); - uint32x4_t a_gt_b = - vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)); - return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_gt_b), 0) != 0) ? 1 : 0; -} - -// Compares the lower single-precision floating point scalar values of a and b -// using a less than or equal operation. : -// https://msdn.microsoft.com/en-us/library/1w4t7c57(v=vs.90).aspx -FORCE_INLINE int _mm_comile_ss(__m128 a, __m128 b) -{ - // return vgetq_lane_u32(vcleq_f32(vreinterpretq_f32_m128(a), - // vreinterpretq_f32_m128(b)), 0); - uint32x4_t a_not_nan = - vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)); - uint32x4_t b_not_nan = - vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b)); - uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan); - uint32x4_t a_le_b = - vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)); - return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_le_b), 0) != 0) ? 1 : 0; -} - -// Compares the lower single-precision floating point scalar values of a and b -// using a greater than or equal operation. : -// https://msdn.microsoft.com/en-us/library/8t80des6(v=vs.100).aspx -FORCE_INLINE int _mm_comige_ss(__m128 a, __m128 b) -{ - // return vgetq_lane_u32(vcgeq_f32(vreinterpretq_f32_m128(a), - // vreinterpretq_f32_m128(b)), 0); - uint32x4_t a_not_nan = - vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)); - uint32x4_t b_not_nan = - vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b)); - uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan); - uint32x4_t a_ge_b = - vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)); - return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_ge_b), 0) != 0) ? 1 : 0; -} - -// Compares the lower single-precision floating point scalar values of a and b -// using an equality operation. : -// https://msdn.microsoft.com/en-us/library/93yx2h2b(v=vs.100).aspx -FORCE_INLINE int _mm_comieq_ss(__m128 a, __m128 b) -{ - // return vgetq_lane_u32(vceqq_f32(vreinterpretq_f32_m128(a), - // vreinterpretq_f32_m128(b)), 0); - uint32x4_t a_not_nan = - vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)); - uint32x4_t b_not_nan = - vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b)); - uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan); - uint32x4_t a_eq_b = - vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)); - return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_eq_b), 0) != 0) ? 1 : 0; -} - -// Compares the lower single-precision floating point scalar values of a and b -// using an inequality operation. : -// https://msdn.microsoft.com/en-us/library/bafh5e0a(v=vs.90).aspx -FORCE_INLINE int _mm_comineq_ss(__m128 a, __m128 b) -{ - // return !vgetq_lane_u32(vceqq_f32(vreinterpretq_f32_m128(a), - // vreinterpretq_f32_m128(b)), 0); - uint32x4_t a_not_nan = - vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)); - uint32x4_t b_not_nan = - vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b)); - uint32x4_t a_or_b_nan = vmvnq_u32(vandq_u32(a_not_nan, b_not_nan)); - uint32x4_t a_neq_b = vmvnq_u32( - vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); - return (vgetq_lane_u32(vorrq_u32(a_or_b_nan, a_neq_b), 0) != 0) ? 1 : 0; -} - -// according to the documentation, these intrinsics behave the same as the -// non-'u' versions. We'll just alias them here. -#define _mm_ucomieq_ss _mm_comieq_ss -#define _mm_ucomige_ss _mm_comige_ss -#define _mm_ucomigt_ss _mm_comigt_ss -#define _mm_ucomile_ss _mm_comile_ss -#define _mm_ucomilt_ss _mm_comilt_ss -#define _mm_ucomineq_ss _mm_comineq_ss - -/* Conversions */ - -// Convert packed signed 32-bit integers in b to packed single-precision -// (32-bit) floating-point elements, store the results in the lower 2 elements -// of dst, and copy the upper 2 packed elements from a to the upper elements of -// dst. -// -// dst[31:0] := Convert_Int32_To_FP32(b[31:0]) -// dst[63:32] := Convert_Int32_To_FP32(b[63:32]) -// dst[95:64] := a[95:64] -// dst[127:96] := a[127:96] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_pi2ps -FORCE_INLINE __m128 _mm_cvt_pi2ps(__m128 a, __m64 b) -{ - return vreinterpretq_m128_f32( - vcombine_f32(vcvt_f32_s32(vreinterpret_s32_m64(b)), - vget_high_f32(vreinterpretq_f32_m128(a)))); -} - -// Convert the signed 32-bit integer b to a single-precision (32-bit) -// floating-point element, store the result in the lower element of dst, and -// copy the upper 3 packed elements from a to the upper elements of dst. -// -// dst[31:0] := Convert_Int32_To_FP32(b[31:0]) -// dst[127:32] := a[127:32] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_si2ss -FORCE_INLINE __m128 _mm_cvt_si2ss(__m128 a, int b) -{ - return vreinterpretq_m128_f32( - vsetq_lane_f32((float) b, vreinterpretq_f32_m128(a), 0)); -} - -// Convert the signed 32-bit integer b to a single-precision (32-bit) -// floating-point element, store the result in the lower element of dst, and -// copy the upper 3 packed elements from a to the upper elements of dst. -// -// dst[31:0] := Convert_Int32_To_FP32(b[31:0]) -// dst[127:32] := a[127:32] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi32_ss -#define _mm_cvtsi32_ss(a, b) _mm_cvt_si2ss(a, b) - -// Convert the signed 64-bit integer b to a single-precision (32-bit) -// floating-point element, store the result in the lower element of dst, and -// copy the upper 3 packed elements from a to the upper elements of dst. -// -// dst[31:0] := Convert_Int64_To_FP32(b[63:0]) -// dst[127:32] := a[127:32] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi64_ss -FORCE_INLINE __m128 _mm_cvtsi64_ss(__m128 a, int64_t b) -{ - return vreinterpretq_m128_f32( - vsetq_lane_f32((float) b, vreinterpretq_f32_m128(a), 0)); -} - -// Convert the lower single-precision (32-bit) floating-point element in a to a -// 32-bit integer, and store the result in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_ss2si -FORCE_INLINE int _mm_cvt_ss2si(__m128 a) -{ -#if defined(__aarch64__) - return vgetq_lane_s32(vcvtnq_s32_f32(vreinterpretq_f32_m128(a)), 0); -#else - float32_t data = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); - float32_t diff = data - floor(data); - if (diff > 0.5) - return (int32_t) ceil(data); - if (unlikely(diff == 0.5)) { - int32_t f = (int32_t) floor(data); - int32_t c = (int32_t) ceil(data); - return c & 1 ? f : c; - } - return (int32_t) floor(data); -#endif -} - -// Convert packed 16-bit integers in a to packed single-precision (32-bit) -// floating-point elements, and store the results in dst. -// -// FOR j := 0 to 3 -// i := j*16 -// m := j*32 -// dst[m+31:m] := Convert_Int16_To_FP32(a[i+15:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi16_ps -FORCE_INLINE __m128 _mm_cvtpi16_ps(__m64 a) -{ - return vreinterpretq_m128_f32( - vcvtq_f32_s32(vmovl_s16(vreinterpret_s16_m64(a)))); -} - -// Convert packed 32-bit integers in b to packed single-precision (32-bit) -// floating-point elements, store the results in the lower 2 elements of dst, -// and copy the upper 2 packed elements from a to the upper elements of dst. -// -// dst[31:0] := Convert_Int32_To_FP32(b[31:0]) -// dst[63:32] := Convert_Int32_To_FP32(b[63:32]) -// dst[95:64] := a[95:64] -// dst[127:96] := a[127:96] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi32_ps -FORCE_INLINE __m128 _mm_cvtpi32_ps(__m128 a, __m64 b) -{ - return vreinterpretq_m128_f32( - vcombine_f32(vcvt_f32_s32(vreinterpret_s32_m64(b)), - vget_high_f32(vreinterpretq_f32_m128(a)))); -} - -// Convert packed signed 32-bit integers in a to packed single-precision -// (32-bit) floating-point elements, store the results in the lower 2 elements -// of dst, then covert the packed signed 32-bit integers in b to -// single-precision (32-bit) floating-point element, and store the results in -// the upper 2 elements of dst. -// -// dst[31:0] := Convert_Int32_To_FP32(a[31:0]) -// dst[63:32] := Convert_Int32_To_FP32(a[63:32]) -// dst[95:64] := Convert_Int32_To_FP32(b[31:0]) -// dst[127:96] := Convert_Int32_To_FP32(b[63:32]) -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi32x2_ps -FORCE_INLINE __m128 _mm_cvtpi32x2_ps(__m64 a, __m64 b) -{ - return vreinterpretq_m128_f32(vcvtq_f32_s32( - vcombine_s32(vreinterpret_s32_m64(a), vreinterpret_s32_m64(b)))); -} - -// Convert the lower packed 8-bit integers in a to packed single-precision -// (32-bit) floating-point elements, and store the results in dst. -// -// FOR j := 0 to 3 -// i := j*8 -// m := j*32 -// dst[m+31:m] := Convert_Int8_To_FP32(a[i+7:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi8_ps -FORCE_INLINE __m128 _mm_cvtpi8_ps(__m64 a) -{ - return vreinterpretq_m128_f32(vcvtq_f32_s32( - vmovl_s16(vget_low_s16(vmovl_s8(vreinterpret_s8_m64(a)))))); -} - -// Convert packed unsigned 16-bit integers in a to packed single-precision -// (32-bit) floating-point elements, and store the results in dst. -// -// FOR j := 0 to 3 -// i := j*16 -// m := j*32 -// dst[m+31:m] := Convert_UInt16_To_FP32(a[i+15:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpu16_ps -FORCE_INLINE __m128 _mm_cvtpu16_ps(__m64 a) -{ - return vreinterpretq_m128_f32( - vcvtq_f32_u32(vmovl_u16(vreinterpret_u16_m64(a)))); -} - -// Convert the lower packed unsigned 8-bit integers in a to packed -// single-precision (32-bit) floating-point elements, and store the results in -// dst. -// -// FOR j := 0 to 3 -// i := j*8 -// m := j*32 -// dst[m+31:m] := Convert_UInt8_To_FP32(a[i+7:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpu8_ps -FORCE_INLINE __m128 _mm_cvtpu8_ps(__m64 a) -{ - return vreinterpretq_m128_f32(vcvtq_f32_u32( - vmovl_u16(vget_low_u16(vmovl_u8(vreinterpret_u8_m64(a)))))); -} - -// Converts the four single-precision, floating-point values of a to signed -// 32-bit integer values using truncate. -// https://msdn.microsoft.com/en-us/library/vstudio/1h005y6x(v=vs.100).aspx -FORCE_INLINE __m128i _mm_cvttps_epi32(__m128 a) -{ - return vreinterpretq_m128i_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a))); -} - -// Convert the lower double-precision (64-bit) floating-point element in a to a -// 64-bit integer with truncation, and store the result in dst. -// -// dst[63:0] := Convert_FP64_To_Int64_Truncate(a[63:0]) -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttsd_si64 -FORCE_INLINE int64_t _mm_cvttsd_si64(__m128d a) -{ -#if defined(__aarch64__) - return vgetq_lane_s64(vcvtq_s64_f64(vreinterpretq_f64_m128d(a)), 0); -#else - double ret = *((double *) &a); - return (int64_t) ret; -#endif -} - -// Convert the lower double-precision (64-bit) floating-point element in a to a -// 64-bit integer with truncation, and store the result in dst. -// -// dst[63:0] := Convert_FP64_To_Int64_Truncate(a[63:0]) -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttsd_si64x -#define _mm_cvttsd_si64x(a) _mm_cvttsd_si64(a) - -// Converts the four signed 32-bit integer values of a to single-precision, -// floating-point values -// https://msdn.microsoft.com/en-us/library/vstudio/36bwxcx5(v=vs.100).aspx -FORCE_INLINE __m128 _mm_cvtepi32_ps(__m128i a) -{ - return vreinterpretq_m128_f32(vcvtq_f32_s32(vreinterpretq_s32_m128i(a))); -} - -// Convert packed signed 32-bit integers in a to packed double-precision -// (64-bit) floating-point elements, and store the results in dst. -// -// FOR j := 0 to 1 -// i := j*32 -// m := j*64 -// dst[m+63:m] := Convert_Int32_To_FP64(a[i+31:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtepi32_pd -FORCE_INLINE __m128d _mm_cvtepi32_pd(__m128i a) -{ -#if defined(__aarch64__) - return vreinterpretq_m128d_f64( - vcvtq_f64_s64(vmovl_s32(vget_low_s32(vreinterpretq_s32_m128i(a))))); -#else - double a0 = (double) vgetq_lane_s32(vreinterpretq_s32_m128i(a), 0); - double a1 = (double) vgetq_lane_s32(vreinterpretq_s32_m128i(a), 1); - return _mm_set_pd(a1, a0); -#endif -} - -// Convert packed signed 32-bit integers in a to packed double-precision -// (64-bit) floating-point elements, and store the results in dst. -// -// FOR j := 0 to 1 -// i := j*32 -// m := j*64 -// dst[m+63:m] := Convert_Int32_To_FP64(a[i+31:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi32_pd -FORCE_INLINE __m128d _mm_cvtpi32_pd(__m64 a) -{ -#if defined(__aarch64__) - return vreinterpretq_m128d_f64( - vcvtq_f64_s64(vmovl_s32(vreinterpret_s32_m64(a)))); -#else - double a0 = (double) vget_lane_s32(vreinterpret_s32_m64(a), 0); - double a1 = (double) vget_lane_s32(vreinterpret_s32_m64(a), 1); - return _mm_set_pd(a1, a0); -#endif -} - -// Converts the four unsigned 8-bit integers in the lower 16 bits to four -// unsigned 32-bit integers. -FORCE_INLINE __m128i _mm_cvtepu8_epi16(__m128i a) -{ - uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx xxxx DCBA */ - uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16)); /* 0x0x 0x0x 0D0C 0B0A */ - return vreinterpretq_m128i_u16(u16x8); -} - -// Converts the four unsigned 8-bit integers in the lower 32 bits to four -// unsigned 32-bit integers. -// https://msdn.microsoft.com/en-us/library/bb531467%28v=vs.100%29.aspx -FORCE_INLINE __m128i _mm_cvtepu8_epi32(__m128i a) -{ - uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx xxxx DCBA */ - uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16)); /* 0x0x 0x0x 0D0C 0B0A */ - uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000D 000C 000B 000A */ - return vreinterpretq_m128i_u32(u32x4); -} - -// Converts the two unsigned 8-bit integers in the lower 16 bits to two -// unsigned 64-bit integers. -FORCE_INLINE __m128i _mm_cvtepu8_epi64(__m128i a) -{ - uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx xxxx xxBA */ - uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16)); /* 0x0x 0x0x 0x0x 0B0A */ - uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000x 000x 000B 000A */ - uint64x2_t u64x2 = vmovl_u32(vget_low_u32(u32x4)); /* 0000 000B 0000 000A */ - return vreinterpretq_m128i_u64(u64x2); -} - -// Converts the four unsigned 8-bit integers in the lower 16 bits to four -// unsigned 32-bit integers. -FORCE_INLINE __m128i _mm_cvtepi8_epi16(__m128i a) -{ - int8x16_t s8x16 = vreinterpretq_s8_m128i(a); /* xxxx xxxx xxxx DCBA */ - int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16)); /* 0x0x 0x0x 0D0C 0B0A */ - return vreinterpretq_m128i_s16(s16x8); -} - -// Converts the four unsigned 8-bit integers in the lower 32 bits to four -// unsigned 32-bit integers. -FORCE_INLINE __m128i _mm_cvtepi8_epi32(__m128i a) -{ - int8x16_t s8x16 = vreinterpretq_s8_m128i(a); /* xxxx xxxx xxxx DCBA */ - int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16)); /* 0x0x 0x0x 0D0C 0B0A */ - int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000D 000C 000B 000A */ - return vreinterpretq_m128i_s32(s32x4); -} - -// Converts the two signed 8-bit integers in the lower 32 bits to four -// signed 64-bit integers. -FORCE_INLINE __m128i _mm_cvtepi8_epi64(__m128i a) -{ - int8x16_t s8x16 = vreinterpretq_s8_m128i(a); /* xxxx xxxx xxxx xxBA */ - int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16)); /* 0x0x 0x0x 0x0x 0B0A */ - int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000x 000x 000B 000A */ - int64x2_t s64x2 = vmovl_s32(vget_low_s32(s32x4)); /* 0000 000B 0000 000A */ - return vreinterpretq_m128i_s64(s64x2); -} - -// Converts the four signed 16-bit integers in the lower 64 bits to four signed -// 32-bit integers. -FORCE_INLINE __m128i _mm_cvtepi16_epi32(__m128i a) -{ - return vreinterpretq_m128i_s32( - vmovl_s16(vget_low_s16(vreinterpretq_s16_m128i(a)))); -} - -// Converts the two signed 16-bit integers in the lower 32 bits two signed -// 32-bit integers. -FORCE_INLINE __m128i _mm_cvtepi16_epi64(__m128i a) -{ - int16x8_t s16x8 = vreinterpretq_s16_m128i(a); /* xxxx xxxx xxxx 0B0A */ - int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000x 000x 000B 000A */ - int64x2_t s64x2 = vmovl_s32(vget_low_s32(s32x4)); /* 0000 000B 0000 000A */ - return vreinterpretq_m128i_s64(s64x2); -} - -// Converts the four unsigned 16-bit integers in the lower 64 bits to four -// unsigned 32-bit integers. -FORCE_INLINE __m128i _mm_cvtepu16_epi32(__m128i a) -{ - return vreinterpretq_m128i_u32( - vmovl_u16(vget_low_u16(vreinterpretq_u16_m128i(a)))); -} - -// Converts the two unsigned 16-bit integers in the lower 32 bits to two -// unsigned 64-bit integers. -FORCE_INLINE __m128i _mm_cvtepu16_epi64(__m128i a) -{ - uint16x8_t u16x8 = vreinterpretq_u16_m128i(a); /* xxxx xxxx xxxx 0B0A */ - uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000x 000x 000B 000A */ - uint64x2_t u64x2 = vmovl_u32(vget_low_u32(u32x4)); /* 0000 000B 0000 000A */ - return vreinterpretq_m128i_u64(u64x2); -} - -// Converts the two unsigned 32-bit integers in the lower 64 bits to two -// unsigned 64-bit integers. -FORCE_INLINE __m128i _mm_cvtepu32_epi64(__m128i a) -{ - return vreinterpretq_m128i_u64( - vmovl_u32(vget_low_u32(vreinterpretq_u32_m128i(a)))); -} - -// Converts the two signed 32-bit integers in the lower 64 bits to two signed -// 64-bit integers. -FORCE_INLINE __m128i _mm_cvtepi32_epi64(__m128i a) -{ - return vreinterpretq_m128i_s64( - vmovl_s32(vget_low_s32(vreinterpretq_s32_m128i(a)))); -} - -// Converts the four single-precision, floating-point values of a to signed -// 32-bit integer values. -// -// r0 := (int) a0 -// r1 := (int) a1 -// r2 := (int) a2 -// r3 := (int) a3 -// -// https://msdn.microsoft.com/en-us/library/vstudio/xdc42k5e(v=vs.100).aspx -// *NOTE*. The default rounding mode on SSE is 'round to even', which ARMv7-A -// does not support! It is supported on ARMv8-A however. -FORCE_INLINE __m128i _mm_cvtps_epi32(__m128 a) -{ -#if defined(__aarch64__) - return vreinterpretq_m128i_s32(vcvtnq_s32_f32(a)); -#else - uint32x4_t signmask = vdupq_n_u32(0x80000000); - float32x4_t half = vbslq_f32(signmask, vreinterpretq_f32_m128(a), - vdupq_n_f32(0.5f)); /* +/- 0.5 */ - int32x4_t r_normal = vcvtq_s32_f32(vaddq_f32( - vreinterpretq_f32_m128(a), half)); /* round to integer: [a + 0.5]*/ - int32x4_t r_trunc = - vcvtq_s32_f32(vreinterpretq_f32_m128(a)); /* truncate to integer: [a] */ - int32x4_t plusone = vreinterpretq_s32_u32(vshrq_n_u32( - vreinterpretq_u32_s32(vnegq_s32(r_trunc)), 31)); /* 1 or 0 */ - int32x4_t r_even = vbicq_s32(vaddq_s32(r_trunc, plusone), - vdupq_n_s32(1)); /* ([a] + {0,1}) & ~1 */ - float32x4_t delta = vsubq_f32( - vreinterpretq_f32_m128(a), - vcvtq_f32_s32(r_trunc)); /* compute delta: delta = (a - [a]) */ - uint32x4_t is_delta_half = vceqq_f32(delta, half); /* delta == +/- 0.5 */ - return vreinterpretq_m128i_s32(vbslq_s32(is_delta_half, r_even, r_normal)); -#endif -} - -// Convert packed single-precision (32-bit) floating-point elements in a to -// packed 16-bit integers, and store the results in dst. Note: this intrinsic -// will generate 0x7FFF, rather than 0x8000, for input values between 0x7FFF and -// 0x7FFFFFFF. -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_pi16 -FORCE_INLINE __m64 _mm_cvtps_pi16(__m128 a) -{ - return vreinterpret_m64_s16( - vmovn_s32(vreinterpretq_s32_m128i(_mm_cvtps_epi32(a)))); -} - -// Copy the lower 32-bit integer in a to dst. -// -// dst[31:0] := a[31:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si32 -FORCE_INLINE int _mm_cvtsi128_si32(__m128i a) -{ - return vgetq_lane_s32(vreinterpretq_s32_m128i(a), 0); -} - -// Copy the lower 64-bit integer in a to dst. -// -// dst[63:0] := a[63:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si64 -FORCE_INLINE int64_t _mm_cvtsi128_si64(__m128i a) -{ - return vgetq_lane_s64(vreinterpretq_s64_m128i(a), 0); -} - -// Copy the lower 64-bit integer in a to dst. -// -// dst[63:0] := a[63:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si64x -#define _mm_cvtsi128_si64x(a) _mm_cvtsi128_si64(a) - -// Moves 32-bit integer a to the least significant 32 bits of an __m128 object, -// zero extending the upper bits. -// -// r0 := a -// r1 := 0x0 -// r2 := 0x0 -// r3 := 0x0 -// -// https://msdn.microsoft.com/en-us/library/ct3539ha%28v=vs.90%29.aspx -FORCE_INLINE __m128i _mm_cvtsi32_si128(int a) -{ - return vreinterpretq_m128i_s32(vsetq_lane_s32(a, vdupq_n_s32(0), 0)); -} - -// Moves 64-bit integer a to the least significant 64 bits of an __m128 object, -// zero extending the upper bits. -// -// r0 := a -// r1 := 0x0 -FORCE_INLINE __m128i _mm_cvtsi64_si128(int64_t a) -{ - return vreinterpretq_m128i_s64(vsetq_lane_s64(a, vdupq_n_s64(0), 0)); -} - -// Cast vector of type __m128 to type __m128d. This intrinsic is only used for -// compilation and does not generate any instructions, thus it has zero latency. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castps_pd -FORCE_INLINE __m128d _mm_castps_pd(__m128 a) -{ - return vreinterpretq_m128d_s32(vreinterpretq_s32_m128(a)); -} - -// Applies a type cast to reinterpret four 32-bit floating point values passed -// in as a 128-bit parameter as packed 32-bit integers. -// https://msdn.microsoft.com/en-us/library/bb514099.aspx -FORCE_INLINE __m128i _mm_castps_si128(__m128 a) -{ - return vreinterpretq_m128i_s32(vreinterpretq_s32_m128(a)); -} - -// Cast vector of type __m128i to type __m128d. This intrinsic is only used for -// compilation and does not generate any instructions, thus it has zero latency. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castsi128_pd -FORCE_INLINE __m128d _mm_castsi128_pd(__m128i a) -{ -#if defined(__aarch64__) - return vreinterpretq_m128d_f64(vreinterpretq_f64_m128i(a)); -#else - return vreinterpretq_m128d_f32(vreinterpretq_f32_m128i(a)); -#endif -} - -// Applies a type cast to reinterpret four 32-bit integers passed in as a -// 128-bit parameter as packed 32-bit floating point values. -// https://msdn.microsoft.com/en-us/library/bb514029.aspx -FORCE_INLINE __m128 _mm_castsi128_ps(__m128i a) -{ - return vreinterpretq_m128_s32(vreinterpretq_s32_m128i(a)); -} - -// Loads 128-bit value. : -// https://msdn.microsoft.com/en-us/library/atzzad1h(v=vs.80).aspx -FORCE_INLINE __m128i _mm_load_si128(const __m128i *p) -{ - return vreinterpretq_m128i_s32(vld1q_s32((const int32_t *) p)); -} - -// Load a double-precision (64-bit) floating-point element from memory into both -// elements of dst. -// -// dst[63:0] := MEM[mem_addr+63:mem_addr] -// dst[127:64] := MEM[mem_addr+63:mem_addr] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load1_pd -FORCE_INLINE __m128d _mm_load1_pd(const double *p) -{ -#if defined(__aarch64__) - return vreinterpretq_m128d_f64(vld1q_dup_f64(p)); -#else - return vreinterpretq_m128d_s64(vdupq_n_s64(*(const int64_t *) p)); -#endif -} - -// Load a double-precision (64-bit) floating-point element from memory into both -// elements of dst. -// -// dst[63:0] := MEM[mem_addr+63:mem_addr] -// dst[127:64] := MEM[mem_addr+63:mem_addr] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_pd1 -#define _mm_load_pd1 _mm_load1_pd - -// Load a double-precision (64-bit) floating-point element from memory into both -// elements of dst. -// -// dst[63:0] := MEM[mem_addr+63:mem_addr] -// dst[127:64] := MEM[mem_addr+63:mem_addr] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loaddup_pd -#define _mm_loaddup_pd _mm_load1_pd - -// Load a double-precision (64-bit) floating-point element from memory into the -// upper element of dst, and copy the lower element from a to dst. mem_addr does -// not need to be aligned on any particular boundary. -// -// dst[63:0] := a[63:0] -// dst[127:64] := MEM[mem_addr+63:mem_addr] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadh_pd -FORCE_INLINE __m128d _mm_loadh_pd(__m128d a, const double *p) -{ -#if defined(__aarch64__) - return vreinterpretq_m128d_f64( - vcombine_f64(vget_low_f64(vreinterpretq_f64_m128d(a)), vld1_f64(p))); -#else - return vreinterpretq_m128d_f32(vcombine_f32( - vget_low_f32(vreinterpretq_f32_m128d(a)), vld1_f32((const float *) p))); -#endif -} - -// Load a double-precision (64-bit) floating-point element from memory into both -// elements of dst. -// -// dst[63:0] := MEM[mem_addr+63:mem_addr] -// dst[127:64] := MEM[mem_addr+63:mem_addr] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_pd1 -#define _mm_load_pd1 _mm_load1_pd - -// Load a double-precision (64-bit) floating-point element from memory into both -// elements of dst. -// -// dst[63:0] := MEM[mem_addr+63:mem_addr] -// dst[127:64] := MEM[mem_addr+63:mem_addr] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loaddup_pd -#define _mm_loaddup_pd _mm_load1_pd - -// Loads 128-bit value. : -// https://msdn.microsoft.com/zh-cn/library/f4k12ae8(v=vs.90).aspx -FORCE_INLINE __m128i _mm_loadu_si128(const __m128i *p) -{ - return vreinterpretq_m128i_s32(vld1q_s32((const int32_t *) p)); -} - -// Load unaligned 32-bit integer from memory into the first element of dst. -// -// dst[31:0] := MEM[mem_addr+31:mem_addr] -// dst[MAX:32] := 0 -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_si32 -FORCE_INLINE __m128i _mm_loadu_si32(const void *p) -{ - return vreinterpretq_m128i_s32( - vsetq_lane_s32(*(const int32_t *) p, vdupq_n_s32(0), 0)); -} - -// Convert packed double-precision (64-bit) floating-point elements in a to -// packed single-precision (32-bit) floating-point elements, and store the -// results in dst. -// -// FOR j := 0 to 1 -// i := 32*j -// k := 64*j -// dst[i+31:i] := Convert_FP64_To_FP32(a[k+64:k]) -// ENDFOR -// dst[127:64] := 0 -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpd_ps -FORCE_INLINE __m128 _mm_cvtpd_ps(__m128d a) -{ -#if defined(__aarch64__) - float32x2_t tmp = vcvt_f32_f64(vreinterpretq_f64_m128d(a)); - return vreinterpretq_m128_f32(vcombine_f32(tmp, vdup_n_f32(0))); -#else - float a0 = (float) ((double *) &a)[0]; - float a1 = (float) ((double *) &a)[1]; - return _mm_set_ps(0, 0, a1, a0); -#endif -} - -// Copy the lower double-precision (64-bit) floating-point element of a to dst. -// -// dst[63:0] := a[63:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_f64 -FORCE_INLINE double _mm_cvtsd_f64(__m128d a) -{ -#if defined(__aarch64__) - return (double) vgetq_lane_f64(vreinterpretq_f64_m128d(a), 0); -#else - return ((double *) &a)[0]; -#endif -} - -// Convert packed single-precision (32-bit) floating-point elements in a to -// packed double-precision (64-bit) floating-point elements, and store the -// results in dst. -// -// FOR j := 0 to 1 -// i := 64*j -// k := 32*j -// dst[i+63:i] := Convert_FP32_To_FP64(a[k+31:k]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_pd -FORCE_INLINE __m128d _mm_cvtps_pd(__m128 a) -{ -#if defined(__aarch64__) - return vreinterpretq_m128d_f64( - vcvt_f64_f32(vget_low_f32(vreinterpretq_f32_m128(a)))); -#else - double a0 = (double) vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); - double a1 = (double) vgetq_lane_f32(vreinterpretq_f32_m128(a), 1); - return _mm_set_pd(a1, a0); -#endif -} - -// Cast vector of type __m128d to type __m128i. This intrinsic is only used for -// compilation and does not generate any instructions, thus it has zero latency. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castpd_si128 -FORCE_INLINE __m128i _mm_castpd_si128(__m128d a) -{ - return vreinterpretq_m128i_s64(vreinterpretq_s64_m128d(a)); -} - -// Cast vector of type __m128d to type __m128. This intrinsic is only used for -// compilation and does not generate any instructions, thus it has zero latency. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castpd_ps -FORCE_INLINE __m128 _mm_castpd_ps(__m128d a) -{ - return vreinterpretq_m128_s64(vreinterpretq_s64_m128d(a)); -} - -// Blend packed single-precision (32-bit) floating-point elements from a and b -// using mask, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_blendv_ps -FORCE_INLINE __m128 _mm_blendv_ps(__m128 _a, __m128 _b, __m128 _mask) -{ - // Use a signed shift right to create a mask with the sign bit - uint32x4_t mask = - vreinterpretq_u32_s32(vshrq_n_s32(vreinterpretq_s32_m128(_mask), 31)); - float32x4_t a = vreinterpretq_f32_m128(_a); - float32x4_t b = vreinterpretq_f32_m128(_b); - return vreinterpretq_m128_f32(vbslq_f32(mask, b, a)); -} - -// Blend packed single-precision (32-bit) floating-point elements from a and b -// using mask, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_blend_ps -FORCE_INLINE __m128 _mm_blend_ps(__m128 _a, __m128 _b, const char imm8) -{ - const uint32_t ALIGN_STRUCT(16) - data[4] = {((imm8) & (1 << 0)) ? UINT32_MAX : 0, - ((imm8) & (1 << 1)) ? UINT32_MAX : 0, - ((imm8) & (1 << 2)) ? UINT32_MAX : 0, - ((imm8) & (1 << 3)) ? UINT32_MAX : 0}; - uint32x4_t mask = vld1q_u32(data); - float32x4_t a = vreinterpretq_f32_m128(_a); - float32x4_t b = vreinterpretq_f32_m128(_b); - return vreinterpretq_m128_f32(vbslq_f32(mask, b, a)); -} - -// Blend packed double-precision (64-bit) floating-point elements from a and b -// using mask, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_blendv_pd -FORCE_INLINE __m128d _mm_blendv_pd(__m128d _a, __m128d _b, __m128d _mask) -{ - uint64x2_t mask = - vreinterpretq_u64_s64(vshrq_n_s64(vreinterpretq_s64_m128d(_mask), 63)); -#if defined(__aarch64__) - float64x2_t a = vreinterpretq_f64_m128d(_a); - float64x2_t b = vreinterpretq_f64_m128d(_b); - return vreinterpretq_m128d_f64(vbslq_f64(mask, b, a)); -#else - uint64x2_t a = vreinterpretq_u64_m128d(_a); - uint64x2_t b = vreinterpretq_u64_m128d(_b); - return vreinterpretq_m128d_u64(vbslq_u64(mask, b, a)); -#endif -} - -typedef struct { - uint16_t res0; - uint8_t res1 : 6; - uint8_t bit22 : 1; - uint8_t bit23 : 1; - uint8_t res2; -#if defined(__aarch64__) - uint32_t res3; -#endif -} fpcr_bitfield; - -// Macro: Set the rounding mode bits of the MXCSR control and status register to -// the value in unsigned 32-bit integer a. The rounding mode may contain any of -// the following flags: _MM_ROUND_NEAREST, _MM_ROUND_DOWN, _MM_ROUND_UP, -// _MM_ROUND_TOWARD_ZERO -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_MM_SET_ROUNDING_MODE -FORCE_INLINE void _MM_SET_ROUNDING_MODE(int rounding) -{ - union { - fpcr_bitfield field; -#if defined(__aarch64__) - uint64_t value; -#else - uint32_t value; -#endif - } r; - -#if defined(__aarch64__) - asm volatile("mrs %0, FPCR" : "=r"(r.value)); /* read */ -#else - asm volatile("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ -#endif - - switch (rounding) { - case _MM_ROUND_TOWARD_ZERO: - r.field.bit22 = 1; - r.field.bit23 = 1; - break; - case _MM_ROUND_DOWN: - r.field.bit22 = 0; - r.field.bit23 = 1; - break; - case _MM_ROUND_UP: - r.field.bit22 = 1; - r.field.bit23 = 0; - break; - default: //_MM_ROUND_NEAREST - r.field.bit22 = 0; - r.field.bit23 = 0; - } - -#if defined(__aarch64__) - asm volatile("msr FPCR, %0" ::"r"(r)); /* write */ -#else - asm volatile("vmsr FPSCR, %0" ::"r"(r)); /* write */ -#endif -} - -FORCE_INLINE void _mm_setcsr(unsigned int a) -{ - _MM_SET_ROUNDING_MODE(a); -} - -// Round the packed single-precision (32-bit) floating-point elements in a using -// the rounding parameter, and store the results as packed single-precision +// Extracts the selected signed or unsigned 32-bit integer from a and zero +// extends. +// FORCE_INLINE int _mm_extract_epi32(__m128i a, __constrange(0,4) int imm) +#define _mm_extract_epi32(a, imm) \ + vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm)) + +// Extracts the selected signed or unsigned 64-bit integer from a and zero +// extends. +// FORCE_INLINE __int64 _mm_extract_epi64(__m128i a, __constrange(0,2) int imm) +#define _mm_extract_epi64(a, imm) \ + vgetq_lane_s64(vreinterpretq_s64_m128i(a), (imm)) + +// Extracts the selected signed or unsigned 8-bit integer from a and zero +// extends. +// FORCE_INLINE int _mm_extract_epi8(__m128i a, __constrange(0,16) int imm) +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_extract_epi8 +#define _mm_extract_epi8(a, imm) vgetq_lane_u8(vreinterpretq_u8_m128i(a), (imm)) + +// Extracts the selected single-precision (32-bit) floating-point from a. +// FORCE_INLINE int _mm_extract_ps(__m128 a, __constrange(0,4) int imm) +#define _mm_extract_ps(a, imm) vgetq_lane_s32(vreinterpretq_s32_m128(a), (imm)) + +// Round the packed double-precision (64-bit) floating-point elements in a down +// to an integer value, and store the results as packed double-precision // floating-point elements in dst. -// software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_round_ps -FORCE_INLINE __m128 _mm_round_ps(__m128 a, int rounding) +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_floor_pd +FORCE_INLINE __m128d _mm_floor_pd(__m128d a) { #if defined(__aarch64__) - switch (rounding) { - case (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC): - return vreinterpretq_m128_f32(vrndnq_f32(vreinterpretq_f32_m128(a))); - case (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC): - return vreinterpretq_m128_f32(vrndmq_f32(vreinterpretq_f32_m128(a))); - case (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC): - return vreinterpretq_m128_f32(vrndpq_f32(vreinterpretq_f32_m128(a))); - case (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC): - return vreinterpretq_m128_f32(vrndq_f32(vreinterpretq_f32_m128(a))); - default: //_MM_FROUND_CUR_DIRECTION - return vreinterpretq_m128_f32(vrndiq_f32(vreinterpretq_f32_m128(a))); - } + return vreinterpretq_m128d_f64(vrndmq_f64(vreinterpretq_f64_m128d(a))); #else - float *v_float = (float *) &a; - __m128 zero, neg_inf, pos_inf; - - switch (rounding) { - case (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC): - return _mm_cvtepi32_ps(_mm_cvtps_epi32(a)); - case (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC): - return (__m128){floorf(v_float[0]), floorf(v_float[1]), - floorf(v_float[2]), floorf(v_float[3])}; - case (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC): - return (__m128){ceilf(v_float[0]), ceilf(v_float[1]), ceilf(v_float[2]), - ceilf(v_float[3])}; - case (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC): - zero = _mm_set_ps(0.0f, 0.0f, 0.0f, 0.0f); - neg_inf = _mm_set_ps(floorf(v_float[0]), floorf(v_float[1]), - floorf(v_float[2]), floorf(v_float[3])); - pos_inf = _mm_set_ps(ceilf(v_float[0]), ceilf(v_float[1]), - ceilf(v_float[2]), ceilf(v_float[3])); - return _mm_blendv_ps(pos_inf, neg_inf, _mm_cmple_ps(a, zero)); - default: //_MM_FROUND_CUR_DIRECTION - return (__m128){roundf(v_float[0]), roundf(v_float[1]), - roundf(v_float[2]), roundf(v_float[3])}; - } + double *f = (double *) &a; + return _mm_set_pd(floor(f[1]), floor(f[0])); #endif } -// Convert packed single-precision (32-bit) floating-point elements in a to -// packed 32-bit integers, and store the results in dst. -// -// FOR j := 0 to 1 -// i := 32*j -// dst[i+31:i] := Convert_FP32_To_Int32(a[i+31:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_ps2pi -FORCE_INLINE __m64 _mm_cvt_ps2pi(__m128 a) -{ -#if defined(__aarch64__) - return vreinterpret_m64_s32( - vget_low_s32(vcvtnq_s32_f32(vreinterpretq_f32_m128(a)))); -#else - return vreinterpret_m64_s32( - vcvt_s32_f32(vget_low_f32(vreinterpretq_f32_m128( - _mm_round_ps(a, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC))))); -#endif -} - -// Convert packed single-precision (32-bit) floating-point elements in a to -// packed 32-bit integers, and store the results in dst. -// -// FOR j := 0 to 1 -// i := 32*j -// dst[i+31:i] := Convert_FP32_To_Int32(a[i+31:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_pi32 -#define _mm_cvtps_pi32(a) _mm_cvt_ps2pi(a) - -// Round the packed single-precision (32-bit) floating-point elements in a up to -// an integer value, and store the results as packed single-precision -// floating-point elements in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ceil_ps -FORCE_INLINE __m128 _mm_ceil_ps(__m128 a) -{ - return _mm_round_ps(a, _MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC); -} - -// Round the lower single-precision (32-bit) floating-point element in b up to -// an integer value, store the result as a single-precision floating-point -// element in the lower element of dst, and copy the upper 3 packed elements -// from a to the upper elements of dst. -// -// dst[31:0] := CEIL(b[31:0]) -// dst[127:32] := a[127:32] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ceil_ss -FORCE_INLINE __m128 _mm_ceil_ss(__m128 a, __m128 b) -{ - return _mm_move_ss( - a, _mm_round_ps(b, _MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC)); -} - // Round the packed single-precision (32-bit) floating-point elements in a down // to an integer value, and store the results as packed single-precision // floating-point elements in dst. // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_floor_ps FORCE_INLINE __m128 _mm_floor_ps(__m128 a) { - return _mm_round_ps(a, _MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC); +#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING) + return vreinterpretq_m128_f32(vrndmq_f32(vreinterpretq_f32_m128(a))); +#else + float *f = (float *) &a; + return _mm_set_ps(floorf(f[3]), floorf(f[2]), floorf(f[1]), floorf(f[0])); +#endif +} + +// Round the lower double-precision (64-bit) floating-point element in b down to +// an integer value, store the result as a double-precision floating-point +// element in the lower element of dst, and copy the upper element from a to the +// upper element of dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_floor_sd +FORCE_INLINE __m128d _mm_floor_sd(__m128d a, __m128d b) +{ + return _mm_move_sd(a, _mm_floor_pd(b)); } // Round the lower single-precision (32-bit) floating-point element in b down to @@ -6417,372 +7823,147 @@ FORCE_INLINE __m128 _mm_floor_ps(__m128 a) // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_floor_ss FORCE_INLINE __m128 _mm_floor_ss(__m128 a, __m128 b) { - return _mm_move_ss( - a, _mm_round_ps(b, _MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC)); + return _mm_move_ss(a, _mm_floor_ps(b)); } -// Load 128-bits of integer data from unaligned memory into dst. This intrinsic -// may perform better than _mm_loadu_si128 when the data crosses a cache line -// boundary. -// -// dst[127:0] := MEM[mem_addr+127:mem_addr] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_lddqu_si128 -#define _mm_lddqu_si128 _mm_loadu_si128 +// Inserts the least significant 32 bits of b into the selected 32-bit integer +// of a. +// FORCE_INLINE __m128i _mm_insert_epi32(__m128i a, int b, +// __constrange(0,4) int imm) +#define _mm_insert_epi32(a, b, imm) \ + __extension__({ \ + vreinterpretq_m128i_s32( \ + vsetq_lane_s32((b), vreinterpretq_s32_m128i(a), (imm))); \ + }) -/* Miscellaneous Operations */ +// Inserts the least significant 64 bits of b into the selected 64-bit integer +// of a. +// FORCE_INLINE __m128i _mm_insert_epi64(__m128i a, __int64 b, +// __constrange(0,2) int imm) +#define _mm_insert_epi64(a, b, imm) \ + __extension__({ \ + vreinterpretq_m128i_s64( \ + vsetq_lane_s64((b), vreinterpretq_s64_m128i(a), (imm))); \ + }) -// Shifts the 8 signed 16-bit integers in a right by count bits while shifting -// in the sign bit. +// Inserts the least significant 8 bits of b into the selected 8-bit integer +// of a. +// FORCE_INLINE __m128i _mm_insert_epi8(__m128i a, int b, +// __constrange(0,16) int imm) +#define _mm_insert_epi8(a, b, imm) \ + __extension__({ \ + vreinterpretq_m128i_s8( \ + vsetq_lane_s8((b), vreinterpretq_s8_m128i(a), (imm))); \ + }) + +// Copy a to tmp, then insert a single-precision (32-bit) floating-point +// element from b into tmp using the control in imm8. Store tmp to dst using +// the mask in imm8 (elements are zeroed out when the corresponding bit is set). +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=insert_ps +#define _mm_insert_ps(a, b, imm8) \ + __extension__({ \ + float32x4_t tmp1 = \ + vsetq_lane_f32(vgetq_lane_f32(b, (imm8 >> 6) & 0x3), \ + vreinterpretq_f32_m128(a), 0); \ + float32x4_t tmp2 = \ + vsetq_lane_f32(vgetq_lane_f32(tmp1, 0), vreinterpretq_f32_m128(a), \ + ((imm8 >> 4) & 0x3)); \ + const uint32_t data[4] = {((imm8) & (1 << 0)) ? UINT32_MAX : 0, \ + ((imm8) & (1 << 1)) ? UINT32_MAX : 0, \ + ((imm8) & (1 << 2)) ? UINT32_MAX : 0, \ + ((imm8) & (1 << 3)) ? UINT32_MAX : 0}; \ + uint32x4_t mask = vld1q_u32(data); \ + float32x4_t all_zeros = vdupq_n_f32(0); \ + \ + vreinterpretq_m128_f32( \ + vbslq_f32(mask, all_zeros, vreinterpretq_f32_m128(tmp2))); \ + }) + +// epi versions of min/max +// Computes the pariwise maximums of the four signed 32-bit integer values of a +// and b. // -// r0 := a0 >> count -// r1 := a1 >> count -// ... -// r7 := a7 >> count +// A 128-bit parameter that can be defined with the following equations: +// r0 := (a0 > b0) ? a0 : b0 +// r1 := (a1 > b1) ? a1 : b1 +// r2 := (a2 > b2) ? a2 : b2 +// r3 := (a3 > b3) ? a3 : b3 // -// https://msdn.microsoft.com/en-us/library/3c9997dk(v%3dvs.90).aspx -FORCE_INLINE __m128i _mm_sra_epi16(__m128i a, __m128i count) +// https://msdn.microsoft.com/en-us/library/vstudio/bb514055(v=vs.100).aspx +FORCE_INLINE __m128i _mm_max_epi32(__m128i a, __m128i b) { - int64_t c = (int64_t) vget_low_s64((int64x2_t) count); - if (unlikely(c > 15)) - return _mm_cmplt_epi16(a, _mm_setzero_si128()); - return vreinterpretq_m128i_s16(vshlq_s16((int16x8_t) a, vdupq_n_s16(-c))); + return vreinterpretq_m128i_s32( + vmaxq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); } -// Shifts the 4 signed 32-bit integers in a right by count bits while shifting -// in the sign bit. -// -// r0 := a0 >> count -// r1 := a1 >> count -// r2 := a2 >> count -// r3 := a3 >> count -// -// https://msdn.microsoft.com/en-us/library/ce40009e(v%3dvs.100).aspx -FORCE_INLINE __m128i _mm_sra_epi32(__m128i a, __m128i count) -{ - int64_t c = (int64_t) vget_low_s64((int64x2_t) count); - if (unlikely(c > 31)) - return _mm_cmplt_epi32(a, _mm_setzero_si128()); - return vreinterpretq_m128i_s32(vshlq_s32((int32x4_t) a, vdupq_n_s32(-c))); -} - -// Packs the 16 signed 16-bit integers from a and b into 8-bit integers and -// saturates. -// https://msdn.microsoft.com/en-us/library/k4y4f7w5%28v=vs.90%29.aspx -FORCE_INLINE __m128i _mm_packs_epi16(__m128i a, __m128i b) +// Compare packed signed 8-bit integers in a and b, and store packed maximum +// values in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epi8 +FORCE_INLINE __m128i _mm_max_epi8(__m128i a, __m128i b) { return vreinterpretq_m128i_s8( - vcombine_s8(vqmovn_s16(vreinterpretq_s16_m128i(a)), - vqmovn_s16(vreinterpretq_s16_m128i(b)))); + vmaxq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); } -// Packs the 16 signed 16 - bit integers from a and b into 8 - bit unsigned -// integers and saturates. -// -// r0 := UnsignedSaturate(a0) -// r1 := UnsignedSaturate(a1) -// ... -// r7 := UnsignedSaturate(a7) -// r8 := UnsignedSaturate(b0) -// r9 := UnsignedSaturate(b1) -// ... -// r15 := UnsignedSaturate(b7) -// -// https://msdn.microsoft.com/en-us/library/07ad1wx4(v=vs.100).aspx -FORCE_INLINE __m128i _mm_packus_epi16(const __m128i a, const __m128i b) -{ - return vreinterpretq_m128i_u8( - vcombine_u8(vqmovun_s16(vreinterpretq_s16_m128i(a)), - vqmovun_s16(vreinterpretq_s16_m128i(b)))); -} - -// Packs the 8 signed 32-bit integers from a and b into signed 16-bit integers -// and saturates. -// -// r0 := SignedSaturate(a0) -// r1 := SignedSaturate(a1) -// r2 := SignedSaturate(a2) -// r3 := SignedSaturate(a3) -// r4 := SignedSaturate(b0) -// r5 := SignedSaturate(b1) -// r6 := SignedSaturate(b2) -// r7 := SignedSaturate(b3) -// -// https://msdn.microsoft.com/en-us/library/393t56f9%28v=vs.90%29.aspx -FORCE_INLINE __m128i _mm_packs_epi32(__m128i a, __m128i b) -{ - return vreinterpretq_m128i_s16( - vcombine_s16(vqmovn_s32(vreinterpretq_s32_m128i(a)), - vqmovn_s32(vreinterpretq_s32_m128i(b)))); -} - -// Packs the 8 unsigned 32-bit integers from a and b into unsigned 16-bit -// integers and saturates. -// -// r0 := UnsignedSaturate(a0) -// r1 := UnsignedSaturate(a1) -// r2 := UnsignedSaturate(a2) -// r3 := UnsignedSaturate(a3) -// r4 := UnsignedSaturate(b0) -// r5 := UnsignedSaturate(b1) -// r6 := UnsignedSaturate(b2) -// r7 := UnsignedSaturate(b3) -FORCE_INLINE __m128i _mm_packus_epi32(__m128i a, __m128i b) +// Compare packed unsigned 16-bit integers in a and b, and store packed maximum +// values in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epu16 +FORCE_INLINE __m128i _mm_max_epu16(__m128i a, __m128i b) { return vreinterpretq_m128i_u16( - vcombine_u16(vqmovun_s32(vreinterpretq_s32_m128i(a)), - vqmovun_s32(vreinterpretq_s32_m128i(b)))); + vmaxq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b))); } -// Interleaves the lower 8 signed or unsigned 8-bit integers in a with the lower -// 8 signed or unsigned 8-bit integers in b. -// -// r0 := a0 -// r1 := b0 -// r2 := a1 -// r3 := b1 -// ... -// r14 := a7 -// r15 := b7 -// -// https://msdn.microsoft.com/en-us/library/xf7k860c%28v=vs.90%29.aspx -FORCE_INLINE __m128i _mm_unpacklo_epi8(__m128i a, __m128i b) +// Compare packed unsigned 32-bit integers in a and b, and store packed maximum +// values in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epu32 +FORCE_INLINE __m128i _mm_max_epu32(__m128i a, __m128i b) { -#if defined(__aarch64__) - return vreinterpretq_m128i_s8( - vzip1q_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); -#else - int8x8_t a1 = vreinterpret_s8_s16(vget_low_s16(vreinterpretq_s16_m128i(a))); - int8x8_t b1 = vreinterpret_s8_s16(vget_low_s16(vreinterpretq_s16_m128i(b))); - int8x8x2_t result = vzip_s8(a1, b1); - return vreinterpretq_m128i_s8(vcombine_s8(result.val[0], result.val[1])); -#endif + return vreinterpretq_m128i_u32( + vmaxq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b))); } -// Interleaves the lower 4 signed or unsigned 16-bit integers in a with the -// lower 4 signed or unsigned 16-bit integers in b. +// Computes the pariwise minima of the four signed 32-bit integer values of a +// and b. // -// r0 := a0 -// r1 := b0 -// r2 := a1 -// r3 := b1 -// r4 := a2 -// r5 := b2 -// r6 := a3 -// r7 := b3 +// A 128-bit parameter that can be defined with the following equations: +// r0 := (a0 < b0) ? a0 : b0 +// r1 := (a1 < b1) ? a1 : b1 +// r2 := (a2 < b2) ? a2 : b2 +// r3 := (a3 < b3) ? a3 : b3 // -// https://msdn.microsoft.com/en-us/library/btxb17bw%28v=vs.90%29.aspx -FORCE_INLINE __m128i _mm_unpacklo_epi16(__m128i a, __m128i b) +// https://msdn.microsoft.com/en-us/library/vstudio/bb531476(v=vs.100).aspx +FORCE_INLINE __m128i _mm_min_epi32(__m128i a, __m128i b) { -#if defined(__aarch64__) - return vreinterpretq_m128i_s16( - vzip1q_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); -#else - int16x4_t a1 = vget_low_s16(vreinterpretq_s16_m128i(a)); - int16x4_t b1 = vget_low_s16(vreinterpretq_s16_m128i(b)); - int16x4x2_t result = vzip_s16(a1, b1); - return vreinterpretq_m128i_s16(vcombine_s16(result.val[0], result.val[1])); -#endif -} - -// Interleaves the lower 2 signed or unsigned 32 - bit integers in a with the -// lower 2 signed or unsigned 32 - bit integers in b. -// -// r0 := a0 -// r1 := b0 -// r2 := a1 -// r3 := b1 -// -// https://msdn.microsoft.com/en-us/library/x8atst9d(v=vs.100).aspx -FORCE_INLINE __m128i _mm_unpacklo_epi32(__m128i a, __m128i b) -{ -#if defined(__aarch64__) return vreinterpretq_m128i_s32( - vzip1q_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); -#else - int32x2_t a1 = vget_low_s32(vreinterpretq_s32_m128i(a)); - int32x2_t b1 = vget_low_s32(vreinterpretq_s32_m128i(b)); - int32x2x2_t result = vzip_s32(a1, b1); - return vreinterpretq_m128i_s32(vcombine_s32(result.val[0], result.val[1])); -#endif + vminq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); } -FORCE_INLINE __m128i _mm_unpacklo_epi64(__m128i a, __m128i b) +// Compare packed signed 8-bit integers in a and b, and store packed minimum +// values in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_epi8 +FORCE_INLINE __m128i _mm_min_epi8(__m128i a, __m128i b) { - int64x1_t a_l = vget_low_s64(vreinterpretq_s64_m128i(a)); - int64x1_t b_l = vget_low_s64(vreinterpretq_s64_m128i(b)); - return vreinterpretq_m128i_s64(vcombine_s64(a_l, b_l)); -} - -// Selects and interleaves the lower two single-precision, floating-point values -// from a and b. -// -// r0 := a0 -// r1 := b0 -// r2 := a1 -// r3 := b1 -// -// https://msdn.microsoft.com/en-us/library/25st103b%28v=vs.90%29.aspx -FORCE_INLINE __m128 _mm_unpacklo_ps(__m128 a, __m128 b) -{ -#if defined(__aarch64__) - return vreinterpretq_m128_f32( - vzip1q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); -#else - float32x2_t a1 = vget_low_f32(vreinterpretq_f32_m128(a)); - float32x2_t b1 = vget_low_f32(vreinterpretq_f32_m128(b)); - float32x2x2_t result = vzip_f32(a1, b1); - return vreinterpretq_m128_f32(vcombine_f32(result.val[0], result.val[1])); -#endif -} - -// Unpack and interleave double-precision (64-bit) floating-point elements from -// the low half of a and b, and store the results in dst. -// -// DEFINE INTERLEAVE_QWORDS(src1[127:0], src2[127:0]) { -// dst[63:0] := src1[63:0] -// dst[127:64] := src2[63:0] -// RETURN dst[127:0] -// } -// dst[127:0] := INTERLEAVE_QWORDS(a[127:0], b[127:0]) -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_unpacklo_pd -FORCE_INLINE __m128d _mm_unpacklo_pd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) - return vreinterpretq_m128d_f64( - vzip1q_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); -#else - return vreinterpretq_m128d_s64( - vcombine_s64(vget_low_s64(vreinterpretq_s64_m128d(a)), - vget_low_s64(vreinterpretq_s64_m128d(b)))); -#endif -} - -// Unpack and interleave double-precision (64-bit) floating-point elements from -// the high half of a and b, and store the results in dst. -// -// DEFINE INTERLEAVE_HIGH_QWORDS(src1[127:0], src2[127:0]) { -// dst[63:0] := src1[127:64] -// dst[127:64] := src2[127:64] -// RETURN dst[127:0] -// } -// dst[127:0] := INTERLEAVE_HIGH_QWORDS(a[127:0], b[127:0]) -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_unpackhi_pd -FORCE_INLINE __m128d _mm_unpackhi_pd(__m128d a, __m128d b) -{ -#if defined(__aarch64__) - return vreinterpretq_m128d_f64( - vzip2q_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b))); -#else - return vreinterpretq_m128d_s64( - vcombine_s64(vget_high_s64(vreinterpretq_s64_m128d(a)), - vget_high_s64(vreinterpretq_s64_m128d(b)))); -#endif -} - -// Selects and interleaves the upper two single-precision, floating-point values -// from a and b. -// -// r0 := a2 -// r1 := b2 -// r2 := a3 -// r3 := b3 -// -// https://msdn.microsoft.com/en-us/library/skccxx7d%28v=vs.90%29.aspx -FORCE_INLINE __m128 _mm_unpackhi_ps(__m128 a, __m128 b) -{ -#if defined(__aarch64__) - return vreinterpretq_m128_f32( - vzip2q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); -#else - float32x2_t a1 = vget_high_f32(vreinterpretq_f32_m128(a)); - float32x2_t b1 = vget_high_f32(vreinterpretq_f32_m128(b)); - float32x2x2_t result = vzip_f32(a1, b1); - return vreinterpretq_m128_f32(vcombine_f32(result.val[0], result.val[1])); -#endif -} - -// Interleaves the upper 8 signed or unsigned 8-bit integers in a with the upper -// 8 signed or unsigned 8-bit integers in b. -// -// r0 := a8 -// r1 := b8 -// r2 := a9 -// r3 := b9 -// ... -// r14 := a15 -// r15 := b15 -// -// https://msdn.microsoft.com/en-us/library/t5h7783k(v=vs.100).aspx -FORCE_INLINE __m128i _mm_unpackhi_epi8(__m128i a, __m128i b) -{ -#if defined(__aarch64__) return vreinterpretq_m128i_s8( - vzip2q_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); -#else - int8x8_t a1 = - vreinterpret_s8_s16(vget_high_s16(vreinterpretq_s16_m128i(a))); - int8x8_t b1 = - vreinterpret_s8_s16(vget_high_s16(vreinterpretq_s16_m128i(b))); - int8x8x2_t result = vzip_s8(a1, b1); - return vreinterpretq_m128i_s8(vcombine_s8(result.val[0], result.val[1])); -#endif + vminq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); } -// Interleaves the upper 4 signed or unsigned 16-bit integers in a with the -// upper 4 signed or unsigned 16-bit integers in b. -// -// r0 := a4 -// r1 := b4 -// r2 := a5 -// r3 := b5 -// r4 := a6 -// r5 := b6 -// r6 := a7 -// r7 := b7 -// -// https://msdn.microsoft.com/en-us/library/03196cz7(v=vs.100).aspx -FORCE_INLINE __m128i _mm_unpackhi_epi16(__m128i a, __m128i b) +// Compare packed unsigned 16-bit integers in a and b, and store packed minimum +// values in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_epu16 +FORCE_INLINE __m128i _mm_min_epu16(__m128i a, __m128i b) { -#if defined(__aarch64__) - return vreinterpretq_m128i_s16( - vzip2q_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); -#else - int16x4_t a1 = vget_high_s16(vreinterpretq_s16_m128i(a)); - int16x4_t b1 = vget_high_s16(vreinterpretq_s16_m128i(b)); - int16x4x2_t result = vzip_s16(a1, b1); - return vreinterpretq_m128i_s16(vcombine_s16(result.val[0], result.val[1])); -#endif + return vreinterpretq_m128i_u16( + vminq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b))); } -// Interleaves the upper 2 signed or unsigned 32-bit integers in a with the -// upper 2 signed or unsigned 32-bit integers in b. -// https://msdn.microsoft.com/en-us/library/65sa7cbs(v=vs.100).aspx -FORCE_INLINE __m128i _mm_unpackhi_epi32(__m128i a, __m128i b) +// Compare packed unsigned 32-bit integers in a and b, and store packed minimum +// values in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epu32 +FORCE_INLINE __m128i _mm_min_epu32(__m128i a, __m128i b) { -#if defined(__aarch64__) - return vreinterpretq_m128i_s32( - vzip2q_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); -#else - int32x2_t a1 = vget_high_s32(vreinterpretq_s32_m128i(a)); - int32x2_t b1 = vget_high_s32(vreinterpretq_s32_m128i(b)); - int32x2x2_t result = vzip_s32(a1, b1); - return vreinterpretq_m128i_s32(vcombine_s32(result.val[0], result.val[1])); -#endif -} - -// Interleaves the upper signed or unsigned 64-bit integer in a with the -// upper signed or unsigned 64-bit integer in b. -// -// r0 := a1 -// r1 := b1 -FORCE_INLINE __m128i _mm_unpackhi_epi64(__m128i a, __m128i b) -{ - int64x1_t a_h = vget_high_s64(vreinterpretq_s64_m128i(a)); - int64x1_t b_h = vget_high_s64(vreinterpretq_s64_m128i(b)); - return vreinterpretq_m128i_s64(vcombine_s64(a_h, b_h)); + return vreinterpretq_m128i_u32( + vminq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b))); } // Horizontally compute the minimum amongst the packed unsigned 16-bit integers @@ -6838,6 +8019,339 @@ FORCE_INLINE __m128i _mm_minpos_epu16(__m128i a) return dst; } +// Compute the sum of absolute differences (SADs) of quadruplets of unsigned +// 8-bit integers in a compared to those in b, and store the 16-bit results in +// dst. Eight SADs are performed using one quadruplet from b and eight +// quadruplets from a. One quadruplet is selected from b starting at on the +// offset specified in imm8. Eight quadruplets are formed from sequential 8-bit +// integers selected from a starting at the offset specified in imm8. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mpsadbw_epu8 +FORCE_INLINE __m128i _mm_mpsadbw_epu8(__m128i a, __m128i b, const int imm) +{ + uint8x16_t _a, _b; + + switch (imm & 0x4) { + case 0: + // do nothing + _a = vreinterpretq_u8_m128i(a); + break; + case 4: + _a = vreinterpretq_u8_u32(vextq_u32(vreinterpretq_u32_m128i(a), + vreinterpretq_u32_m128i(a), 1)); + break; + default: +#if defined(__GNUC__) || defined(__clang__) + __builtin_unreachable(); +#endif + break; + } + + switch (imm & 0x3) { + case 0: + _b = vreinterpretq_u8_u32( + vdupq_n_u32(vgetq_lane_u32(vreinterpretq_u32_m128i(b), 0))); + break; + case 1: + _b = vreinterpretq_u8_u32( + vdupq_n_u32(vgetq_lane_u32(vreinterpretq_u32_m128i(b), 1))); + break; + case 2: + _b = vreinterpretq_u8_u32( + vdupq_n_u32(vgetq_lane_u32(vreinterpretq_u32_m128i(b), 2))); + break; + case 3: + _b = vreinterpretq_u8_u32( + vdupq_n_u32(vgetq_lane_u32(vreinterpretq_u32_m128i(b), 3))); + break; + default: +#if defined(__GNUC__) || defined(__clang__) + __builtin_unreachable(); +#endif + break; + } + + int16x8_t c04, c15, c26, c37; + uint8x8_t low_b = vget_low_u8(_b); + c04 = vabsq_s16(vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(_a), low_b))); + _a = vextq_u8(_a, _a, 1); + c15 = vabsq_s16(vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(_a), low_b))); + _a = vextq_u8(_a, _a, 1); + c26 = vabsq_s16(vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(_a), low_b))); + _a = vextq_u8(_a, _a, 1); + c37 = vabsq_s16(vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(_a), low_b))); +#if defined(__aarch64__) + // |0|4|2|6| + c04 = vpaddq_s16(c04, c26); + // |1|5|3|7| + c15 = vpaddq_s16(c15, c37); + + int32x4_t trn1_c = + vtrn1q_s32(vreinterpretq_s32_s16(c04), vreinterpretq_s32_s16(c15)); + int32x4_t trn2_c = + vtrn2q_s32(vreinterpretq_s32_s16(c04), vreinterpretq_s32_s16(c15)); + return vreinterpretq_m128i_s16(vpaddq_s16(vreinterpretq_s16_s32(trn1_c), + vreinterpretq_s16_s32(trn2_c))); +#else + int16x4_t c01, c23, c45, c67; + c01 = vpadd_s16(vget_low_s16(c04), vget_low_s16(c15)); + c23 = vpadd_s16(vget_low_s16(c26), vget_low_s16(c37)); + c45 = vpadd_s16(vget_high_s16(c04), vget_high_s16(c15)); + c67 = vpadd_s16(vget_high_s16(c26), vget_high_s16(c37)); + + return vreinterpretq_m128i_s16( + vcombine_s16(vpadd_s16(c01, c23), vpadd_s16(c45, c67))); +#endif +} + +// Multiply the low signed 32-bit integers from each packed 64-bit element in +// a and b, and store the signed 64-bit results in dst. +// +// r0 := (int64_t)(int32_t)a0 * (int64_t)(int32_t)b0 +// r1 := (int64_t)(int32_t)a2 * (int64_t)(int32_t)b2 +FORCE_INLINE __m128i _mm_mul_epi32(__m128i a, __m128i b) +{ + // vmull_s32 upcasts instead of masking, so we downcast. + int32x2_t a_lo = vmovn_s64(vreinterpretq_s64_m128i(a)); + int32x2_t b_lo = vmovn_s64(vreinterpretq_s64_m128i(b)); + return vreinterpretq_m128i_s64(vmull_s32(a_lo, b_lo)); +} + +// Multiplies the 4 signed or unsigned 32-bit integers from a by the 4 signed or +// unsigned 32-bit integers from b. +// https://msdn.microsoft.com/en-us/library/vstudio/bb531409(v=vs.100).aspx +FORCE_INLINE __m128i _mm_mullo_epi32(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s32( + vmulq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); +} + +// Packs the 8 unsigned 32-bit integers from a and b into unsigned 16-bit +// integers and saturates. +// +// r0 := UnsignedSaturate(a0) +// r1 := UnsignedSaturate(a1) +// r2 := UnsignedSaturate(a2) +// r3 := UnsignedSaturate(a3) +// r4 := UnsignedSaturate(b0) +// r5 := UnsignedSaturate(b1) +// r6 := UnsignedSaturate(b2) +// r7 := UnsignedSaturate(b3) +FORCE_INLINE __m128i _mm_packus_epi32(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_u16( + vcombine_u16(vqmovun_s32(vreinterpretq_s32_m128i(a)), + vqmovun_s32(vreinterpretq_s32_m128i(b)))); +} + +// Round the packed double-precision (64-bit) floating-point elements in a using +// the rounding parameter, and store the results as packed double-precision +// floating-point elements in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_round_pd +FORCE_INLINE __m128d _mm_round_pd(__m128d a, int rounding) +{ +#if defined(__aarch64__) + switch (rounding) { + case (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC): + return vreinterpretq_m128d_f64(vrndnq_f64(vreinterpretq_f64_m128d(a))); + case (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC): + return _mm_floor_pd(a); + case (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC): + return _mm_ceil_pd(a); + case (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC): + return vreinterpretq_m128d_f64(vrndq_f64(vreinterpretq_f64_m128d(a))); + default: //_MM_FROUND_CUR_DIRECTION + return vreinterpretq_m128d_f64(vrndiq_f64(vreinterpretq_f64_m128d(a))); + } +#else + double *v_double = (double *) &a; + + if (rounding == (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC) || + (rounding == _MM_FROUND_CUR_DIRECTION && + _MM_GET_ROUNDING_MODE() == _MM_ROUND_NEAREST)) { + double res[2], tmp; + for (int i = 0; i < 2; i++) { + tmp = (v_double[i] < 0) ? -v_double[i] : v_double[i]; + double roundDown = floor(tmp); // Round down value + double roundUp = ceil(tmp); // Round up value + double diffDown = tmp - roundDown; + double diffUp = roundUp - tmp; + if (diffDown < diffUp) { + /* If it's closer to the round down value, then use it */ + res[i] = roundDown; + } else if (diffDown > diffUp) { + /* If it's closer to the round up value, then use it */ + res[i] = roundUp; + } else { + /* If it's equidistant between round up and round down value, + * pick the one which is an even number */ + double half = roundDown / 2; + if (half != floor(half)) { + /* If the round down value is odd, return the round up value + */ + res[i] = roundUp; + } else { + /* If the round up value is odd, return the round down value + */ + res[i] = roundDown; + } + } + res[i] = (v_double[i] < 0) ? -res[i] : res[i]; + } + return _mm_set_pd(res[1], res[0]); + } else if (rounding == (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC) || + (rounding == _MM_FROUND_CUR_DIRECTION && + _MM_GET_ROUNDING_MODE() == _MM_ROUND_DOWN)) { + return _mm_floor_pd(a); + } else if (rounding == (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC) || + (rounding == _MM_FROUND_CUR_DIRECTION && + _MM_GET_ROUNDING_MODE() == _MM_ROUND_UP)) { + return _mm_ceil_pd(a); + } + return _mm_set_pd(v_double[1] > 0 ? floor(v_double[1]) : ceil(v_double[1]), + v_double[0] > 0 ? floor(v_double[0]) : ceil(v_double[0])); +#endif +} + +// Round the packed single-precision (32-bit) floating-point elements in a using +// the rounding parameter, and store the results as packed single-precision +// floating-point elements in dst. +// software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_round_ps +FORCE_INLINE __m128 _mm_round_ps(__m128 a, int rounding) +{ +#if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING) + switch (rounding) { + case (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC): + return vreinterpretq_m128_f32(vrndnq_f32(vreinterpretq_f32_m128(a))); + case (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC): + return _mm_floor_ps(a); + case (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC): + return _mm_ceil_ps(a); + case (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC): + return vreinterpretq_m128_f32(vrndq_f32(vreinterpretq_f32_m128(a))); + default: //_MM_FROUND_CUR_DIRECTION + return vreinterpretq_m128_f32(vrndiq_f32(vreinterpretq_f32_m128(a))); + } +#else + float *v_float = (float *) &a; + + if (rounding == (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC) || + (rounding == _MM_FROUND_CUR_DIRECTION && + _MM_GET_ROUNDING_MODE() == _MM_ROUND_NEAREST)) { + uint32x4_t signmask = vdupq_n_u32(0x80000000); + float32x4_t half = vbslq_f32(signmask, vreinterpretq_f32_m128(a), + vdupq_n_f32(0.5f)); /* +/- 0.5 */ + int32x4_t r_normal = vcvtq_s32_f32(vaddq_f32( + vreinterpretq_f32_m128(a), half)); /* round to integer: [a + 0.5]*/ + int32x4_t r_trunc = vcvtq_s32_f32( + vreinterpretq_f32_m128(a)); /* truncate to integer: [a] */ + int32x4_t plusone = vreinterpretq_s32_u32(vshrq_n_u32( + vreinterpretq_u32_s32(vnegq_s32(r_trunc)), 31)); /* 1 or 0 */ + int32x4_t r_even = vbicq_s32(vaddq_s32(r_trunc, plusone), + vdupq_n_s32(1)); /* ([a] + {0,1}) & ~1 */ + float32x4_t delta = vsubq_f32( + vreinterpretq_f32_m128(a), + vcvtq_f32_s32(r_trunc)); /* compute delta: delta = (a - [a]) */ + uint32x4_t is_delta_half = + vceqq_f32(delta, half); /* delta == +/- 0.5 */ + return vreinterpretq_m128_f32( + vcvtq_f32_s32(vbslq_s32(is_delta_half, r_even, r_normal))); + } else if (rounding == (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC) || + (rounding == _MM_FROUND_CUR_DIRECTION && + _MM_GET_ROUNDING_MODE() == _MM_ROUND_DOWN)) { + return _mm_floor_ps(a); + } else if (rounding == (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC) || + (rounding == _MM_FROUND_CUR_DIRECTION && + _MM_GET_ROUNDING_MODE() == _MM_ROUND_UP)) { + return _mm_ceil_ps(a); + } + return _mm_set_ps(v_float[3] > 0 ? floorf(v_float[3]) : ceilf(v_float[3]), + v_float[2] > 0 ? floorf(v_float[2]) : ceilf(v_float[2]), + v_float[1] > 0 ? floorf(v_float[1]) : ceilf(v_float[1]), + v_float[0] > 0 ? floorf(v_float[0]) : ceilf(v_float[0])); +#endif +} + +// Round the lower double-precision (64-bit) floating-point element in b using +// the rounding parameter, store the result as a double-precision floating-point +// element in the lower element of dst, and copy the upper element from a to the +// upper element of dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_round_sd +FORCE_INLINE __m128d _mm_round_sd(__m128d a, __m128d b, int rounding) +{ + return _mm_move_sd(a, _mm_round_pd(b, rounding)); +} + +// Round the lower single-precision (32-bit) floating-point element in b using +// the rounding parameter, store the result as a single-precision floating-point +// element in the lower element of dst, and copy the upper 3 packed elements +// from a to the upper elements of dst. Rounding is done according to the +// rounding[3:0] parameter, which can be one of: +// (_MM_FROUND_TO_NEAREST_INT |_MM_FROUND_NO_EXC) // round to nearest, and +// suppress exceptions +// (_MM_FROUND_TO_NEG_INF |_MM_FROUND_NO_EXC) // round down, and +// suppress exceptions +// (_MM_FROUND_TO_POS_INF |_MM_FROUND_NO_EXC) // round up, and suppress +// exceptions +// (_MM_FROUND_TO_ZERO |_MM_FROUND_NO_EXC) // truncate, and suppress +// exceptions _MM_FROUND_CUR_DIRECTION // use MXCSR.RC; see +// _MM_SET_ROUNDING_MODE +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_round_ss +FORCE_INLINE __m128 _mm_round_ss(__m128 a, __m128 b, int rounding) +{ + return _mm_move_ss(a, _mm_round_ps(b, rounding)); +} + +// Load 128-bits of integer data from memory into dst using a non-temporal +// memory hint. mem_addr must be aligned on a 16-byte boundary or a +// general-protection exception may be generated. +// +// dst[127:0] := MEM[mem_addr+127:mem_addr] +// +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_load_si128 +FORCE_INLINE __m128i _mm_stream_load_si128(__m128i *p) +{ +#if __has_builtin(__builtin_nontemporal_store) + return __builtin_nontemporal_load(p); +#else + return vreinterpretq_m128i_s64(vld1q_s64((int64_t *) p)); +#endif +} + +// Compute the bitwise NOT of a and then AND with a 128-bit vector containing +// all 1's, and return 1 if the result is zero, otherwise return 0. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_test_all_ones +FORCE_INLINE int _mm_test_all_ones(__m128i a) +{ + return (uint64_t) (vgetq_lane_s64(a, 0) & vgetq_lane_s64(a, 1)) == + ~(uint64_t) 0; +} + +// Compute the bitwise AND of 128 bits (representing integer data) in a and +// mask, and return 1 if the result is zero, otherwise return 0. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_test_all_zeros +FORCE_INLINE int _mm_test_all_zeros(__m128i a, __m128i mask) +{ + int64x2_t a_and_mask = + vandq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(mask)); + return !(vgetq_lane_s64(a_and_mask, 0) | vgetq_lane_s64(a_and_mask, 1)); +} + +// Compute the bitwise AND of 128 bits (representing integer data) in a and +// mask, and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute +// the bitwise NOT of a and then AND with mask, and set CF to 1 if the result is +// zero, otherwise set CF to 0. Return 1 if both the ZF and CF values are zero, +// otherwise return 0. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_test_mix_ones_zero +FORCE_INLINE int _mm_test_mix_ones_zeros(__m128i a, __m128i mask) +{ + uint64x2_t zf = + vandq_u64(vreinterpretq_u64_m128i(mask), vreinterpretq_u64_m128i(a)); + uint64x2_t cf = + vbicq_u64(vreinterpretq_u64_m128i(mask), vreinterpretq_u64_m128i(a)); + uint64x2_t result = vandq_u64(zf, cf); + return !(vgetq_lane_u64(result, 0) | vgetq_lane_u64(result, 1)); +} + // Compute the bitwise AND of 128 bits (representing integer data) in a and b, // and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the // bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero, @@ -6851,6 +8365,14 @@ FORCE_INLINE int _mm_testc_si128(__m128i a, __m128i b) return !(vgetq_lane_s64(s64, 0) | vgetq_lane_s64(s64, 1)); } +// Compute the bitwise AND of 128 bits (representing integer data) in a and b, +// and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the +// bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero, +// otherwise set CF to 0. Return 1 if both the ZF and CF values are zero, +// otherwise return 0. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_testnzc_si128 +#define _mm_testnzc_si128(a, b) _mm_test_mix_ones_zeros(a, b) + // Compute the bitwise AND of 128 bits (representing integer data) in a and b, // and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the // bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero, @@ -6863,305 +8385,653 @@ FORCE_INLINE int _mm_testz_si128(__m128i a, __m128i b) return !(vgetq_lane_s64(s64, 0) | vgetq_lane_s64(s64, 1)); } -// Extracts the selected signed or unsigned 8-bit integer from a and zero -// extends. -// FORCE_INLINE int _mm_extract_epi8(__m128i a, __constrange(0,16) int imm) -#define _mm_extract_epi8(a, imm) vgetq_lane_u8(vreinterpretq_u8_m128i(a), (imm)) +/* SSE4.2 */ -// Inserts the least significant 8 bits of b into the selected 8-bit integer -// of a. -// FORCE_INLINE __m128i _mm_insert_epi8(__m128i a, int b, -// __constrange(0,16) int imm) -#define _mm_insert_epi8(a, b, imm) \ - __extension__({ \ - vreinterpretq_m128i_s8( \ - vsetq_lane_s8((b), vreinterpretq_s8_m128i(a), (imm))); \ - }) +const static uint16_t _sse2neon_cmpestr_mask16b[8] ALIGN_STRUCT(16) = { + 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, +}; +const static uint8_t _sse2neon_cmpestr_mask8b[16] ALIGN_STRUCT(16) = { + 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, + 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, +}; -// Extracts the selected signed or unsigned 16-bit integer from a and zero -// extends. -// https://msdn.microsoft.com/en-us/library/6dceta0c(v=vs.100).aspx -// FORCE_INLINE int _mm_extract_epi16(__m128i a, __constrange(0,8) int imm) -#define _mm_extract_epi16(a, imm) \ - vgetq_lane_u16(vreinterpretq_u16_m128i(a), (imm)) +/* specify the source data format */ +#define _SIDD_UBYTE_OPS 0x00 /* unsigned 8-bit characters */ +#define _SIDD_UWORD_OPS 0x01 /* unsigned 16-bit characters */ +#define _SIDD_SBYTE_OPS 0x02 /* signed 8-bit characters */ +#define _SIDD_SWORD_OPS 0x03 /* signed 16-bit characters */ -// Extract a 16-bit integer from a, selected with imm8, and store the result in -// the lower element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_extract_pi16 -#define _mm_extract_pi16(a, imm) \ - (int32_t) vget_lane_u16(vreinterpret_u16_m64(a), (imm)) +/* specify the comparison operation */ +#define _SIDD_CMP_EQUAL_ANY 0x00 /* compare equal any: strchr */ +#define _SIDD_CMP_RANGES 0x04 /* compare ranges */ +#define _SIDD_CMP_EQUAL_EACH 0x08 /* compare equal each: strcmp */ +#define _SIDD_CMP_EQUAL_ORDERED 0x0C /* compare equal ordered */ -// Inserts the least significant 16 bits of b into the selected 16-bit integer -// of a. -// https://msdn.microsoft.com/en-us/library/kaze8hz1%28v=vs.100%29.aspx -// FORCE_INLINE __m128i _mm_insert_epi16(__m128i a, int b, -// __constrange(0,8) int imm) -#define _mm_insert_epi16(a, b, imm) \ - __extension__({ \ - vreinterpretq_m128i_s16( \ - vsetq_lane_s16((b), vreinterpretq_s16_m128i(a), (imm))); \ - }) +/* specify the polarity */ +#define _SIDD_POSITIVE_POLARITY 0x00 +#define _SIDD_MASKED_POSITIVE_POLARITY 0x20 +#define _SIDD_NEGATIVE_POLARITY 0x10 /* negate results */ +#define _SIDD_MASKED_NEGATIVE_POLARITY \ + 0x30 /* negate results only before end of string */ -// Copy a to dst, and insert the 16-bit integer i into dst at the location -// specified by imm8. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_insert_pi16 -#define _mm_insert_pi16(a, b, imm) \ - __extension__({ \ - vreinterpret_m64_s16( \ - vset_lane_s16((b), vreinterpret_s16_m64(a), (imm))); \ - }) +/* specify the output selection in _mm_cmpXstri */ +#define _SIDD_LEAST_SIGNIFICANT 0x00 +#define _SIDD_MOST_SIGNIFICANT 0x40 -// Extracts the selected signed or unsigned 32-bit integer from a and zero -// extends. -// FORCE_INLINE int _mm_extract_epi32(__m128i a, __constrange(0,4) int imm) -#define _mm_extract_epi32(a, imm) \ - vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm)) +/* specify the output selection in _mm_cmpXstrm */ +#define _SIDD_BIT_MASK 0x00 +#define _SIDD_UNIT_MASK 0x40 -// Extracts the selected single-precision (32-bit) floating-point from a. -// FORCE_INLINE int _mm_extract_ps(__m128 a, __constrange(0,4) int imm) -#define _mm_extract_ps(a, imm) vgetq_lane_s32(vreinterpretq_s32_m128(a), (imm)) +/* Pattern Matching for C macros. + * https://github.com/pfultz2/Cloak/wiki/C-Preprocessor-tricks,-tips,-and-idioms + */ -// Inserts the least significant 32 bits of b into the selected 32-bit integer -// of a. -// FORCE_INLINE __m128i _mm_insert_epi32(__m128i a, int b, -// __constrange(0,4) int imm) -#define _mm_insert_epi32(a, b, imm) \ - __extension__({ \ - vreinterpretq_m128i_s32( \ - vsetq_lane_s32((b), vreinterpretq_s32_m128i(a), (imm))); \ - }) +/* catenate */ +#define SSE2NEON_PRIMITIVE_CAT(a, ...) a##__VA_ARGS__ +#define SSE2NEON_CAT(a, b) SSE2NEON_PRIMITIVE_CAT(a, b) -// Extracts the selected signed or unsigned 64-bit integer from a and zero -// extends. -// FORCE_INLINE __int64 _mm_extract_epi64(__m128i a, __constrange(0,2) int imm) -#define _mm_extract_epi64(a, imm) \ - vgetq_lane_s64(vreinterpretq_s64_m128i(a), (imm)) +#define SSE2NEON_IIF(c) SSE2NEON_PRIMITIVE_CAT(SSE2NEON_IIF_, c) +/* run the 2nd parameter */ +#define SSE2NEON_IIF_0(t, ...) __VA_ARGS__ +/* run the 1st parameter */ +#define SSE2NEON_IIF_1(t, ...) t -// Inserts the least significant 64 bits of b into the selected 64-bit integer -// of a. -// FORCE_INLINE __m128i _mm_insert_epi64(__m128i a, __int64 b, -// __constrange(0,2) int imm) -#define _mm_insert_epi64(a, b, imm) \ - __extension__({ \ - vreinterpretq_m128i_s64( \ - vsetq_lane_s64((b), vreinterpretq_s64_m128i(a), (imm))); \ - }) +#define SSE2NEON_COMPL(b) SSE2NEON_PRIMITIVE_CAT(SSE2NEON_COMPL_, b) +#define SSE2NEON_COMPL_0 1 +#define SSE2NEON_COMPL_1 0 -// Count the number of bits set to 1 in unsigned 32-bit integer a, and -// return that count in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_popcnt_u32 -FORCE_INLINE int _mm_popcnt_u32(unsigned int a) -{ -#if defined(__aarch64__) -#if __has_builtin(__builtin_popcount) - return __builtin_popcount(a); -#else - return (int) vaddlv_u8(vcnt_u8(vcreate_u8((uint64_t) a))); -#endif -#else - uint32_t count = 0; - uint8x8_t input_val, count8x8_val; - uint16x4_t count16x4_val; - uint32x2_t count32x2_val; +#define SSE2NEON_DEC(x) SSE2NEON_PRIMITIVE_CAT(SSE2NEON_DEC_, x) +#define SSE2NEON_DEC_1 0 +#define SSE2NEON_DEC_2 1 +#define SSE2NEON_DEC_3 2 +#define SSE2NEON_DEC_4 3 +#define SSE2NEON_DEC_5 4 +#define SSE2NEON_DEC_6 5 +#define SSE2NEON_DEC_7 6 +#define SSE2NEON_DEC_8 7 +#define SSE2NEON_DEC_9 8 +#define SSE2NEON_DEC_10 9 +#define SSE2NEON_DEC_11 10 +#define SSE2NEON_DEC_12 11 +#define SSE2NEON_DEC_13 12 +#define SSE2NEON_DEC_14 13 +#define SSE2NEON_DEC_15 14 +#define SSE2NEON_DEC_16 15 - input_val = vld1_u8((uint8_t *) &a); - count8x8_val = vcnt_u8(input_val); - count16x4_val = vpaddl_u8(count8x8_val); - count32x2_val = vpaddl_u16(count16x4_val); +/* detection */ +#define SSE2NEON_CHECK_N(x, n, ...) n +#define SSE2NEON_CHECK(...) SSE2NEON_CHECK_N(__VA_ARGS__, 0, ) +#define SSE2NEON_PROBE(x) x, 1, - vst1_u32(&count, count32x2_val); - return count; -#endif -} +#define SSE2NEON_NOT(x) SSE2NEON_CHECK(SSE2NEON_PRIMITIVE_CAT(SSE2NEON_NOT_, x)) +#define SSE2NEON_NOT_0 SSE2NEON_PROBE(~) -// Count the number of bits set to 1 in unsigned 64-bit integer a, and -// return that count in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_popcnt_u64 -FORCE_INLINE int64_t _mm_popcnt_u64(uint64_t a) -{ -#if defined(__aarch64__) -#if __has_builtin(__builtin_popcountll) - return __builtin_popcountll(a); -#else - return (int64_t) vaddlv_u8(vcnt_u8(vcreate_u8(a))); -#endif -#else - uint64_t count = 0; - uint8x8_t input_val, count8x8_val; - uint16x4_t count16x4_val; - uint32x2_t count32x2_val; - uint64x1_t count64x1_val; +#define SSE2NEON_BOOL(x) SSE2NEON_COMPL(SSE2NEON_NOT(x)) +#define SSE2NEON_IF(c) SSE2NEON_IIF(SSE2NEON_BOOL(c)) - input_val = vld1_u8((uint8_t *) &a); - count8x8_val = vcnt_u8(input_val); - count16x4_val = vpaddl_u8(count8x8_val); - count32x2_val = vpaddl_u16(count16x4_val); - count64x1_val = vpaddl_u32(count32x2_val); - vst1_u64(&count, count64x1_val); - return count; -#endif -} +#define SSE2NEON_EAT(...) +#define SSE2NEON_EXPAND(...) __VA_ARGS__ +#define SSE2NEON_WHEN(c) SSE2NEON_IF(c)(SSE2NEON_EXPAND, SSE2NEON_EAT) -// Macro: Transpose the 4x4 matrix formed by the 4 rows of single-precision -// (32-bit) floating-point elements in row0, row1, row2, and row3, and store the -// transposed matrix in these vectors (row0 now contains column 0, etc.). -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=MM_TRANSPOSE4_PS -#define _MM_TRANSPOSE4_PS(row0, row1, row2, row3) \ - do { \ - float32x4x2_t ROW01 = vtrnq_f32(row0, row1); \ - float32x4x2_t ROW23 = vtrnq_f32(row2, row3); \ - row0 = vcombine_f32(vget_low_f32(ROW01.val[0]), \ - vget_low_f32(ROW23.val[0])); \ - row1 = vcombine_f32(vget_low_f32(ROW01.val[1]), \ - vget_low_f32(ROW23.val[1])); \ - row2 = vcombine_f32(vget_high_f32(ROW01.val[0]), \ - vget_high_f32(ROW23.val[0])); \ - row3 = vcombine_f32(vget_high_f32(ROW01.val[1]), \ - vget_high_f32(ROW23.val[1])); \ +/* recursion */ +/* deferred expression */ +#define SSE2NEON_EMPTY() +#define SSE2NEON_DEFER(id) id SSE2NEON_EMPTY() +#define SSE2NEON_OBSTRUCT(...) __VA_ARGS__ SSE2NEON_DEFER(SSE2NEON_EMPTY)() +#define SSE2NEON_EXPAND(...) __VA_ARGS__ + +#define SSE2NEON_EVAL(...) \ + SSE2NEON_EVAL1(SSE2NEON_EVAL1(SSE2NEON_EVAL1(__VA_ARGS__))) +#define SSE2NEON_EVAL1(...) \ + SSE2NEON_EVAL2(SSE2NEON_EVAL2(SSE2NEON_EVAL2(__VA_ARGS__))) +#define SSE2NEON_EVAL2(...) \ + SSE2NEON_EVAL3(SSE2NEON_EVAL3(SSE2NEON_EVAL3(__VA_ARGS__))) +#define SSE2NEON_EVAL3(...) __VA_ARGS__ + +#define SSE2NEON_REPEAT(count, macro, ...) \ + SSE2NEON_WHEN(count) \ + (SSE2NEON_OBSTRUCT(SSE2NEON_REPEAT_INDIRECT)()( \ + SSE2NEON_DEC(count), macro, \ + __VA_ARGS__) SSE2NEON_OBSTRUCT(macro)(SSE2NEON_DEC(count), \ + __VA_ARGS__)) +#define SSE2NEON_REPEAT_INDIRECT() SSE2NEON_REPEAT + +#define SSE2NEON_SIZE_OF_byte 8 +#define SSE2NEON_NUMBER_OF_LANES_byte 16 +#define SSE2NEON_SIZE_OF_word 16 +#define SSE2NEON_NUMBER_OF_LANES_word 8 + +#define SSE2NEON_COMPARE_EQUAL_THEN_FILL_LANE(i, type) \ + mtx[i] = vreinterpretq_m128i_##type(vceqq_##type( \ + vdupq_n_##type(vgetq_lane_##type(vreinterpretq_##type##_m128i(b), i)), \ + vreinterpretq_##type##_m128i(a))); + +#define SSE2NEON_FILL_LANE(i, type) \ + vec_b[i] = \ + vdupq_n_##type(vgetq_lane_##type(vreinterpretq_##type##_m128i(b), i)); + +#define PCMPSTR_RANGES(a, b, mtx, data_type_prefix, type_prefix, size, \ + number_of_lanes, byte_or_word) \ + do { \ + SSE2NEON_CAT( \ + data_type_prefix, \ + SSE2NEON_CAT(size, \ + SSE2NEON_CAT(x, SSE2NEON_CAT(number_of_lanes, _t)))) \ + vec_b[number_of_lanes]; \ + __m128i mask = SSE2NEON_IIF(byte_or_word)( \ + vreinterpretq_m128i_u16(vdupq_n_u16(0xff)), \ + vreinterpretq_m128i_u32(vdupq_n_u32(0xffff))); \ + SSE2NEON_EVAL(SSE2NEON_REPEAT(number_of_lanes, SSE2NEON_FILL_LANE, \ + SSE2NEON_CAT(type_prefix, size))) \ + for (int i = 0; i < number_of_lanes; i++) { \ + mtx[i] = SSE2NEON_CAT(vreinterpretq_m128i_u, \ + size)(SSE2NEON_CAT(vbslq_u, size)( \ + SSE2NEON_CAT(vreinterpretq_u, \ + SSE2NEON_CAT(size, _m128i))(mask), \ + SSE2NEON_CAT(vcgeq_, SSE2NEON_CAT(type_prefix, size))( \ + vec_b[i], \ + SSE2NEON_CAT( \ + vreinterpretq_, \ + SSE2NEON_CAT(type_prefix, \ + SSE2NEON_CAT(size, _m128i(a))))), \ + SSE2NEON_CAT(vcleq_, SSE2NEON_CAT(type_prefix, size))( \ + vec_b[i], \ + SSE2NEON_CAT( \ + vreinterpretq_, \ + SSE2NEON_CAT(type_prefix, \ + SSE2NEON_CAT(size, _m128i(a))))))); \ + } \ } while (0) -/* Crypto Extensions */ +#define PCMPSTR_EQ(a, b, mtx, size, number_of_lanes) \ + do { \ + SSE2NEON_EVAL(SSE2NEON_REPEAT(number_of_lanes, \ + SSE2NEON_COMPARE_EQUAL_THEN_FILL_LANE, \ + SSE2NEON_CAT(u, size))) \ + } while (0) -#if defined(__ARM_FEATURE_CRYPTO) -// Wraps vmull_p64 -FORCE_INLINE uint64x2_t _sse2neon_vmull_p64(uint64x1_t _a, uint64x1_t _b) -{ - poly64_t a = vget_lane_p64(vreinterpret_p64_u64(_a), 0); - poly64_t b = vget_lane_p64(vreinterpret_p64_u64(_b), 0); - return vreinterpretq_u64_p128(vmull_p64(a, b)); -} -#else // ARMv7 polyfill -// ARMv7/some A64 lacks vmull_p64, but it has vmull_p8. -// -// vmull_p8 calculates 8 8-bit->16-bit polynomial multiplies, but we need a -// 64-bit->128-bit polynomial multiply. -// -// It needs some work and is somewhat slow, but it is still faster than all -// known scalar methods. -// -// Algorithm adapted to C from -// https://www.workofard.com/2017/07/ghash-for-low-end-cores/, which is adapted -// from "Fast Software Polynomial Multiplication on ARM Processors Using the -// NEON Engine" by Danilo Camara, Conrado Gouvea, Julio Lopez and Ricardo Dahab -// (https://hal.inria.fr/hal-01506572) -static uint64x2_t _sse2neon_vmull_p64(uint64x1_t _a, uint64x1_t _b) -{ - poly8x8_t a = vreinterpret_p8_u64(_a); - poly8x8_t b = vreinterpret_p8_u64(_b); - - // Masks - uint8x16_t k48_32 = vcombine_u8(vcreate_u8(0x0000ffffffffffff), - vcreate_u8(0x00000000ffffffff)); - uint8x16_t k16_00 = vcombine_u8(vcreate_u8(0x000000000000ffff), - vcreate_u8(0x0000000000000000)); - - // Do the multiplies, rotating with vext to get all combinations - uint8x16_t d = vreinterpretq_u8_p16(vmull_p8(a, b)); // D = A0 * B0 - uint8x16_t e = - vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 1))); // E = A0 * B1 - uint8x16_t f = - vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 1), b)); // F = A1 * B0 - uint8x16_t g = - vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 2))); // G = A0 * B2 - uint8x16_t h = - vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 2), b)); // H = A2 * B0 - uint8x16_t i = - vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 3))); // I = A0 * B3 - uint8x16_t j = - vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 3), b)); // J = A3 * B0 - uint8x16_t k = - vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 4))); // L = A0 * B4 - - // Add cross products - uint8x16_t l = veorq_u8(e, f); // L = E + F - uint8x16_t m = veorq_u8(g, h); // M = G + H - uint8x16_t n = veorq_u8(i, j); // N = I + J - - // Interleave. Using vzip1 and vzip2 prevents Clang from emitting TBL - // instructions. -#if defined(__aarch64__) - uint8x16_t lm_p0 = vreinterpretq_u8_u64( - vzip1q_u64(vreinterpretq_u64_u8(l), vreinterpretq_u64_u8(m))); - uint8x16_t lm_p1 = vreinterpretq_u8_u64( - vzip2q_u64(vreinterpretq_u64_u8(l), vreinterpretq_u64_u8(m))); - uint8x16_t nk_p0 = vreinterpretq_u8_u64( - vzip1q_u64(vreinterpretq_u64_u8(n), vreinterpretq_u64_u8(k))); - uint8x16_t nk_p1 = vreinterpretq_u8_u64( - vzip2q_u64(vreinterpretq_u64_u8(n), vreinterpretq_u64_u8(k))); -#else - uint8x16_t lm_p0 = vcombine_u8(vget_low_u8(l), vget_low_u8(m)); - uint8x16_t lm_p1 = vcombine_u8(vget_high_u8(l), vget_high_u8(m)); - uint8x16_t nk_p0 = vcombine_u8(vget_low_u8(n), vget_low_u8(k)); - uint8x16_t nk_p1 = vcombine_u8(vget_high_u8(n), vget_high_u8(k)); -#endif - // t0 = (L) (P0 + P1) << 8 - // t1 = (M) (P2 + P3) << 16 - uint8x16_t t0t1_tmp = veorq_u8(lm_p0, lm_p1); - uint8x16_t t0t1_h = vandq_u8(lm_p1, k48_32); - uint8x16_t t0t1_l = veorq_u8(t0t1_tmp, t0t1_h); - - // t2 = (N) (P4 + P5) << 24 - // t3 = (K) (P6 + P7) << 32 - uint8x16_t t2t3_tmp = veorq_u8(nk_p0, nk_p1); - uint8x16_t t2t3_h = vandq_u8(nk_p1, k16_00); - uint8x16_t t2t3_l = veorq_u8(t2t3_tmp, t2t3_h); - - // De-interleave -#if defined(__aarch64__) - uint8x16_t t0 = vreinterpretq_u8_u64( - vuzp1q_u64(vreinterpretq_u64_u8(t0t1_l), vreinterpretq_u64_u8(t0t1_h))); - uint8x16_t t1 = vreinterpretq_u8_u64( - vuzp2q_u64(vreinterpretq_u64_u8(t0t1_l), vreinterpretq_u64_u8(t0t1_h))); - uint8x16_t t2 = vreinterpretq_u8_u64( - vuzp1q_u64(vreinterpretq_u64_u8(t2t3_l), vreinterpretq_u64_u8(t2t3_h))); - uint8x16_t t3 = vreinterpretq_u8_u64( - vuzp2q_u64(vreinterpretq_u64_u8(t2t3_l), vreinterpretq_u64_u8(t2t3_h))); -#else - uint8x16_t t1 = vcombine_u8(vget_high_u8(t0t1_l), vget_high_u8(t0t1_h)); - uint8x16_t t0 = vcombine_u8(vget_low_u8(t0t1_l), vget_low_u8(t0t1_h)); - uint8x16_t t3 = vcombine_u8(vget_high_u8(t2t3_l), vget_high_u8(t2t3_h)); - uint8x16_t t2 = vcombine_u8(vget_low_u8(t2t3_l), vget_low_u8(t2t3_h)); -#endif - // Shift the cross products - uint8x16_t t0_shift = vextq_u8(t0, t0, 15); // t0 << 8 - uint8x16_t t1_shift = vextq_u8(t1, t1, 14); // t1 << 16 - uint8x16_t t2_shift = vextq_u8(t2, t2, 13); // t2 << 24 - uint8x16_t t3_shift = vextq_u8(t3, t3, 12); // t3 << 32 - - // Accumulate the products - uint8x16_t cross1 = veorq_u8(t0_shift, t1_shift); - uint8x16_t cross2 = veorq_u8(t2_shift, t3_shift); - uint8x16_t mix = veorq_u8(d, cross1); - uint8x16_t r = veorq_u8(mix, cross2); - return vreinterpretq_u64_u8(r); -} -#endif // ARMv7 polyfill - -// Perform a carry-less multiplication of two 64-bit integers, selected from a -// and b according to imm8, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_clmulepi64_si128 -FORCE_INLINE __m128i _mm_clmulepi64_si128(__m128i _a, __m128i _b, const int imm) -{ - uint64x2_t a = vreinterpretq_u64_m128i(_a); - uint64x2_t b = vreinterpretq_u64_m128i(_b); - switch (imm & 0x11) { - case 0x00: - return vreinterpretq_m128i_u64( - _sse2neon_vmull_p64(vget_low_u64(a), vget_low_u64(b))); - case 0x01: - return vreinterpretq_m128i_u64( - _sse2neon_vmull_p64(vget_high_u64(a), vget_low_u64(b))); - case 0x10: - return vreinterpretq_m128i_u64( - _sse2neon_vmull_p64(vget_low_u64(a), vget_high_u64(b))); - case 0x11: - return vreinterpretq_m128i_u64( - _sse2neon_vmull_p64(vget_high_u64(a), vget_high_u64(b))); - default: - abort(); +#define SSE2NEON_CMP_EQUAL_ANY_IMPL(type) \ + static int _sse2neon_cmp_##type##_equal_any(__m128i a, int la, __m128i b, \ + int lb) \ + { \ + __m128i mtx[16]; \ + PCMPSTR_EQ(a, b, mtx, SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \ + SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type)); \ + return SSE2NEON_CAT( \ + _sse2neon_aggregate_equal_any_, \ + SSE2NEON_CAT( \ + SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \ + SSE2NEON_CAT(x, SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, \ + type))))(la, lb, mtx); \ } + +#define SSE2NEON_CMP_RANGES_IMPL(type, data_type, us, byte_or_word) \ + static int _sse2neon_cmp_##us##type##_ranges(__m128i a, int la, __m128i b, \ + int lb) \ + { \ + __m128i mtx[16]; \ + PCMPSTR_RANGES( \ + a, b, mtx, data_type, us, SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \ + SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type), byte_or_word); \ + return SSE2NEON_CAT( \ + _sse2neon_aggregate_ranges_, \ + SSE2NEON_CAT( \ + SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \ + SSE2NEON_CAT(x, SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, \ + type))))(la, lb, mtx); \ + } + +#define SSE2NEON_CMP_EQUAL_ORDERED_IMPL(type) \ + static int _sse2neon_cmp_##type##_equal_ordered(__m128i a, int la, \ + __m128i b, int lb) \ + { \ + __m128i mtx[16]; \ + PCMPSTR_EQ(a, b, mtx, SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \ + SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type)); \ + return SSE2NEON_CAT( \ + _sse2neon_aggregate_equal_ordered_, \ + SSE2NEON_CAT( \ + SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \ + SSE2NEON_CAT(x, \ + SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type))))( \ + SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type), la, lb, mtx); \ + } + +#if !defined(__aarch64__) +/* emulate vaddv u8 variant */ +static inline uint8_t vaddv_u8(uint8x8_t v8) +{ + const uint64x1_t v1 = vpaddl_u32(vpaddl_u16(vpaddl_u8(v8))); + return vget_lane_u8(vreinterpret_u8_u64(v1), 0); } +/* emulate vaddvq u8 variant */ +static inline uint8_t vaddvq_u8(uint8x16_t a) +{ + uint8x8_t tmp = vpadd_u8(vget_low_u8(a), vget_high_u8(a)); + uint8_t res = 0; + for (int i = 0; i < 8; ++i) + res += tmp[i]; + return res; +} + +/* emulate vaddvq u16 variant */ +static inline uint16_t vaddvq_u16(uint16x8_t a) +{ + uint32x4_t m = vpaddlq_u16(a); + uint64x2_t n = vpaddlq_u32(m); + uint64x1_t o = vget_low_u64(n) + vget_high_u64(n); + + return vget_lane_u32((uint32x2_t) o, 0); +} +#endif + +static int _sse2neon_aggregate_equal_any_8x16(int la, int lb, __m128i mtx[16]) +{ + int res = 0; + int m = (1 << la) - 1; + uint8x8_t vec_mask = vld1_u8(_sse2neon_cmpestr_mask8b); + uint8x8_t t_lo = vtst_u8(vdup_n_u8(m & 0xff), vec_mask); + uint8x8_t t_hi = vtst_u8(vdup_n_u8(m >> 8), vec_mask); + uint8x16_t vec = vcombine_u8(t_lo, t_hi); + for (int j = 0; j < lb; j++) { + mtx[j] = vreinterpretq_m128i_u8( + vandq_u8(vec, vreinterpretq_u8_m128i(mtx[j]))); + mtx[j] = vreinterpretq_m128i_u8( + vshrq_n_u8(vreinterpretq_u8_m128i(mtx[j]), 7)); + int tmp = vaddvq_u8(vreinterpretq_u8_m128i(mtx[j])) ? 1 : 0; + res |= (tmp << j); + } + return res; +} + +static int _sse2neon_aggregate_equal_any_16x8(int la, int lb, __m128i mtx[16]) +{ + int res = 0; + int m = (1 << la) - 1; + uint16x8_t vec = + vtstq_u16(vdupq_n_u16(m), vld1q_u16(_sse2neon_cmpestr_mask16b)); + for (int j = 0; j < lb; j++) { + mtx[j] = vreinterpretq_m128i_u16( + vandq_u16(vec, vreinterpretq_u16_m128i(mtx[j]))); + mtx[j] = vreinterpretq_m128i_u16( + vshrq_n_u16(vreinterpretq_u16_m128i(mtx[j]), 15)); + int tmp = vaddvq_u16(vreinterpretq_u16_m128i(mtx[j])) ? 1 : 0; + res |= (tmp << j); + } + return res; +} + +#define SSE2NEON_GENERATE_CMP_EQUAL_ANY(f_prefix) \ + f_prefix##IMPL(byte) f_prefix##IMPL(word) + +SSE2NEON_GENERATE_CMP_EQUAL_ANY(SSE2NEON_CMP_EQUAL_ANY_) + +static int _sse2neon_aggregate_ranges_16x8(int la, int lb, __m128i mtx[16]) +{ + int res = 0; + int m = (1 << la) - 1; + uint16x8_t vec = + vtstq_u16(vdupq_n_u16(m), vld1q_u16(_sse2neon_cmpestr_mask16b)); + for (int j = 0; j < lb; j++) { + mtx[j] = vreinterpretq_m128i_u16( + vandq_u16(vec, vreinterpretq_u16_m128i(mtx[j]))); + mtx[j] = vreinterpretq_m128i_u16( + vshrq_n_u16(vreinterpretq_u16_m128i(mtx[j]), 15)); + __m128i tmp = vreinterpretq_m128i_u32( + vshrq_n_u32(vreinterpretq_u32_m128i(mtx[j]), 16)); + uint32x4_t vec_res = vandq_u32(vreinterpretq_u32_m128i(mtx[j]), + vreinterpretq_u32_m128i(tmp)); +#if defined(__aarch64__) + int t = vaddvq_u32(vec_res) ? 1 : 0; +#else + uint64x2_t sumh = vpaddlq_u32(vec_res); + int t = vgetq_lane_u64(sumh, 0) + vgetq_lane_u64(sumh, 1); +#endif + res |= (t << j); + } + return res; +} + +static int _sse2neon_aggregate_ranges_8x16(int la, int lb, __m128i mtx[16]) +{ + int res = 0; + int m = (1 << la) - 1; + uint8x8_t vec_mask = vld1_u8(_sse2neon_cmpestr_mask8b); + uint8x8_t t_lo = vtst_u8(vdup_n_u8(m & 0xff), vec_mask); + uint8x8_t t_hi = vtst_u8(vdup_n_u8(m >> 8), vec_mask); + uint8x16_t vec = vcombine_u8(t_lo, t_hi); + for (int j = 0; j < lb; j++) { + mtx[j] = vreinterpretq_m128i_u8( + vandq_u8(vec, vreinterpretq_u8_m128i(mtx[j]))); + mtx[j] = vreinterpretq_m128i_u8( + vshrq_n_u8(vreinterpretq_u8_m128i(mtx[j]), 7)); + __m128i tmp = vreinterpretq_m128i_u16( + vshrq_n_u16(vreinterpretq_u16_m128i(mtx[j]), 8)); + uint16x8_t vec_res = vandq_u16(vreinterpretq_u16_m128i(mtx[j]), + vreinterpretq_u16_m128i(tmp)); + int t = vaddvq_u16(vec_res) ? 1 : 0; + res |= (t << j); + } + return res; +} + +#define SSE2NEON_CMP_RANGES_IS_BYTE 1 +#define SSE2NEON_CMP_RANGES_IS_WORD 0 + +#define SSE2NEON_GENERATE_CMP_RANGES(f_prefix) \ + f_prefix##IMPL(byte, uint, u, f_prefix##IS_BYTE) \ + f_prefix##IMPL(byte, int, s, f_prefix##IS_BYTE) \ + f_prefix##IMPL(word, uint, u, f_prefix##IS_WORD) \ + f_prefix##IMPL(word, int, s, f_prefix##IS_WORD) + +SSE2NEON_GENERATE_CMP_RANGES(SSE2NEON_CMP_RANGES_) + +#undef SSE2NEON_CMP_RANGES_IS_BYTE +#undef SSE2NEON_CMP_RANGES_IS_WORD + +static int _sse2neon_cmp_byte_equal_each(__m128i a, int la, __m128i b, int lb) +{ + uint8x16_t mtx = + vceqq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)); + int m0 = (la < lb) ? 0 : ((1 << la) - (1 << lb)); + int m1 = 0x10000 - (1 << la); + int tb = 0x10000 - (1 << lb); + uint8x8_t vec_mask, vec0_lo, vec0_hi, vec1_lo, vec1_hi; + uint8x8_t tmp_lo, tmp_hi, res_lo, res_hi; + vec_mask = vld1_u8(_sse2neon_cmpestr_mask8b); + vec0_lo = vtst_u8(vdup_n_u8(m0), vec_mask); + vec0_hi = vtst_u8(vdup_n_u8(m0 >> 8), vec_mask); + vec1_lo = vtst_u8(vdup_n_u8(m1), vec_mask); + vec1_hi = vtst_u8(vdup_n_u8(m1 >> 8), vec_mask); + tmp_lo = vtst_u8(vdup_n_u8(tb), vec_mask); + tmp_hi = vtst_u8(vdup_n_u8(tb >> 8), vec_mask); + + res_lo = vbsl_u8(vec0_lo, vdup_n_u8(0), vget_low_u8(mtx)); + res_hi = vbsl_u8(vec0_hi, vdup_n_u8(0), vget_high_u8(mtx)); + res_lo = vbsl_u8(vec1_lo, tmp_lo, res_lo); + res_hi = vbsl_u8(vec1_hi, tmp_hi, res_hi); + res_lo = vand_u8(res_lo, vec_mask); + res_hi = vand_u8(res_hi, vec_mask); + + int res = vaddv_u8(res_lo) + (vaddv_u8(res_hi) << 8); + return res; +} + +static int _sse2neon_cmp_word_equal_each(__m128i a, int la, __m128i b, int lb) +{ + uint16x8_t mtx = + vceqq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)); + int m0 = (la < lb) ? 0 : ((1 << la) - (1 << lb)); + int m1 = 0x100 - (1 << la); + int tb = 0x100 - (1 << lb); + uint16x8_t vec_mask = vld1q_u16(_sse2neon_cmpestr_mask16b); + uint16x8_t vec0 = vtstq_u16(vdupq_n_u16(m0), vec_mask); + uint16x8_t vec1 = vtstq_u16(vdupq_n_u16(m1), vec_mask); + uint16x8_t tmp = vtstq_u16(vdupq_n_u16(tb), vec_mask); + mtx = vbslq_u16(vec0, vdupq_n_u16(0), mtx); + mtx = vbslq_u16(vec1, tmp, mtx); + mtx = vandq_u16(mtx, vec_mask); + return vaddvq_u16(mtx); +} + +#define SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UBYTE 1 +#define SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UWORD 0 + +#define SSE2NEON_AGGREGATE_EQUAL_ORDER_IMPL(size, number_of_lanes, data_type) \ + static int _sse2neon_aggregate_equal_ordered_##size##x##number_of_lanes( \ + int bound, int la, int lb, __m128i mtx[16]) \ + { \ + int res = 0; \ + int m1 = SSE2NEON_IIF(data_type)(0x10000, 0x100) - (1 << la); \ + uint##size##x8_t vec_mask = SSE2NEON_IIF(data_type)( \ + vld1_u##size(_sse2neon_cmpestr_mask##size##b), \ + vld1q_u##size(_sse2neon_cmpestr_mask##size##b)); \ + uint##size##x##number_of_lanes##_t vec1 = SSE2NEON_IIF(data_type)( \ + vcombine_u##size(vtst_u##size(vdup_n_u##size(m1), vec_mask), \ + vtst_u##size(vdup_n_u##size(m1 >> 8), vec_mask)), \ + vtstq_u##size(vdupq_n_u##size(m1), vec_mask)); \ + uint##size##x##number_of_lanes##_t vec_minusone = vdupq_n_u##size(-1); \ + uint##size##x##number_of_lanes##_t vec_zero = vdupq_n_u##size(0); \ + for (int j = 0; j < lb; j++) { \ + mtx[j] = vreinterpretq_m128i_u##size(vbslq_u##size( \ + vec1, vec_minusone, vreinterpretq_u##size##_m128i(mtx[j]))); \ + } \ + for (int j = lb; j < bound; j++) { \ + mtx[j] = vreinterpretq_m128i_u##size( \ + vbslq_u##size(vec1, vec_minusone, vec_zero)); \ + } \ + unsigned SSE2NEON_IIF(data_type)(char, short) *ptr = \ + (unsigned SSE2NEON_IIF(data_type)(char, short) *) mtx; \ + for (int i = 0; i < bound; i++) { \ + int val = 1; \ + for (int j = 0, k = i; j < bound - i && k < bound; j++, k++) \ + val &= ptr[k * bound + j]; \ + res += val << i; \ + } \ + return res; \ + } + +#define SSE2NEON_GENERATE_AGGREGATE_EQUAL_ORDER(f_prefix) \ + f_prefix##IMPL(8, 16, f_prefix##IS_UBYTE) \ + f_prefix##IMPL(16, 8, f_prefix##IS_UWORD) + +SSE2NEON_GENERATE_AGGREGATE_EQUAL_ORDER(SSE2NEON_AGGREGATE_EQUAL_ORDER_) + +#undef SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UBYTE +#undef SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UWORD + +#define SSE2NEON_GENERATE_CMP_EQUAL_ORDERED(f_prefix) \ + f_prefix##IMPL(byte) f_prefix##IMPL(word) + +SSE2NEON_GENERATE_CMP_EQUAL_ORDERED(SSE2NEON_CMP_EQUAL_ORDERED_) + +#define SSE2NEON_CMPESTR_LIST \ + _(CMP_UBYTE_EQUAL_ANY, cmp_byte_equal_any) \ + _(CMP_UWORD_EQUAL_ANY, cmp_word_equal_any) \ + _(CMP_SBYTE_EQUAL_ANY, cmp_byte_equal_any) \ + _(CMP_SWORD_EQUAL_ANY, cmp_word_equal_any) \ + _(CMP_UBYTE_RANGES, cmp_ubyte_ranges) \ + _(CMP_UWORD_RANGES, cmp_uword_ranges) \ + _(CMP_SBYTE_RANGES, cmp_sbyte_ranges) \ + _(CMP_SWORD_RANGES, cmp_sword_ranges) \ + _(CMP_UBYTE_EQUAL_EACH, cmp_byte_equal_each) \ + _(CMP_UWORD_EQUAL_EACH, cmp_word_equal_each) \ + _(CMP_SBYTE_EQUAL_EACH, cmp_byte_equal_each) \ + _(CMP_SWORD_EQUAL_EACH, cmp_word_equal_each) \ + _(CMP_UBYTE_EQUAL_ORDERED, cmp_byte_equal_ordered) \ + _(CMP_UWORD_EQUAL_ORDERED, cmp_word_equal_ordered) \ + _(CMP_SBYTE_EQUAL_ORDERED, cmp_byte_equal_ordered) \ + _(CMP_SWORD_EQUAL_ORDERED, cmp_word_equal_ordered) + +enum { +#define _(name, func_suffix) name, + SSE2NEON_CMPESTR_LIST +#undef _ +}; +typedef int (*cmpestr_func_t)(__m128i a, int la, __m128i b, int lb); +static cmpestr_func_t _sse2neon_cmpfunc_table[] = { +#define _(name, func_suffix) _sse2neon_##func_suffix, + SSE2NEON_CMPESTR_LIST +#undef _ +}; + +static inline int _sse2neon_sido_negative(int res, int lb, int imm8, int bound) +{ + switch (imm8 & 0x30) { + case _SIDD_NEGATIVE_POLARITY: + res ^= 0xffffffff; + break; + case _SIDD_MASKED_NEGATIVE_POLARITY: + res ^= (1 << lb) - 1; + break; + default: + break; + } + + return res & ((bound == 8) ? 0xFF : 0xFFFF); +} + +#define SSE2NEON_MIN(x, y) (x) < (y) ? (x) : (y) +#define SSE2NEON_GET_LENGTH_OR_BOUND(la, lb, bound) \ + int tmp1 = la ^ (la >> 31); \ + la = tmp1 - (la >> 31); \ + int tmp2 = lb ^ (lb >> 31); \ + lb = tmp2 - (lb >> 31); \ + la = SSE2NEON_MIN(la, bound); \ + lb = SSE2NEON_MIN(lb, bound); + +// Compare packed strings in a and b with lengths la and lb using the control +// in imm8, and store the generated index in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpestri +FORCE_INLINE int _mm_cmpestri(__m128i a, + int la, + __m128i b, + int lb, + const int imm8) +{ + const int upper = (imm8 & 0x01) ? 8 : 16; + + SSE2NEON_GET_LENGTH_OR_BOUND(la, lb, upper) + + int r2 = (_sse2neon_cmpfunc_table[imm8 & 0x0f])(a, la, b, lb); + r2 = _sse2neon_sido_negative(r2, lb, imm8, upper); + return (r2 == 0) + ? upper + : ((imm8 & 0x40) ? (31 - __builtin_clz(r2)) : __builtin_ctz(r2)); +} + +// Compare packed strings in a and b with lengths la and lb using the control +// in imm8, and store the generated mask in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpestrm +FORCE_INLINE __m128i +_mm_cmpestrm(__m128i a, int la, __m128i b, int lb, const int imm8) +{ + const int bound = (imm8 & 0x01) ? 8 : 16; + + SSE2NEON_GET_LENGTH_OR_BOUND(la, lb, bound) + + int r2 = (_sse2neon_cmpfunc_table[imm8 & 0x0f])(a, la, b, lb); + r2 = _sse2neon_sido_negative(r2, lb, imm8, bound); + + __m128i dst = vreinterpretq_m128i_u8(vdupq_n_u8(0)); + if (imm8 & 0x40) { + if (bound == 8) { + uint16x8_t tmp = vtstq_u16(vdupq_n_u16(r2), + vld1q_u16(_sse2neon_cmpestr_mask16b)); + dst = vreinterpretq_m128i_u16( + vbslq_u16(tmp, vdupq_n_u16(-1), vreinterpretq_u16_m128i(dst))); + } else { + uint8x16_t vec_r2 = vcombine_u8(vdup_n_u8(r2), vdup_n_u8(r2 >> 8)); + uint8x16_t tmp = + vtstq_u8(vec_r2, vld1q_u8(_sse2neon_cmpestr_mask8b)); + dst = vreinterpretq_m128i_u8( + vbslq_u8(tmp, vdupq_n_u8(-1), vreinterpretq_u8_m128i(dst))); + } + } else { + if (bound == 16) { + dst = vreinterpretq_m128i_u16( + vsetq_lane_u16(r2 & 0xffff, vreinterpretq_u16_m128i(dst), 0)); + } else { + dst = vreinterpretq_m128i_u8( + vsetq_lane_u8(r2 & 0xff, vreinterpretq_u8_m128i(dst), 0)); + } + } + + return dst; +} + +// Compares the 2 signed 64-bit integers in a and the 2 signed 64-bit integers +// in b for greater than. +FORCE_INLINE __m128i _mm_cmpgt_epi64(__m128i a, __m128i b) +{ +#if defined(__aarch64__) + return vreinterpretq_m128i_u64( + vcgtq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b))); +#else + return vreinterpretq_m128i_s64(vshrq_n_s64( + vqsubq_s64(vreinterpretq_s64_m128i(b), vreinterpretq_s64_m128i(a)), + 63)); +#endif +} + +// Starting with the initial value in crc, accumulates a CRC32 value for +// unsigned 16-bit integer v. +// https://msdn.microsoft.com/en-us/library/bb531411(v=vs.100) +FORCE_INLINE uint32_t _mm_crc32_u16(uint32_t crc, uint16_t v) +{ +#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) + __asm__ __volatile__("crc32ch %w[c], %w[c], %w[v]\n\t" + : [c] "+r"(crc) + : [v] "r"(v)); +#elif (__ARM_ARCH == 8) && defined(__ARM_FEATURE_CRC32) + crc = __crc32ch(crc, v); +#else + crc = _mm_crc32_u8(crc, v & 0xff); + crc = _mm_crc32_u8(crc, (v >> 8) & 0xff); +#endif + return crc; +} + +// Starting with the initial value in crc, accumulates a CRC32 value for +// unsigned 32-bit integer v. +// https://msdn.microsoft.com/en-us/library/bb531394(v=vs.100) +FORCE_INLINE uint32_t _mm_crc32_u32(uint32_t crc, uint32_t v) +{ +#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) + __asm__ __volatile__("crc32cw %w[c], %w[c], %w[v]\n\t" + : [c] "+r"(crc) + : [v] "r"(v)); +#elif (__ARM_ARCH == 8) && defined(__ARM_FEATURE_CRC32) + crc = __crc32cw(crc, v); +#else + crc = _mm_crc32_u16(crc, v & 0xffff); + crc = _mm_crc32_u16(crc, (v >> 16) & 0xffff); +#endif + return crc; +} + +// Starting with the initial value in crc, accumulates a CRC32 value for +// unsigned 64-bit integer v. +// https://msdn.microsoft.com/en-us/library/bb514033(v=vs.100) +FORCE_INLINE uint64_t _mm_crc32_u64(uint64_t crc, uint64_t v) +{ +#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) + __asm__ __volatile__("crc32cx %w[c], %w[c], %x[v]\n\t" + : [c] "+r"(crc) + : [v] "r"(v)); +#else + crc = _mm_crc32_u32((uint32_t) (crc), v & 0xffffffff); + crc = _mm_crc32_u32((uint32_t) (crc), (v >> 32) & 0xffffffff); +#endif + return crc; +} + +// Starting with the initial value in crc, accumulates a CRC32 value for +// unsigned 8-bit integer v. +// https://msdn.microsoft.com/en-us/library/bb514036(v=vs.100) +FORCE_INLINE uint32_t _mm_crc32_u8(uint32_t crc, uint8_t v) +{ +#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) + __asm__ __volatile__("crc32cb %w[c], %w[c], %w[v]\n\t" + : [c] "+r"(crc) + : [v] "r"(v)); +#elif (__ARM_ARCH == 8) && defined(__ARM_FEATURE_CRC32) + crc = __crc32cb(crc, v); +#else + crc ^= v; + for (int bit = 0; bit < 8; bit++) { + if (crc & 1) + crc = (crc >> 1) ^ UINT32_C(0x82f63b78); + else + crc = (crc >> 1); + } +#endif + return crc; +} + +/* AES */ + #if !defined(__ARM_FEATURE_CRYPTO) /* clang-format off */ #define SSE2NEON_AES_DATA(w) \ @@ -7239,7 +9109,7 @@ FORCE_INLINE __m128i _mm_aesenc_si128(__m128i EncBlock, __m128i RoundKey) v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(SSE2NEON_sbox + 0xc0), w - 0xc0); // mix columns - w = (v << 1) ^ (uint8x16_t)(((int8x16_t) v >> 7) & 0x1b); + w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b); w ^= (uint8x16_t) vrev32q_u16((uint16x8_t) v); w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8)); @@ -7247,9 +9117,9 @@ FORCE_INLINE __m128i _mm_aesenc_si128(__m128i EncBlock, __m128i RoundKey) return vreinterpretq_m128i_u8(w) ^ RoundKey; #else /* ARMv7-A NEON implementation */ -#define SSE2NEON_AES_B2W(b0, b1, b2, b3) \ - (((uint32_t)(b3) << 24) | ((uint32_t)(b2) << 16) | ((uint32_t)(b1) << 8) | \ - (b0)) +#define SSE2NEON_AES_B2W(b0, b1, b2, b3) \ + (((uint32_t) (b3) << 24) | ((uint32_t) (b2) << 16) | \ + ((uint32_t) (b1) << 8) | (uint32_t) (b0)) #define SSE2NEON_AES_F2(x) ((x << 1) ^ (((x >> 7) & 1) * 0x011b /* WPOLY */)) #define SSE2NEON_AES_F3(x) (SSE2NEON_AES_F2(x) ^ x) #define SSE2NEON_AES_U0(p) \ @@ -7300,22 +9170,22 @@ FORCE_INLINE __m128i _mm_aesenclast_si128(__m128i a, __m128i RoundKey) { /* FIXME: optimized for NEON */ uint8_t v[4][4] = { - [0] = {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 0)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 5)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 10)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 15)]}, - [1] = {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 4)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 9)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 14)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 3)]}, - [2] = {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 8)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 13)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 2)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 7)]}, - [3] = {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 12)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 1)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 6)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 11)]}, + {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 0)], + SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 5)], + SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 10)], + SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 15)]}, + {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 4)], + SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 9)], + SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 14)], + SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 3)]}, + {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 8)], + SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 13)], + SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 2)], + SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 7)]}, + {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 12)], + SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 1)], + SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 6)], + SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 11)]}, }; for (int i = 0; i < 16; i++) vreinterpretq_nth_u8_m128i(a, i) = @@ -7381,208 +9251,172 @@ FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i a, const int rcon) } #endif -/* Streaming Extensions */ +/* Others */ -// Guarantees that every preceding store is globally visible before any -// subsequent store. -// https://msdn.microsoft.com/en-us/library/5h2w73d1%28v=vs.90%29.aspx -FORCE_INLINE void _mm_sfence(void) +// Perform a carry-less multiplication of two 64-bit integers, selected from a +// and b according to imm8, and store the results in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_clmulepi64_si128 +FORCE_INLINE __m128i _mm_clmulepi64_si128(__m128i _a, __m128i _b, const int imm) { - __sync_synchronize(); -} - -// Store 64-bits of integer data from a into memory using a non-temporal memory -// hint. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_pi -FORCE_INLINE void _mm_stream_pi(__m64 *p, __m64 a) -{ - vst1_s64((int64_t *) p, vreinterpret_s64_m64(a)); -} - -// Store 128-bits (composed of 4 packed single-precision (32-bit) floating- -// point elements) from a into memory using a non-temporal memory hint. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_ps -FORCE_INLINE void _mm_stream_ps(float *p, __m128 a) -{ -#if __has_builtin(__builtin_nontemporal_store) - __builtin_nontemporal_store(a, (float32x4_t *) p); -#else - vst1q_f32(p, vreinterpretq_f32_m128(a)); -#endif -} - -// Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point -// elements) from a into memory using a non-temporal memory hint. mem_addr must -// be aligned on a 16-byte boundary or a general-protection exception may be -// generated. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_pd -FORCE_INLINE void _mm_stream_pd(double *p, __m128d a) -{ -#if __has_builtin(__builtin_nontemporal_store) - __builtin_nontemporal_store(a, (float32x4_t *) p); -#elif defined(__aarch64__) - vst1q_f64(p, vreinterpretq_f64_m128d(a)); -#else - vst1q_s64((int64_t *) p, vreinterpretq_s64_m128d(a)); -#endif -} - -// Stores the data in a to the address p without polluting the caches. If the -// cache line containing address p is already in the cache, the cache will be -// updated. -// https://msdn.microsoft.com/en-us/library/ba08y07y%28v=vs.90%29.aspx -FORCE_INLINE void _mm_stream_si128(__m128i *p, __m128i a) -{ -#if __has_builtin(__builtin_nontemporal_store) - __builtin_nontemporal_store(a, p); -#else - vst1q_s64((int64_t *) p, vreinterpretq_s64_m128i(a)); -#endif -} - -// Store 32-bit integer a into memory using a non-temporal hint to minimize -// cache pollution. If the cache line containing address mem_addr is already in -// the cache, the cache will be updated. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_si32 -FORCE_INLINE void _mm_stream_si32(int *p, int a) -{ - vst1q_lane_s32((int32_t *) p, vdupq_n_s32(a), 0); -} - -// Load 128-bits of integer data from memory into dst using a non-temporal -// memory hint. mem_addr must be aligned on a 16-byte boundary or a -// general-protection exception may be generated. -// -// dst[127:0] := MEM[mem_addr+127:mem_addr] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_load_si128 -FORCE_INLINE __m128i _mm_stream_load_si128(__m128i *p) -{ -#if __has_builtin(__builtin_nontemporal_store) - return __builtin_nontemporal_load(p); -#else - return vreinterpretq_m128i_s64(vld1q_s64((int64_t *) p)); -#endif -} - -// Cache line containing p is flushed and invalidated from all caches in the -// coherency domain. : -// https://msdn.microsoft.com/en-us/library/ba08y07y(v=vs.100).aspx -FORCE_INLINE void _mm_clflush(void const *p) -{ - (void) p; - // no corollary for Neon? -} - -// Allocate aligned blocks of memory. -// https://software.intel.com/en-us/ -// cpp-compiler-developer-guide-and-reference-allocating-and-freeing-aligned-memory-blocks -FORCE_INLINE void *_mm_malloc(size_t size, size_t align) -{ - void *ptr; - if (align == 1) - return malloc(size); - if (align == 2 || (sizeof(void *) == 8 && align == 4)) - align = sizeof(void *); - if (!posix_memalign(&ptr, align, size)) - return ptr; - return NULL; -} - -// Conditionally store 8-bit integer elements from a into memory using mask -// (elements are not stored when the highest bit is not set in the corresponding -// element) and a non-temporal memory hint. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskmove_si64 -FORCE_INLINE void _mm_maskmove_si64(__m64 a, __m64 mask, char *mem_addr) -{ - int8x8_t shr_mask = vshr_n_s8(vreinterpret_s8_m64(mask), 7); - __m128 b = _mm_load_ps((const float *) mem_addr); - int8x8_t masked = - vbsl_s8(vreinterpret_u8_s8(shr_mask), vreinterpret_s8_m64(a), - vreinterpret_s8_u64(vget_low_u64(vreinterpretq_u64_m128(b)))); - vst1_s8((int8_t *) mem_addr, masked); -} - -// Conditionally store 8-bit integer elements from a into memory using mask -// (elements are not stored when the highest bit is not set in the corresponding -// element) and a non-temporal memory hint. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_maskmovq -#define _m_maskmovq(a, mask, mem_addr) _mm_maskmove_si64(a, mask, mem_addr) - -// Free aligned memory that was allocated with _mm_malloc. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_free -FORCE_INLINE void _mm_free(void *addr) -{ - free(addr); -} - -// Starting with the initial value in crc, accumulates a CRC32 value for -// unsigned 8-bit integer v. -// https://msdn.microsoft.com/en-us/library/bb514036(v=vs.100) -FORCE_INLINE uint32_t _mm_crc32_u8(uint32_t crc, uint8_t v) -{ -#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) - __asm__ __volatile__("crc32cb %w[c], %w[c], %w[v]\n\t" - : [c] "+r"(crc) - : [v] "r"(v)); -#else - crc ^= v; - for (int bit = 0; bit < 8; bit++) { - if (crc & 1) - crc = (crc >> 1) ^ UINT32_C(0x82f63b78); - else - crc = (crc >> 1); + uint64x2_t a = vreinterpretq_u64_m128i(_a); + uint64x2_t b = vreinterpretq_u64_m128i(_b); + switch (imm & 0x11) { + case 0x00: + return vreinterpretq_m128i_u64( + _sse2neon_vmull_p64(vget_low_u64(a), vget_low_u64(b))); + case 0x01: + return vreinterpretq_m128i_u64( + _sse2neon_vmull_p64(vget_high_u64(a), vget_low_u64(b))); + case 0x10: + return vreinterpretq_m128i_u64( + _sse2neon_vmull_p64(vget_low_u64(a), vget_high_u64(b))); + case 0x11: + return vreinterpretq_m128i_u64( + _sse2neon_vmull_p64(vget_high_u64(a), vget_high_u64(b))); + default: + abort(); } -#endif - return crc; } -// Starting with the initial value in crc, accumulates a CRC32 value for -// unsigned 16-bit integer v. -// https://msdn.microsoft.com/en-us/library/bb531411(v=vs.100) -FORCE_INLINE uint32_t _mm_crc32_u16(uint32_t crc, uint16_t v) +FORCE_INLINE unsigned int _sse2neon_mm_get_denormals_zero_mode() { -#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) - __asm__ __volatile__("crc32ch %w[c], %w[c], %w[v]\n\t" - : [c] "+r"(crc) - : [v] "r"(v)); + union { + fpcr_bitfield field; +#if defined(__aarch64__) + uint64_t value; #else - crc = _mm_crc32_u8(crc, v & 0xff); - crc = _mm_crc32_u8(crc, (v >> 8) & 0xff); + uint32_t value; #endif - return crc; + } r; + +#if defined(__aarch64__) + __asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */ +#else + __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ +#endif + + return r.field.bit24 ? _MM_DENORMALS_ZERO_ON : _MM_DENORMALS_ZERO_OFF; } -// Starting with the initial value in crc, accumulates a CRC32 value for -// unsigned 32-bit integer v. -// https://msdn.microsoft.com/en-us/library/bb531394(v=vs.100) -FORCE_INLINE uint32_t _mm_crc32_u32(uint32_t crc, uint32_t v) +// Count the number of bits set to 1 in unsigned 32-bit integer a, and +// return that count in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_popcnt_u32 +FORCE_INLINE int _mm_popcnt_u32(unsigned int a) { -#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) - __asm__ __volatile__("crc32cw %w[c], %w[c], %w[v]\n\t" - : [c] "+r"(crc) - : [v] "r"(v)); +#if defined(__aarch64__) +#if __has_builtin(__builtin_popcount) + return __builtin_popcount(a); #else - crc = _mm_crc32_u16(crc, v & 0xffff); - crc = _mm_crc32_u16(crc, (v >> 16) & 0xffff); + return (int) vaddlv_u8(vcnt_u8(vcreate_u8((uint64_t) a))); +#endif +#else + uint32_t count = 0; + uint8x8_t input_val, count8x8_val; + uint16x4_t count16x4_val; + uint32x2_t count32x2_val; + + input_val = vld1_u8((uint8_t *) &a); + count8x8_val = vcnt_u8(input_val); + count16x4_val = vpaddl_u8(count8x8_val); + count32x2_val = vpaddl_u16(count16x4_val); + + vst1_u32(&count, count32x2_val); + return count; #endif - return crc; } -// Starting with the initial value in crc, accumulates a CRC32 value for -// unsigned 64-bit integer v. -// https://msdn.microsoft.com/en-us/library/bb514033(v=vs.100) -FORCE_INLINE uint64_t _mm_crc32_u64(uint64_t crc, uint64_t v) +// Count the number of bits set to 1 in unsigned 64-bit integer a, and +// return that count in dst. +// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_popcnt_u64 +FORCE_INLINE int64_t _mm_popcnt_u64(uint64_t a) { -#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) - __asm__ __volatile__("crc32cx %w[c], %w[c], %x[v]\n\t" - : [c] "+r"(crc) - : [v] "r"(v)); +#if defined(__aarch64__) +#if __has_builtin(__builtin_popcountll) + return __builtin_popcountll(a); #else - crc = _mm_crc32_u32((uint32_t)(crc), v & 0xffffffff); - crc = _mm_crc32_u32((uint32_t)(crc), (v >> 32) & 0xffffffff); + return (int64_t) vaddlv_u8(vcnt_u8(vcreate_u8(a))); +#endif +#else + uint64_t count = 0; + uint8x8_t input_val, count8x8_val; + uint16x4_t count16x4_val; + uint32x2_t count32x2_val; + uint64x1_t count64x1_val; + + input_val = vld1_u8((uint8_t *) &a); + count8x8_val = vcnt_u8(input_val); + count16x4_val = vpaddl_u8(count8x8_val); + count32x2_val = vpaddl_u16(count16x4_val); + count64x1_val = vpaddl_u32(count32x2_val); + vst1_u64(&count, count64x1_val); + return count; +#endif +} + +FORCE_INLINE void _sse2neon_mm_set_denormals_zero_mode(unsigned int flag) +{ + // AArch32 Advanced SIMD arithmetic always uses the Flush-to-zero setting, + // regardless of the value of the FZ bit. + union { + fpcr_bitfield field; +#if defined(__aarch64__) + uint64_t value; +#else + uint32_t value; +#endif + } r; + +#if defined(__aarch64__) + __asm__ __volatile__("mrs %0, FPCR" : "=r"(r.value)); /* read */ +#else + __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */ +#endif + + r.field.bit24 = (flag & _MM_DENORMALS_ZERO_MASK) == _MM_DENORMALS_ZERO_ON; + +#if defined(__aarch64__) + __asm__ __volatile__("msr FPCR, %0" ::"r"(r)); /* write */ +#else + __asm__ __volatile__("vmsr FPSCR, %0" ::"r"(r)); /* write */ +#endif +} + +// Return the current 64-bit value of the processor's time-stamp counter. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=rdtsc + +FORCE_INLINE uint64_t _rdtsc(void) +{ +#if defined(__aarch64__) + uint64_t val; + + /* According to ARM DDI 0487F.c, from Armv8.0 to Armv8.5 inclusive, the + * system counter is at least 56 bits wide; from Armv8.6, the counter + * must be 64 bits wide. So the system counter could be less than 64 + * bits wide and it is attributed with the flag 'cap_user_time_short' + * is true. + */ + __asm__ __volatile__("mrs %0, cntvct_el0" : "=r"(val)); + + return val; +#else + uint32_t pmccntr, pmuseren, pmcntenset; + // Read the user mode Performance Monitoring Unit (PMU) + // User Enable Register (PMUSERENR) access permissions. + __asm__ __volatile__("mrc p15, 0, %0, c9, c14, 0" : "=r"(pmuseren)); + if (pmuseren & 1) { // Allows reading PMUSERENR for user mode code. + __asm__ __volatile__("mrc p15, 0, %0, c9, c12, 1" : "=r"(pmcntenset)); + if (pmcntenset & 0x80000000UL) { // Is it counting? + __asm__ __volatile__("mrc p15, 0, %0, c9, c13, 0" : "=r"(pmccntr)); + // The counter is set up to count every 64th cycle + return (uint64_t) (pmccntr) << 6; + } + } + + // Fallback to syscall as we can't enable PMUSERENR in user mode. + struct timeval tv; + gettimeofday(&tv, NULL); + return (uint64_t) (tv.tv_sec) * 1000000 + tv.tv_usec; #endif - return crc; } #if defined(__GNUC__) || defined(__clang__) From 5bf90704a622b5071a17cb76c9e81b64dbcc13e9 Mon Sep 17 00:00:00 2001 From: XMRig Date: Sat, 29 Oct 2022 23:51:42 +0700 Subject: [PATCH 03/19] #2869 --- src/donate.h | 18 +++++++++--------- 1 file changed, 9 insertions(+), 9 deletions(-) diff --git a/src/donate.h b/src/donate.h index 5db3badc6..206b1b8f9 100644 --- a/src/donate.h +++ b/src/donate.h @@ -1,6 +1,6 @@ /* XMRig - * Copyright (c) 2018-2021 SChernykh - * Copyright (c) 2016-2021 XMRig , + * Copyright (c) 2018-2022 SChernykh + * Copyright (c) 2016-2022 XMRig , * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by @@ -23,22 +23,22 @@ /* * Dev donation. * - * Percentage of your hashing power that you want to donate to the developer, can be 0 if you don't want to do that. + * Percentage of your hashing power that you want to donate to the developer can be 0% but supports XMRig Development. * * Example of how it works for the setting of 1%: - * You miner will mine into your usual pool for random time (in range from 49.5 to 148.5 minutes), + * Your miner will mine into your usual pool for a random time (in a range from 49.5 to 148.5 minutes), * then switch to the developer's pool for 1 minute, then switch again to your pool for 99 minutes - * and then switch again to developer's pool for 1 minute, these rounds will continue until miner working. + * and then switch again to developer's pool for 1 minute; these rounds will continue until the miner stops. * - * Randomised only first round, to prevent waves on the donation pool. + * Randomised only on the first round to prevent waves on the donation pool. * - * Switching is instant, and only happens after a successful connection, so you never loose any hashes. + * Switching is instant and only happens after a successful connection, so you never lose any hashes. * - * If you plan on changing this setting to 0 please consider making a one off donation to my wallet: + * If you plan on changing donations to 0%, please consider making a one-off donation to my wallet: * XMR: 48edfHu7V9Z84YzzMa6fUueoELZ9ZRXq9VetWzYGzKt52XU5xvqgzYnDK9URnRoJMk1j8nLwEVsaSWJ4fhdUyZijBGUicoD */ constexpr const int kDefaultDonateLevel = 1; constexpr const int kMinimumDonateLevel = 1; -#endif /* XMRIG_DONATE_H */ +#endif // XMRIG_DONATE_H From 807c64ddb19c6bfcda6a2f7e0943c37aa2464220 Mon Sep 17 00:00:00 2001 From: SChernykh Date: Tue, 15 Nov 2022 07:45:54 +0100 Subject: [PATCH 04/19] MSVC build: enabled parallel compilation --- cmake/flags.cmake | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/cmake/flags.cmake b/cmake/flags.cmake index e9e0e3958..10386b174 100644 --- a/cmake/flags.cmake +++ b/cmake/flags.cmake @@ -61,11 +61,11 @@ if (CMAKE_CXX_COMPILER_ID MATCHES GNU) add_definitions(/DHAVE_BUILTIN_CLEAR_CACHE) elseif (CMAKE_CXX_COMPILER_ID MATCHES MSVC) - set(CMAKE_C_FLAGS_RELEASE "/MT /O2 /Oi /DNDEBUG /GL") - set(CMAKE_CXX_FLAGS_RELEASE "/MT /O2 /Oi /DNDEBUG /GL") + set(CMAKE_C_FLAGS_RELEASE "/MP /MT /O2 /Oi /DNDEBUG /GL") + set(CMAKE_CXX_FLAGS_RELEASE "/MP /MT /O2 /Oi /DNDEBUG /GL") - set(CMAKE_C_FLAGS_RELWITHDEBINFO "/Ob1 /Zi /DRELWITHDEBINFO") - set(CMAKE_CXX_FLAGS_RELWITHDEBINFO "/Ob1 /Zi /DRELWITHDEBINFO") + set(CMAKE_C_FLAGS_RELWITHDEBINFO "/MP /Ob1 /Zi /DRELWITHDEBINFO") + set(CMAKE_CXX_FLAGS_RELWITHDEBINFO "/MP /Ob1 /Zi /DRELWITHDEBINFO") add_definitions(/D_CRT_SECURE_NO_WARNINGS) add_definitions(/D_CRT_NONSTDC_NO_WARNINGS) From 3ad6ab56a5dd1faddca66287b3d750eb8022addd Mon Sep 17 00:00:00 2001 From: SChernykh Date: Thu, 17 Nov 2022 23:24:28 +0100 Subject: [PATCH 05/19] Improved Zen 3 MSR mod +0.5% speedup on Ryzen 5 5600X --- scripts/randomx_boost.sh | 4 ++-- src/crypto/rx/RxConfig.cpp | 2 +- 2 files changed, 3 insertions(+), 3 deletions(-) diff --git a/scripts/randomx_boost.sh b/scripts/randomx_boost.sh index f9f3ac2e9..adfc4bdf5 100755 --- a/scripts/randomx_boost.sh +++ b/scripts/randomx_boost.sh @@ -24,8 +24,8 @@ if grep -E 'AMD Ryzen|AMD EPYC' /proc/cpuinfo > /dev/null; echo "Detected Zen3 CPU" wrmsr -a 0xc0011020 0x4480000000000 wrmsr -a 0xc0011021 0x1c000200000040 - wrmsr -a 0xc0011022 0xc000000401500000 - wrmsr -a 0xc001102b 0x2000cc14 + wrmsr -a 0xc0011022 0xc000000401570000 + wrmsr -a 0xc001102b 0x2000cc10 echo "MSR register values for Zen3 applied" fi else diff --git a/src/crypto/rx/RxConfig.cpp b/src/crypto/rx/RxConfig.cpp index 362876071..775c93269 100644 --- a/src/crypto/rx/RxConfig.cpp +++ b/src/crypto/rx/RxConfig.cpp @@ -63,7 +63,7 @@ constexpr size_t kMsrArraySize = 6; static const std::array msrPresets = { MsrItems(), MsrItems{{ 0xC0011020, 0ULL }, { 0xC0011021, 0x40ULL, ~0x20ULL }, { 0xC0011022, 0x1510000ULL }, { 0xC001102b, 0x2000cc16ULL }}, - MsrItems{{ 0xC0011020, 0x0004480000000000ULL }, { 0xC0011021, 0x001c000200000040ULL, ~0x20ULL }, { 0xC0011022, 0xc000000401500000ULL }, { 0xC001102b, 0x2000cc14ULL }}, + MsrItems{{ 0xC0011020, 0x0004480000000000ULL }, { 0xC0011021, 0x001c000200000040ULL, ~0x20ULL }, { 0xC0011022, 0xc000000401570000ULL }, { 0xC001102b, 0x2000cc10ULL }}, MsrItems{{ 0xC0011020, 0x0004400000000000ULL }, { 0xC0011021, 0x0004000000000040ULL, ~0x20ULL }, { 0xC0011022, 0x8680000401570000ULL }, { 0xC001102b, 0x2040cc10ULL }}, MsrItems{{ 0x1a4, 0xf }}, MsrItems() From 25decd1b7f9ee2dcd082b2975f8e29124498fc15 Mon Sep 17 00:00:00 2001 From: SChernykh Date: Fri, 9 Dec 2022 09:21:40 +0100 Subject: [PATCH 06/19] Update cmake required version to 3.1 `set(CMAKE_CXX_STANDARD 11)` only works properly starting from cmake 3.1, see #3174 --- CMakeLists.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/CMakeLists.txt b/CMakeLists.txt index 7d8b25d63..a44e672be 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -1,4 +1,4 @@ -cmake_minimum_required(VERSION 2.8.12) +cmake_minimum_required(VERSION 3.1) project(xmrig) option(WITH_HWLOC "Enable hwloc support" ON) From 6e86dddc65168331b3928b8de91a77a73b70301b Mon Sep 17 00:00:00 2001 From: XMRig Date: Fri, 9 Dec 2022 16:07:42 +0700 Subject: [PATCH 07/19] Bump the minimum CMake version in other places too. --- src/3rdparty/argon2/CMakeLists.txt | 2 +- src/3rdparty/hwloc/CMakeLists.txt | 2 +- src/3rdparty/libethash/CMakeLists.txt | 2 +- src/crypto/ghostrider/CMakeLists.txt | 2 +- 4 files changed, 4 insertions(+), 4 deletions(-) diff --git a/src/3rdparty/argon2/CMakeLists.txt b/src/3rdparty/argon2/CMakeLists.txt index e02197be8..7bbe716bd 100644 --- a/src/3rdparty/argon2/CMakeLists.txt +++ b/src/3rdparty/argon2/CMakeLists.txt @@ -1,4 +1,4 @@ -cmake_minimum_required(VERSION 2.8.12) +cmake_minimum_required(VERSION 3.1) project(argon2 C) set(CMAKE_C_STANDARD 99) diff --git a/src/3rdparty/hwloc/CMakeLists.txt b/src/3rdparty/hwloc/CMakeLists.txt index 3f159afdd..ef2ba72da 100644 --- a/src/3rdparty/hwloc/CMakeLists.txt +++ b/src/3rdparty/hwloc/CMakeLists.txt @@ -1,4 +1,4 @@ -cmake_minimum_required (VERSION 2.8.12) +cmake_minimum_required(VERSION 3.1) project (hwloc C) include_directories(include) diff --git a/src/3rdparty/libethash/CMakeLists.txt b/src/3rdparty/libethash/CMakeLists.txt index 6a5454409..7df9ec864 100644 --- a/src/3rdparty/libethash/CMakeLists.txt +++ b/src/3rdparty/libethash/CMakeLists.txt @@ -1,4 +1,4 @@ -cmake_minimum_required (VERSION 2.8.12) +cmake_minimum_required(VERSION 3.1) project (ethash C) set(CMAKE_C_FLAGS_RELEASE "${CMAKE_C_FLAGS_RELEASE} -Os") diff --git a/src/crypto/ghostrider/CMakeLists.txt b/src/crypto/ghostrider/CMakeLists.txt index 6b3f25dd8..db63cfde2 100644 --- a/src/crypto/ghostrider/CMakeLists.txt +++ b/src/crypto/ghostrider/CMakeLists.txt @@ -1,4 +1,4 @@ -cmake_minimum_required(VERSION 2.8.12) +cmake_minimum_required(VERSION 3.1) project(GhostRider) set(HEADERS From a02afe6d4ffca18c3b0b04d14328f25fcf57ad95 Mon Sep 17 00:00:00 2001 From: SChernykh Date: Fri, 16 Dec 2022 15:26:37 +0100 Subject: [PATCH 08/19] Added ifdefs for DragonflyBSD Possible fix for #3179 --- src/backend/cpu/platform/BasicCpuInfo_arm.cpp | 4 ++-- src/base/kernel/Platform_unix.cpp | 4 ++-- src/crypto/common/VirtualMemory_unix.cpp | 6 +++--- src/hw/dmi/DmiReader_unix.cpp | 6 +++--- 4 files changed, 10 insertions(+), 10 deletions(-) diff --git a/src/backend/cpu/platform/BasicCpuInfo_arm.cpp b/src/backend/cpu/platform/BasicCpuInfo_arm.cpp index c21642ec6..f6edd503c 100644 --- a/src/backend/cpu/platform/BasicCpuInfo_arm.cpp +++ b/src/backend/cpu/platform/BasicCpuInfo_arm.cpp @@ -27,7 +27,7 @@ #if __ARM_FEATURE_CRYPTO && !defined(__APPLE__) # include -# ifndef __FreeBSD__ +# if !defined(__FreeBSD__) && !defined(__DragonFly__) # include # else # include @@ -71,7 +71,7 @@ xmrig::BasicCpuInfo::BasicCpuInfo() : # if __ARM_FEATURE_CRYPTO # if defined(__APPLE__) m_flags.set(FLAG_AES, true); -# elif defined(__FreeBSD__) +# elif defined(__FreeBSD__) || defined(__DragonFly__) uint64_t isar0 = READ_SPECIALREG(id_aa64isar0_el1); m_flags.set(FLAG_AES, ID_AA64ISAR0_AES_VAL(isar0) >= ID_AA64ISAR0_AES_BASE); # else diff --git a/src/base/kernel/Platform_unix.cpp b/src/base/kernel/Platform_unix.cpp index f5bbc1931..4c4fe92e9 100644 --- a/src/base/kernel/Platform_unix.cpp +++ b/src/base/kernel/Platform_unix.cpp @@ -16,7 +16,7 @@ * along with this program. If not, see . */ -#ifdef __FreeBSD__ +#if defined(__FreeBSD__) || defined(__DragonFly__) # include # include # include @@ -41,7 +41,7 @@ #include "version.h" -#ifdef __FreeBSD__ +#if defined(__FreeBSD__) || defined(__DragonFly__) typedef cpuset_t cpu_set_t; #endif diff --git a/src/crypto/common/VirtualMemory_unix.cpp b/src/crypto/common/VirtualMemory_unix.cpp index 12f4f25f8..1f3be36ba 100644 --- a/src/crypto/common/VirtualMemory_unix.cpp +++ b/src/crypto/common/VirtualMemory_unix.cpp @@ -65,7 +65,7 @@ #endif -#if defined(XMRIG_OS_LINUX) || (!defined(XMRIG_OS_APPLE) && !defined(__FreeBSD__)) +#if defined(XMRIG_OS_LINUX) || (!defined(XMRIG_OS_APPLE) && !defined(__FreeBSD__) && !defined(__DragonFly__)) static inline int hugePagesFlag(size_t size) { return (static_cast(log2(size)) & MAP_HUGE_MASK) << MAP_HUGE_SHIFT; @@ -135,7 +135,7 @@ void *xmrig::VirtualMemory::allocateExecutableMemory(size_t size, bool hugePages # ifdef XMRIG_ARM pthread_jit_write_protect_np(false); # endif -# elif defined(__FreeBSD__) +# elif defined(__FreeBSD__) || defined(__DragonFly__) void *mem = nullptr; if (hugePages) { @@ -168,7 +168,7 @@ void *xmrig::VirtualMemory::allocateLargePagesMemory(size_t size) { # if defined(XMRIG_OS_APPLE) void *mem = mmap(0, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, VM_FLAGS_SUPERPAGE_SIZE_2MB, 0); -# elif defined(__FreeBSD__) +# elif defined(__FreeBSD__) || defined(__DragonFly__) void *mem = mmap(0, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_ALIGNED_SUPER | MAP_PREFAULT_READ, -1, 0); # else void *mem = mmap(0, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB | MAP_POPULATE | hugePagesFlag(hugePageSize()), 0, 0); diff --git a/src/hw/dmi/DmiReader_unix.cpp b/src/hw/dmi/DmiReader_unix.cpp index e01e22624..2f7030fa2 100644 --- a/src/hw/dmi/DmiReader_unix.cpp +++ b/src/hw/dmi/DmiReader_unix.cpp @@ -31,7 +31,7 @@ #include #include -#ifdef __FreeBSD__ +#if defined(__FreeBSD__) || defined(__DragonFly__) # include #endif @@ -288,7 +288,7 @@ static off_t address_from_efi() const char *filename; char linebuf[64]; off_t address = 0; -# elif defined(__FreeBSD__) +# elif defined(__FreeBSD__) || defined(__DragonFly__) char addrstr[KENV_MVALLEN + 1]; # endif @@ -310,7 +310,7 @@ static off_t address_from_efi() fclose(efi_systab); return address; -# elif defined(__FreeBSD__) +# elif defined(__FreeBSD__) || defined(__DragonFly__) if (kenv(KENV_GET, "hint.smbios.0.mem", addrstr, sizeof(addrstr)) == -1) { return EFI_NOT_FOUND; } From 7d4d48e83b456b1205c52a667b3a3a396e7321bf Mon Sep 17 00:00:00 2001 From: SChernykh Date: Sat, 17 Dec 2022 12:14:28 +0100 Subject: [PATCH 09/19] DragonflyBSD compilation fixes --- cmake/os.cmake | 2 +- src/backend/cpu/platform/BasicCpuInfo_arm.cpp | 4 +-- src/base/kernel/Platform_unix.cpp | 28 +++++++++++++------ src/crypto/common/VirtualMemory_unix.cpp | 15 ++++++++-- src/hw/dmi/DmiReader_unix.cpp | 6 ++-- 5 files changed, 38 insertions(+), 17 deletions(-) diff --git a/cmake/os.cmake b/cmake/os.cmake index 02a787dff..19b208b3e 100644 --- a/cmake/os.cmake +++ b/cmake/os.cmake @@ -15,7 +15,7 @@ else() set(XMRIG_OS_ANDROID ON) elseif(CMAKE_SYSTEM_NAME MATCHES "Linux") set(XMRIG_OS_LINUX ON) - elseif(CMAKE_SYSTEM_NAME STREQUAL FreeBSD) + elseif(CMAKE_SYSTEM_NAME STREQUAL FreeBSD OR CMAKE_SYSTEM_NAME STREQUAL DragonFly) set(XMRIG_OS_FREEBSD ON) endif() endif() diff --git a/src/backend/cpu/platform/BasicCpuInfo_arm.cpp b/src/backend/cpu/platform/BasicCpuInfo_arm.cpp index f6edd503c..b684c510f 100644 --- a/src/backend/cpu/platform/BasicCpuInfo_arm.cpp +++ b/src/backend/cpu/platform/BasicCpuInfo_arm.cpp @@ -27,7 +27,7 @@ #if __ARM_FEATURE_CRYPTO && !defined(__APPLE__) # include -# if !defined(__FreeBSD__) && !defined(__DragonFly__) +# if !defined(XMRIG_OS_FREEBSD) # include # else # include @@ -71,7 +71,7 @@ xmrig::BasicCpuInfo::BasicCpuInfo() : # if __ARM_FEATURE_CRYPTO # if defined(__APPLE__) m_flags.set(FLAG_AES, true); -# elif defined(__FreeBSD__) || defined(__DragonFly__) +# elif defined(XMRIG_OS_FREEBSD) uint64_t isar0 = READ_SPECIALREG(id_aa64isar0_el1); m_flags.set(FLAG_AES, ID_AA64ISAR0_AES_VAL(isar0) >= ID_AA64ISAR0_AES_BASE); # else diff --git a/src/base/kernel/Platform_unix.cpp b/src/base/kernel/Platform_unix.cpp index 4c4fe92e9..4ffee2140 100644 --- a/src/base/kernel/Platform_unix.cpp +++ b/src/base/kernel/Platform_unix.cpp @@ -16,10 +16,12 @@ * along with this program. If not, see . */ -#if defined(__FreeBSD__) || defined(__DragonFly__) +#ifdef XMRIG_OS_FREEBSD # include # include -# include +# ifndef __DragonFly__ +# include +# endif # include #endif @@ -41,11 +43,6 @@ #include "version.h" -#if defined(__FreeBSD__) || defined(__DragonFly__) -typedef cpuset_t cpu_set_t; -#endif - - char *xmrig::Platform::createUserAgent() { constexpr const size_t max = 256; @@ -74,6 +71,19 @@ char *xmrig::Platform::createUserAgent() #ifndef XMRIG_FEATURE_HWLOC +#ifdef __DragonFly__ + +bool xmrig::Platform::setThreadAffinity(uint64_t cpu_id) +{ + return true; +} + +#else + +#ifdef XMRIG_OS_FREEBSD +typedef cpuset_t cpu_set_t; +#endif + bool xmrig::Platform::setThreadAffinity(uint64_t cpu_id) { cpu_set_t mn; @@ -89,7 +99,9 @@ bool xmrig::Platform::setThreadAffinity(uint64_t cpu_id) std::this_thread::sleep_for(std::chrono::milliseconds(1)); return result; } -#endif + +#endif // __DragonFly__ +#endif // XMRIG_FEATURE_HWLOC void xmrig::Platform::setProcessPriority(int) diff --git a/src/crypto/common/VirtualMemory_unix.cpp b/src/crypto/common/VirtualMemory_unix.cpp index 1f3be36ba..99b961317 100644 --- a/src/crypto/common/VirtualMemory_unix.cpp +++ b/src/crypto/common/VirtualMemory_unix.cpp @@ -57,6 +57,15 @@ # define MAP_HUGE_MASK 0x3f #endif +#ifdef XMRIG_OS_FREEBSD +# ifndef MAP_ALIGNED_SUPER +# define MAP_ALIGNED_SUPER 0 +# endif +# ifndef MAP_PREFAULT_READ +# define MAP_PREFAULT_READ 0 +# endif +#endif + #ifdef XMRIG_SECURE_JIT # define SECURE_PROT_EXEC 0 @@ -65,7 +74,7 @@ #endif -#if defined(XMRIG_OS_LINUX) || (!defined(XMRIG_OS_APPLE) && !defined(__FreeBSD__) && !defined(__DragonFly__)) +#if defined(XMRIG_OS_LINUX) || (!defined(XMRIG_OS_APPLE) && !defined(XMRIG_OS_FREEBSD)) static inline int hugePagesFlag(size_t size) { return (static_cast(log2(size)) & MAP_HUGE_MASK) << MAP_HUGE_SHIFT; @@ -135,7 +144,7 @@ void *xmrig::VirtualMemory::allocateExecutableMemory(size_t size, bool hugePages # ifdef XMRIG_ARM pthread_jit_write_protect_np(false); # endif -# elif defined(__FreeBSD__) || defined(__DragonFly__) +# elif defined(XMRIG_OS_FREEBSD) void *mem = nullptr; if (hugePages) { @@ -168,7 +177,7 @@ void *xmrig::VirtualMemory::allocateLargePagesMemory(size_t size) { # if defined(XMRIG_OS_APPLE) void *mem = mmap(0, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, VM_FLAGS_SUPERPAGE_SIZE_2MB, 0); -# elif defined(__FreeBSD__) || defined(__DragonFly__) +# elif defined(XMRIG_OS_FREEBSD) void *mem = mmap(0, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_ALIGNED_SUPER | MAP_PREFAULT_READ, -1, 0); # else void *mem = mmap(0, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB | MAP_POPULATE | hugePagesFlag(hugePageSize()), 0, 0); diff --git a/src/hw/dmi/DmiReader_unix.cpp b/src/hw/dmi/DmiReader_unix.cpp index 2f7030fa2..cfc1ee2f8 100644 --- a/src/hw/dmi/DmiReader_unix.cpp +++ b/src/hw/dmi/DmiReader_unix.cpp @@ -31,7 +31,7 @@ #include #include -#if defined(__FreeBSD__) || defined(__DragonFly__) +#ifdef XMRIG_OS_FREEBSD # include #endif @@ -288,7 +288,7 @@ static off_t address_from_efi() const char *filename; char linebuf[64]; off_t address = 0; -# elif defined(__FreeBSD__) || defined(__DragonFly__) +# elif defined(XMRIG_OS_FREEBSD) char addrstr[KENV_MVALLEN + 1]; # endif @@ -310,7 +310,7 @@ static off_t address_from_efi() fclose(efi_systab); return address; -# elif defined(__FreeBSD__) || defined(__DragonFly__) +# elif defined(XMRIG_OS_FREEBSD) if (kenv(KENV_GET, "hint.smbios.0.mem", addrstr, sizeof(addrstr)) == -1) { return EFI_NOT_FOUND; } From 273bb84df8f73d7f28cb705368342215465479fa Mon Sep 17 00:00:00 2001 From: SChernykh Date: Wed, 11 Jan 2023 09:22:13 +0100 Subject: [PATCH 10/19] Show IP address for failed connections --- src/base/net/stratum/Client.cpp | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/base/net/stratum/Client.cpp b/src/base/net/stratum/Client.cpp index 7abb72533..dfe2d6640 100644 --- a/src/base/net/stratum/Client.cpp +++ b/src/base/net/stratum/Client.cpp @@ -1018,7 +1018,7 @@ void xmrig::Client::onConnect(uv_connect_t *req, int status) if (status < 0) { if (!client->isQuiet()) { - LOG_ERR("%s " RED("connect error: ") RED_BOLD("\"%s\""), client->tag(), uv_strerror(status)); + LOG_ERR("%s %s " RED("connect error: ") RED_BOLD("\"%s\""), client->tag(), client->ip().data(), uv_strerror(status)); } if (client->state() == ReconnectingState || client->state() == ClosingState) { From 770b71c69a07888407cc870bea6ecc3e81acc886 Mon Sep 17 00:00:00 2001 From: XMRig Date: Thu, 19 Jan 2023 22:09:59 +0700 Subject: [PATCH 11/19] #3185 Fixed macOS DMI reader. --- src/hw/dmi/DmiReader_mac.cpp | 9 ++++----- 1 file changed, 4 insertions(+), 5 deletions(-) diff --git a/src/hw/dmi/DmiReader_mac.cpp b/src/hw/dmi/DmiReader_mac.cpp index a23bfe47f..bf9eb376a 100644 --- a/src/hw/dmi/DmiReader_mac.cpp +++ b/src/hw/dmi/DmiReader_mac.cpp @@ -1,7 +1,7 @@ /* XMRig * Copyright (c) 2002-2006 Hugo Weber - * Copyright (c) 2018-2021 SChernykh - * Copyright (c) 2016-2021 XMRig , + * Copyright (c) 2018-2023 SChernykh + * Copyright (c) 2016-2023 XMRig , * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by @@ -17,7 +17,6 @@ * along with this program. If not, see . */ - #include "hw/dmi/DmiReader.h" #include "hw/dmi/DmiTools.h" @@ -91,12 +90,12 @@ bool xmrig::DmiReader::read() } CFDataRef data = reinterpret_cast(IORegistryEntryCreateCFProperty(service, CFSTR("SMBIOS-EPS"), kCFAllocatorDefault, kNilOptions)); - if (!data) { + if (!data || CFDataGetLength(data) < 0x1f) { return false; } uint8_t buf[0x20]{}; - CFDataGetBytes(data, CFRangeMake(0, sizeof(buf)), buf); + CFDataGetBytes(data, CFRangeMake(0, sizeof(buf) - 1), buf); CFRelease(data); auto smb = smbios_decode(buf, m_size, m_version, service); From 64b0d9562eded654a5eed7159737d5c9b6ca266b Mon Sep 17 00:00:00 2001 From: SChernykh Date: Sat, 21 Jan 2023 16:02:47 +0100 Subject: [PATCH 12/19] Fixed broken RandomX light mode mining RandomX VMs didn't get updated properly in light mode. --- src/backend/cpu/CpuWorker.cpp | 6 ++++++ src/backend/cpu/CpuWorker.h | 1 + 2 files changed, 7 insertions(+) diff --git a/src/backend/cpu/CpuWorker.cpp b/src/backend/cpu/CpuWorker.cpp index 3eb6e4683..d0047e4b7 100644 --- a/src/backend/cpu/CpuWorker.cpp +++ b/src/backend/cpu/CpuWorker.cpp @@ -33,6 +33,7 @@ #include "crypto/common/Nonce.h" #include "crypto/common/VirtualMemory.h" #include "crypto/rx/Rx.h" +#include "crypto/rx/RxCache.h" #include "crypto/rx/RxDataset.h" #include "crypto/rx/RxVm.h" #include "crypto/ghostrider/ghostrider.h" @@ -145,6 +146,11 @@ void xmrig::CpuWorker::allocateRandomX_VM() uint8_t* scratchpad = m_memory->isHugePages() ? m_memory->scratchpad() : dataset->tryAllocateScrathpad(); m_vm = RxVm::create(dataset, scratchpad ? scratchpad : m_memory->scratchpad(), !m_hwAES, m_assembly, node()); } + else if (!dataset->get() && (m_job.currentJob().seed() != m_seed)) { + // Update RandomX light VM with the new seed + randomx_vm_set_cache(m_vm, dataset->cache()->get()); + } + m_seed = m_job.currentJob().seed(); } #endif diff --git a/src/backend/cpu/CpuWorker.h b/src/backend/cpu/CpuWorker.h index 5fc06fd3e..18e4fed5c 100644 --- a/src/backend/cpu/CpuWorker.h +++ b/src/backend/cpu/CpuWorker.h @@ -97,6 +97,7 @@ private: # ifdef XMRIG_ALGO_RANDOMX randomx_vm *m_vm = nullptr; + Buffer m_seed; # endif # ifdef XMRIG_ALGO_GHOSTRIDER From 3f7533a6457f60f04182fdc23443b429e2177b3e Mon Sep 17 00:00:00 2001 From: XMRig Date: Mon, 23 Jan 2023 20:45:02 +0700 Subject: [PATCH 13/19] Update to latest sse2neon.h. --- src/crypto/cn/sse2neon.h | 3872 +++++++++++++++++--------------------- 1 file changed, 1760 insertions(+), 2112 deletions(-) diff --git a/src/crypto/cn/sse2neon.h b/src/crypto/cn/sse2neon.h index 506fe1879..705e01cd3 100644 --- a/src/crypto/cn/sse2neon.h +++ b/src/crypto/cn/sse2neon.h @@ -4,8 +4,6 @@ // This header file provides a simple API translation layer // between SSE intrinsics to their corresponding Arm/Aarch64 NEON versions // -// This header file does not yet translate all of the SSE intrinsics. -// // Contributors to this work are: // John W. Ratcliff // Brandon Rowlett @@ -13,8 +11,8 @@ // Eric van Beurden // Alexander Potylitsin // Hasindu Gamaarachchi -// Jim Huang -// Mark Cheng +// Jim Huang +// Mark Cheng // Malcolm James MacLeod // Devin Hussey (easyaspi314) // Sebastian Pop @@ -22,7 +20,7 @@ // Danila Kutenin // François Turban (JishinMaster) // Pei-Hsuan Hung -// Yang-Hao Yuan +// Yang-Hao Yuan // Syoyo Fujita // Brecht Van Lommel // Jonathan Hue @@ -111,6 +109,44 @@ #define SSE2NEON_ALLOC_DEFINED #endif +/* If using MSVC */ +#ifdef _MSC_VER +#include +#if (defined(_M_AMD64) || defined(__x86_64__)) || \ + (defined(_M_ARM) || defined(__arm__)) +#define SSE2NEON_HAS_BITSCAN64 +#endif +#endif + +/* Compiler barrier */ +#define SSE2NEON_BARRIER() \ + do { \ + __asm__ __volatile__("" ::: "memory"); \ + (void) 0; \ + } while (0) + +/* Memory barriers + * __atomic_thread_fence does not include a compiler barrier; instead, + * the barrier is part of __atomic_load/__atomic_store's "volatile-like" + * semantics. + */ +#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) +#include +#endif + +FORCE_INLINE void _sse2neon_smp_mb(void) +{ + SSE2NEON_BARRIER(); +#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) && \ + !defined(__STDC_NO_ATOMICS__) + atomic_thread_fence(memory_order_seq_cst); +#elif defined(__GNUC__) || defined(__clang__) + __atomic_thread_fence(__ATOMIC_SEQ_CST); +#else + /* FIXME: MSVC support */ +#endif +} + /* Architecture-specific build options */ /* FIXME: #pragma GCC push_options is only available on GCC */ #if defined(__GNUC__) @@ -151,6 +187,17 @@ #endif #endif +/* Apple Silicon cache lines are double of what is commonly used by Intel, AMD + * and other Arm microarchtectures use. + * From sysctl -a on Apple M1: + * hw.cachelinesize: 128 + */ +#if defined(__APPLE__) && (defined(__aarch64__) || defined(__arm64__)) +#define SSE2NEON_CACHELINE_SIZE 128 +#else +#define SSE2NEON_CACHELINE_SIZE 64 +#endif + /* Rounding functions require either Aarch64 instructions or libm failback */ #if !defined(__aarch64__) #include @@ -394,7 +441,7 @@ typedef int64x2_t __m128i; /* 128-bit vector containing integers */ // by applications which attempt to access the contents of an __m128 struct // directly. It is important to note that accessing the __m128 struct directly // is bad coding practice by Microsoft: @see: -// https://docs.microsoft.com/en-us/cpp/cpp/m128 +// https://learn.microsoft.com/en-us/cpp/cpp/m128 // // However, some legacy source code may try to access the contents of an __m128 // struct directly so the developer can use the SIMDVec as an alias for it. Any @@ -489,6 +536,57 @@ FORCE_INLINE uint8x16x4_t _sse2neon_vld1q_u8_x4(const uint8_t *p) } #endif +#if !defined(__aarch64__) +/* emulate vaddv u8 variant */ +FORCE_INLINE uint8_t _sse2neon_vaddv_u8(uint8x8_t v8) +{ + const uint64x1_t v1 = vpaddl_u32(vpaddl_u16(vpaddl_u8(v8))); + return vget_lane_u8(vreinterpret_u8_u64(v1), 0); +} +#else +// Wraps vaddv_u8 +FORCE_INLINE uint8_t _sse2neon_vaddv_u8(uint8x8_t v8) +{ + return vaddv_u8(v8); +} +#endif + +#if !defined(__aarch64__) +/* emulate vaddvq u8 variant */ +FORCE_INLINE uint8_t _sse2neon_vaddvq_u8(uint8x16_t a) +{ + uint8x8_t tmp = vpadd_u8(vget_low_u8(a), vget_high_u8(a)); + uint8_t res = 0; + for (int i = 0; i < 8; ++i) + res += tmp[i]; + return res; +} +#else +// Wraps vaddvq_u8 +FORCE_INLINE uint8_t _sse2neon_vaddvq_u8(uint8x16_t a) +{ + return vaddvq_u8(a); +} +#endif + +#if !defined(__aarch64__) +/* emulate vaddvq u16 variant */ +FORCE_INLINE uint16_t _sse2neon_vaddvq_u16(uint16x8_t a) +{ + uint32x4_t m = vpaddlq_u16(a); + uint64x2_t n = vpaddlq_u32(m); + uint64x1_t o = vget_low_u64(n) + vget_high_u64(n); + + return vget_lane_u32((uint32x2_t) o, 0); +} +#else +// Wraps vaddvq_u16 +FORCE_INLINE uint16_t _sse2neon_vaddvq_u16(uint16x8_t a) +{ + return vaddvq_u16(a); +} +#endif + /* Function Naming Conventions * The naming convention of SSE intrinsics is straightforward. A generic SSE * intrinsic function is given as follows: @@ -523,59 +621,14 @@ FORCE_INLINE uint8x16x4_t _sse2neon_vld1q_u8_x4(const uint8_t *p) * 4, 5, 12, 13, 6, 7, 14, 15); * // Shuffle packed 8-bit integers * __m128i v_out = _mm_shuffle_epi8(v_in, v_perm); // pshufb - * - * Data (Number, Binary, Byte Index): - +------+------+-------------+------+------+-------------+ - | 1 | 2 | 3 | 4 | Number - +------+------+------+------+------+------+------+------+ - | 0000 | 0001 | 0000 | 0010 | 0000 | 0011 | 0000 | 0100 | Binary - +------+------+------+------+------+------+------+------+ - | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Index - +------+------+------+------+------+------+------+------+ - - +------+------+------+------+------+------+------+------+ - | 5 | 6 | 7 | 8 | Number - +------+------+------+------+------+------+------+------+ - | 0000 | 0101 | 0000 | 0110 | 0000 | 0111 | 0000 | 1000 | Binary - +------+------+------+------+------+------+------+------+ - | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | Index - +------+------+------+------+------+------+------+------+ - * Index (Byte Index): - +------+------+------+------+------+------+------+------+ - | 1 | 0 | 2 | 3 | 8 | 9 | 10 | 11 | - +------+------+------+------+------+------+------+------+ - - +------+------+------+------+------+------+------+------+ - | 4 | 5 | 12 | 13 | 6 | 7 | 14 | 15 | - +------+------+------+------+------+------+------+------+ - * Result: - +------+------+------+------+------+------+------+------+ - | 1 | 0 | 2 | 3 | 8 | 9 | 10 | 11 | Index - +------+------+------+------+------+------+------+------+ - | 0001 | 0000 | 0000 | 0010 | 0000 | 0101 | 0000 | 0110 | Binary - +------+------+------+------+------+------+------+------+ - | 256 | 2 | 5 | 6 | Number - +------+------+------+------+------+------+------+------+ - - +------+------+------+------+------+------+------+------+ - | 4 | 5 | 12 | 13 | 6 | 7 | 14 | 15 | Index - +------+------+------+------+------+------+------+------+ - | 0000 | 0011 | 0000 | 0111 | 0000 | 0100 | 0000 | 1000 | Binary - +------+------+------+------+------+------+------+------+ - | 3 | 7 | 4 | 8 | Number - +------+------+------+------+------+------+-------------+ */ -/* Constants for use with _mm_prefetch. */ +/* Constants for use with _mm_prefetch. */ enum _mm_hint { - _MM_HINT_NTA = 0, /* load data to L1 and L2 cache, mark it as NTA */ - _MM_HINT_T0 = 1, /* load data to L1 and L2 cache */ - _MM_HINT_T1 = 2, /* load data to L2 cache only */ - _MM_HINT_T2 = 3, /* load data to L2 cache only, mark it as NTA */ - _MM_HINT_ENTA = 4, /* exclusive version of _MM_HINT_NTA */ - _MM_HINT_ET0 = 5, /* exclusive version of _MM_HINT_T0 */ - _MM_HINT_ET1 = 6, /* exclusive version of _MM_HINT_T1 */ - _MM_HINT_ET2 = 7 /* exclusive version of _MM_HINT_T2 */ + _MM_HINT_NTA = 0, /* load data to L1 and L2 cache, mark it as NTA */ + _MM_HINT_T0 = 1, /* load data to L1 and L2 cache */ + _MM_HINT_T1 = 2, /* load data to L2 cache only */ + _MM_HINT_T2 = 3, /* load data to L2 cache only, mark it as NTA */ }; // The bit field mapping to the FPCR(floating-point control register) @@ -975,9 +1028,9 @@ FORCE_INLINE __m128i _mm_shuffle_epi_3332(__m128i a) }) #endif -// NEON does not support a general purpose permute intrinsic -// Selects four specific single-precision, floating-point values from a and b, -// based on the mask i. +// NEON does not support a general purpose permute intrinsic. +// Shuffle single-precision (32-bit) floating-point elements in a using the +// control in imm8, and store the results in dst. // // C equivalent: // __m128 _mm_shuffle_ps_default(__m128 a, __m128 b, @@ -988,7 +1041,7 @@ FORCE_INLINE __m128i _mm_shuffle_epi_3332(__m128i a) // return ret; // } // -// https://msdn.microsoft.com/en-us/library/vstudio/5f0858x0(v=vs.100).aspx +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_ps #define _mm_shuffle_ps_default(a, b, imm) \ __extension__({ \ float32x4_t ret; \ @@ -1006,12 +1059,10 @@ FORCE_INLINE __m128i _mm_shuffle_epi_3332(__m128i a) vreinterpretq_m128_f32(ret); \ }) -// Shuffles the lower 4 signed or unsigned 16-bit integers in a as specified -// by imm. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/y41dkk37(v=vs.100) -// FORCE_INLINE __m128i _mm_shufflelo_epi16_function(__m128i a, -// __constrange(0,255) int -// imm) +// Shuffle 16-bit integers in the low 64 bits of a using the control in imm8. +// Store the results in the low 64 bits of dst, with the high 64 bits being +// copied from from a to dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shufflelo_epi16 #define _mm_shufflelo_epi16_function(a, imm) \ __extension__({ \ int16x8_t ret = vreinterpretq_s16_m128i(a); \ @@ -1026,12 +1077,10 @@ FORCE_INLINE __m128i _mm_shuffle_epi_3332(__m128i a) vreinterpretq_m128i_s16(ret); \ }) -// Shuffles the upper 4 signed or unsigned 16-bit integers in a as specified -// by imm. -// https://msdn.microsoft.com/en-us/library/13ywktbs(v=vs.100).aspx -// FORCE_INLINE __m128i _mm_shufflehi_epi16_function(__m128i a, -// __constrange(0,255) int -// imm) +// Shuffle 16-bit integers in the high 64 bits of a using the control in imm8. +// Store the results in the high 64 bits of dst, with the low 64 bits being +// copied from from a to dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shufflehi_epi16 #define _mm_shufflehi_epi16_function(a, imm) \ __extension__({ \ int16x8_t ret = vreinterpretq_s16_m128i(a); \ @@ -1053,22 +1102,19 @@ FORCE_INLINE void _mm_empty(void) {} /* SSE */ -// Adds the four single-precision, floating-point values of a and b. -// -// r0 := a0 + b0 -// r1 := a1 + b1 -// r2 := a2 + b2 -// r3 := a3 + b3 -// -// https://msdn.microsoft.com/en-us/library/vstudio/c9848chc(v=vs.100).aspx +// Add packed single-precision (32-bit) floating-point elements in a and b, and +// store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_ps FORCE_INLINE __m128 _mm_add_ps(__m128 a, __m128 b) { return vreinterpretq_m128_f32( vaddq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); } -// adds the scalar single-precision floating point values of a and b. -// https://msdn.microsoft.com/en-us/library/be94x2y6(v=vs.100).aspx +// Add the lower single-precision (32-bit) floating-point element in a and b, +// store the result in the lower element of dst, and copy the upper 3 packed +// elements from a to the upper elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_ss FORCE_INLINE __m128 _mm_add_ss(__m128 a, __m128 b) { float32_t b0 = vgetq_lane_f32(vreinterpretq_f32_m128(b), 0); @@ -1077,30 +1123,18 @@ FORCE_INLINE __m128 _mm_add_ss(__m128 a, __m128 b) return vreinterpretq_m128_f32(vaddq_f32(a, value)); } -// Computes the bitwise AND of the four single-precision, floating-point values -// of a and b. -// -// r0 := a0 & b0 -// r1 := a1 & b1 -// r2 := a2 & b2 -// r3 := a3 & b3 -// -// https://msdn.microsoft.com/en-us/library/vstudio/73ck1xc5(v=vs.100).aspx +// Compute the bitwise AND of packed single-precision (32-bit) floating-point +// elements in a and b, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_and_ps FORCE_INLINE __m128 _mm_and_ps(__m128 a, __m128 b) { return vreinterpretq_m128_s32( vandq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b))); } -// Computes the bitwise AND-NOT of the four single-precision, floating-point -// values of a and b. -// -// r0 := ~a0 & b0 -// r1 := ~a1 & b1 -// r2 := ~a2 & b2 -// r3 := ~a3 & b3 -// -// https://msdn.microsoft.com/en-us/library/vstudio/68h7wd02(v=vs.100).aspx +// Compute the bitwise NOT of packed single-precision (32-bit) floating-point +// elements in a and then AND with b, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_andnot_ps FORCE_INLINE __m128 _mm_andnot_ps(__m128 a, __m128 b) { return vreinterpretq_m128_s32( @@ -1110,13 +1144,7 @@ FORCE_INLINE __m128 _mm_andnot_ps(__m128 a, __m128 b) // Average packed unsigned 16-bit integers in a and b, and store the results in // dst. -// -// FOR j := 0 to 3 -// i := j*16 -// dst[i+15:i] := (a[i+15:i] + b[i+15:i] + 1) >> 1 -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_avg_pu16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_avg_pu16 FORCE_INLINE __m64 _mm_avg_pu16(__m64 a, __m64 b) { return vreinterpret_m64_u16( @@ -1125,186 +1153,199 @@ FORCE_INLINE __m64 _mm_avg_pu16(__m64 a, __m64 b) // Average packed unsigned 8-bit integers in a and b, and store the results in // dst. -// -// FOR j := 0 to 7 -// i := j*8 -// dst[i+7:i] := (a[i+7:i] + b[i+7:i] + 1) >> 1 -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_avg_pu8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_avg_pu8 FORCE_INLINE __m64 _mm_avg_pu8(__m64 a, __m64 b) { return vreinterpret_m64_u8( vrhadd_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b))); } -// Compares for equality. -// https://msdn.microsoft.com/en-us/library/vstudio/36aectz5(v=vs.100).aspx +// Compare packed single-precision (32-bit) floating-point elements in a and b +// for equality, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_ps FORCE_INLINE __m128 _mm_cmpeq_ps(__m128 a, __m128 b) { return vreinterpretq_m128_u32( vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); } -// Compares for equality. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/k423z28e(v=vs.100) +// Compare the lower single-precision (32-bit) floating-point elements in a and +// b for equality, store the result in the lower element of dst, and copy the +// upper 3 packed elements from a to the upper elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_ss FORCE_INLINE __m128 _mm_cmpeq_ss(__m128 a, __m128 b) { return _mm_move_ss(a, _mm_cmpeq_ps(a, b)); } -// Compares for greater than or equal. -// https://msdn.microsoft.com/en-us/library/vstudio/fs813y2t(v=vs.100).aspx +// Compare packed single-precision (32-bit) floating-point elements in a and b +// for greater-than-or-equal, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpge_ps FORCE_INLINE __m128 _mm_cmpge_ps(__m128 a, __m128 b) { return vreinterpretq_m128_u32( vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); } -// Compares for greater than or equal. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/kesh3ddc(v=vs.100) +// Compare the lower single-precision (32-bit) floating-point elements in a and +// b for greater-than-or-equal, store the result in the lower element of dst, +// and copy the upper 3 packed elements from a to the upper elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpge_ss FORCE_INLINE __m128 _mm_cmpge_ss(__m128 a, __m128 b) { return _mm_move_ss(a, _mm_cmpge_ps(a, b)); } -// Compares for greater than. -// -// r0 := (a0 > b0) ? 0xffffffff : 0x0 -// r1 := (a1 > b1) ? 0xffffffff : 0x0 -// r2 := (a2 > b2) ? 0xffffffff : 0x0 -// r3 := (a3 > b3) ? 0xffffffff : 0x0 -// -// https://msdn.microsoft.com/en-us/library/vstudio/11dy102s(v=vs.100).aspx +// Compare packed single-precision (32-bit) floating-point elements in a and b +// for greater-than, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_ps FORCE_INLINE __m128 _mm_cmpgt_ps(__m128 a, __m128 b) { return vreinterpretq_m128_u32( vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); } -// Compares for greater than. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/1xyyyy9e(v=vs.100) +// Compare the lower single-precision (32-bit) floating-point elements in a and +// b for greater-than, store the result in the lower element of dst, and copy +// the upper 3 packed elements from a to the upper elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_ss FORCE_INLINE __m128 _mm_cmpgt_ss(__m128 a, __m128 b) { return _mm_move_ss(a, _mm_cmpgt_ps(a, b)); } -// Compares for less than or equal. -// -// r0 := (a0 <= b0) ? 0xffffffff : 0x0 -// r1 := (a1 <= b1) ? 0xffffffff : 0x0 -// r2 := (a2 <= b2) ? 0xffffffff : 0x0 -// r3 := (a3 <= b3) ? 0xffffffff : 0x0 -// -// https://msdn.microsoft.com/en-us/library/vstudio/1s75w83z(v=vs.100).aspx +// Compare packed single-precision (32-bit) floating-point elements in a and b +// for less-than-or-equal, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmple_ps FORCE_INLINE __m128 _mm_cmple_ps(__m128 a, __m128 b) { return vreinterpretq_m128_u32( vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); } -// Compares for less than or equal. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/a7x0hbhw(v=vs.100) +// Compare the lower single-precision (32-bit) floating-point elements in a and +// b for less-than-or-equal, store the result in the lower element of dst, and +// copy the upper 3 packed elements from a to the upper elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmple_ss FORCE_INLINE __m128 _mm_cmple_ss(__m128 a, __m128 b) { return _mm_move_ss(a, _mm_cmple_ps(a, b)); } -// Compares for less than -// https://msdn.microsoft.com/en-us/library/vstudio/f330yhc8(v=vs.100).aspx +// Compare packed single-precision (32-bit) floating-point elements in a and b +// for less-than, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_ps FORCE_INLINE __m128 _mm_cmplt_ps(__m128 a, __m128 b) { return vreinterpretq_m128_u32( vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); } -// Compares for less than -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/fy94wye7(v=vs.100) +// Compare the lower single-precision (32-bit) floating-point elements in a and +// b for less-than, store the result in the lower element of dst, and copy the +// upper 3 packed elements from a to the upper elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_ss FORCE_INLINE __m128 _mm_cmplt_ss(__m128 a, __m128 b) { return _mm_move_ss(a, _mm_cmplt_ps(a, b)); } -// Compares for inequality. -// https://msdn.microsoft.com/en-us/library/sf44thbx(v=vs.100).aspx +// Compare packed single-precision (32-bit) floating-point elements in a and b +// for not-equal, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpneq_ps FORCE_INLINE __m128 _mm_cmpneq_ps(__m128 a, __m128 b) { return vreinterpretq_m128_u32(vmvnq_u32( vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)))); } -// Compares for inequality. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/ekya8fh4(v=vs.100) +// Compare the lower single-precision (32-bit) floating-point elements in a and +// b for not-equal, store the result in the lower element of dst, and copy the +// upper 3 packed elements from a to the upper elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpneq_ss FORCE_INLINE __m128 _mm_cmpneq_ss(__m128 a, __m128 b) { return _mm_move_ss(a, _mm_cmpneq_ps(a, b)); } -// Compares for not greater than or equal. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/wsexys62(v=vs.100) +// Compare packed single-precision (32-bit) floating-point elements in a and b +// for not-greater-than-or-equal, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnge_ps FORCE_INLINE __m128 _mm_cmpnge_ps(__m128 a, __m128 b) { return vreinterpretq_m128_u32(vmvnq_u32( vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)))); } -// Compares for not greater than or equal. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/fk2y80s8(v=vs.100) +// Compare the lower single-precision (32-bit) floating-point elements in a and +// b for not-greater-than-or-equal, store the result in the lower element of +// dst, and copy the upper 3 packed elements from a to the upper elements of +// dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnge_ss FORCE_INLINE __m128 _mm_cmpnge_ss(__m128 a, __m128 b) { return _mm_move_ss(a, _mm_cmpnge_ps(a, b)); } -// Compares for not greater than. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/d0xh7w0s(v=vs.100) +// Compare packed single-precision (32-bit) floating-point elements in a and b +// for not-greater-than, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpngt_ps FORCE_INLINE __m128 _mm_cmpngt_ps(__m128 a, __m128 b) { return vreinterpretq_m128_u32(vmvnq_u32( vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)))); } -// Compares for not greater than. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/z7x9ydwh(v=vs.100) +// Compare the lower single-precision (32-bit) floating-point elements in a and +// b for not-greater-than, store the result in the lower element of dst, and +// copy the upper 3 packed elements from a to the upper elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpngt_ss FORCE_INLINE __m128 _mm_cmpngt_ss(__m128 a, __m128 b) { return _mm_move_ss(a, _mm_cmpngt_ps(a, b)); } -// Compares for not less than or equal. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/6a330kxw(v=vs.100) +// Compare packed single-precision (32-bit) floating-point elements in a and b +// for not-less-than-or-equal, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnle_ps FORCE_INLINE __m128 _mm_cmpnle_ps(__m128 a, __m128 b) { return vreinterpretq_m128_u32(vmvnq_u32( vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)))); } -// Compares for not less than or equal. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/z7x9ydwh(v=vs.100) +// Compare the lower single-precision (32-bit) floating-point elements in a and +// b for not-less-than-or-equal, store the result in the lower element of dst, +// and copy the upper 3 packed elements from a to the upper elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnle_ss FORCE_INLINE __m128 _mm_cmpnle_ss(__m128 a, __m128 b) { return _mm_move_ss(a, _mm_cmpnle_ps(a, b)); } -// Compares for not less than. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/4686bbdw(v=vs.100) +// Compare packed single-precision (32-bit) floating-point elements in a and b +// for not-less-than, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnlt_ps FORCE_INLINE __m128 _mm_cmpnlt_ps(__m128 a, __m128 b) { return vreinterpretq_m128_u32(vmvnq_u32( vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)))); } -// Compares for not less than. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/56b9z2wf(v=vs.100) +// Compare the lower single-precision (32-bit) floating-point elements in a and +// b for not-less-than, store the result in the lower element of dst, and copy +// the upper 3 packed elements from a to the upper elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnlt_ss FORCE_INLINE __m128 _mm_cmpnlt_ss(__m128 a, __m128 b) { return _mm_move_ss(a, _mm_cmpnlt_ps(a, b)); } -// Compares the four 32-bit floats in a and b to check if any values are NaN. -// Ordered compare between each value returns true for "orderable" and false for -// "not orderable" (NaN). -// https://msdn.microsoft.com/en-us/library/vstudio/0h9w00fx(v=vs.100).aspx see -// also: +// Compare packed single-precision (32-bit) floating-point elements in a and b +// to see if neither is NaN, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpord_ps +// +// See also: // http://stackoverflow.com/questions/8627331/what-does-ordered-unordered-comparison-mean // http://stackoverflow.com/questions/29349621/neon-isnanval-intrinsics FORCE_INLINE __m128 _mm_cmpord_ps(__m128 a, __m128 b) @@ -1319,15 +1360,18 @@ FORCE_INLINE __m128 _mm_cmpord_ps(__m128 a, __m128 b) return vreinterpretq_m128_u32(vandq_u32(ceqaa, ceqbb)); } -// Compares for ordered. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/343t62da(v=vs.100) +// Compare the lower single-precision (32-bit) floating-point elements in a and +// b to see if neither is NaN, store the result in the lower element of dst, and +// copy the upper 3 packed elements from a to the upper elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpord_ss FORCE_INLINE __m128 _mm_cmpord_ss(__m128 a, __m128 b) { return _mm_move_ss(a, _mm_cmpord_ps(a, b)); } -// Compares for unordered. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/khy6fk1t(v=vs.100) +// Compare packed single-precision (32-bit) floating-point elements in a and b +// to see if either is NaN, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpunord_ps FORCE_INLINE __m128 _mm_cmpunord_ps(__m128 a, __m128 b) { uint32x4_t f32a = @@ -1337,16 +1381,18 @@ FORCE_INLINE __m128 _mm_cmpunord_ps(__m128 a, __m128 b) return vreinterpretq_m128_u32(vmvnq_u32(vandq_u32(f32a, f32b))); } -// Compares for unordered. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/2as2387b(v=vs.100) +// Compare the lower single-precision (32-bit) floating-point elements in a and +// b to see if either is NaN, store the result in the lower element of dst, and +// copy the upper 3 packed elements from a to the upper elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpunord_ss FORCE_INLINE __m128 _mm_cmpunord_ss(__m128 a, __m128 b) { return _mm_move_ss(a, _mm_cmpunord_ps(a, b)); } -// Compares the lower single-precision floating point scalar values of a and b -// using an equality operation. : -// https://msdn.microsoft.com/en-us/library/93yx2h2b(v=vs.100).aspx +// Compare the lower single-precision (32-bit) floating-point element in a and b +// for equality, and return the boolean result (0 or 1). +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comieq_ss FORCE_INLINE int _mm_comieq_ss(__m128 a, __m128 b) { uint32x4_t a_eq_b = @@ -1354,9 +1400,9 @@ FORCE_INLINE int _mm_comieq_ss(__m128 a, __m128 b) return vgetq_lane_u32(a_eq_b, 0) & 0x1; } -// Compares the lower single-precision floating point scalar values of a and b -// using a greater than or equal operation. : -// https://msdn.microsoft.com/en-us/library/8t80des6(v=vs.100).aspx +// Compare the lower single-precision (32-bit) floating-point element in a and b +// for greater-than-or-equal, and return the boolean result (0 or 1). +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comige_ss FORCE_INLINE int _mm_comige_ss(__m128 a, __m128 b) { uint32x4_t a_ge_b = @@ -1364,9 +1410,9 @@ FORCE_INLINE int _mm_comige_ss(__m128 a, __m128 b) return vgetq_lane_u32(a_ge_b, 0) & 0x1; } -// Compares the lower single-precision floating point scalar values of a and b -// using a greater than operation. : -// https://msdn.microsoft.com/en-us/library/b0738e0t(v=vs.100).aspx +// Compare the lower single-precision (32-bit) floating-point element in a and b +// for greater-than, and return the boolean result (0 or 1). +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comigt_ss FORCE_INLINE int _mm_comigt_ss(__m128 a, __m128 b) { uint32x4_t a_gt_b = @@ -1374,9 +1420,9 @@ FORCE_INLINE int _mm_comigt_ss(__m128 a, __m128 b) return vgetq_lane_u32(a_gt_b, 0) & 0x1; } -// Compares the lower single-precision floating point scalar values of a and b -// using a less than or equal operation. : -// https://msdn.microsoft.com/en-us/library/1w4t7c57(v=vs.90).aspx +// Compare the lower single-precision (32-bit) floating-point element in a and b +// for less-than-or-equal, and return the boolean result (0 or 1). +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comile_ss FORCE_INLINE int _mm_comile_ss(__m128 a, __m128 b) { uint32x4_t a_le_b = @@ -1384,11 +1430,9 @@ FORCE_INLINE int _mm_comile_ss(__m128 a, __m128 b) return vgetq_lane_u32(a_le_b, 0) & 0x1; } -// Compares the lower single-precision floating point scalar values of a and b -// using a less than operation. : -// https://msdn.microsoft.com/en-us/library/2kwe606b(v=vs.90).aspx Important -// note!! The documentation on MSDN is incorrect! If either of the values is a -// NAN the docs say you will get a one, but in fact, it will return a zero!! +// Compare the lower single-precision (32-bit) floating-point element in a and b +// for less-than, and return the boolean result (0 or 1). +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comilt_ss FORCE_INLINE int _mm_comilt_ss(__m128 a, __m128 b) { uint32x4_t a_lt_b = @@ -1396,9 +1440,9 @@ FORCE_INLINE int _mm_comilt_ss(__m128 a, __m128 b) return vgetq_lane_u32(a_lt_b, 0) & 0x1; } -// Compares the lower single-precision floating point scalar values of a and b -// using an inequality operation. : -// https://msdn.microsoft.com/en-us/library/bafh5e0a(v=vs.90).aspx +// Compare the lower single-precision (32-bit) floating-point element in a and b +// for not-equal, and return the boolean result (0 or 1). +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comineq_ss FORCE_INLINE int _mm_comineq_ss(__m128 a, __m128 b) { return !_mm_comieq_ss(a, b); @@ -1408,13 +1452,7 @@ FORCE_INLINE int _mm_comineq_ss(__m128 a, __m128 b) // (32-bit) floating-point elements, store the results in the lower 2 elements // of dst, and copy the upper 2 packed elements from a to the upper elements of // dst. -// -// dst[31:0] := Convert_Int32_To_FP32(b[31:0]) -// dst[63:32] := Convert_Int32_To_FP32(b[63:32]) -// dst[95:64] := a[95:64] -// dst[127:96] := a[127:96] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_pi2ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_pi2ps FORCE_INLINE __m128 _mm_cvt_pi2ps(__m128 a, __m64 b) { return vreinterpretq_m128_f32( @@ -1424,13 +1462,7 @@ FORCE_INLINE __m128 _mm_cvt_pi2ps(__m128 a, __m64 b) // Convert packed single-precision (32-bit) floating-point elements in a to // packed 32-bit integers, and store the results in dst. -// -// FOR j := 0 to 1 -// i := 32*j -// dst[i+31:i] := Convert_FP32_To_Int32(a[i+31:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_ps2pi +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_ps2pi FORCE_INLINE __m64 _mm_cvt_ps2pi(__m128 a) { #if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING) @@ -1445,11 +1477,7 @@ FORCE_INLINE __m64 _mm_cvt_ps2pi(__m128 a) // Convert the signed 32-bit integer b to a single-precision (32-bit) // floating-point element, store the result in the lower element of dst, and // copy the upper 3 packed elements from a to the upper elements of dst. -// -// dst[31:0] := Convert_Int32_To_FP32(b[31:0]) -// dst[127:32] := a[127:32] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_si2ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_si2ss FORCE_INLINE __m128 _mm_cvt_si2ss(__m128 a, int b) { return vreinterpretq_m128_f32( @@ -1458,7 +1486,7 @@ FORCE_INLINE __m128 _mm_cvt_si2ss(__m128 a, int b) // Convert the lower single-precision (32-bit) floating-point element in a to a // 32-bit integer, and store the result in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvt_ss2si +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_ss2si FORCE_INLINE int _mm_cvt_ss2si(__m128 a) { #if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING) @@ -1473,14 +1501,7 @@ FORCE_INLINE int _mm_cvt_ss2si(__m128 a) // Convert packed 16-bit integers in a to packed single-precision (32-bit) // floating-point elements, and store the results in dst. -// -// FOR j := 0 to 3 -// i := j*16 -// m := j*32 -// dst[m+31:m] := Convert_Int16_To_FP32(a[i+15:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi16_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi16_ps FORCE_INLINE __m128 _mm_cvtpi16_ps(__m64 a) { return vreinterpretq_m128_f32( @@ -1490,13 +1511,7 @@ FORCE_INLINE __m128 _mm_cvtpi16_ps(__m64 a) // Convert packed 32-bit integers in b to packed single-precision (32-bit) // floating-point elements, store the results in the lower 2 elements of dst, // and copy the upper 2 packed elements from a to the upper elements of dst. -// -// dst[31:0] := Convert_Int32_To_FP32(b[31:0]) -// dst[63:32] := Convert_Int32_To_FP32(b[63:32]) -// dst[95:64] := a[95:64] -// dst[127:96] := a[127:96] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi32_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi32_ps FORCE_INLINE __m128 _mm_cvtpi32_ps(__m128 a, __m64 b) { return vreinterpretq_m128_f32( @@ -1509,13 +1524,7 @@ FORCE_INLINE __m128 _mm_cvtpi32_ps(__m128 a, __m64 b) // of dst, then convert the packed signed 32-bit integers in b to // single-precision (32-bit) floating-point element, and store the results in // the upper 2 elements of dst. -// -// dst[31:0] := Convert_Int32_To_FP32(a[31:0]) -// dst[63:32] := Convert_Int32_To_FP32(a[63:32]) -// dst[95:64] := Convert_Int32_To_FP32(b[31:0]) -// dst[127:96] := Convert_Int32_To_FP32(b[63:32]) -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi32x2_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi32x2_ps FORCE_INLINE __m128 _mm_cvtpi32x2_ps(__m64 a, __m64 b) { return vreinterpretq_m128_f32(vcvtq_f32_s32( @@ -1524,14 +1533,7 @@ FORCE_INLINE __m128 _mm_cvtpi32x2_ps(__m64 a, __m64 b) // Convert the lower packed 8-bit integers in a to packed single-precision // (32-bit) floating-point elements, and store the results in dst. -// -// FOR j := 0 to 3 -// i := j*8 -// m := j*32 -// dst[m+31:m] := Convert_Int8_To_FP32(a[i+7:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi8_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi8_ps FORCE_INLINE __m128 _mm_cvtpi8_ps(__m64 a) { return vreinterpretq_m128_f32(vcvtq_f32_s32( @@ -1542,18 +1544,7 @@ FORCE_INLINE __m128 _mm_cvtpi8_ps(__m64 a) // packed 16-bit integers, and store the results in dst. Note: this intrinsic // will generate 0x7FFF, rather than 0x8000, for input values between 0x7FFF and // 0x7FFFFFFF. -// -// FOR j := 0 to 3 -// i := 16*j -// k := 32*j -// IF a[k+31:k] >= FP32(0x7FFF) && a[k+31:k] <= FP32(0x7FFFFFFF) -// dst[i+15:i] := 0x7FFF -// ELSE -// dst[i+15:i] := Convert_FP32_To_Int16(a[k+31:k]) -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pi16 FORCE_INLINE __m64 _mm_cvtps_pi16(__m128 a) { return vreinterpret_m64_s16( @@ -1562,31 +1553,14 @@ FORCE_INLINE __m64 _mm_cvtps_pi16(__m128 a) // Convert packed single-precision (32-bit) floating-point elements in a to // packed 32-bit integers, and store the results in dst. -// -// FOR j := 0 to 1 -// i := 32*j -// dst[i+31:i] := Convert_FP32_To_Int32(a[i+31:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_pi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pi32 #define _mm_cvtps_pi32(a) _mm_cvt_ps2pi(a) // Convert packed single-precision (32-bit) floating-point elements in a to // packed 8-bit integers, and store the results in lower 4 elements of dst. // Note: this intrinsic will generate 0x7F, rather than 0x80, for input values // between 0x7F and 0x7FFFFFFF. -// -// FOR j := 0 to 3 -// i := 8*j -// k := 32*j -// IF a[k+31:k] >= FP32(0x7F) && a[k+31:k] <= FP32(0x7FFFFFFF) -// dst[i+7:i] := 0x7F -// ELSE -// dst[i+7:i] := Convert_FP32_To_Int8(a[k+31:k]) -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_pi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pi8 FORCE_INLINE __m64 _mm_cvtps_pi8(__m128 a) { return vreinterpret_m64_s8(vqmovn_s16( @@ -1595,14 +1569,7 @@ FORCE_INLINE __m64 _mm_cvtps_pi8(__m128 a) // Convert packed unsigned 16-bit integers in a to packed single-precision // (32-bit) floating-point elements, and store the results in dst. -// -// FOR j := 0 to 3 -// i := j*16 -// m := j*32 -// dst[m+31:m] := Convert_UInt16_To_FP32(a[i+15:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpu16_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpu16_ps FORCE_INLINE __m128 _mm_cvtpu16_ps(__m64 a) { return vreinterpretq_m128_f32( @@ -1612,14 +1579,7 @@ FORCE_INLINE __m128 _mm_cvtpu16_ps(__m64 a) // Convert the lower packed unsigned 8-bit integers in a to packed // single-precision (32-bit) floating-point elements, and store the results in // dst. -// -// FOR j := 0 to 3 -// i := j*8 -// m := j*32 -// dst[m+31:m] := Convert_UInt8_To_FP32(a[i+7:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpu8_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpu8_ps FORCE_INLINE __m128 _mm_cvtpu8_ps(__m64 a) { return vreinterpretq_m128_f32(vcvtq_f32_u32( @@ -1629,21 +1589,13 @@ FORCE_INLINE __m128 _mm_cvtpu8_ps(__m64 a) // Convert the signed 32-bit integer b to a single-precision (32-bit) // floating-point element, store the result in the lower element of dst, and // copy the upper 3 packed elements from a to the upper elements of dst. -// -// dst[31:0] := Convert_Int32_To_FP32(b[31:0]) -// dst[127:32] := a[127:32] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi32_ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi32_ss #define _mm_cvtsi32_ss(a, b) _mm_cvt_si2ss(a, b) // Convert the signed 64-bit integer b to a single-precision (32-bit) // floating-point element, store the result in the lower element of dst, and // copy the upper 3 packed elements from a to the upper elements of dst. -// -// dst[31:0] := Convert_Int64_To_FP32(b[63:0]) -// dst[127:32] := a[127:32] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi64_ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64_ss FORCE_INLINE __m128 _mm_cvtsi64_ss(__m128 a, int64_t b) { return vreinterpretq_m128_f32( @@ -1651,10 +1603,7 @@ FORCE_INLINE __m128 _mm_cvtsi64_ss(__m128 a, int64_t b) } // Copy the lower single-precision (32-bit) floating-point element of a to dst. -// -// dst[31:0] := a[31:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_f32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_f32 FORCE_INLINE float _mm_cvtss_f32(__m128 a) { return vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); @@ -1662,18 +1611,12 @@ FORCE_INLINE float _mm_cvtss_f32(__m128 a) // Convert the lower single-precision (32-bit) floating-point element in a to a // 32-bit integer, and store the result in dst. -// -// dst[31:0] := Convert_FP32_To_Int32(a[31:0]) -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_si32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_si32 #define _mm_cvtss_si32(a) _mm_cvt_ss2si(a) // Convert the lower single-precision (32-bit) floating-point element in a to a // 64-bit integer, and store the result in dst. -// -// dst[63:0] := Convert_FP32_To_Int64(a[31:0]) -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_si64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_si64 FORCE_INLINE int64_t _mm_cvtss_si64(__m128 a) { #if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING) @@ -1687,13 +1630,7 @@ FORCE_INLINE int64_t _mm_cvtss_si64(__m128 a) // Convert packed single-precision (32-bit) floating-point elements in a to // packed 32-bit integers with truncation, and store the results in dst. -// -// FOR j := 0 to 1 -// i := 32*j -// dst[i+31:i] := Convert_FP32_To_Int32_Truncate(a[i+31:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtt_ps2pi +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtt_ps2pi FORCE_INLINE __m64 _mm_cvtt_ps2pi(__m128 a) { return vreinterpret_m64_s32( @@ -1702,10 +1639,7 @@ FORCE_INLINE __m64 _mm_cvtt_ps2pi(__m128 a) // Convert the lower single-precision (32-bit) floating-point element in a to a // 32-bit integer with truncation, and store the result in dst. -// -// dst[31:0] := Convert_FP32_To_Int32_Truncate(a[31:0]) -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtt_ss2si +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtt_ss2si FORCE_INLINE int _mm_cvtt_ss2si(__m128 a) { return vgetq_lane_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a)), 0); @@ -1713,42 +1647,25 @@ FORCE_INLINE int _mm_cvtt_ss2si(__m128 a) // Convert packed single-precision (32-bit) floating-point elements in a to // packed 32-bit integers with truncation, and store the results in dst. -// -// FOR j := 0 to 1 -// i := 32*j -// dst[i+31:i] := Convert_FP32_To_Int32_Truncate(a[i+31:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttps_pi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttps_pi32 #define _mm_cvttps_pi32(a) _mm_cvtt_ps2pi(a) // Convert the lower single-precision (32-bit) floating-point element in a to a // 32-bit integer with truncation, and store the result in dst. -// -// dst[31:0] := Convert_FP32_To_Int32_Truncate(a[31:0]) -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttss_si32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttss_si32 #define _mm_cvttss_si32(a) _mm_cvtt_ss2si(a) // Convert the lower single-precision (32-bit) floating-point element in a to a // 64-bit integer with truncation, and store the result in dst. -// -// dst[63:0] := Convert_FP32_To_Int64_Truncate(a[31:0]) -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttss_si64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttss_si64 FORCE_INLINE int64_t _mm_cvttss_si64(__m128 a) { return (int64_t) vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); } -// Divides the four single-precision, floating-point values of a and b. -// -// r0 := a0 / b0 -// r1 := a1 / b1 -// r2 := a2 / b2 -// r3 := a3 / b3 -// -// https://msdn.microsoft.com/en-us/library/edaw8147(v=vs.100).aspx +// Divide packed single-precision (32-bit) floating-point elements in a by +// packed elements in b, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_div_ps FORCE_INLINE __m128 _mm_div_ps(__m128 a, __m128 b) { #if defined(__aarch64__) && !SSE2NEON_PRECISE_DIV @@ -1765,8 +1682,11 @@ FORCE_INLINE __m128 _mm_div_ps(__m128 a, __m128 b) #endif } -// Divides the scalar single-precision floating point value of a by b. -// https://msdn.microsoft.com/en-us/library/4y73xa49(v=vs.100).aspx +// Divide the lower single-precision (32-bit) floating-point element in a by the +// lower single-precision (32-bit) floating-point element in b, store the result +// in the lower element of dst, and copy the upper 3 packed elements from a to +// the upper elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_div_ss FORCE_INLINE __m128 _mm_div_ss(__m128 a, __m128 b) { float32_t value = @@ -1777,12 +1697,12 @@ FORCE_INLINE __m128 _mm_div_ss(__m128 a, __m128 b) // Extract a 16-bit integer from a, selected with imm8, and store the result in // the lower element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_extract_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_pi16 #define _mm_extract_pi16(a, imm) \ (int32_t) vget_lane_u16(vreinterpret_u16_m64(a), (imm)) // Free aligned memory that was allocated with _mm_malloc. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_free +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_free #if !defined(SSE2NEON_ALLOC_DEFINED) FORCE_INLINE void _mm_free(void *addr) { @@ -1793,7 +1713,7 @@ FORCE_INLINE void _mm_free(void *addr) // Macro: Get the flush zero bits from the MXCSR control and status register. // The flush zero may contain any of the following flags: _MM_FLUSH_ZERO_ON or // _MM_FLUSH_ZERO_OFF -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_MM_GET_FLUSH_ZERO_MODE +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_GET_FLUSH_ZERO_MODE FORCE_INLINE unsigned int _sse2neon_mm_get_flush_zero_mode() { union { @@ -1817,7 +1737,7 @@ FORCE_INLINE unsigned int _sse2neon_mm_get_flush_zero_mode() // Macro: Get the rounding mode bits from the MXCSR control and status register. // The rounding mode may contain any of the following flags: _MM_ROUND_NEAREST, // _MM_ROUND_DOWN, _MM_ROUND_UP, _MM_ROUND_TOWARD_ZERO -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_MM_GET_ROUNDING_MODE +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_GET_ROUNDING_MODE FORCE_INLINE unsigned int _MM_GET_ROUNDING_MODE() { union { @@ -1844,15 +1764,17 @@ FORCE_INLINE unsigned int _MM_GET_ROUNDING_MODE() // Copy a to dst, and insert the 16-bit integer i into dst at the location // specified by imm8. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_insert_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_pi16 #define _mm_insert_pi16(a, b, imm) \ __extension__({ \ vreinterpret_m64_s16( \ vset_lane_s16((b), vreinterpret_s16_m64(a), (imm))); \ }) -// Loads four single-precision, floating-point values. -// https://msdn.microsoft.com/en-us/library/vstudio/zzd50xxt(v=vs.100).aspx +// Load 128-bits (composed of 4 packed single-precision (32-bit) floating-point +// elements) from memory into dst. mem_addr must be aligned on a 16-byte +// boundary or a general-protection exception may be generated. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_ps FORCE_INLINE __m128 _mm_load_ps(const float *p) { return vreinterpretq_m128_f32(vld1q_f32(p)); @@ -1866,52 +1788,40 @@ FORCE_INLINE __m128 _mm_load_ps(const float *p) // dst[95:64] := MEM[mem_addr+31:mem_addr] // dst[127:96] := MEM[mem_addr+31:mem_addr] // -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_ps1 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_ps1 #define _mm_load_ps1 _mm_load1_ps -// Loads an single - precision, floating - point value into the low word and -// clears the upper three words. -// https://msdn.microsoft.com/en-us/library/548bb9h4%28v=vs.90%29.aspx +// Load a single-precision (32-bit) floating-point element from memory into the +// lower of dst, and zero the upper 3 elements. mem_addr does not need to be +// aligned on any particular boundary. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_ss FORCE_INLINE __m128 _mm_load_ss(const float *p) { return vreinterpretq_m128_f32(vsetq_lane_f32(*p, vdupq_n_f32(0), 0)); } -// Loads a single single-precision, floating-point value, copying it into all -// four words -// https://msdn.microsoft.com/en-us/library/vstudio/5cdkf716(v=vs.100).aspx +// Load a single-precision (32-bit) floating-point element from memory into all +// elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load1_ps FORCE_INLINE __m128 _mm_load1_ps(const float *p) { return vreinterpretq_m128_f32(vld1q_dup_f32(p)); } -// Sets the upper two single-precision, floating-point values with 64 -// bits of data loaded from the address p; the lower two values are passed -// through from a. -// -// r0 := a0 -// r1 := a1 -// r2 := *p0 -// r3 := *p1 -// -// https://msdn.microsoft.com/en-us/library/w92wta0x(v%3dvs.100).aspx +// Load 2 single-precision (32-bit) floating-point elements from memory into the +// upper 2 elements of dst, and copy the lower 2 elements from a to dst. +// mem_addr does not need to be aligned on any particular boundary. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadh_pi FORCE_INLINE __m128 _mm_loadh_pi(__m128 a, __m64 const *p) { return vreinterpretq_m128_f32( vcombine_f32(vget_low_f32(a), vld1_f32((const float32_t *) p))); } -// Sets the lower two single-precision, floating-point values with 64 -// bits of data loaded from the address p; the upper two values are passed -// through from a. -// -// Return Value -// r0 := *p0 -// r1 := *p1 -// r2 := a2 -// r3 := a3 -// -// https://msdn.microsoft.com/en-us/library/s57cyak2(v=vs.100).aspx +// Load 2 single-precision (32-bit) floating-point elements from memory into the +// lower 2 elements of dst, and copy the upper 2 elements from a to dst. +// mem_addr does not need to be aligned on any particular boundary. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadl_pi FORCE_INLINE __m128 _mm_loadl_pi(__m128 a, __m64 const *p) { return vreinterpretq_m128_f32( @@ -1921,21 +1831,17 @@ FORCE_INLINE __m128 _mm_loadl_pi(__m128 a, __m64 const *p) // Load 4 single-precision (32-bit) floating-point elements from memory into dst // in reverse order. mem_addr must be aligned on a 16-byte boundary or a // general-protection exception may be generated. -// -// dst[31:0] := MEM[mem_addr+127:mem_addr+96] -// dst[63:32] := MEM[mem_addr+95:mem_addr+64] -// dst[95:64] := MEM[mem_addr+63:mem_addr+32] -// dst[127:96] := MEM[mem_addr+31:mem_addr] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadr_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadr_ps FORCE_INLINE __m128 _mm_loadr_ps(const float *p) { float32x4_t v = vrev64q_f32(vld1q_f32(p)); return vreinterpretq_m128_f32(vextq_f32(v, v, 2)); } -// Loads four single-precision, floating-point values. -// https://msdn.microsoft.com/en-us/library/x1b16s7z%28v=vs.90%29.aspx +// Load 128-bits (composed of 4 packed single-precision (32-bit) floating-point +// elements) from memory into dst. mem_addr does not need to be aligned on any +// particular boundary. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_ps FORCE_INLINE __m128 _mm_loadu_ps(const float *p) { // for neon, alignment doesn't matter, so _mm_load_ps and _mm_loadu_ps are @@ -1944,11 +1850,7 @@ FORCE_INLINE __m128 _mm_loadu_ps(const float *p) } // Load unaligned 16-bit integer from memory into the first element of dst. -// -// dst[15:0] := MEM[mem_addr+15:mem_addr] -// dst[MAX:16] := 0 -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_si16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_si16 FORCE_INLINE __m128i _mm_loadu_si16(const void *p) { return vreinterpretq_m128i_s16( @@ -1956,20 +1858,17 @@ FORCE_INLINE __m128i _mm_loadu_si16(const void *p) } // Load unaligned 64-bit integer from memory into the first element of dst. -// -// dst[63:0] := MEM[mem_addr+63:mem_addr] -// dst[MAX:64] := 0 -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_si64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_si64 FORCE_INLINE __m128i _mm_loadu_si64(const void *p) { return vreinterpretq_m128i_s64( vcombine_s64(vld1_s64((const int64_t *) p), vdup_n_s64(0))); } -// Allocate aligned blocks of memory. -// https://software.intel.com/en-us/ -// cpp-compiler-developer-guide-and-reference-allocating-and-freeing-aligned-memory-blocks +// Allocate size bytes of memory, aligned to the alignment specified in align, +// and return a pointer to the allocated memory. _mm_free should be used to free +// memory that is allocated with _mm_malloc. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_malloc #if !defined(SSE2NEON_ALLOC_DEFINED) FORCE_INLINE void *_mm_malloc(size_t size, size_t align) { @@ -1987,7 +1886,7 @@ FORCE_INLINE void *_mm_malloc(size_t size, size_t align) // Conditionally store 8-bit integer elements from a into memory using mask // (elements are not stored when the highest bit is not set in the corresponding // element) and a non-temporal memory hint. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskmove_si64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskmove_si64 FORCE_INLINE void _mm_maskmove_si64(__m64 a, __m64 mask, char *mem_addr) { int8x8_t shr_mask = vshr_n_s8(vreinterpret_s8_m64(mask), 7); @@ -2001,27 +1900,23 @@ FORCE_INLINE void _mm_maskmove_si64(__m64 a, __m64 mask, char *mem_addr) // Conditionally store 8-bit integer elements from a into memory using mask // (elements are not stored when the highest bit is not set in the corresponding // element) and a non-temporal memory hint. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_maskmovq +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_maskmovq #define _m_maskmovq(a, mask, mem_addr) _mm_maskmove_si64(a, mask, mem_addr) // Compare packed signed 16-bit integers in a and b, and store packed maximum // values in dst. -// -// FOR j := 0 to 3 -// i := j*16 -// dst[i+15:i] := MAX(a[i+15:i], b[i+15:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_pi16 FORCE_INLINE __m64 _mm_max_pi16(__m64 a, __m64 b) { return vreinterpret_m64_s16( vmax_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b))); } -// Computes the maximums of the four single-precision, floating-point values of -// a and b. -// https://msdn.microsoft.com/en-us/library/vstudio/ff5d607a(v=vs.100).aspx +// Compare packed single-precision (32-bit) floating-point elements in a and b, +// and store packed maximum values in dst. dst does not follow the IEEE Standard +// for Floating-Point Arithmetic (IEEE 754) maximum value when inputs are NaN or +// signed-zero values. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_ps FORCE_INLINE __m128 _mm_max_ps(__m128 a, __m128 b) { #if SSE2NEON_PRECISE_MINMAX @@ -2036,22 +1931,19 @@ FORCE_INLINE __m128 _mm_max_ps(__m128 a, __m128 b) // Compare packed unsigned 8-bit integers in a and b, and store packed maximum // values in dst. -// -// FOR j := 0 to 7 -// i := j*8 -// dst[i+7:i] := MAX(a[i+7:i], b[i+7:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_pu8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_pu8 FORCE_INLINE __m64 _mm_max_pu8(__m64 a, __m64 b) { return vreinterpret_m64_u8( vmax_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b))); } -// Computes the maximum of the two lower scalar single-precision floating point -// values of a and b. -// https://msdn.microsoft.com/en-us/library/s6db5esz(v=vs.100).aspx +// Compare the lower single-precision (32-bit) floating-point elements in a and +// b, store the maximum value in the lower element of dst, and copy the upper 3 +// packed elements from a to the upper element of dst. dst does not follow the +// IEEE Standard for Floating-Point Arithmetic (IEEE 754) maximum value when +// inputs are NaN or signed-zero values. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_ss FORCE_INLINE __m128 _mm_max_ss(__m128 a, __m128 b) { float32_t value = vgetq_lane_f32(_mm_max_ps(a, b), 0); @@ -2061,22 +1953,18 @@ FORCE_INLINE __m128 _mm_max_ss(__m128 a, __m128 b) // Compare packed signed 16-bit integers in a and b, and store packed minimum // values in dst. -// -// FOR j := 0 to 3 -// i := j*16 -// dst[i+15:i] := MIN(a[i+15:i], b[i+15:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_pi16 FORCE_INLINE __m64 _mm_min_pi16(__m64 a, __m64 b) { return vreinterpret_m64_s16( vmin_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b))); } -// Computes the minima of the four single-precision, floating-point values of a -// and b. -// https://msdn.microsoft.com/en-us/library/vstudio/wh13kadz(v=vs.100).aspx +// Compare packed single-precision (32-bit) floating-point elements in a and b, +// and store packed minimum values in dst. dst does not follow the IEEE Standard +// for Floating-Point Arithmetic (IEEE 754) minimum value when inputs are NaN or +// signed-zero values. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_ps FORCE_INLINE __m128 _mm_min_ps(__m128 a, __m128 b) { #if SSE2NEON_PRECISE_MINMAX @@ -2091,22 +1979,19 @@ FORCE_INLINE __m128 _mm_min_ps(__m128 a, __m128 b) // Compare packed unsigned 8-bit integers in a and b, and store packed minimum // values in dst. -// -// FOR j := 0 to 7 -// i := j*8 -// dst[i+7:i] := MIN(a[i+7:i], b[i+7:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_pu8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_pu8 FORCE_INLINE __m64 _mm_min_pu8(__m64 a, __m64 b) { return vreinterpret_m64_u8( vmin_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b))); } -// Computes the minimum of the two lower scalar single-precision floating point -// values of a and b. -// https://msdn.microsoft.com/en-us/library/0a9y7xaa(v=vs.100).aspx +// Compare the lower single-precision (32-bit) floating-point elements in a and +// b, store the minimum value in the lower element of dst, and copy the upper 3 +// packed elements from a to the upper element of dst. dst does not follow the +// IEEE Standard for Floating-Point Arithmetic (IEEE 754) minimum value when +// inputs are NaN or signed-zero values. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_ss FORCE_INLINE __m128 _mm_min_ss(__m128 a, __m128 b) { float32_t value = vgetq_lane_f32(_mm_min_ps(a, b), 0); @@ -2114,8 +1999,10 @@ FORCE_INLINE __m128 _mm_min_ss(__m128 a, __m128 b) vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0)); } -// Sets the low word to the single-precision, floating-point value of b -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/35hdzazd(v=vs.100) +// Move the lower single-precision (32-bit) floating-point element from b to the +// lower element of dst, and copy the upper 3 packed elements from a to the +// upper elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_move_ss FORCE_INLINE __m128 _mm_move_ss(__m128 a, __m128 b) { return vreinterpretq_m128_f32( @@ -2123,25 +2010,26 @@ FORCE_INLINE __m128 _mm_move_ss(__m128 a, __m128 b) vreinterpretq_f32_m128(a), 0)); } -// Moves the upper two values of B into the lower two values of A. -// -// r3 := a3 -// r2 := a2 -// r1 := b3 -// r0 := b2 -FORCE_INLINE __m128 _mm_movehl_ps(__m128 __A, __m128 __B) +// Move the upper 2 single-precision (32-bit) floating-point elements from b to +// the lower 2 elements of dst, and copy the upper 2 elements from a to the +// upper 2 elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movehl_ps +FORCE_INLINE __m128 _mm_movehl_ps(__m128 a, __m128 b) { - float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(__A)); - float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(__B)); +#if defined(aarch64__) + return vreinterpretq_m128_u64( + vzip2q_u64(vreinterpretq_u64_m128(b), vreinterpretq_u64_m128(a))); +#else + float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a)); + float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b)); return vreinterpretq_m128_f32(vcombine_f32(b32, a32)); +#endif } -// Moves the lower two values of B into the upper two values of A. -// -// r3 := b1 -// r2 := b0 -// r1 := a1 -// r0 := a0 +// Move the lower 2 single-precision (32-bit) floating-point elements from b to +// the upper 2 elements of dst, and copy the lower 2 elements from a to the +// lower 2 elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movelh_ps FORCE_INLINE __m128 _mm_movelh_ps(__m128 __A, __m128 __B) { float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(__A)); @@ -2151,7 +2039,7 @@ FORCE_INLINE __m128 _mm_movelh_ps(__m128 __A, __m128 __B) // Create mask from the most significant bit of each 8-bit element in a, and // store the result in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movemask_pi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movemask_pi8 FORCE_INLINE int _mm_movemask_pi8(__m64 a) { uint8x8_t input = vreinterpret_u8_m64(a); @@ -2170,10 +2058,9 @@ FORCE_INLINE int _mm_movemask_pi8(__m64 a) #endif } -// NEON does not provide this method -// Creates a 4-bit mask from the most significant bits of the four -// single-precision, floating-point values. -// https://msdn.microsoft.com/en-us/library/vstudio/4490ys29(v=vs.100).aspx +// Set each bit of mask dst based on the most significant bit of the +// corresponding packed single-precision (32-bit) floating-point element in a. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movemask_ps FORCE_INLINE int _mm_movemask_ps(__m128 a) { uint32x4_t input = vreinterpretq_u32_m128(a); @@ -2194,14 +2081,9 @@ FORCE_INLINE int _mm_movemask_ps(__m128 a) #endif } -// Multiplies the four single-precision, floating-point values of a and b. -// -// r0 := a0 * b0 -// r1 := a1 * b1 -// r2 := a2 * b2 -// r3 := a3 * b3 -// -// https://msdn.microsoft.com/en-us/library/vstudio/22kbk6t9(v=vs.100).aspx +// Multiply packed single-precision (32-bit) floating-point elements in a and b, +// and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_ps FORCE_INLINE __m128 _mm_mul_ps(__m128 a, __m128 b) { return vreinterpretq_m128_f32( @@ -2211,11 +2093,7 @@ FORCE_INLINE __m128 _mm_mul_ps(__m128 a, __m128 b) // Multiply the lower single-precision (32-bit) floating-point element in a and // b, store the result in the lower element of dst, and copy the upper 3 packed // elements from a to the upper elements of dst. -// -// dst[31:0] := a[31:0] * b[31:0] -// dst[127:32] := a[127:32] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mul_ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_ss FORCE_INLINE __m128 _mm_mul_ss(__m128 a, __m128 b) { return _mm_move_ss(a, _mm_mul_ps(a, b)); @@ -2224,16 +2102,16 @@ FORCE_INLINE __m128 _mm_mul_ss(__m128 a, __m128 b) // Multiply the packed unsigned 16-bit integers in a and b, producing // intermediate 32-bit integers, and store the high 16 bits of the intermediate // integers in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mulhi_pu16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhi_pu16 FORCE_INLINE __m64 _mm_mulhi_pu16(__m64 a, __m64 b) { return vreinterpret_m64_u16(vshrn_n_u32( vmull_u16(vreinterpret_u16_m64(a), vreinterpret_u16_m64(b)), 16)); } -// Computes the bitwise OR of the four single-precision, floating-point values -// of a and b. -// https://msdn.microsoft.com/en-us/library/vstudio/7ctdsyy0(v=vs.100).aspx +// Compute the bitwise OR of packed single-precision (32-bit) floating-point +// elements in a and b, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_or_ps FORCE_INLINE __m128 _mm_or_ps(__m128 a, __m128 b) { return vreinterpretq_m128_s32( @@ -2242,91 +2120,92 @@ FORCE_INLINE __m128 _mm_or_ps(__m128 a, __m128 b) // Average packed unsigned 8-bit integers in a and b, and store the results in // dst. -// -// FOR j := 0 to 7 -// i := j*8 -// dst[i+7:i] := (a[i+7:i] + b[i+7:i] + 1) >> 1 -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pavgb +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pavgb #define _m_pavgb(a, b) _mm_avg_pu8(a, b) // Average packed unsigned 16-bit integers in a and b, and store the results in // dst. -// -// FOR j := 0 to 3 -// i := j*16 -// dst[i+15:i] := (a[i+15:i] + b[i+15:i] + 1) >> 1 -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pavgw +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pavgw #define _m_pavgw(a, b) _mm_avg_pu16(a, b) // Extract a 16-bit integer from a, selected with imm8, and store the result in // the lower element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pextrw +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pextrw #define _m_pextrw(a, imm) _mm_extract_pi16(a, imm) // Copy a to dst, and insert the 16-bit integer i into dst at the location // specified by imm8. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=m_pinsrw +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=m_pinsrw #define _m_pinsrw(a, i, imm) _mm_insert_pi16(a, i, imm) // Compare packed signed 16-bit integers in a and b, and store packed maximum // values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmaxsw +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmaxsw #define _m_pmaxsw(a, b) _mm_max_pi16(a, b) // Compare packed unsigned 8-bit integers in a and b, and store packed maximum // values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmaxub +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmaxub #define _m_pmaxub(a, b) _mm_max_pu8(a, b) // Compare packed signed 16-bit integers in a and b, and store packed minimum // values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pminsw +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pminsw #define _m_pminsw(a, b) _mm_min_pi16(a, b) // Compare packed unsigned 8-bit integers in a and b, and store packed minimum // values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pminub +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pminub #define _m_pminub(a, b) _mm_min_pu8(a, b) // Create mask from the most significant bit of each 8-bit element in a, and // store the result in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmovmskb +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmovmskb #define _m_pmovmskb(a) _mm_movemask_pi8(a) // Multiply the packed unsigned 16-bit integers in a and b, producing // intermediate 32-bit integers, and store the high 16 bits of the intermediate // integers in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pmulhuw +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmulhuw #define _m_pmulhuw(a, b) _mm_mulhi_pu16(a, b) -// Loads one cache line of data from address p to a location closer to the -// processor. https://msdn.microsoft.com/en-us/library/84szxsww(v=vs.100).aspx -FORCE_INLINE void _mm_prefetch(const void *p, int i) +// Fetch the line of data from memory that contains address p to a location in +// the cache heirarchy specified by the locality hint i. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_prefetch +FORCE_INLINE void _mm_prefetch(char const *p, int i) { - (void) i; - __builtin_prefetch(p); + switch (i) { + case _MM_HINT_NTA: + __builtin_prefetch(p, 0, 0); + break; + case _MM_HINT_T0: + __builtin_prefetch(p, 0, 3); + break; + case _MM_HINT_T1: + __builtin_prefetch(p, 0, 2); + break; + case _MM_HINT_T2: + __builtin_prefetch(p, 0, 1); + break; + } } // Compute the absolute differences of packed unsigned 8-bit integers in a and // b, then horizontally sum each consecutive 8 differences to produce four // unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low // 16 bits of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=m_psadbw +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=m_psadbw #define _m_psadbw(a, b) _mm_sad_pu8(a, b) // Shuffle 16-bit integers in a using the control in imm8, and store the results // in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_m_pshufw +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pshufw #define _m_pshufw(a, imm) _mm_shuffle_pi16(a, imm) // Compute the approximate reciprocal of packed single-precision (32-bit) // floating-point elements in a, and store the results in dst. The maximum // relative error for this approximation is less than 1.5*2^-12. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_rcp_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rcp_ps FORCE_INLINE __m128 _mm_rcp_ps(__m128 in) { float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(in)); @@ -2342,20 +2221,16 @@ FORCE_INLINE __m128 _mm_rcp_ps(__m128 in) // floating-point element in a, store the result in the lower element of dst, // and copy the upper 3 packed elements from a to the upper elements of dst. The // maximum relative error for this approximation is less than 1.5*2^-12. -// -// dst[31:0] := (1.0 / a[31:0]) -// dst[127:32] := a[127:32] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_rcp_ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rcp_ss FORCE_INLINE __m128 _mm_rcp_ss(__m128 a) { return _mm_move_ss(a, _mm_rcp_ps(a)); } -// Computes the approximations of the reciprocal square roots of the four -// single-precision floating point values of in. -// The current precision is 1% error. -// https://msdn.microsoft.com/en-us/library/22hfsh53(v=vs.100).aspx +// Compute the approximate reciprocal square root of packed single-precision +// (32-bit) floating-point elements in a, and store the results in dst. The +// maximum relative error for this approximation is less than 1.5*2^-12. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rsqrt_ps FORCE_INLINE __m128 _mm_rsqrt_ps(__m128 in) { float32x4_t out = vrsqrteq_f32(vreinterpretq_f32_m128(in)); @@ -2373,7 +2248,7 @@ FORCE_INLINE __m128 _mm_rsqrt_ps(__m128 in) // (32-bit) floating-point element in a, store the result in the lower element // of dst, and copy the upper 3 packed elements from a to the upper elements of // dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_rsqrt_ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rsqrt_ss FORCE_INLINE __m128 _mm_rsqrt_ss(__m128 in) { return vsetq_lane_f32(vgetq_lane_f32(_mm_rsqrt_ps(in), 0), in, 0); @@ -2383,7 +2258,7 @@ FORCE_INLINE __m128 _mm_rsqrt_ss(__m128 in) // b, then horizontally sum each consecutive 8 differences to produce four // unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low // 16 bits of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sad_pu8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sad_pu8 FORCE_INLINE __m64 _mm_sad_pu8(__m64 a, __m64 b) { uint64x1_t t = vpaddl_u32(vpaddl_u16( @@ -2395,7 +2270,7 @@ FORCE_INLINE __m64 _mm_sad_pu8(__m64 a, __m64 b) // Macro: Set the flush zero bits of the MXCSR control and status register to // the value in unsigned 32-bit integer a. The flush zero may contain any of the // following flags: _MM_FLUSH_ZERO_ON or _MM_FLUSH_ZERO_OFF -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_MM_SET_FLUSH_ZERO_MODE +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_SET_FLUSH_ZERO_MODE FORCE_INLINE void _sse2neon_mm_set_flush_zero_mode(unsigned int flag) { // AArch32 Advanced SIMD arithmetic always uses the Flush-to-zero setting, @@ -2424,16 +2299,18 @@ FORCE_INLINE void _sse2neon_mm_set_flush_zero_mode(unsigned int flag) #endif } -// Sets the four single-precision, floating-point values to the four inputs. -// https://msdn.microsoft.com/en-us/library/vstudio/afh0zf75(v=vs.100).aspx +// Set packed single-precision (32-bit) floating-point elements in dst with the +// supplied values. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_ps FORCE_INLINE __m128 _mm_set_ps(float w, float z, float y, float x) { float ALIGN_STRUCT(16) data[4] = {x, y, z, w}; return vreinterpretq_m128_f32(vld1q_f32(data)); } -// Sets the four single-precision, floating-point values to w. -// https://msdn.microsoft.com/en-us/library/vstudio/2x1se8ha(v=vs.100).aspx +// Broadcast single-precision (32-bit) floating-point value a to all elements of +// dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_ps1 FORCE_INLINE __m128 _mm_set_ps1(float _w) { return vreinterpretq_m128_f32(vdupq_n_f32(_w)); @@ -2443,7 +2320,7 @@ FORCE_INLINE __m128 _mm_set_ps1(float _w) // the value in unsigned 32-bit integer a. The rounding mode may contain any of // the following flags: _MM_ROUND_NEAREST, _MM_ROUND_DOWN, _MM_ROUND_UP, // _MM_ROUND_TOWARD_ZERO -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_MM_SET_ROUNDING_MODE +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_SET_ROUNDING_MODE FORCE_INLINE void _MM_SET_ROUNDING_MODE(int rounding) { union { @@ -2488,46 +2365,48 @@ FORCE_INLINE void _MM_SET_ROUNDING_MODE(int rounding) // Copy single-precision (32-bit) floating-point element a to the lower element // of dst, and zero the upper 3 elements. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_ss FORCE_INLINE __m128 _mm_set_ss(float a) { - float ALIGN_STRUCT(16) data[4] = {a, 0, 0, 0}; - return vreinterpretq_m128_f32(vld1q_f32(data)); + return vreinterpretq_m128_f32(vsetq_lane_f32(a, vdupq_n_f32(0), 0)); } -// Sets the four single-precision, floating-point values to w. -// -// r0 := r1 := r2 := r3 := w -// -// https://msdn.microsoft.com/en-us/library/vstudio/2x1se8ha(v=vs.100).aspx +// Broadcast single-precision (32-bit) floating-point value a to all elements of +// dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_ps FORCE_INLINE __m128 _mm_set1_ps(float _w) { return vreinterpretq_m128_f32(vdupq_n_f32(_w)); } +// Set the MXCSR control and status register with the value in unsigned 32-bit +// integer a. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setcsr // FIXME: _mm_setcsr() implementation supports changing the rounding mode only. FORCE_INLINE void _mm_setcsr(unsigned int a) { _MM_SET_ROUNDING_MODE(a); } +// Get the unsigned 32-bit value of the MXCSR control and status register. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_getcsr // FIXME: _mm_getcsr() implementation supports reading the rounding mode only. FORCE_INLINE unsigned int _mm_getcsr() { return _MM_GET_ROUNDING_MODE(); } -// Sets the four single-precision, floating-point values to the four inputs in -// reverse order. -// https://msdn.microsoft.com/en-us/library/vstudio/d2172ct3(v=vs.100).aspx +// Set packed single-precision (32-bit) floating-point elements in dst with the +// supplied values in reverse order. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_ps FORCE_INLINE __m128 _mm_setr_ps(float w, float z, float y, float x) { float ALIGN_STRUCT(16) data[4] = {w, z, y, x}; return vreinterpretq_m128_f32(vld1q_f32(data)); } -// Clears the four single-precision, floating-point values. -// https://msdn.microsoft.com/en-us/library/vstudio/tk1t2tbz(v=vs.100).aspx +// Return vector of type __m128 with all elements set to zero. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setzero_ps FORCE_INLINE __m128 _mm_setzero_ps(void) { return vreinterpretq_m128_f32(vdupq_n_f32(0)); @@ -2535,7 +2414,7 @@ FORCE_INLINE __m128 _mm_setzero_ps(void) // Shuffle 16-bit integers in a using the control in imm8, and store the results // in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_pi16 #ifdef _sse2neon_shuffle #define _mm_shuffle_pi16(a, imm) \ __extension__({ \ @@ -2562,12 +2441,35 @@ FORCE_INLINE __m128 _mm_setzero_ps(void) }) #endif -// Guarantees that every preceding store is globally visible before any -// subsequent store. -// https://msdn.microsoft.com/en-us/library/5h2w73d1%28v=vs.90%29.aspx +// Perform a serializing operation on all store-to-memory instructions that were +// issued prior to this instruction. Guarantees that every store instruction +// that precedes, in program order, is globally visible before any store +// instruction which follows the fence in program order. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sfence FORCE_INLINE void _mm_sfence(void) { - __sync_synchronize(); + _sse2neon_smp_mb(); +} + +// Perform a serializing operation on all load-from-memory and store-to-memory +// instructions that were issued prior to this instruction. Guarantees that +// every memory access that precedes, in program order, the memory fence +// instruction is globally visible before any memory instruction which follows +// the fence in program order. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mfence +FORCE_INLINE void _mm_mfence(void) +{ + _sse2neon_smp_mb(); +} + +// Perform a serializing operation on all load-from-memory instructions that +// were issued prior to this instruction. Guarantees that every load instruction +// that precedes, in program order, is globally visible before any load +// instruction which follows the fence in program order. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_lfence +FORCE_INLINE void _mm_lfence(void) +{ + _sse2neon_smp_mb(); } // FORCE_INLINE __m128 _mm_shuffle_ps(__m128 a, __m128 b, __constrange(0,255) @@ -2646,16 +2548,9 @@ FORCE_INLINE void _mm_sfence(void) }) #endif -// Computes the approximations of square roots of the four single-precision, -// floating-point values of a. First computes reciprocal square roots and then -// reciprocals of the four values. -// -// r0 := sqrt(a0) -// r1 := sqrt(a1) -// r2 := sqrt(a2) -// r3 := sqrt(a3) -// -// https://msdn.microsoft.com/en-us/library/vstudio/8z67bwwk(v=vs.100).aspx +// Compute the square root of packed single-precision (32-bit) floating-point +// elements in a, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sqrt_ps FORCE_INLINE __m128 _mm_sqrt_ps(__m128 in) { #if SSE2NEON_PRECISE_SQRT @@ -2688,9 +2583,10 @@ FORCE_INLINE __m128 _mm_sqrt_ps(__m128 in) #endif } -// Computes the approximation of the square root of the scalar single-precision -// floating point value of in. -// https://msdn.microsoft.com/en-us/library/ahfsc22d(v=vs.100).aspx +// Compute the square root of the lower single-precision (32-bit) floating-point +// element in a, store the result in the lower element of dst, and copy the +// upper 3 packed elements from a to the upper elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sqrt_ss FORCE_INLINE __m128 _mm_sqrt_ss(__m128 in) { float32_t value = @@ -2699,8 +2595,10 @@ FORCE_INLINE __m128 _mm_sqrt_ss(__m128 in) vsetq_lane_f32(value, vreinterpretq_f32_m128(in), 0)); } -// Stores four single-precision, floating-point values. -// https://msdn.microsoft.com/en-us/library/vstudio/s3h4ay6y(v=vs.100).aspx +// Store 128-bits (composed of 4 packed single-precision (32-bit) floating-point +// elements) from a into memory. mem_addr must be aligned on a 16-byte boundary +// or a general-protection exception may be generated. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_ps FORCE_INLINE void _mm_store_ps(float *p, __m128 a) { vst1q_f32(p, vreinterpretq_f32_m128(a)); @@ -2709,21 +2607,16 @@ FORCE_INLINE void _mm_store_ps(float *p, __m128 a) // Store the lower single-precision (32-bit) floating-point element from a into // 4 contiguous elements in memory. mem_addr must be aligned on a 16-byte // boundary or a general-protection exception may be generated. -// -// MEM[mem_addr+31:mem_addr] := a[31:0] -// MEM[mem_addr+63:mem_addr+32] := a[31:0] -// MEM[mem_addr+95:mem_addr+64] := a[31:0] -// MEM[mem_addr+127:mem_addr+96] := a[31:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store_ps1 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_ps1 FORCE_INLINE void _mm_store_ps1(float *p, __m128 a) { float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); vst1q_f32(p, vdupq_n_f32(a0)); } -// Stores the lower single - precision, floating - point value. -// https://msdn.microsoft.com/en-us/library/tzz10fbx(v=vs.100).aspx +// Store the lower single-precision (32-bit) floating-point element from a into +// memory. mem_addr does not need to be aligned on any particular boundary. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_ss FORCE_INLINE void _mm_store_ss(float *p, __m128 a) { vst1q_lane_f32(p, vreinterpretq_f32_m128(a), 0); @@ -2732,34 +2625,20 @@ FORCE_INLINE void _mm_store_ss(float *p, __m128 a) // Store the lower single-precision (32-bit) floating-point element from a into // 4 contiguous elements in memory. mem_addr must be aligned on a 16-byte // boundary or a general-protection exception may be generated. -// -// MEM[mem_addr+31:mem_addr] := a[31:0] -// MEM[mem_addr+63:mem_addr+32] := a[31:0] -// MEM[mem_addr+95:mem_addr+64] := a[31:0] -// MEM[mem_addr+127:mem_addr+96] := a[31:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store1_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store1_ps #define _mm_store1_ps _mm_store_ps1 -// Stores the upper two single-precision, floating-point values of a to the -// address p. -// -// *p0 := a2 -// *p1 := a3 -// -// https://msdn.microsoft.com/en-us/library/a7525fs8(v%3dvs.90).aspx +// Store the upper 2 single-precision (32-bit) floating-point elements from a +// into memory. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeh_pi FORCE_INLINE void _mm_storeh_pi(__m64 *p, __m128 a) { *p = vreinterpret_m64_f32(vget_high_f32(a)); } -// Stores the lower two single-precision floating point values of a to the -// address p. -// -// *p0 := a0 -// *p1 := a1 -// -// https://msdn.microsoft.com/en-us/library/h54t98ks(v=vs.90).aspx +// Store the lower 2 single-precision (32-bit) floating-point elements from a +// into memory. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storel_pi FORCE_INLINE void _mm_storel_pi(__m64 *p, __m128 a) { *p = vreinterpret_m64_f32(vget_low_f32(a)); @@ -2768,13 +2647,7 @@ FORCE_INLINE void _mm_storel_pi(__m64 *p, __m128 a) // Store 4 single-precision (32-bit) floating-point elements from a into memory // in reverse order. mem_addr must be aligned on a 16-byte boundary or a // general-protection exception may be generated. -// -// MEM[mem_addr+31:mem_addr] := a[127:96] -// MEM[mem_addr+63:mem_addr+32] := a[95:64] -// MEM[mem_addr+95:mem_addr+64] := a[63:32] -// MEM[mem_addr+127:mem_addr+96] := a[31:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storer_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storer_ps FORCE_INLINE void _mm_storer_ps(float *p, __m128 a) { float32x4_t tmp = vrev64q_f32(vreinterpretq_f32_m128(a)); @@ -2782,22 +2655,24 @@ FORCE_INLINE void _mm_storer_ps(float *p, __m128 a) vst1q_f32(p, rev); } -// Stores four single-precision, floating-point values. -// https://msdn.microsoft.com/en-us/library/44e30x22(v=vs.100).aspx +// Store 128-bits (composed of 4 packed single-precision (32-bit) floating-point +// elements) from a into memory. mem_addr does not need to be aligned on any +// particular boundary. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_ps FORCE_INLINE void _mm_storeu_ps(float *p, __m128 a) { vst1q_f32(p, vreinterpretq_f32_m128(a)); } // Stores 16-bits of integer data a at the address p. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_si16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si16 FORCE_INLINE void _mm_storeu_si16(void *p, __m128i a) { vst1q_lane_s16((int16_t *) p, vreinterpretq_s16_m128i(a), 0); } // Stores 64-bits of integer data a at the address p. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_si64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si64 FORCE_INLINE void _mm_storeu_si64(void *p, __m128i a) { vst1q_lane_s64((int64_t *) p, vreinterpretq_s64_m128i(a), 0); @@ -2805,7 +2680,7 @@ FORCE_INLINE void _mm_storeu_si64(void *p, __m128i a) // Store 64-bits of integer data from a into memory using a non-temporal memory // hint. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_pi +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_pi FORCE_INLINE void _mm_stream_pi(__m64 *p, __m64 a) { vst1_s64((int64_t *) p, vreinterpret_s64_m64(a)); @@ -2813,7 +2688,7 @@ FORCE_INLINE void _mm_stream_pi(__m64 *p, __m64 a) // Store 128-bits (composed of 4 packed single-precision (32-bit) floating- // point elements) from a into memory using a non-temporal memory hint. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_ps FORCE_INLINE void _mm_stream_ps(float *p, __m128 a) { #if __has_builtin(__builtin_nontemporal_store) @@ -2823,14 +2698,10 @@ FORCE_INLINE void _mm_stream_ps(float *p, __m128 a) #endif } -// Subtracts the four single-precision, floating-point values of a and b. -// -// r0 := a0 - b0 -// r1 := a1 - b1 -// r2 := a2 - b2 -// r3 := a3 - b3 -// -// https://msdn.microsoft.com/en-us/library/vstudio/1zad2k61(v=vs.100).aspx +// Subtract packed single-precision (32-bit) floating-point elements in b from +// packed single-precision (32-bit) floating-point elements in a, and store the +// results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_ps FORCE_INLINE __m128 _mm_sub_ps(__m128 a, __m128 b) { return vreinterpretq_m128_f32( @@ -2841,11 +2712,7 @@ FORCE_INLINE __m128 _mm_sub_ps(__m128 a, __m128 b) // the lower single-precision (32-bit) floating-point element in a, store the // result in the lower element of dst, and copy the upper 3 packed elements from // a to the upper elements of dst. -// -// dst[31:0] := a[31:0] - b[31:0] -// dst[127:32] := a[127:32] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_ss FORCE_INLINE __m128 _mm_sub_ss(__m128 a, __m128 b) { return _mm_move_ss(a, _mm_sub_ps(a, b)); @@ -2854,7 +2721,7 @@ FORCE_INLINE __m128 _mm_sub_ss(__m128 a, __m128 b) // Macro: Transpose the 4x4 matrix formed by the 4 rows of single-precision // (32-bit) floating-point elements in row0, row1, row2, and row3, and store the // transposed matrix in these vectors (row0 now contains column 0, etc.). -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=MM_TRANSPOSE4_PS +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=MM_TRANSPOSE4_PS #define _MM_TRANSPOSE4_PS(row0, row1, row2, row3) \ do { \ float32x4x2_t ROW01 = vtrnq_f32(row0, row1); \ @@ -2879,7 +2746,7 @@ FORCE_INLINE __m128 _mm_sub_ss(__m128 a, __m128 b) #define _mm_ucomineq_ss _mm_comineq_ss // Return vector of type __m128i with undefined elements. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_undefined_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_undefined_si128 FORCE_INLINE __m128i _mm_undefined_si128(void) { #if defined(__GNUC__) || defined(__clang__) @@ -2894,7 +2761,7 @@ FORCE_INLINE __m128i _mm_undefined_si128(void) } // Return vector of type __m128 with undefined elements. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_undefined_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_undefined_ps FORCE_INLINE __m128 _mm_undefined_ps(void) { #if defined(__GNUC__) || defined(__clang__) @@ -2908,15 +2775,9 @@ FORCE_INLINE __m128 _mm_undefined_ps(void) #endif } -// Selects and interleaves the upper two single-precision, floating-point values -// from a and b. -// -// r0 := a2 -// r1 := b2 -// r2 := a3 -// r3 := b3 -// -// https://msdn.microsoft.com/en-us/library/skccxx7d%28v=vs.90%29.aspx +// Unpack and interleave single-precision (32-bit) floating-point elements from +// the high half a and b, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_ps FORCE_INLINE __m128 _mm_unpackhi_ps(__m128 a, __m128 b) { #if defined(__aarch64__) @@ -2930,15 +2791,9 @@ FORCE_INLINE __m128 _mm_unpackhi_ps(__m128 a, __m128 b) #endif } -// Selects and interleaves the lower two single-precision, floating-point values -// from a and b. -// -// r0 := a0 -// r1 := b0 -// r2 := a1 -// r3 := b1 -// -// https://msdn.microsoft.com/en-us/library/25st103b%28v=vs.90%29.aspx +// Unpack and interleave single-precision (32-bit) floating-point elements from +// the low half of a and b, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_ps FORCE_INLINE __m128 _mm_unpacklo_ps(__m128 a, __m128 b) { #if defined(__aarch64__) @@ -2952,9 +2807,9 @@ FORCE_INLINE __m128 _mm_unpacklo_ps(__m128 a, __m128 b) #endif } -// Computes bitwise EXOR (exclusive-or) of the four single-precision, -// floating-point values of a and b. -// https://msdn.microsoft.com/en-us/library/ss6k3wk8(v=vs.100).aspx +// Compute the bitwise XOR of packed single-precision (32-bit) floating-point +// elements in a and b, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_xor_ps FORCE_INLINE __m128 _mm_xor_ps(__m128 a, __m128 b) { return vreinterpretq_m128_s32( @@ -2963,42 +2818,32 @@ FORCE_INLINE __m128 _mm_xor_ps(__m128 a, __m128 b) /* SSE2 */ -// Adds the 8 signed or unsigned 16-bit integers in a to the 8 signed or -// unsigned 16-bit integers in b. -// https://msdn.microsoft.com/en-us/library/fceha5k4(v=vs.100).aspx +// Add packed 16-bit integers in a and b, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_epi16 FORCE_INLINE __m128i _mm_add_epi16(__m128i a, __m128i b) { return vreinterpretq_m128i_s16( vaddq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); } -// Adds the 4 signed or unsigned 32-bit integers in a to the 4 signed or -// unsigned 32-bit integers in b. -// -// r0 := a0 + b0 -// r1 := a1 + b1 -// r2 := a2 + b2 -// r3 := a3 + b3 -// -// https://msdn.microsoft.com/en-us/library/vstudio/09xs4fkk(v=vs.100).aspx +// Add packed 32-bit integers in a and b, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_epi32 FORCE_INLINE __m128i _mm_add_epi32(__m128i a, __m128i b) { return vreinterpretq_m128i_s32( vaddq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); } -// Adds the 4 signed or unsigned 64-bit integers in a to the 4 signed or -// unsigned 32-bit integers in b. -// https://msdn.microsoft.com/en-us/library/vstudio/09xs4fkk(v=vs.100).aspx +// Add packed 64-bit integers in a and b, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_epi64 FORCE_INLINE __m128i _mm_add_epi64(__m128i a, __m128i b) { return vreinterpretq_m128i_s64( vaddq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b))); } -// Adds the 16 signed or unsigned 8-bit integers in a to the 16 signed or -// unsigned 8-bit integers in b. -// https://technet.microsoft.com/en-us/subscriptions/yc7tcyzs(v=vs.90) +// Add packed 8-bit integers in a and b, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_epi8 FORCE_INLINE __m128i _mm_add_epi8(__m128i a, __m128i b) { return vreinterpretq_m128i_s8( @@ -3007,7 +2852,7 @@ FORCE_INLINE __m128i _mm_add_epi8(__m128i a, __m128i b) // Add packed double-precision (64-bit) floating-point elements in a and b, and // store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_add_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_pd FORCE_INLINE __m128d _mm_add_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3026,11 +2871,7 @@ FORCE_INLINE __m128d _mm_add_pd(__m128d a, __m128d b) // Add the lower double-precision (64-bit) floating-point element in a and b, // store the result in the lower element of dst, and copy the upper element from // a to the upper element of dst. -// -// dst[63:0] := a[63:0] + b[63:0] -// dst[127:64] := a[127:64] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_add_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_sd FORCE_INLINE __m128d _mm_add_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3046,25 +2887,16 @@ FORCE_INLINE __m128d _mm_add_sd(__m128d a, __m128d b) } // Add 64-bit integers a and b, and store the result in dst. -// -// dst[63:0] := a[63:0] + b[63:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_add_si64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_si64 FORCE_INLINE __m64 _mm_add_si64(__m64 a, __m64 b) { return vreinterpret_m64_s64( vadd_s64(vreinterpret_s64_m64(a), vreinterpret_s64_m64(b))); } -// Adds the 8 signed 16-bit integers in a to the 8 signed 16-bit integers in b -// and saturates. -// -// r0 := SignedSaturate(a0 + b0) -// r1 := SignedSaturate(a1 + b1) -// ... -// r7 := SignedSaturate(a7 + b7) -// -// https://msdn.microsoft.com/en-us/library/1a306ef8(v=vs.100).aspx +// Add packed signed 16-bit integers in a and b using saturation, and store the +// results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_adds_epi16 FORCE_INLINE __m128i _mm_adds_epi16(__m128i a, __m128i b) { return vreinterpretq_m128i_s16( @@ -3073,13 +2905,7 @@ FORCE_INLINE __m128i _mm_adds_epi16(__m128i a, __m128i b) // Add packed signed 8-bit integers in a and b using saturation, and store the // results in dst. -// -// FOR j := 0 to 15 -// i := j*8 -// dst[i+7:i] := Saturate8( a[i+7:i] + b[i+7:i] ) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_adds_epi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_adds_epi8 FORCE_INLINE __m128i _mm_adds_epi8(__m128i a, __m128i b) { return vreinterpretq_m128i_s8( @@ -3088,16 +2914,16 @@ FORCE_INLINE __m128i _mm_adds_epi8(__m128i a, __m128i b) // Add packed unsigned 16-bit integers in a and b using saturation, and store // the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_adds_epu16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_adds_epu16 FORCE_INLINE __m128i _mm_adds_epu16(__m128i a, __m128i b) { return vreinterpretq_m128i_u16( vqaddq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b))); } -// Adds the 16 unsigned 8-bit integers in a to the 16 unsigned 8-bit integers in -// b and saturates.. -// https://msdn.microsoft.com/en-us/library/9hahyddy(v=vs.100).aspx +// Add packed unsigned 8-bit integers in a and b using saturation, and store the +// results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_adds_epu8 FORCE_INLINE __m128i _mm_adds_epu8(__m128i a, __m128i b) { return vreinterpretq_m128i_u8( @@ -3106,25 +2932,16 @@ FORCE_INLINE __m128i _mm_adds_epu8(__m128i a, __m128i b) // Compute the bitwise AND of packed double-precision (64-bit) floating-point // elements in a and b, and store the results in dst. -// -// FOR j := 0 to 1 -// i := j*64 -// dst[i+63:i] := a[i+63:i] AND b[i+63:i] -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_and_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_and_pd FORCE_INLINE __m128d _mm_and_pd(__m128d a, __m128d b) { return vreinterpretq_m128d_s64( vandq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b))); } -// Computes the bitwise AND of the 128-bit value in a and the 128-bit value in -// b. -// -// r := a & b -// -// https://msdn.microsoft.com/en-us/library/vstudio/6d1txsa8(v=vs.100).aspx +// Compute the bitwise AND of 128 bits (representing integer data) in a and b, +// and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_and_si128 FORCE_INLINE __m128i _mm_and_si128(__m128i a, __m128i b) { return vreinterpretq_m128i_s32( @@ -3133,13 +2950,7 @@ FORCE_INLINE __m128i _mm_and_si128(__m128i a, __m128i b) // Compute the bitwise NOT of packed double-precision (64-bit) floating-point // elements in a and then AND with b, and store the results in dst. -// -// FOR j := 0 to 1 -// i := j*64 -// dst[i+63:i] := ((NOT a[i+63:i]) AND b[i+63:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_andnot_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_andnot_pd FORCE_INLINE __m128d _mm_andnot_pd(__m128d a, __m128d b) { // *NOTE* argument swap @@ -3147,12 +2958,9 @@ FORCE_INLINE __m128d _mm_andnot_pd(__m128d a, __m128d b) vbicq_s64(vreinterpretq_s64_m128d(b), vreinterpretq_s64_m128d(a))); } -// Computes the bitwise AND of the 128-bit value in b and the bitwise NOT of the -// 128-bit value in a. -// -// r := (~a) & b -// -// https://msdn.microsoft.com/en-us/library/vstudio/1beaceh8(v=vs.100).aspx +// Compute the bitwise NOT of 128 bits (representing integer data) in a and then +// AND with b, and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_andnot_si128 FORCE_INLINE __m128i _mm_andnot_si128(__m128i a, __m128i b) { return vreinterpretq_m128i_s32( @@ -3160,30 +2968,18 @@ FORCE_INLINE __m128i _mm_andnot_si128(__m128i a, __m128i b) vreinterpretq_s32_m128i(a))); // *NOTE* argument swap } -// Computes the average of the 8 unsigned 16-bit integers in a and the 8 -// unsigned 16-bit integers in b and rounds. -// -// r0 := (a0 + b0) / 2 -// r1 := (a1 + b1) / 2 -// ... -// r7 := (a7 + b7) / 2 -// -// https://msdn.microsoft.com/en-us/library/vstudio/y13ca3c8(v=vs.90).aspx +// Average packed unsigned 16-bit integers in a and b, and store the results in +// dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_avg_epu16 FORCE_INLINE __m128i _mm_avg_epu16(__m128i a, __m128i b) { return (__m128i) vrhaddq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)); } -// Computes the average of the 16 unsigned 8-bit integers in a and the 16 -// unsigned 8-bit integers in b and rounds. -// -// r0 := (a0 + b0) / 2 -// r1 := (a1 + b1) / 2 -// ... -// r15 := (a15 + b15) / 2 -// -// https://msdn.microsoft.com/en-us/library/vstudio/8zwh554a(v%3dvs.90).aspx +// Average packed unsigned 8-bit integers in a and b, and store the results in +// dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_avg_epu8 FORCE_INLINE __m128i _mm_avg_epu8(__m128i a, __m128i b) { return vreinterpretq_m128i_u8( @@ -3192,17 +2988,17 @@ FORCE_INLINE __m128i _mm_avg_epu8(__m128i a, __m128i b) // Shift a left by imm8 bytes while shifting in zeros, and store the results in // dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_bslli_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_bslli_si128 #define _mm_bslli_si128(a, imm) _mm_slli_si128(a, imm) // Shift a right by imm8 bytes while shifting in zeros, and store the results in // dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_bsrli_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_bsrli_si128 #define _mm_bsrli_si128(a, imm) _mm_srli_si128(a, imm) // Cast vector of type __m128d to type __m128. This intrinsic is only used for // compilation and does not generate any instructions, thus it has zero latency. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castpd_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castpd_ps FORCE_INLINE __m128 _mm_castpd_ps(__m128d a) { return vreinterpretq_m128_s64(vreinterpretq_s64_m128d(a)); @@ -3210,7 +3006,7 @@ FORCE_INLINE __m128 _mm_castpd_ps(__m128d a) // Cast vector of type __m128d to type __m128i. This intrinsic is only used for // compilation and does not generate any instructions, thus it has zero latency. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castpd_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castpd_si128 FORCE_INLINE __m128i _mm_castpd_si128(__m128d a) { return vreinterpretq_m128i_s64(vreinterpretq_s64_m128d(a)); @@ -3218,15 +3014,15 @@ FORCE_INLINE __m128i _mm_castpd_si128(__m128d a) // Cast vector of type __m128 to type __m128d. This intrinsic is only used for // compilation and does not generate any instructions, thus it has zero latency. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castps_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castps_pd FORCE_INLINE __m128d _mm_castps_pd(__m128 a) { return vreinterpretq_m128d_s32(vreinterpretq_s32_m128(a)); } -// Applies a type cast to reinterpret four 32-bit floating point values passed -// in as a 128-bit parameter as packed 32-bit integers. -// https://msdn.microsoft.com/en-us/library/bb514099.aspx +// Cast vector of type __m128 to type __m128i. This intrinsic is only used for +// compilation and does not generate any instructions, thus it has zero latency. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castps_si128 FORCE_INLINE __m128i _mm_castps_si128(__m128 a) { return vreinterpretq_m128i_s32(vreinterpretq_s32_m128(a)); @@ -3234,7 +3030,7 @@ FORCE_INLINE __m128i _mm_castps_si128(__m128 a) // Cast vector of type __m128i to type __m128d. This intrinsic is only used for // compilation and does not generate any instructions, thus it has zero latency. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_castsi128_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castsi128_pd FORCE_INLINE __m128d _mm_castsi128_pd(__m128i a) { #if defined(__aarch64__) @@ -3244,26 +3040,42 @@ FORCE_INLINE __m128d _mm_castsi128_pd(__m128i a) #endif } -// Applies a type cast to reinterpret four 32-bit integers passed in as a -// 128-bit parameter as packed 32-bit floating point values. -// https://msdn.microsoft.com/en-us/library/bb514029.aspx +// Cast vector of type __m128i to type __m128. This intrinsic is only used for +// compilation and does not generate any instructions, thus it has zero latency. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castsi128_ps FORCE_INLINE __m128 _mm_castsi128_ps(__m128i a) { return vreinterpretq_m128_s32(vreinterpretq_s32_m128i(a)); } -// Cache line containing p is flushed and invalidated from all caches in the -// coherency domain. : -// https://msdn.microsoft.com/en-us/library/ba08y07y(v=vs.100).aspx +// Invalidate and flush the cache line that contains p from all levels of the +// cache hierarchy. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_clflush +#if defined(__APPLE__) +#include +#endif FORCE_INLINE void _mm_clflush(void const *p) { (void) p; - // no corollary for Neon? + + /* sys_icache_invalidate is supported since macOS 10.5. + * However, it does not work on non-jailbroken iOS devices, although the + * compilation is successful. + */ +#if defined(__APPLE__) + sys_icache_invalidate((void *) (uintptr_t) p, SSE2NEON_CACHELINE_SIZE); +#elif defined(__GNUC__) || defined(__clang__) + uintptr_t ptr = (uintptr_t) p; + __builtin___clear_cache((char *) ptr, + (char *) ptr + SSE2NEON_CACHELINE_SIZE); +#else + /* FIXME: MSVC support */ +#endif } -// Compares the 8 signed or unsigned 16-bit integers in a and the 8 signed or -// unsigned 16-bit integers in b for equality. -// https://msdn.microsoft.com/en-us/library/2ay060te(v=vs.100).aspx +// Compare packed 16-bit integers in a and b for equality, and store the results +// in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_epi16 FORCE_INLINE __m128i _mm_cmpeq_epi16(__m128i a, __m128i b) { return vreinterpretq_m128i_u16( @@ -3271,16 +3083,17 @@ FORCE_INLINE __m128i _mm_cmpeq_epi16(__m128i a, __m128i b) } // Compare packed 32-bit integers in a and b for equality, and store the results -// in dst +// in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_epi32 FORCE_INLINE __m128i _mm_cmpeq_epi32(__m128i a, __m128i b) { return vreinterpretq_m128i_u32( vceqq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); } -// Compares the 16 signed or unsigned 8-bit integers in a and the 16 signed or -// unsigned 8-bit integers in b for equality. -// https://msdn.microsoft.com/en-us/library/windows/desktop/bz5xk21a(v=vs.90).aspx +// Compare packed 8-bit integers in a and b for equality, and store the results +// in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_epi8 FORCE_INLINE __m128i _mm_cmpeq_epi8(__m128i a, __m128i b) { return vreinterpretq_m128i_u8( @@ -3289,7 +3102,7 @@ FORCE_INLINE __m128i _mm_cmpeq_epi8(__m128i a, __m128i b) // Compare packed double-precision (64-bit) floating-point elements in a and b // for equality, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpeq_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_pd FORCE_INLINE __m128d _mm_cmpeq_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3307,7 +3120,7 @@ FORCE_INLINE __m128d _mm_cmpeq_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b for equality, store the result in the lower element of dst, and copy the // upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpeq_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_sd FORCE_INLINE __m128d _mm_cmpeq_sd(__m128d a, __m128d b) { return _mm_move_sd(a, _mm_cmpeq_pd(a, b)); @@ -3315,7 +3128,7 @@ FORCE_INLINE __m128d _mm_cmpeq_sd(__m128d a, __m128d b) // Compare packed double-precision (64-bit) floating-point elements in a and b // for greater-than-or-equal, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpge_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpge_pd FORCE_INLINE __m128d _mm_cmpge_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3337,7 +3150,7 @@ FORCE_INLINE __m128d _mm_cmpge_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b for greater-than-or-equal, store the result in the lower element of dst, // and copy the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpge_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpge_sd FORCE_INLINE __m128d _mm_cmpge_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3355,39 +3168,27 @@ FORCE_INLINE __m128d _mm_cmpge_sd(__m128d a, __m128d b) #endif } -// Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers -// in b for greater than. -// -// r0 := (a0 > b0) ? 0xffff : 0x0 -// r1 := (a1 > b1) ? 0xffff : 0x0 -// ... -// r7 := (a7 > b7) ? 0xffff : 0x0 -// -// https://technet.microsoft.com/en-us/library/xd43yfsa(v=vs.100).aspx +// Compare packed signed 16-bit integers in a and b for greater-than, and store +// the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_epi16 FORCE_INLINE __m128i _mm_cmpgt_epi16(__m128i a, __m128i b) { return vreinterpretq_m128i_u16( vcgtq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); } -// Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers -// in b for greater than. -// https://msdn.microsoft.com/en-us/library/vstudio/1s9f2z0y(v=vs.100).aspx +// Compare packed signed 32-bit integers in a and b for greater-than, and store +// the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_epi32 FORCE_INLINE __m128i _mm_cmpgt_epi32(__m128i a, __m128i b) { return vreinterpretq_m128i_u32( vcgtq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); } -// Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers -// in b for greater than. -// -// r0 := (a0 > b0) ? 0xff : 0x0 -// r1 := (a1 > b1) ? 0xff : 0x0 -// ... -// r15 := (a15 > b15) ? 0xff : 0x0 -// -// https://msdn.microsoft.com/zh-tw/library/wf45zt2b(v=vs.100).aspx +// Compare packed signed 8-bit integers in a and b for greater-than, and store +// the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_epi8 FORCE_INLINE __m128i _mm_cmpgt_epi8(__m128i a, __m128i b) { return vreinterpretq_m128i_u8( @@ -3396,7 +3197,7 @@ FORCE_INLINE __m128i _mm_cmpgt_epi8(__m128i a, __m128i b) // Compare packed double-precision (64-bit) floating-point elements in a and b // for greater-than, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpgt_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_pd FORCE_INLINE __m128d _mm_cmpgt_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3418,7 +3219,7 @@ FORCE_INLINE __m128d _mm_cmpgt_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b for greater-than, store the result in the lower element of dst, and copy // the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpgt_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_sd FORCE_INLINE __m128d _mm_cmpgt_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3438,7 +3239,7 @@ FORCE_INLINE __m128d _mm_cmpgt_sd(__m128d a, __m128d b) // Compare packed double-precision (64-bit) floating-point elements in a and b // for less-than-or-equal, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmple_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmple_pd FORCE_INLINE __m128d _mm_cmple_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3460,7 +3261,7 @@ FORCE_INLINE __m128d _mm_cmple_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b for less-than-or-equal, store the result in the lower element of dst, and // copy the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmple_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmple_sd FORCE_INLINE __m128d _mm_cmple_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3478,34 +3279,30 @@ FORCE_INLINE __m128d _mm_cmple_sd(__m128d a, __m128d b) #endif } -// Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers -// in b for less than. -// -// r0 := (a0 < b0) ? 0xffff : 0x0 -// r1 := (a1 < b1) ? 0xffff : 0x0 -// ... -// r7 := (a7 < b7) ? 0xffff : 0x0 -// -// https://technet.microsoft.com/en-us/library/t863edb2(v=vs.100).aspx +// Compare packed signed 16-bit integers in a and b for less-than, and store the +// results in dst. Note: This intrinsic emits the pcmpgtw instruction with the +// order of the operands switched. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_epi16 FORCE_INLINE __m128i _mm_cmplt_epi16(__m128i a, __m128i b) { return vreinterpretq_m128i_u16( vcltq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); } - -// Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers -// in b for less than. -// https://msdn.microsoft.com/en-us/library/vstudio/4ak0bf5d(v=vs.100).aspx +// Compare packed signed 32-bit integers in a and b for less-than, and store the +// results in dst. Note: This intrinsic emits the pcmpgtd instruction with the +// order of the operands switched. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_epi32 FORCE_INLINE __m128i _mm_cmplt_epi32(__m128i a, __m128i b) { return vreinterpretq_m128i_u32( vcltq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); } -// Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers -// in b for lesser than. -// https://msdn.microsoft.com/en-us/library/windows/desktop/9s46csht(v=vs.90).aspx +// Compare packed signed 8-bit integers in a and b for less-than, and store the +// results in dst. Note: This intrinsic emits the pcmpgtb instruction with the +// order of the operands switched. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_epi8 FORCE_INLINE __m128i _mm_cmplt_epi8(__m128i a, __m128i b) { return vreinterpretq_m128i_u8( @@ -3514,7 +3311,7 @@ FORCE_INLINE __m128i _mm_cmplt_epi8(__m128i a, __m128i b) // Compare packed double-precision (64-bit) floating-point elements in a and b // for less-than, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmplt_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_pd FORCE_INLINE __m128d _mm_cmplt_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3536,7 +3333,7 @@ FORCE_INLINE __m128d _mm_cmplt_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b for less-than, store the result in the lower element of dst, and copy the // upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmplt_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_sd FORCE_INLINE __m128d _mm_cmplt_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3555,7 +3352,7 @@ FORCE_INLINE __m128d _mm_cmplt_sd(__m128d a, __m128d b) // Compare packed double-precision (64-bit) floating-point elements in a and b // for not-equal, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpneq_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpneq_pd FORCE_INLINE __m128d _mm_cmpneq_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3573,7 +3370,7 @@ FORCE_INLINE __m128d _mm_cmpneq_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b for not-equal, store the result in the lower element of dst, and copy the // upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpneq_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpneq_sd FORCE_INLINE __m128d _mm_cmpneq_sd(__m128d a, __m128d b) { return _mm_move_sd(a, _mm_cmpneq_pd(a, b)); @@ -3581,7 +3378,7 @@ FORCE_INLINE __m128d _mm_cmpneq_sd(__m128d a, __m128d b) // Compare packed double-precision (64-bit) floating-point elements in a and b // for not-greater-than-or-equal, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnge_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnge_pd FORCE_INLINE __m128d _mm_cmpnge_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3606,7 +3403,7 @@ FORCE_INLINE __m128d _mm_cmpnge_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b for not-greater-than-or-equal, store the result in the lower element of // dst, and copy the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnge_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnge_sd FORCE_INLINE __m128d _mm_cmpnge_sd(__m128d a, __m128d b) { return _mm_move_sd(a, _mm_cmpnge_pd(a, b)); @@ -3614,7 +3411,7 @@ FORCE_INLINE __m128d _mm_cmpnge_sd(__m128d a, __m128d b) // Compare packed double-precision (64-bit) floating-point elements in a and b // for not-greater-than, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_cmpngt_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_cmpngt_pd FORCE_INLINE __m128d _mm_cmpngt_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3639,7 +3436,7 @@ FORCE_INLINE __m128d _mm_cmpngt_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b for not-greater-than, store the result in the lower element of dst, and // copy the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpngt_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpngt_sd FORCE_INLINE __m128d _mm_cmpngt_sd(__m128d a, __m128d b) { return _mm_move_sd(a, _mm_cmpngt_pd(a, b)); @@ -3647,7 +3444,7 @@ FORCE_INLINE __m128d _mm_cmpngt_sd(__m128d a, __m128d b) // Compare packed double-precision (64-bit) floating-point elements in a and b // for not-less-than-or-equal, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnle_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnle_pd FORCE_INLINE __m128d _mm_cmpnle_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3672,7 +3469,7 @@ FORCE_INLINE __m128d _mm_cmpnle_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b for not-less-than-or-equal, store the result in the lower element of dst, // and copy the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnle_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnle_sd FORCE_INLINE __m128d _mm_cmpnle_sd(__m128d a, __m128d b) { return _mm_move_sd(a, _mm_cmpnle_pd(a, b)); @@ -3680,7 +3477,7 @@ FORCE_INLINE __m128d _mm_cmpnle_sd(__m128d a, __m128d b) // Compare packed double-precision (64-bit) floating-point elements in a and b // for not-less-than, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnlt_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnlt_pd FORCE_INLINE __m128d _mm_cmpnlt_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3705,7 +3502,7 @@ FORCE_INLINE __m128d _mm_cmpnlt_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b for not-less-than, store the result in the lower element of dst, and copy // the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpnlt_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnlt_sd FORCE_INLINE __m128d _mm_cmpnlt_sd(__m128d a, __m128d b) { return _mm_move_sd(a, _mm_cmpnlt_pd(a, b)); @@ -3713,7 +3510,7 @@ FORCE_INLINE __m128d _mm_cmpnlt_sd(__m128d a, __m128d b) // Compare packed double-precision (64-bit) floating-point elements in a and b // to see if neither is NaN, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpord_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpord_pd FORCE_INLINE __m128d _mm_cmpord_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3745,7 +3542,7 @@ FORCE_INLINE __m128d _mm_cmpord_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b to see if neither is NaN, store the result in the lower element of dst, and // copy the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpord_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpord_sd FORCE_INLINE __m128d _mm_cmpord_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3767,7 +3564,7 @@ FORCE_INLINE __m128d _mm_cmpord_sd(__m128d a, __m128d b) // Compare packed double-precision (64-bit) floating-point elements in a and b // to see if either is NaN, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpunord_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpunord_pd FORCE_INLINE __m128d _mm_cmpunord_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3800,7 +3597,7 @@ FORCE_INLINE __m128d _mm_cmpunord_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b to see if either is NaN, store the result in the lower element of dst, and // copy the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpunord_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpunord_sd FORCE_INLINE __m128d _mm_cmpunord_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3822,7 +3619,7 @@ FORCE_INLINE __m128d _mm_cmpunord_sd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point element in a and b // for greater-than-or-equal, and return the boolean result (0 or 1). -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comige_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comige_sd FORCE_INLINE int _mm_comige_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3837,7 +3634,7 @@ FORCE_INLINE int _mm_comige_sd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point element in a and b // for greater-than, and return the boolean result (0 or 1). -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comigt_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comigt_sd FORCE_INLINE int _mm_comigt_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3852,7 +3649,7 @@ FORCE_INLINE int _mm_comigt_sd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point element in a and b // for less-than-or-equal, and return the boolean result (0 or 1). -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comile_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comile_sd FORCE_INLINE int _mm_comile_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3867,7 +3664,7 @@ FORCE_INLINE int _mm_comile_sd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point element in a and b // for less-than, and return the boolean result (0 or 1). -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comilt_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comilt_sd FORCE_INLINE int _mm_comilt_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3882,7 +3679,7 @@ FORCE_INLINE int _mm_comilt_sd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point element in a and b // for equality, and return the boolean result (0 or 1). -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comieq_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comieq_sd FORCE_INLINE int _mm_comieq_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -3903,7 +3700,7 @@ FORCE_INLINE int _mm_comieq_sd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point element in a and b // for not-equal, and return the boolean result (0 or 1). -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_comineq_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comineq_sd FORCE_INLINE int _mm_comineq_sd(__m128d a, __m128d b) { return !_mm_comieq_sd(a, b); @@ -3911,14 +3708,7 @@ FORCE_INLINE int _mm_comineq_sd(__m128d a, __m128d b) // Convert packed signed 32-bit integers in a to packed double-precision // (64-bit) floating-point elements, and store the results in dst. -// -// FOR j := 0 to 1 -// i := j*32 -// m := j*64 -// dst[m+63:m] := Convert_Int32_To_FP64(a[i+31:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtepi32_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi32_pd FORCE_INLINE __m128d _mm_cvtepi32_pd(__m128i a) { #if defined(__aarch64__) @@ -3931,9 +3721,9 @@ FORCE_INLINE __m128d _mm_cvtepi32_pd(__m128i a) #endif } -// Converts the four signed 32-bit integer values of a to single-precision, -// floating-point values -// https://msdn.microsoft.com/en-us/library/vstudio/36bwxcx5(v=vs.100).aspx +// Convert packed signed 32-bit integers in a to packed single-precision +// (32-bit) floating-point elements, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi32_ps FORCE_INLINE __m128 _mm_cvtepi32_ps(__m128i a) { return vreinterpretq_m128_f32(vcvtq_f32_s32(vreinterpretq_s32_m128i(a))); @@ -3941,14 +3731,7 @@ FORCE_INLINE __m128 _mm_cvtepi32_ps(__m128i a) // Convert packed double-precision (64-bit) floating-point elements in a to // packed 32-bit integers, and store the results in dst. -// -// FOR j := 0 to 1 -// i := 32*j -// k := 64*j -// dst[i+31:i] := Convert_FP64_To_Int32(a[k+63:k]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpd_epi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpd_epi32 FORCE_INLINE __m128i _mm_cvtpd_epi32(__m128d a) { // vrnd32xq_f64 not supported on clang @@ -3967,14 +3750,7 @@ FORCE_INLINE __m128i _mm_cvtpd_epi32(__m128d a) // Convert packed double-precision (64-bit) floating-point elements in a to // packed 32-bit integers, and store the results in dst. -// -// FOR j := 0 to 1 -// i := 32*j -// k := 64*j -// dst[i+31:i] := Convert_FP64_To_Int32(a[k+63:k]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpd_pi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpd_pi32 FORCE_INLINE __m64 _mm_cvtpd_pi32(__m128d a) { __m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION); @@ -3987,15 +3763,7 @@ FORCE_INLINE __m64 _mm_cvtpd_pi32(__m128d a) // Convert packed double-precision (64-bit) floating-point elements in a to // packed single-precision (32-bit) floating-point elements, and store the // results in dst. -// -// FOR j := 0 to 1 -// i := 32*j -// k := 64*j -// dst[i+31:i] := Convert_FP64_To_FP32(a[k+64:k]) -// ENDFOR -// dst[127:64] := 0 -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpd_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpd_ps FORCE_INLINE __m128 _mm_cvtpd_ps(__m128d a) { #if defined(__aarch64__) @@ -4010,14 +3778,7 @@ FORCE_INLINE __m128 _mm_cvtpd_ps(__m128d a) // Convert packed signed 32-bit integers in a to packed double-precision // (64-bit) floating-point elements, and store the results in dst. -// -// FOR j := 0 to 1 -// i := j*32 -// m := j*64 -// dst[m+63:m] := Convert_Int32_To_FP64(a[i+31:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtpi32_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi32_pd FORCE_INLINE __m128d _mm_cvtpi32_pd(__m64 a) { #if defined(__aarch64__) @@ -4030,15 +3791,9 @@ FORCE_INLINE __m128d _mm_cvtpi32_pd(__m64 a) #endif } -// Converts the four single-precision, floating-point values of a to signed -// 32-bit integer values. -// -// r0 := (int) a0 -// r1 := (int) a1 -// r2 := (int) a2 -// r3 := (int) a3 -// -// https://msdn.microsoft.com/en-us/library/vstudio/xdc42k5e(v=vs.100).aspx +// Convert packed single-precision (32-bit) floating-point elements in a to +// packed 32-bit integers, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_epi32 // *NOTE*. The default rounding mode on SSE is 'round to even', which ARMv7-A // does not support! It is supported on ARMv8-A however. FORCE_INLINE __m128i _mm_cvtps_epi32(__m128 a) @@ -4095,14 +3850,7 @@ FORCE_INLINE __m128i _mm_cvtps_epi32(__m128 a) // Convert packed single-precision (32-bit) floating-point elements in a to // packed double-precision (64-bit) floating-point elements, and store the // results in dst. -// -// FOR j := 0 to 1 -// i := 64*j -// k := 32*j -// dst[i+63:i] := Convert_FP32_To_FP64(a[k+31:k]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtps_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pd FORCE_INLINE __m128d _mm_cvtps_pd(__m128 a) { #if defined(__aarch64__) @@ -4116,10 +3864,7 @@ FORCE_INLINE __m128d _mm_cvtps_pd(__m128 a) } // Copy the lower double-precision (64-bit) floating-point element of a to dst. -// -// dst[63:0] := a[63:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_f64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_f64 FORCE_INLINE double _mm_cvtsd_f64(__m128d a) { #if defined(__aarch64__) @@ -4131,10 +3876,7 @@ FORCE_INLINE double _mm_cvtsd_f64(__m128d a) // Convert the lower double-precision (64-bit) floating-point element in a to a // 32-bit integer, and store the result in dst. -// -// dst[31:0] := Convert_FP64_To_Int32(a[63:0]) -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_si32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_si32 FORCE_INLINE int32_t _mm_cvtsd_si32(__m128d a) { #if defined(__aarch64__) @@ -4148,10 +3890,7 @@ FORCE_INLINE int32_t _mm_cvtsd_si32(__m128d a) // Convert the lower double-precision (64-bit) floating-point element in a to a // 64-bit integer, and store the result in dst. -// -// dst[63:0] := Convert_FP64_To_Int64(a[63:0]) -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_si64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_si64 FORCE_INLINE int64_t _mm_cvtsd_si64(__m128d a) { #if defined(__aarch64__) @@ -4165,17 +3904,14 @@ FORCE_INLINE int64_t _mm_cvtsd_si64(__m128d a) // Convert the lower double-precision (64-bit) floating-point element in a to a // 64-bit integer, and store the result in dst. -// -// dst[63:0] := Convert_FP64_To_Int64(a[63:0]) -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_si64x +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_si64x #define _mm_cvtsd_si64x _mm_cvtsd_si64 // Convert the lower double-precision (64-bit) floating-point element in b to a // single-precision (32-bit) floating-point element, store the result in the // lower element of dst, and copy the upper 3 packed elements from a to the // upper elements of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsd_ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_ss FORCE_INLINE __m128 _mm_cvtsd_ss(__m128 a, __m128d b) { #if defined(__aarch64__) @@ -4189,33 +3925,27 @@ FORCE_INLINE __m128 _mm_cvtsd_ss(__m128 a, __m128d b) } // Copy the lower 32-bit integer in a to dst. -// -// dst[31:0] := a[31:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si32 FORCE_INLINE int _mm_cvtsi128_si32(__m128i a) { return vgetq_lane_s32(vreinterpretq_s32_m128i(a), 0); } // Copy the lower 64-bit integer in a to dst. -// -// dst[63:0] := a[63:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si64 FORCE_INLINE int64_t _mm_cvtsi128_si64(__m128i a) { return vgetq_lane_s64(vreinterpretq_s64_m128i(a), 0); } // Copy the lower 64-bit integer in a to dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si64x +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si64x #define _mm_cvtsi128_si64x(a) _mm_cvtsi128_si64(a) // Convert the signed 32-bit integer b to a double-precision (64-bit) // floating-point element, store the result in the lower element of dst, and // copy the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi32_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi32_sd FORCE_INLINE __m128d _mm_cvtsi32_sd(__m128d a, int32_t b) { #if defined(__aarch64__) @@ -4229,21 +3959,12 @@ FORCE_INLINE __m128d _mm_cvtsi32_sd(__m128d a, int32_t b) } // Copy the lower 64-bit integer in a to dst. -// -// dst[63:0] := a[63:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi128_si64x +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si64x #define _mm_cvtsi128_si64x(a) _mm_cvtsi128_si64(a) -// Moves 32-bit integer a to the least significant 32 bits of an __m128 object, -// zero extending the upper bits. -// -// r0 := a -// r1 := 0x0 -// r2 := 0x0 -// r3 := 0x0 -// -// https://msdn.microsoft.com/en-us/library/ct3539ha%28v=vs.90%29.aspx +// Copy 32-bit integer a to the lower elements of dst, and zero the upper +// elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi32_si128 FORCE_INLINE __m128i _mm_cvtsi32_si128(int a) { return vreinterpretq_m128i_s32(vsetq_lane_s32(a, vdupq_n_s32(0), 0)); @@ -4252,7 +3973,7 @@ FORCE_INLINE __m128i _mm_cvtsi32_si128(int a) // Convert the signed 64-bit integer b to a double-precision (64-bit) // floating-point element, store the result in the lower element of dst, and // copy the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi64_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64_sd FORCE_INLINE __m128d _mm_cvtsi64_sd(__m128d a, int64_t b) { #if defined(__aarch64__) @@ -4265,11 +3986,9 @@ FORCE_INLINE __m128d _mm_cvtsi64_sd(__m128d a, int64_t b) #endif } -// Moves 64-bit integer a to the least significant 64 bits of an __m128 object, -// zero extending the upper bits. -// -// r0 := a -// r1 := 0x0 +// Copy 64-bit integer a to the lower element of dst, and zero the upper +// element. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64_si128 FORCE_INLINE __m128i _mm_cvtsi64_si128(int64_t a) { return vreinterpretq_m128i_s64(vsetq_lane_s64(a, vdupq_n_s64(0), 0)); @@ -4277,24 +3996,20 @@ FORCE_INLINE __m128i _mm_cvtsi64_si128(int64_t a) // Copy 64-bit integer a to the lower element of dst, and zero the upper // element. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi64x_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64x_si128 #define _mm_cvtsi64x_si128(a) _mm_cvtsi64_si128(a) // Convert the signed 64-bit integer b to a double-precision (64-bit) // floating-point element, store the result in the lower element of dst, and // copy the upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtsi64x_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64x_sd #define _mm_cvtsi64x_sd(a, b) _mm_cvtsi64_sd(a, b) // Convert the lower single-precision (32-bit) floating-point element in b to a // double-precision (64-bit) floating-point element, store the result in the // lower element of dst, and copy the upper element from a to the upper element // of dst. -// -// dst[63:0] := Convert_FP32_To_FP64(b[31:0]) -// dst[127:64] := a[127:64] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtss_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_sd FORCE_INLINE __m128d _mm_cvtss_sd(__m128d a, __m128 b) { double d = (double) vgetq_lane_f32(vreinterpretq_f32_m128(b), 0); @@ -4309,7 +4024,7 @@ FORCE_INLINE __m128d _mm_cvtss_sd(__m128d a, __m128 b) // Convert packed double-precision (64-bit) floating-point elements in a to // packed 32-bit integers with truncation, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttpd_epi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttpd_epi32 FORCE_INLINE __m128i _mm_cvttpd_epi32(__m128d a) { double a0 = ((double *) &a)[0]; @@ -4319,7 +4034,7 @@ FORCE_INLINE __m128i _mm_cvttpd_epi32(__m128d a) // Convert packed double-precision (64-bit) floating-point elements in a to // packed 32-bit integers with truncation, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttpd_pi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttpd_pi32 FORCE_INLINE __m64 _mm_cvttpd_pi32(__m128d a) { double a0 = ((double *) &a)[0]; @@ -4328,9 +4043,9 @@ FORCE_INLINE __m64 _mm_cvttpd_pi32(__m128d a) return vreinterpret_m64_s32(vld1_s32(data)); } -// Converts the four single-precision, floating-point values of a to signed -// 32-bit integer values using truncate. -// https://msdn.microsoft.com/en-us/library/vstudio/1h005y6x(v=vs.100).aspx +// Convert packed single-precision (32-bit) floating-point elements in a to +// packed 32-bit integers with truncation, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttps_epi32 FORCE_INLINE __m128i _mm_cvttps_epi32(__m128 a) { return vreinterpretq_m128i_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a))); @@ -4338,10 +4053,7 @@ FORCE_INLINE __m128i _mm_cvttps_epi32(__m128 a) // Convert the lower double-precision (64-bit) floating-point element in a to a // 32-bit integer with truncation, and store the result in dst. -// -// dst[63:0] := Convert_FP64_To_Int32_Truncate(a[63:0]) -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttsd_si32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttsd_si32 FORCE_INLINE int32_t _mm_cvttsd_si32(__m128d a) { double ret = *((double *) &a); @@ -4350,10 +4062,7 @@ FORCE_INLINE int32_t _mm_cvttsd_si32(__m128d a) // Convert the lower double-precision (64-bit) floating-point element in a to a // 64-bit integer with truncation, and store the result in dst. -// -// dst[63:0] := Convert_FP64_To_Int64_Truncate(a[63:0]) -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttsd_si64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttsd_si64 FORCE_INLINE int64_t _mm_cvttsd_si64(__m128d a) { #if defined(__aarch64__) @@ -4366,21 +4075,12 @@ FORCE_INLINE int64_t _mm_cvttsd_si64(__m128d a) // Convert the lower double-precision (64-bit) floating-point element in a to a // 64-bit integer with truncation, and store the result in dst. -// -// dst[63:0] := Convert_FP64_To_Int64_Truncate(a[63:0]) -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvttsd_si64x +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttsd_si64x #define _mm_cvttsd_si64x(a) _mm_cvttsd_si64(a) // Divide packed double-precision (64-bit) floating-point elements in a by // packed elements in b, and store the results in dst. -// -// FOR j := 0 to 1 -// i := 64*j -// dst[i+63:i] := a[i+63:i] / b[i+63:i] -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_div_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_div_pd FORCE_INLINE __m128d _mm_div_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -4400,7 +4100,7 @@ FORCE_INLINE __m128d _mm_div_pd(__m128d a, __m128d b) // lower double-precision (64-bit) floating-point element in b, store the result // in the lower element of dst, and copy the upper element from a to the upper // element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_div_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_div_sd FORCE_INLINE __m128d _mm_div_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -4413,16 +4113,16 @@ FORCE_INLINE __m128d _mm_div_sd(__m128d a, __m128d b) #endif } -// Extracts the selected signed or unsigned 16-bit integer from a and zero -// extends. -// https://msdn.microsoft.com/en-us/library/6dceta0c(v=vs.100).aspx +// Extract a 16-bit integer from a, selected with imm8, and store the result in +// the lower element of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_epi16 // FORCE_INLINE int _mm_extract_epi16(__m128i a, __constrange(0,8) int imm) #define _mm_extract_epi16(a, imm) \ vgetq_lane_u16(vreinterpretq_u16_m128i(a), (imm)) -// Inserts the least significant 16 bits of b into the selected 16-bit integer -// of a. -// https://msdn.microsoft.com/en-us/library/kaze8hz1%28v=vs.100%29.aspx +// Copy a to dst, and insert the 16-bit integer i into dst at the location +// specified by imm8. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_epi16 // FORCE_INLINE __m128i _mm_insert_epi16(__m128i a, int b, // __constrange(0,8) int imm) #define _mm_insert_epi16(a, b, imm) \ @@ -4431,12 +4131,10 @@ FORCE_INLINE __m128d _mm_div_sd(__m128d a, __m128d b) vsetq_lane_s16((b), vreinterpretq_s16_m128i(a), (imm))); \ }) -// Loads two double-precision from 16-byte aligned memory, floating-point -// values. -// -// dst[127:0] := MEM[mem_addr+127:mem_addr] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_pd +// Load 128-bits (composed of 2 packed double-precision (64-bit) floating-point +// elements) from memory into dst. mem_addr must be aligned on a 16-byte +// boundary or a general-protection exception may be generated. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_pd FORCE_INLINE __m128d _mm_load_pd(const double *p) { #if defined(__aarch64__) @@ -4450,21 +4148,13 @@ FORCE_INLINE __m128d _mm_load_pd(const double *p) // Load a double-precision (64-bit) floating-point element from memory into both // elements of dst. -// -// dst[63:0] := MEM[mem_addr+63:mem_addr] -// dst[127:64] := MEM[mem_addr+63:mem_addr] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_pd1 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_pd1 #define _mm_load_pd1 _mm_load1_pd // Load a double-precision (64-bit) floating-point element from memory into the // lower of dst, and zero the upper element. mem_addr does not need to be // aligned on any particular boundary. -// -// dst[63:0] := MEM[mem_addr+63:mem_addr] -// dst[127:64] := 0 -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_sd FORCE_INLINE __m128d _mm_load_sd(const double *p) { #if defined(__aarch64__) @@ -4476,8 +4166,9 @@ FORCE_INLINE __m128d _mm_load_sd(const double *p) #endif } -// Loads 128-bit value. : -// https://msdn.microsoft.com/en-us/library/atzzad1h(v=vs.80).aspx +// Load 128-bits of integer data from memory into dst. mem_addr must be aligned +// on a 16-byte boundary or a general-protection exception may be generated. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_si128 FORCE_INLINE __m128i _mm_load_si128(const __m128i *p) { return vreinterpretq_m128i_s32(vld1q_s32((const int32_t *) p)); @@ -4485,11 +4176,7 @@ FORCE_INLINE __m128i _mm_load_si128(const __m128i *p) // Load a double-precision (64-bit) floating-point element from memory into both // elements of dst. -// -// dst[63:0] := MEM[mem_addr+63:mem_addr] -// dst[127:64] := MEM[mem_addr+63:mem_addr] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_load1_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load1_pd FORCE_INLINE __m128d _mm_load1_pd(const double *p) { #if defined(__aarch64__) @@ -4502,11 +4189,7 @@ FORCE_INLINE __m128d _mm_load1_pd(const double *p) // Load a double-precision (64-bit) floating-point element from memory into the // upper element of dst, and copy the lower element from a to dst. mem_addr does // not need to be aligned on any particular boundary. -// -// dst[63:0] := a[63:0] -// dst[127:64] := MEM[mem_addr+63:mem_addr] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadh_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadh_pd FORCE_INLINE __m128d _mm_loadh_pd(__m128d a, const double *p) { #if defined(__aarch64__) @@ -4519,7 +4202,7 @@ FORCE_INLINE __m128d _mm_loadh_pd(__m128d a, const double *p) } // Load 64-bit integer from memory into the first element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadl_epi64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadl_epi64 FORCE_INLINE __m128i _mm_loadl_epi64(__m128i const *p) { /* Load the lower 64 bits of the value pointed to by p into the @@ -4532,11 +4215,7 @@ FORCE_INLINE __m128i _mm_loadl_epi64(__m128i const *p) // Load a double-precision (64-bit) floating-point element from memory into the // lower element of dst, and copy the upper element from a to dst. mem_addr does // not need to be aligned on any particular boundary. -// -// dst[63:0] := MEM[mem_addr+63:mem_addr] -// dst[127:64] := a[127:64] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadl_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadl_pd FORCE_INLINE __m128d _mm_loadl_pd(__m128d a, const double *p) { #if defined(__aarch64__) @@ -4552,11 +4231,7 @@ FORCE_INLINE __m128d _mm_loadl_pd(__m128d a, const double *p) // Load 2 double-precision (64-bit) floating-point elements from memory into dst // in reverse order. mem_addr must be aligned on a 16-byte boundary or a // general-protection exception may be generated. -// -// dst[63:0] := MEM[mem_addr+127:mem_addr+64] -// dst[127:64] := MEM[mem_addr+63:mem_addr] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadr_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadr_pd FORCE_INLINE __m128d _mm_loadr_pd(const double *p) { #if defined(__aarch64__) @@ -4569,43 +4244,42 @@ FORCE_INLINE __m128d _mm_loadr_pd(const double *p) } // Loads two double-precision from unaligned memory, floating-point values. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_pd FORCE_INLINE __m128d _mm_loadu_pd(const double *p) { return _mm_load_pd(p); } -// Loads 128-bit value. : -// https://msdn.microsoft.com/zh-cn/library/f4k12ae8(v=vs.90).aspx +// Load 128-bits of integer data from memory into dst. mem_addr does not need to +// be aligned on any particular boundary. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_si128 FORCE_INLINE __m128i _mm_loadu_si128(const __m128i *p) { return vreinterpretq_m128i_s32(vld1q_s32((const int32_t *) p)); } // Load unaligned 32-bit integer from memory into the first element of dst. -// -// dst[31:0] := MEM[mem_addr+31:mem_addr] -// dst[MAX:32] := 0 -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loadu_si32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_si32 FORCE_INLINE __m128i _mm_loadu_si32(const void *p) { return vreinterpretq_m128i_s32( vsetq_lane_s32(*(const int32_t *) p, vdupq_n_s32(0), 0)); } -// Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit -// integers from b. -// -// r0 := (a0 * b0) + (a1 * b1) -// r1 := (a2 * b2) + (a3 * b3) -// r2 := (a4 * b4) + (a5 * b5) -// r3 := (a6 * b6) + (a7 * b7) -// https://msdn.microsoft.com/en-us/library/yht36sa6(v=vs.90).aspx +// Multiply packed signed 16-bit integers in a and b, producing intermediate +// signed 32-bit integers. Horizontally add adjacent pairs of intermediate +// 32-bit integers, and pack the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_madd_epi16 FORCE_INLINE __m128i _mm_madd_epi16(__m128i a, __m128i b) { int32x4_t low = vmull_s16(vget_low_s16(vreinterpretq_s16_m128i(a)), vget_low_s16(vreinterpretq_s16_m128i(b))); +#if defined(__aarch64__) + int32x4_t high = + vmull_high_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)); + + return vreinterpretq_m128i_s32(vpaddq_s32(low, high)); +#else int32x4_t high = vmull_s16(vget_high_s16(vreinterpretq_s16_m128i(a)), vget_high_s16(vreinterpretq_s16_m128i(b))); @@ -4613,13 +4287,14 @@ FORCE_INLINE __m128i _mm_madd_epi16(__m128i a, __m128i b) int32x2_t high_sum = vpadd_s32(vget_low_s32(high), vget_high_s32(high)); return vreinterpretq_m128i_s32(vcombine_s32(low_sum, high_sum)); +#endif } // Conditionally store 8-bit integer elements from a into memory using mask // (elements are not stored when the highest bit is not set in the corresponding // element) and a non-temporal memory hint. mem_addr does not need to be aligned // on any particular boundary. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maskmoveu_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskmoveu_si128 FORCE_INLINE void _mm_maskmoveu_si128(__m128i a, __m128i mask, char *mem_addr) { int8x16_t shr_mask = vshrq_n_s8(vreinterpretq_s8_m128i(mask), 7); @@ -4630,18 +4305,18 @@ FORCE_INLINE void _mm_maskmoveu_si128(__m128i a, __m128i mask, char *mem_addr) vst1q_s8((int8_t *) mem_addr, masked); } -// Computes the pairwise maxima of the 8 signed 16-bit integers from a and the 8 -// signed 16-bit integers from b. -// https://msdn.microsoft.com/en-us/LIBRary/3x060h7c(v=vs.100).aspx +// Compare packed signed 16-bit integers in a and b, and store packed maximum +// values in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epi16 FORCE_INLINE __m128i _mm_max_epi16(__m128i a, __m128i b) { return vreinterpretq_m128i_s16( vmaxq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); } -// Computes the pairwise maxima of the 16 unsigned 8-bit integers from a and the -// 16 unsigned 8-bit integers from b. -// https://msdn.microsoft.com/en-us/library/st6634za(v=vs.100).aspx +// Compare packed unsigned 8-bit integers in a and b, and store packed maximum +// values in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu8 FORCE_INLINE __m128i _mm_max_epu8(__m128i a, __m128i b) { return vreinterpretq_m128i_u8( @@ -4650,7 +4325,7 @@ FORCE_INLINE __m128i _mm_max_epu8(__m128i a, __m128i b) // Compare packed double-precision (64-bit) floating-point elements in a and b, // and store packed maximum values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_pd FORCE_INLINE __m128d _mm_max_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -4678,7 +4353,7 @@ FORCE_INLINE __m128d _mm_max_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b, store the maximum value in the lower element of dst, and copy the upper // element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_sd FORCE_INLINE __m128d _mm_max_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -4691,18 +4366,18 @@ FORCE_INLINE __m128d _mm_max_sd(__m128d a, __m128d b) #endif } -// Computes the pairwise minima of the 8 signed 16-bit integers from a and the 8 -// signed 16-bit integers from b. -// https://msdn.microsoft.com/en-us/library/vstudio/6te997ew(v=vs.100).aspx +// Compare packed signed 16-bit integers in a and b, and store packed minimum +// values in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epi16 FORCE_INLINE __m128i _mm_min_epi16(__m128i a, __m128i b) { return vreinterpretq_m128i_s16( vminq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); } -// Computes the pairwise minima of the 16 unsigned 8-bit integers from a and the -// 16 unsigned 8-bit integers from b. -// https://msdn.microsoft.com/ko-kr/library/17k8cf58(v=vs.100).aspxx +// Compare packed unsigned 8-bit integers in a and b, and store packed minimum +// values in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epu8 FORCE_INLINE __m128i _mm_min_epu8(__m128i a, __m128i b) { return vreinterpretq_m128i_u8( @@ -4711,7 +4386,7 @@ FORCE_INLINE __m128i _mm_min_epu8(__m128i a, __m128i b) // Compare packed double-precision (64-bit) floating-point elements in a and b, // and store packed minimum values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_pd FORCE_INLINE __m128d _mm_min_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -4738,7 +4413,7 @@ FORCE_INLINE __m128d _mm_min_pd(__m128d a, __m128d b) // Compare the lower double-precision (64-bit) floating-point elements in a and // b, store the minimum value in the lower element of dst, and copy the upper // element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_sd FORCE_INLINE __m128d _mm_min_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -4753,11 +4428,7 @@ FORCE_INLINE __m128d _mm_min_sd(__m128d a, __m128d b) // Copy the lower 64-bit integer in a to the lower element of dst, and zero the // upper element. -// -// dst[63:0] := a[63:0] -// dst[127:64] := 0 -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_move_epi64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_move_epi64 FORCE_INLINE __m128i _mm_move_epi64(__m128i a) { return vreinterpretq_m128i_s64( @@ -4767,11 +4438,7 @@ FORCE_INLINE __m128i _mm_move_epi64(__m128i a) // Move the lower double-precision (64-bit) floating-point element from b to the // lower element of dst, and copy the upper element from a to the upper element // of dst. -// -// dst[63:0] := b[63:0] -// dst[127:64] := a[127:64] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_move_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_move_sd FORCE_INLINE __m128d _mm_move_sd(__m128d a, __m128d b) { return vreinterpretq_m128d_f32( @@ -4779,10 +4446,9 @@ FORCE_INLINE __m128d _mm_move_sd(__m128d a, __m128d b) vget_high_f32(vreinterpretq_f32_m128d(a)))); } -// NEON does not provide a version of this function. -// Creates a 16-bit mask from the most significant bits of the 16 signed or -// unsigned 8-bit integers in a and zero extends the upper bits. -// https://msdn.microsoft.com/en-us/library/vstudio/s090c8fk(v=vs.100).aspx +// Create mask from the most significant bit of each 8-bit element in a, and +// store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movemask_epi8 FORCE_INLINE int _mm_movemask_epi8(__m128i a) { // Use increasingly wide shifts+adds to collect the sign bits @@ -4865,7 +4531,7 @@ FORCE_INLINE int _mm_movemask_epi8(__m128i a) // Set each bit of mask dst based on the most significant bit of the // corresponding packed double-precision (64-bit) floating-point element in a. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movemask_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movemask_pd FORCE_INLINE int _mm_movemask_pd(__m128d a) { uint64x2_t input = vreinterpretq_u64_m128d(a); @@ -4874,10 +4540,7 @@ FORCE_INLINE int _mm_movemask_pd(__m128d a) } // Copy the lower 64-bit integer in a to dst. -// -// dst[63:0] := a[63:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movepi64_pi64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movepi64_pi64 FORCE_INLINE __m64 _mm_movepi64_pi64(__m128i a) { return vreinterpret_m64_s64(vget_low_s64(vreinterpretq_s64_m128i(a))); @@ -4885,11 +4548,7 @@ FORCE_INLINE __m64 _mm_movepi64_pi64(__m128i a) // Copy the 64-bit integer a to the lower element of dst, and zero the upper // element. -// -// dst[63:0] := a[63:0] -// dst[127:64] := 0 -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movpi64_epi64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movpi64_epi64 FORCE_INLINE __m128i _mm_movpi64_epi64(__m64 a) { return vreinterpretq_m128i_s64( @@ -4898,9 +4557,7 @@ FORCE_INLINE __m128i _mm_movpi64_epi64(__m64 a) // Multiply the low unsigned 32-bit integers from each packed 64-bit element in // a and b, and store the unsigned 64-bit results in dst. -// -// r0 := (a0 & 0xFFFFFFFF) * (b0 & 0xFFFFFFFF) -// r1 := (a2 & 0xFFFFFFFF) * (b2 & 0xFFFFFFFF) +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_epu32 FORCE_INLINE __m128i _mm_mul_epu32(__m128i a, __m128i b) { // vmull_u32 upcasts instead of masking, so we downcast. @@ -4911,7 +4568,7 @@ FORCE_INLINE __m128i _mm_mul_epu32(__m128i a, __m128i b) // Multiply packed double-precision (64-bit) floating-point elements in a and b, // and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mul_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_pd FORCE_INLINE __m128d _mm_mul_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -4930,7 +4587,7 @@ FORCE_INLINE __m128d _mm_mul_pd(__m128d a, __m128d b) // Multiply the lower double-precision (64-bit) floating-point element in a and // b, store the result in the lower element of dst, and copy the upper element // from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_mul_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_mul_sd FORCE_INLINE __m128d _mm_mul_sd(__m128d a, __m128d b) { return _mm_move_sd(a, _mm_mul_pd(a, b)); @@ -4938,25 +4595,17 @@ FORCE_INLINE __m128d _mm_mul_sd(__m128d a, __m128d b) // Multiply the low unsigned 32-bit integers from a and b, and store the // unsigned 64-bit result in dst. -// -// dst[63:0] := a[31:0] * b[31:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mul_su32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_su32 FORCE_INLINE __m64 _mm_mul_su32(__m64 a, __m64 b) { return vreinterpret_m64_u64(vget_low_u64( vmull_u32(vreinterpret_u32_m64(a), vreinterpret_u32_m64(b)))); } -// Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit -// integers from b. -// -// r0 := (a0 * b0)[31:16] -// r1 := (a1 * b1)[31:16] -// ... -// r7 := (a7 * b7)[31:16] -// -// https://msdn.microsoft.com/en-us/library/vstudio/59hddw1d(v=vs.100).aspx +// Multiply the packed signed 16-bit integers in a and b, producing intermediate +// 32-bit integers, and store the high 16 bits of the intermediate integers in +// dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhi_epi16 FORCE_INLINE __m128i _mm_mulhi_epi16(__m128i a, __m128i b) { /* FIXME: issue with large values because of result saturation */ @@ -4977,7 +4626,7 @@ FORCE_INLINE __m128i _mm_mulhi_epi16(__m128i a, __m128i b) // Multiply the packed unsigned 16-bit integers in a and b, producing // intermediate 32-bit integers, and store the high 16 bits of the intermediate // integers in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mulhi_epu16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhi_epu16 FORCE_INLINE __m128i _mm_mulhi_epu16(__m128i a, __m128i b) { uint16x4_t a3210 = vget_low_u16(vreinterpretq_u16_m128i(a)); @@ -4999,15 +4648,9 @@ FORCE_INLINE __m128i _mm_mulhi_epu16(__m128i a, __m128i b) #endif } -// Multiplies the 8 signed or unsigned 16-bit integers from a by the 8 signed or -// unsigned 16-bit integers from b. -// -// r0 := (a0 * b0)[15:0] -// r1 := (a1 * b1)[15:0] -// ... -// r7 := (a7 * b7)[15:0] -// -// https://msdn.microsoft.com/en-us/library/vstudio/9ks1472s(v=vs.100).aspx +// Multiply the packed 16-bit integers in a and b, producing intermediate 32-bit +// integers, and store the low 16 bits of the intermediate integers in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mullo_epi16 FORCE_INLINE __m128i _mm_mullo_epi16(__m128i a, __m128i b) { return vreinterpretq_m128i_s16( @@ -5016,27 +4659,25 @@ FORCE_INLINE __m128i _mm_mullo_epi16(__m128i a, __m128i b) // Compute the bitwise OR of packed double-precision (64-bit) floating-point // elements in a and b, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_or_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_or_pd FORCE_INLINE __m128d _mm_or_pd(__m128d a, __m128d b) { return vreinterpretq_m128d_s64( vorrq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b))); } -// Computes the bitwise OR of the 128-bit value in a and the 128-bit value in b. -// -// r := a | b -// -// https://msdn.microsoft.com/en-us/library/vstudio/ew8ty0db(v=vs.100).aspx +// Compute the bitwise OR of 128 bits (representing integer data) in a and b, +// and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_or_si128 FORCE_INLINE __m128i _mm_or_si128(__m128i a, __m128i b) { return vreinterpretq_m128i_s32( vorrq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); } -// Packs the 16 signed 16-bit integers from a and b into 8-bit integers and -// saturates. -// https://msdn.microsoft.com/en-us/library/k4y4f7w5%28v=vs.90%29.aspx +// Convert packed signed 16-bit integers from a and b to packed 8-bit integers +// using signed saturation, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_packs_epi16 FORCE_INLINE __m128i _mm_packs_epi16(__m128i a, __m128i b) { return vreinterpretq_m128i_s8( @@ -5044,19 +4685,9 @@ FORCE_INLINE __m128i _mm_packs_epi16(__m128i a, __m128i b) vqmovn_s16(vreinterpretq_s16_m128i(b)))); } -// Packs the 8 signed 32-bit integers from a and b into signed 16-bit integers -// and saturates. -// -// r0 := SignedSaturate(a0) -// r1 := SignedSaturate(a1) -// r2 := SignedSaturate(a2) -// r3 := SignedSaturate(a3) -// r4 := SignedSaturate(b0) -// r5 := SignedSaturate(b1) -// r6 := SignedSaturate(b2) -// r7 := SignedSaturate(b3) -// -// https://msdn.microsoft.com/en-us/library/393t56f9%28v=vs.90%29.aspx +// Convert packed signed 32-bit integers from a and b to packed 16-bit integers +// using signed saturation, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_packs_epi32 FORCE_INLINE __m128i _mm_packs_epi32(__m128i a, __m128i b) { return vreinterpretq_m128i_s16( @@ -5064,19 +4695,9 @@ FORCE_INLINE __m128i _mm_packs_epi32(__m128i a, __m128i b) vqmovn_s32(vreinterpretq_s32_m128i(b)))); } -// Packs the 16 signed 16 - bit integers from a and b into 8 - bit unsigned -// integers and saturates. -// -// r0 := UnsignedSaturate(a0) -// r1 := UnsignedSaturate(a1) -// ... -// r7 := UnsignedSaturate(a7) -// r8 := UnsignedSaturate(b0) -// r9 := UnsignedSaturate(b1) -// ... -// r15 := UnsignedSaturate(b7) -// -// https://msdn.microsoft.com/en-us/library/07ad1wx4(v=vs.100).aspx +// Convert packed signed 16-bit integers from a and b to packed 8-bit integers +// using unsigned saturation, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_packus_epi16 FORCE_INLINE __m128i _mm_packus_epi16(const __m128i a, const __m128i b) { return vreinterpretq_m128i_u8( @@ -5089,6 +4710,7 @@ FORCE_INLINE __m128i _mm_packus_epi16(const __m128i a, const __m128i b) // 'yield' instruction isn't a good fit because it's effectively a nop on most // Arm cores. Experience with several databases has shown has shown an 'isb' is // a reasonable approximation. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_pause FORCE_INLINE void _mm_pause() { __asm__ __volatile__("isb\n"); @@ -5098,15 +4720,15 @@ FORCE_INLINE void _mm_pause() // b, then horizontally sum each consecutive 8 differences to produce two // unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low // 16 bits of 64-bit elements in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sad_epu8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sad_epu8 FORCE_INLINE __m128i _mm_sad_epu8(__m128i a, __m128i b) { uint16x8_t t = vpaddlq_u8(vabdq_u8((uint8x16_t) a, (uint8x16_t) b)); return vreinterpretq_m128i_u64(vpaddlq_u32(vpaddlq_u16(t))); } -// Sets the 8 signed 16-bit integer values. -// https://msdn.microsoft.com/en-au/library/3e0fek84(v=vs.90).aspx +// Set packed 16-bit integers in dst with the supplied values. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_epi16 FORCE_INLINE __m128i _mm_set_epi16(short i7, short i6, short i5, @@ -5120,33 +4742,31 @@ FORCE_INLINE __m128i _mm_set_epi16(short i7, return vreinterpretq_m128i_s16(vld1q_s16(data)); } -// Sets the 4 signed 32-bit integer values. -// https://msdn.microsoft.com/en-us/library/vstudio/019beekt(v=vs.100).aspx +// Set packed 32-bit integers in dst with the supplied values. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_epi32 FORCE_INLINE __m128i _mm_set_epi32(int i3, int i2, int i1, int i0) { int32_t ALIGN_STRUCT(16) data[4] = {i0, i1, i2, i3}; return vreinterpretq_m128i_s32(vld1q_s32(data)); } -// Returns the __m128i structure with its two 64-bit integer values -// initialized to the values of the two 64-bit integers passed in. -// https://msdn.microsoft.com/en-us/library/dk2sdw0h(v=vs.120).aspx +// Set packed 64-bit integers in dst with the supplied values. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_epi64 FORCE_INLINE __m128i _mm_set_epi64(__m64 i1, __m64 i2) { return _mm_set_epi64x((int64_t) i1, (int64_t) i2); } -// Returns the __m128i structure with its two 64-bit integer values -// initialized to the values of the two 64-bit integers passed in. -// https://msdn.microsoft.com/en-us/library/dk2sdw0h(v=vs.120).aspx +// Set packed 64-bit integers in dst with the supplied values. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_epi64x FORCE_INLINE __m128i _mm_set_epi64x(int64_t i1, int64_t i2) { return vreinterpretq_m128i_s64( vcombine_s64(vcreate_s64(i2), vcreate_s64(i1))); } -// Sets the 16 signed 8-bit integer values. -// https://msdn.microsoft.com/en-us/library/x0cx8zd3(v=vs.90).aspx +// Set packed 8-bit integers in dst with the supplied values. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_epi8 FORCE_INLINE __m128i _mm_set_epi8(signed char b15, signed char b14, signed char b13, @@ -5174,7 +4794,7 @@ FORCE_INLINE __m128i _mm_set_epi8(signed char b15, // Set packed double-precision (64-bit) floating-point elements in dst with the // supplied values. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_pd FORCE_INLINE __m128d _mm_set_pd(double e1, double e0) { double ALIGN_STRUCT(16) data[2] = {e0, e1}; @@ -5187,65 +4807,51 @@ FORCE_INLINE __m128d _mm_set_pd(double e1, double e0) // Broadcast double-precision (64-bit) floating-point value a to all elements of // dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_pd1 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_pd1 #define _mm_set_pd1 _mm_set1_pd // Copy double-precision (64-bit) floating-point element a to the lower element // of dst, and zero the upper element. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_sd FORCE_INLINE __m128d _mm_set_sd(double a) { +#if defined(__aarch64__) + return vreinterpretq_m128d_f64(vsetq_lane_f64(a, vdupq_n_f64(0), 0)); +#else return _mm_set_pd(0, a); +#endif } -// Sets the 8 signed 16-bit integer values to w. -// -// r0 := w -// r1 := w -// ... -// r7 := w -// -// https://msdn.microsoft.com/en-us/library/k0ya3x0e(v=vs.90).aspx +// Broadcast 16-bit integer a to all all elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_epi16 FORCE_INLINE __m128i _mm_set1_epi16(short w) { return vreinterpretq_m128i_s16(vdupq_n_s16(w)); } -// Sets the 4 signed 32-bit integer values to i. -// -// r0 := i -// r1 := i -// r2 := i -// r3 := I -// -// https://msdn.microsoft.com/en-us/library/vstudio/h4xscxat(v=vs.100).aspx +// Broadcast 32-bit integer a to all elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_epi32 FORCE_INLINE __m128i _mm_set1_epi32(int _i) { return vreinterpretq_m128i_s32(vdupq_n_s32(_i)); } -// Sets the 2 signed 64-bit integer values to i. -// https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2010/whtfzhzk(v=vs.100) +// Broadcast 64-bit integer a to all elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_epi64 FORCE_INLINE __m128i _mm_set1_epi64(__m64 _i) { return vreinterpretq_m128i_s64(vdupq_n_s64((int64_t) _i)); } -// Sets the 2 signed 64-bit integer values to i. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set1_epi64x +// Broadcast 64-bit integer a to all elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_epi64x FORCE_INLINE __m128i _mm_set1_epi64x(int64_t _i) { return vreinterpretq_m128i_s64(vdupq_n_s64(_i)); } -// Sets the 16 signed 8-bit integer values to b. -// -// r0 := b -// r1 := b -// ... -// r15 := b -// -// https://msdn.microsoft.com/en-us/library/6e14xhyf(v=vs.100).aspx +// Broadcast 8-bit integer a to all elements of dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_epi8 FORCE_INLINE __m128i _mm_set1_epi8(signed char w) { return vreinterpretq_m128i_s8(vdupq_n_s8(w)); @@ -5253,7 +4859,7 @@ FORCE_INLINE __m128i _mm_set1_epi8(signed char w) // Broadcast double-precision (64-bit) floating-point value a to all elements of // dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_set1_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_pd FORCE_INLINE __m128d _mm_set1_pd(double d) { #if defined(__aarch64__) @@ -5263,13 +4869,8 @@ FORCE_INLINE __m128d _mm_set1_pd(double d) #endif } -// Sets the 8 signed 16-bit integer values in reverse order. -// -// Return Value -// r0 := w0 -// r1 := w1 -// ... -// r7 := w7 +// Set packed 16-bit integers in dst with the supplied values in reverse order. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_epi16 FORCE_INLINE __m128i _mm_setr_epi16(short w0, short w1, short w2, @@ -5283,8 +4884,8 @@ FORCE_INLINE __m128i _mm_setr_epi16(short w0, return vreinterpretq_m128i_s16(vld1q_s16((int16_t *) data)); } -// Sets the 4 signed 32-bit integer values in reverse order -// https://technet.microsoft.com/en-us/library/security/27yb3ee5(v=vs.90).aspx +// Set packed 32-bit integers in dst with the supplied values in reverse order. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_epi32 FORCE_INLINE __m128i _mm_setr_epi32(int i3, int i2, int i1, int i0) { int32_t ALIGN_STRUCT(16) data[4] = {i3, i2, i1, i0}; @@ -5292,14 +4893,14 @@ FORCE_INLINE __m128i _mm_setr_epi32(int i3, int i2, int i1, int i0) } // Set packed 64-bit integers in dst with the supplied values in reverse order. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_setr_epi64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_epi64 FORCE_INLINE __m128i _mm_setr_epi64(__m64 e1, __m64 e0) { return vreinterpretq_m128i_s64(vcombine_s64(e1, e0)); } -// Sets the 16 signed 8-bit integer values in reverse order. -// https://msdn.microsoft.com/en-us/library/2khb9c7k(v=vs.90).aspx +// Set packed 8-bit integers in dst with the supplied values in reverse order. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_epi8 FORCE_INLINE __m128i _mm_setr_epi8(signed char b0, signed char b1, signed char b2, @@ -5327,14 +4928,14 @@ FORCE_INLINE __m128i _mm_setr_epi8(signed char b0, // Set packed double-precision (64-bit) floating-point elements in dst with the // supplied values in reverse order. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_setr_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_pd FORCE_INLINE __m128d _mm_setr_pd(double e1, double e0) { return _mm_set_pd(e0, e1); } // Return vector of type __m128d with all elements set to zero. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_setzero_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setzero_pd FORCE_INLINE __m128d _mm_setzero_pd(void) { #if defined(__aarch64__) @@ -5344,15 +4945,16 @@ FORCE_INLINE __m128d _mm_setzero_pd(void) #endif } -// Sets the 128-bit value to zero -// https://msdn.microsoft.com/en-us/library/vstudio/ys7dw0kh(v=vs.100).aspx +// Return vector of type __m128i with all elements set to zero. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setzero_si128 FORCE_INLINE __m128i _mm_setzero_si128(void) { return vreinterpretq_m128i_s32(vdupq_n_s32(0)); } -// Shuffles the 4 signed or unsigned 32-bit integers in a as specified by imm. -// https://msdn.microsoft.com/en-us/library/56f67xbk%28v=vs.90%29.aspx +// Shuffle 32-bit integers in a using the control in imm8, and store the results +// in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_epi32 // FORCE_INLINE __m128i _mm_shuffle_epi32(__m128i a, // __constrange(0,255) int imm) #ifdef _sse2neon_shuffle @@ -5421,11 +5023,7 @@ FORCE_INLINE __m128i _mm_setzero_si128(void) // Shuffle double-precision (64-bit) floating-point elements using the control // in imm8, and store the results in dst. -// -// dst[63:0] := (imm8[0] == 0) ? a[63:0] : a[127:64] -// dst[127:64] := (imm8[1] == 0) ? b[63:0] : b[127:64] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_pd #ifdef _sse2neon_shuffle #define _mm_shuffle_pd(a, b, imm8) \ vreinterpretq_m128d_s64( \ @@ -5471,17 +5069,7 @@ FORCE_INLINE __m128i _mm_setzero_si128(void) // Shift packed 16-bit integers in a left by count while shifting in zeros, and // store the results in dst. -// -// FOR j := 0 to 7 -// i := j*16 -// IF count[63:0] > 15 -// dst[i+15:i] := 0 -// ELSE -// dst[i+15:i] := ZeroExtend16(a[i+15:i] << count[63:0]) -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sll_epi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sll_epi16 FORCE_INLINE __m128i _mm_sll_epi16(__m128i a, __m128i count) { uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); @@ -5494,17 +5082,7 @@ FORCE_INLINE __m128i _mm_sll_epi16(__m128i a, __m128i count) // Shift packed 32-bit integers in a left by count while shifting in zeros, and // store the results in dst. -// -// FOR j := 0 to 3 -// i := j*32 -// IF count[63:0] > 31 -// dst[i+31:i] := 0 -// ELSE -// dst[i+31:i] := ZeroExtend32(a[i+31:i] << count[63:0]) -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sll_epi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sll_epi32 FORCE_INLINE __m128i _mm_sll_epi32(__m128i a, __m128i count) { uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); @@ -5517,17 +5095,7 @@ FORCE_INLINE __m128i _mm_sll_epi32(__m128i a, __m128i count) // Shift packed 64-bit integers in a left by count while shifting in zeros, and // store the results in dst. -// -// FOR j := 0 to 1 -// i := j*64 -// IF count[63:0] > 63 -// dst[i+63:i] := 0 -// ELSE -// dst[i+63:i] := ZeroExtend64(a[i+63:i] << count[63:0]) -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sll_epi64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sll_epi64 FORCE_INLINE __m128i _mm_sll_epi64(__m128i a, __m128i count) { uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); @@ -5540,17 +5108,7 @@ FORCE_INLINE __m128i _mm_sll_epi64(__m128i a, __m128i count) // Shift packed 16-bit integers in a left by imm8 while shifting in zeros, and // store the results in dst. -// -// FOR j := 0 to 7 -// i := j*16 -// IF imm8[7:0] > 15 -// dst[i+15:i] := 0 -// ELSE -// dst[i+15:i] := ZeroExtend16(a[i+15:i] << imm8[7:0]) -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_slli_epi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_epi16 FORCE_INLINE __m128i _mm_slli_epi16(__m128i a, int imm) { if (_sse2neon_unlikely(imm & ~15)) @@ -5561,17 +5119,7 @@ FORCE_INLINE __m128i _mm_slli_epi16(__m128i a, int imm) // Shift packed 32-bit integers in a left by imm8 while shifting in zeros, and // store the results in dst. -// -// FOR j := 0 to 3 -// i := j*32 -// IF imm8[7:0] > 31 -// dst[i+31:i] := 0 -// ELSE -// dst[i+31:i] := ZeroExtend32(a[i+31:i] << imm8[7:0]) -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_slli_epi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_epi32 FORCE_INLINE __m128i _mm_slli_epi32(__m128i a, int imm) { if (_sse2neon_unlikely(imm & ~31)) @@ -5582,17 +5130,7 @@ FORCE_INLINE __m128i _mm_slli_epi32(__m128i a, int imm) // Shift packed 64-bit integers in a left by imm8 while shifting in zeros, and // store the results in dst. -// -// FOR j := 0 to 1 -// i := j*64 -// IF imm8[7:0] > 63 -// dst[i+63:i] := 0 -// ELSE -// dst[i+63:i] := ZeroExtend64(a[i+63:i] << imm8[7:0]) -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_slli_epi64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_epi64 FORCE_INLINE __m128i _mm_slli_epi64(__m128i a, int imm) { if (_sse2neon_unlikely(imm & ~63)) @@ -5603,14 +5141,7 @@ FORCE_INLINE __m128i _mm_slli_epi64(__m128i a, int imm) // Shift a left by imm8 bytes while shifting in zeros, and store the results in // dst. -// -// tmp := imm8[7:0] -// IF tmp > 15 -// tmp := 16 -// FI -// dst[127:0] := a[127:0] << (tmp*8) -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_slli_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_si128 #define _mm_slli_si128(a, imm) \ __extension__({ \ int8x16_t ret; \ @@ -5626,7 +5157,7 @@ FORCE_INLINE __m128i _mm_slli_epi64(__m128i a, int imm) // Compute the square root of packed double-precision (64-bit) floating-point // elements in a, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sqrt_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sqrt_pd FORCE_INLINE __m128d _mm_sqrt_pd(__m128d a) { #if defined(__aarch64__) @@ -5641,7 +5172,7 @@ FORCE_INLINE __m128d _mm_sqrt_pd(__m128d a) // Compute the square root of the lower double-precision (64-bit) floating-point // element in b, store the result in the lower element of dst, and copy the // upper element from a to the upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sqrt_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sqrt_sd FORCE_INLINE __m128d _mm_sqrt_sd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -5653,17 +5184,7 @@ FORCE_INLINE __m128d _mm_sqrt_sd(__m128d a, __m128d b) // Shift packed 16-bit integers in a right by count while shifting in sign bits, // and store the results in dst. -// -// FOR j := 0 to 7 -// i := j*16 -// IF count[63:0] > 15 -// dst[i+15:i] := (a[i+15] ? 0xFFFF : 0x0) -// ELSE -// dst[i+15:i] := SignExtend16(a[i+15:i] >> count[63:0]) -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sra_epi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sra_epi16 FORCE_INLINE __m128i _mm_sra_epi16(__m128i a, __m128i count) { int64_t c = (int64_t) vget_low_s64((int64x2_t) count); @@ -5674,17 +5195,7 @@ FORCE_INLINE __m128i _mm_sra_epi16(__m128i a, __m128i count) // Shift packed 32-bit integers in a right by count while shifting in sign bits, // and store the results in dst. -// -// FOR j := 0 to 3 -// i := j*32 -// IF count[63:0] > 31 -// dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0x0) -// ELSE -// dst[i+31:i] := SignExtend32(a[i+31:i] >> count[63:0]) -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sra_epi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sra_epi32 FORCE_INLINE __m128i _mm_sra_epi32(__m128i a, __m128i count) { int64_t c = (int64_t) vget_low_s64((int64x2_t) count); @@ -5695,17 +5206,7 @@ FORCE_INLINE __m128i _mm_sra_epi32(__m128i a, __m128i count) // Shift packed 16-bit integers in a right by imm8 while shifting in sign // bits, and store the results in dst. -// -// FOR j := 0 to 7 -// i := j*16 -// IF imm8[7:0] > 15 -// dst[i+15:i] := (a[i+15] ? 0xFFFF : 0x0) -// ELSE -// dst[i+15:i] := SignExtend16(a[i+15:i] >> imm8[7:0]) -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srai_epi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srai_epi16 FORCE_INLINE __m128i _mm_srai_epi16(__m128i a, int imm) { const int count = (imm & ~15) ? 15 : imm; @@ -5714,17 +5215,7 @@ FORCE_INLINE __m128i _mm_srai_epi16(__m128i a, int imm) // Shift packed 32-bit integers in a right by imm8 while shifting in sign bits, // and store the results in dst. -// -// FOR j := 0 to 3 -// i := j*32 -// IF imm8[7:0] > 31 -// dst[i+31:i] := (a[i+31] ? 0xFFFFFFFF : 0x0) -// ELSE -// dst[i+31:i] := SignExtend32(a[i+31:i] >> imm8[7:0]) -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srai_epi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srai_epi32 // FORCE_INLINE __m128i _mm_srai_epi32(__m128i a, __constrange(0,255) int imm) #define _mm_srai_epi32(a, imm) \ __extension__({ \ @@ -5743,17 +5234,7 @@ FORCE_INLINE __m128i _mm_srai_epi16(__m128i a, int imm) // Shift packed 16-bit integers in a right by count while shifting in zeros, and // store the results in dst. -// -// FOR j := 0 to 7 -// i := j*16 -// IF count[63:0] > 15 -// dst[i+15:i] := 0 -// ELSE -// dst[i+15:i] := ZeroExtend16(a[i+15:i] >> count[63:0]) -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srl_epi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srl_epi16 FORCE_INLINE __m128i _mm_srl_epi16(__m128i a, __m128i count) { uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); @@ -5766,17 +5247,7 @@ FORCE_INLINE __m128i _mm_srl_epi16(__m128i a, __m128i count) // Shift packed 32-bit integers in a right by count while shifting in zeros, and // store the results in dst. -// -// FOR j := 0 to 3 -// i := j*32 -// IF count[63:0] > 31 -// dst[i+31:i] := 0 -// ELSE -// dst[i+31:i] := ZeroExtend32(a[i+31:i] >> count[63:0]) -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srl_epi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srl_epi32 FORCE_INLINE __m128i _mm_srl_epi32(__m128i a, __m128i count) { uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); @@ -5789,17 +5260,7 @@ FORCE_INLINE __m128i _mm_srl_epi32(__m128i a, __m128i count) // Shift packed 64-bit integers in a right by count while shifting in zeros, and // store the results in dst. -// -// FOR j := 0 to 1 -// i := j*64 -// IF count[63:0] > 63 -// dst[i+63:i] := 0 -// ELSE -// dst[i+63:i] := ZeroExtend64(a[i+63:i] >> count[63:0]) -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srl_epi64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srl_epi64 FORCE_INLINE __m128i _mm_srl_epi64(__m128i a, __m128i count) { uint64_t c = vreinterpretq_nth_u64_m128i(count, 0); @@ -5812,17 +5273,7 @@ FORCE_INLINE __m128i _mm_srl_epi64(__m128i a, __m128i count) // Shift packed 16-bit integers in a right by imm8 while shifting in zeros, and // store the results in dst. -// -// FOR j := 0 to 7 -// i := j*16 -// IF imm8[7:0] > 15 -// dst[i+15:i] := 0 -// ELSE -// dst[i+15:i] := ZeroExtend16(a[i+15:i] >> imm8[7:0]) -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_epi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_epi16 #define _mm_srli_epi16(a, imm) \ __extension__({ \ __m128i ret; \ @@ -5837,17 +5288,7 @@ FORCE_INLINE __m128i _mm_srl_epi64(__m128i a, __m128i count) // Shift packed 32-bit integers in a right by imm8 while shifting in zeros, and // store the results in dst. -// -// FOR j := 0 to 3 -// i := j*32 -// IF imm8[7:0] > 31 -// dst[i+31:i] := 0 -// ELSE -// dst[i+31:i] := ZeroExtend32(a[i+31:i] >> imm8[7:0]) -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_epi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_epi32 // FORCE_INLINE __m128i _mm_srli_epi32(__m128i a, __constrange(0,255) int imm) #define _mm_srli_epi32(a, imm) \ __extension__({ \ @@ -5863,17 +5304,7 @@ FORCE_INLINE __m128i _mm_srl_epi64(__m128i a, __m128i count) // Shift packed 64-bit integers in a right by imm8 while shifting in zeros, and // store the results in dst. -// -// FOR j := 0 to 1 -// i := j*64 -// IF imm8[7:0] > 63 -// dst[i+63:i] := 0 -// ELSE -// dst[i+63:i] := ZeroExtend64(a[i+63:i] >> imm8[7:0]) -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_epi64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_epi64 #define _mm_srli_epi64(a, imm) \ __extension__({ \ __m128i ret; \ @@ -5888,14 +5319,7 @@ FORCE_INLINE __m128i _mm_srl_epi64(__m128i a, __m128i count) // Shift a right by imm8 bytes while shifting in zeros, and store the results in // dst. -// -// tmp := imm8[7:0] -// IF tmp > 15 -// tmp := 16 -// FI -// dst[127:0] := a[127:0] >> (tmp*8) -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_srli_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_si128 #define _mm_srli_si128(a, imm) \ __extension__({ \ int8x16_t ret; \ @@ -5910,7 +5334,7 @@ FORCE_INLINE __m128i _mm_srl_epi64(__m128i a, __m128i count) // Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point // elements) from a into memory. mem_addr must be aligned on a 16-byte boundary // or a general-protection exception may be generated. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_pd FORCE_INLINE void _mm_store_pd(double *mem_addr, __m128d a) { #if defined(__aarch64__) @@ -5923,7 +5347,7 @@ FORCE_INLINE void _mm_store_pd(double *mem_addr, __m128d a) // Store the lower double-precision (64-bit) floating-point element from a into // 2 contiguous elements in memory. mem_addr must be aligned on a 16-byte // boundary or a general-protection exception may be generated. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_store_pd1 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_pd1 FORCE_INLINE void _mm_store_pd1(double *mem_addr, __m128d a) { #if defined(__aarch64__) @@ -5939,7 +5363,7 @@ FORCE_INLINE void _mm_store_pd1(double *mem_addr, __m128d a) // Store the lower double-precision (64-bit) floating-point element from a into // memory. mem_addr does not need to be aligned on any particular boundary. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_store_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_store_sd FORCE_INLINE void _mm_store_sd(double *mem_addr, __m128d a) { #if defined(__aarch64__) @@ -5949,8 +5373,9 @@ FORCE_INLINE void _mm_store_sd(double *mem_addr, __m128d a) #endif } -// Stores four 32-bit integer values as (as a __m128i value) at the address p. -// https://msdn.microsoft.com/en-us/library/vstudio/edk11s13(v=vs.100).aspx +// Store 128-bits of integer data from a into memory. mem_addr must be aligned +// on a 16-byte boundary or a general-protection exception may be generated. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_si128 FORCE_INLINE void _mm_store_si128(__m128i *p, __m128i a) { vst1q_s32((int32_t *) p, vreinterpretq_s32_m128i(a)); @@ -5959,15 +5384,12 @@ FORCE_INLINE void _mm_store_si128(__m128i *p, __m128i a) // Store the lower double-precision (64-bit) floating-point element from a into // 2 contiguous elements in memory. mem_addr must be aligned on a 16-byte // boundary or a general-protection exception may be generated. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#expand=9,526,5601&text=_mm_store1_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#expand=9,526,5601&text=_mm_store1_pd #define _mm_store1_pd _mm_store_pd1 // Store the upper double-precision (64-bit) floating-point element from a into // memory. -// -// MEM[mem_addr+63:mem_addr] := a[127:64] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeh_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeh_pd FORCE_INLINE void _mm_storeh_pd(double *mem_addr, __m128d a) { #if defined(__aarch64__) @@ -5977,8 +5399,8 @@ FORCE_INLINE void _mm_storeh_pd(double *mem_addr, __m128d a) #endif } -// Reads the lower 64 bits of b and stores them into the lower 64 bits of a. -// https://msdn.microsoft.com/en-us/library/hhwf428f%28v=vs.90%29.aspx +// Store 64-bit integer from the first element of a into memory. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storel_epi64 FORCE_INLINE void _mm_storel_epi64(__m128i *a, __m128i b) { vst1_u64((uint64_t *) a, vget_low_u64(vreinterpretq_u64_m128i(b))); @@ -5986,10 +5408,7 @@ FORCE_INLINE void _mm_storel_epi64(__m128i *a, __m128i b) // Store the lower double-precision (64-bit) floating-point element from a into // memory. -// -// MEM[mem_addr+63:mem_addr] := a[63:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storel_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storel_pd FORCE_INLINE void _mm_storel_pd(double *mem_addr, __m128d a) { #if defined(__aarch64__) @@ -6002,11 +5421,7 @@ FORCE_INLINE void _mm_storel_pd(double *mem_addr, __m128d a) // Store 2 double-precision (64-bit) floating-point elements from a into memory // in reverse order. mem_addr must be aligned on a 16-byte boundary or a // general-protection exception may be generated. -// -// MEM[mem_addr+63:mem_addr] := a[127:64] -// MEM[mem_addr+127:mem_addr+64] := a[63:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storer_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storer_pd FORCE_INLINE void _mm_storer_pd(double *mem_addr, __m128d a) { float32x4_t f = vreinterpretq_f32_m128d(a); @@ -6016,21 +5431,23 @@ FORCE_INLINE void _mm_storer_pd(double *mem_addr, __m128d a) // Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point // elements) from a into memory. mem_addr does not need to be aligned on any // particular boundary. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_pd FORCE_INLINE void _mm_storeu_pd(double *mem_addr, __m128d a) { _mm_store_pd(mem_addr, a); } -// Stores 128-bits of integer data a at the address p. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_si128 +// Store 128-bits of integer data from a into memory. mem_addr does not need to +// be aligned on any particular boundary. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si128 FORCE_INLINE void _mm_storeu_si128(__m128i *p, __m128i a) { vst1q_s32((int32_t *) p, vreinterpretq_s32_m128i(a)); } -// Stores 32-bits of integer data a at the address p. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_storeu_si32 +// Store 32-bit integer from the first element of a into memory. mem_addr does +// not need to be aligned on any particular boundary. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si32 FORCE_INLINE void _mm_storeu_si32(void *p, __m128i a) { vst1q_lane_s32((int32_t *) p, vreinterpretq_s32_m128i(a), 0); @@ -6040,7 +5457,7 @@ FORCE_INLINE void _mm_storeu_si32(void *p, __m128i a) // elements) from a into memory using a non-temporal memory hint. mem_addr must // be aligned on a 16-byte boundary or a general-protection exception may be // generated. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_pd FORCE_INLINE void _mm_stream_pd(double *p, __m128d a) { #if __has_builtin(__builtin_nontemporal_store) @@ -6052,10 +5469,10 @@ FORCE_INLINE void _mm_stream_pd(double *p, __m128d a) #endif } -// Stores the data in a to the address p without polluting the caches. If the -// cache line containing address p is already in the cache, the cache will be -// updated. -// https://msdn.microsoft.com/en-us/library/ba08y07y%28v=vs.90%29.aspx +// Store 128-bits of integer data from a into memory using a non-temporal memory +// hint. mem_addr must be aligned on a 16-byte boundary or a general-protection +// exception may be generated. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_si128 FORCE_INLINE void _mm_stream_si128(__m128i *p, __m128i a) { #if __has_builtin(__builtin_nontemporal_store) @@ -6068,7 +5485,7 @@ FORCE_INLINE void _mm_stream_si128(__m128i *p, __m128i a) // Store 32-bit integer a into memory using a non-temporal hint to minimize // cache pollution. If the cache line containing address mem_addr is already in // the cache, the cache will be updated. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_si32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_si32 FORCE_INLINE void _mm_stream_si32(int *p, int a) { vst1q_lane_s32((int32_t *) p, vdupq_n_s32(a), 0); @@ -6077,7 +5494,7 @@ FORCE_INLINE void _mm_stream_si32(int *p, int a) // Store 64-bit integer a into memory using a non-temporal hint to minimize // cache pollution. If the cache line containing address mem_addr is already in // the cache, the cache will be updated. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_si64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_si64 FORCE_INLINE void _mm_stream_si64(__int64 *p, __int64 a) { vst1_s64((int64_t *) p, vdup_n_s64((int64_t) a)); @@ -6085,32 +5502,25 @@ FORCE_INLINE void _mm_stream_si64(__int64 *p, __int64 a) // Subtract packed 16-bit integers in b from packed 16-bit integers in a, and // store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_epi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_epi16 FORCE_INLINE __m128i _mm_sub_epi16(__m128i a, __m128i b) { return vreinterpretq_m128i_s16( vsubq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); } -// Subtracts the 4 signed or unsigned 32-bit integers of b from the 4 signed or -// unsigned 32-bit integers of a. -// -// r0 := a0 - b0 -// r1 := a1 - b1 -// r2 := a2 - b2 -// r3 := a3 - b3 -// -// https://msdn.microsoft.com/en-us/library/vstudio/fhh866h0(v=vs.100).aspx +// Subtract packed 32-bit integers in b from packed 32-bit integers in a, and +// store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_epi32 FORCE_INLINE __m128i _mm_sub_epi32(__m128i a, __m128i b) { return vreinterpretq_m128i_s32( vsubq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); } -// Subtract 2 packed 64-bit integers in b from 2 packed 64-bit integers in a, -// and store the results in dst. -// r0 := a0 - b0 -// r1 := a1 - b1 +// Subtract packed 64-bit integers in b from packed 64-bit integers in a, and +// store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_epi64 FORCE_INLINE __m128i _mm_sub_epi64(__m128i a, __m128i b) { return vreinterpretq_m128i_s64( @@ -6119,7 +5529,7 @@ FORCE_INLINE __m128i _mm_sub_epi64(__m128i a, __m128i b) // Subtract packed 8-bit integers in b from packed 8-bit integers in a, and // store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_epi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_epi8 FORCE_INLINE __m128i _mm_sub_epi8(__m128i a, __m128i b) { return vreinterpretq_m128i_s8( @@ -6129,13 +5539,7 @@ FORCE_INLINE __m128i _mm_sub_epi8(__m128i a, __m128i b) // Subtract packed double-precision (64-bit) floating-point elements in b from // packed double-precision (64-bit) floating-point elements in a, and store the // results in dst. -// -// FOR j := 0 to 1 -// i := j*64 -// dst[i+63:i] := a[i+63:i] - b[i+63:i] -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_sub_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_sub_pd FORCE_INLINE __m128d _mm_sub_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -6155,71 +5559,50 @@ FORCE_INLINE __m128d _mm_sub_pd(__m128d a, __m128d b) // the lower double-precision (64-bit) floating-point element in a, store the // result in the lower element of dst, and copy the upper element from a to the // upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_sd FORCE_INLINE __m128d _mm_sub_sd(__m128d a, __m128d b) { return _mm_move_sd(a, _mm_sub_pd(a, b)); } // Subtract 64-bit integer b from 64-bit integer a, and store the result in dst. -// -// dst[63:0] := a[63:0] - b[63:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sub_si64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_si64 FORCE_INLINE __m64 _mm_sub_si64(__m64 a, __m64 b) { return vreinterpret_m64_s64( vsub_s64(vreinterpret_s64_m64(a), vreinterpret_s64_m64(b))); } -// Subtracts the 8 signed 16-bit integers of b from the 8 signed 16-bit integers -// of a and saturates. -// -// r0 := SignedSaturate(a0 - b0) -// r1 := SignedSaturate(a1 - b1) -// ... -// r7 := SignedSaturate(a7 - b7) -// -// https://technet.microsoft.com/en-us/subscriptions/3247z5b8(v=vs.90) +// Subtract packed signed 16-bit integers in b from packed 16-bit integers in a +// using saturation, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_subs_epi16 FORCE_INLINE __m128i _mm_subs_epi16(__m128i a, __m128i b) { return vreinterpretq_m128i_s16( vqsubq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); } -// Subtracts the 16 signed 8-bit integers of b from the 16 signed 8-bit integers -// of a and saturates. -// -// r0 := SignedSaturate(a0 - b0) -// r1 := SignedSaturate(a1 - b1) -// ... -// r15 := SignedSaturate(a15 - b15) -// -// https://technet.microsoft.com/en-us/subscriptions/by7kzks1(v=vs.90) +// Subtract packed signed 8-bit integers in b from packed 8-bit integers in a +// using saturation, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_subs_epi8 FORCE_INLINE __m128i _mm_subs_epi8(__m128i a, __m128i b) { return vreinterpretq_m128i_s8( vqsubq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b))); } -// Subtracts the 8 unsigned 16-bit integers of bfrom the 8 unsigned 16-bit -// integers of a and saturates.. -// https://technet.microsoft.com/en-us/subscriptions/index/f44y0s19(v=vs.90).aspx +// Subtract packed unsigned 16-bit integers in b from packed unsigned 16-bit +// integers in a using saturation, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_subs_epu16 FORCE_INLINE __m128i _mm_subs_epu16(__m128i a, __m128i b) { return vreinterpretq_m128i_u16( vqsubq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b))); } -// Subtracts the 16 unsigned 8-bit integers of b from the 16 unsigned 8-bit -// integers of a and saturates. -// -// r0 := UnsignedSaturate(a0 - b0) -// r1 := UnsignedSaturate(a1 - b1) -// ... -// r15 := UnsignedSaturate(a15 - b15) -// -// https://technet.microsoft.com/en-us/subscriptions/yadkxc18(v=vs.90) +// Subtract packed unsigned 8-bit integers in b from packed unsigned 8-bit +// integers in a using saturation, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_subs_epu8 FORCE_INLINE __m128i _mm_subs_epu8(__m128i a, __m128i b) { return vreinterpretq_m128i_u8( @@ -6234,7 +5617,7 @@ FORCE_INLINE __m128i _mm_subs_epu8(__m128i a, __m128i b) #define _mm_ucomineq_sd _mm_comineq_sd // Return vector of type __m128d with undefined elements. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_undefined_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_undefined_pd FORCE_INLINE __m128d _mm_undefined_pd(void) { #if defined(__GNUC__) || defined(__clang__) @@ -6248,19 +5631,9 @@ FORCE_INLINE __m128d _mm_undefined_pd(void) #endif } -// Interleaves the upper 4 signed or unsigned 16-bit integers in a with the -// upper 4 signed or unsigned 16-bit integers in b. -// -// r0 := a4 -// r1 := b4 -// r2 := a5 -// r3 := b5 -// r4 := a6 -// r5 := b6 -// r6 := a7 -// r7 := b7 -// -// https://msdn.microsoft.com/en-us/library/03196cz7(v=vs.100).aspx +// Unpack and interleave 16-bit integers from the high half of a and b, and +// store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_epi16 FORCE_INLINE __m128i _mm_unpackhi_epi16(__m128i a, __m128i b) { #if defined(__aarch64__) @@ -6274,9 +5647,9 @@ FORCE_INLINE __m128i _mm_unpackhi_epi16(__m128i a, __m128i b) #endif } -// Interleaves the upper 2 signed or unsigned 32-bit integers in a with the -// upper 2 signed or unsigned 32-bit integers in b. -// https://msdn.microsoft.com/en-us/library/65sa7cbs(v=vs.100).aspx +// Unpack and interleave 32-bit integers from the high half of a and b, and +// store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_epi32 FORCE_INLINE __m128i _mm_unpackhi_epi32(__m128i a, __m128i b) { #if defined(__aarch64__) @@ -6290,30 +5663,24 @@ FORCE_INLINE __m128i _mm_unpackhi_epi32(__m128i a, __m128i b) #endif } -// Interleaves the upper signed or unsigned 64-bit integer in a with the -// upper signed or unsigned 64-bit integer in b. -// -// r0 := a1 -// r1 := b1 +// Unpack and interleave 64-bit integers from the high half of a and b, and +// store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_epi64 FORCE_INLINE __m128i _mm_unpackhi_epi64(__m128i a, __m128i b) { +#if defined(__aarch64__) + return vreinterpretq_m128i_s64( + vzip2q_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b))); +#else int64x1_t a_h = vget_high_s64(vreinterpretq_s64_m128i(a)); int64x1_t b_h = vget_high_s64(vreinterpretq_s64_m128i(b)); return vreinterpretq_m128i_s64(vcombine_s64(a_h, b_h)); +#endif } -// Interleaves the upper 8 signed or unsigned 8-bit integers in a with the upper -// 8 signed or unsigned 8-bit integers in b. -// -// r0 := a8 -// r1 := b8 -// r2 := a9 -// r3 := b9 -// ... -// r14 := a15 -// r15 := b15 -// -// https://msdn.microsoft.com/en-us/library/t5h7783k(v=vs.100).aspx +// Unpack and interleave 8-bit integers from the high half of a and b, and store +// the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_epi8 FORCE_INLINE __m128i _mm_unpackhi_epi8(__m128i a, __m128i b) { #if defined(__aarch64__) @@ -6331,15 +5698,7 @@ FORCE_INLINE __m128i _mm_unpackhi_epi8(__m128i a, __m128i b) // Unpack and interleave double-precision (64-bit) floating-point elements from // the high half of a and b, and store the results in dst. -// -// DEFINE INTERLEAVE_HIGH_QWORDS(src1[127:0], src2[127:0]) { -// dst[63:0] := src1[127:64] -// dst[127:64] := src2[127:64] -// RETURN dst[127:0] -// } -// dst[127:0] := INTERLEAVE_HIGH_QWORDS(a[127:0], b[127:0]) -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_unpackhi_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_pd FORCE_INLINE __m128d _mm_unpackhi_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -6352,19 +5711,9 @@ FORCE_INLINE __m128d _mm_unpackhi_pd(__m128d a, __m128d b) #endif } -// Interleaves the lower 4 signed or unsigned 16-bit integers in a with the -// lower 4 signed or unsigned 16-bit integers in b. -// -// r0 := a0 -// r1 := b0 -// r2 := a1 -// r3 := b1 -// r4 := a2 -// r5 := b2 -// r6 := a3 -// r7 := b3 -// -// https://msdn.microsoft.com/en-us/library/btxb17bw%28v=vs.90%29.aspx +// Unpack and interleave 16-bit integers from the low half of a and b, and store +// the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_epi16 FORCE_INLINE __m128i _mm_unpacklo_epi16(__m128i a, __m128i b) { #if defined(__aarch64__) @@ -6378,15 +5727,9 @@ FORCE_INLINE __m128i _mm_unpacklo_epi16(__m128i a, __m128i b) #endif } -// Interleaves the lower 2 signed or unsigned 32 - bit integers in a with the -// lower 2 signed or unsigned 32 - bit integers in b. -// -// r0 := a0 -// r1 := b0 -// r2 := a1 -// r3 := b1 -// -// https://msdn.microsoft.com/en-us/library/x8atst9d(v=vs.100).aspx +// Unpack and interleave 32-bit integers from the low half of a and b, and store +// the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_epi32 FORCE_INLINE __m128i _mm_unpacklo_epi32(__m128i a, __m128i b) { #if defined(__aarch64__) @@ -6400,25 +5743,24 @@ FORCE_INLINE __m128i _mm_unpacklo_epi32(__m128i a, __m128i b) #endif } +// Unpack and interleave 64-bit integers from the low half of a and b, and store +// the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_epi64 FORCE_INLINE __m128i _mm_unpacklo_epi64(__m128i a, __m128i b) { +#if defined(__aarch64__) + return vreinterpretq_m128i_s64( + vzip1q_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b))); +#else int64x1_t a_l = vget_low_s64(vreinterpretq_s64_m128i(a)); int64x1_t b_l = vget_low_s64(vreinterpretq_s64_m128i(b)); return vreinterpretq_m128i_s64(vcombine_s64(a_l, b_l)); +#endif } -// Interleaves the lower 8 signed or unsigned 8-bit integers in a with the lower -// 8 signed or unsigned 8-bit integers in b. -// -// r0 := a0 -// r1 := b0 -// r2 := a1 -// r3 := b1 -// ... -// r14 := a7 -// r15 := b7 -// -// https://msdn.microsoft.com/en-us/library/xf7k860c%28v=vs.90%29.aspx +// Unpack and interleave 8-bit integers from the low half of a and b, and store +// the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_epi8 FORCE_INLINE __m128i _mm_unpacklo_epi8(__m128i a, __m128i b) { #if defined(__aarch64__) @@ -6434,15 +5776,7 @@ FORCE_INLINE __m128i _mm_unpacklo_epi8(__m128i a, __m128i b) // Unpack and interleave double-precision (64-bit) floating-point elements from // the low half of a and b, and store the results in dst. -// -// DEFINE INTERLEAVE_QWORDS(src1[127:0], src2[127:0]) { -// dst[63:0] := src1[63:0] -// dst[127:64] := src2[63:0] -// RETURN dst[127:0] -// } -// dst[127:0] := INTERLEAVE_QWORDS(a[127:0], b[127:0]) -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_unpacklo_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_pd FORCE_INLINE __m128d _mm_unpacklo_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -6457,21 +5791,16 @@ FORCE_INLINE __m128d _mm_unpacklo_pd(__m128d a, __m128d b) // Compute the bitwise XOR of packed double-precision (64-bit) floating-point // elements in a and b, and store the results in dst. -// -// FOR j := 0 to 1 -// i := j*64 -// dst[i+63:i] := a[i+63:i] XOR b[i+63:i] -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_xor_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_xor_pd FORCE_INLINE __m128d _mm_xor_pd(__m128d a, __m128d b) { return vreinterpretq_m128d_s64( veorq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b))); } -// Computes the bitwise XOR of the 128-bit value in a and the 128-bit value in -// b. https://msdn.microsoft.com/en-us/library/fzt08www(v=vs.100).aspx +// Compute the bitwise XOR of 128 bits (representing integer data) in a and b, +// and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_xor_si128 FORCE_INLINE __m128i _mm_xor_si128(__m128i a, __m128i b) { return vreinterpretq_m128i_s32( @@ -6483,17 +5812,7 @@ FORCE_INLINE __m128i _mm_xor_si128(__m128i a, __m128i b) // Alternatively add and subtract packed double-precision (64-bit) // floating-point elements in a to/from packed elements in b, and store the // results in dst. -// -// FOR j := 0 to 1 -// i := j*64 -// IF ((j & 1) == 0) -// dst[i+63:i] := a[i+63:i] - b[i+63:i] -// ELSE -// dst[i+63:i] := a[i+63:i] + b[i+63:i] -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_addsub_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_addsub_pd FORCE_INLINE __m128d _mm_addsub_pd(__m128d a, __m128d b) { _sse2neon_const __m128d mask = _mm_set_pd(1.0f, -1.0f); @@ -6509,7 +5828,7 @@ FORCE_INLINE __m128d _mm_addsub_pd(__m128d a, __m128d b) // Alternatively add and subtract packed single-precision (32-bit) // floating-point elements in a to/from packed elements in b, and store the // results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=addsub_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=addsub_ps FORCE_INLINE __m128 _mm_addsub_ps(__m128 a, __m128 b) { _sse2neon_const __m128 mask = _mm_setr_ps(-1.0f, 1.0f, -1.0f, 1.0f); @@ -6524,7 +5843,7 @@ FORCE_INLINE __m128 _mm_addsub_ps(__m128 a, __m128 b) // Horizontally add adjacent pairs of double-precision (64-bit) floating-point // elements in a and b, and pack the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadd_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_pd FORCE_INLINE __m128d _mm_hadd_pd(__m128d a, __m128d b) { #if defined(__aarch64__) @@ -6538,9 +5857,9 @@ FORCE_INLINE __m128d _mm_hadd_pd(__m128d a, __m128d b) #endif } -// Computes pairwise add of each argument as single-precision, floating-point -// values a and b. -// https://msdn.microsoft.com/en-us/library/yd9wecaa.aspx +// Horizontally add adjacent pairs of single-precision (32-bit) floating-point +// elements in a and b, and pack the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_ps FORCE_INLINE __m128 _mm_hadd_ps(__m128 a, __m128 b) { #if defined(__aarch64__) @@ -6558,7 +5877,7 @@ FORCE_INLINE __m128 _mm_hadd_ps(__m128 a, __m128 b) // Horizontally subtract adjacent pairs of double-precision (64-bit) // floating-point elements in a and b, and pack the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsub_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_pd FORCE_INLINE __m128d _mm_hsub_pd(__m128d _a, __m128d _b) { #if defined(__aarch64__) @@ -6576,7 +5895,7 @@ FORCE_INLINE __m128d _mm_hsub_pd(__m128d _a, __m128d _b) // Horizontally subtract adjacent pairs of single-precision (32-bit) // floating-point elements in a and b, and pack the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsub_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_ps FORCE_INLINE __m128 _mm_hsub_ps(__m128 _a, __m128 _b) { float32x4_t a = vreinterpretq_f32_m128(_a); @@ -6593,24 +5912,17 @@ FORCE_INLINE __m128 _mm_hsub_ps(__m128 _a, __m128 _b) // Load 128-bits of integer data from unaligned memory into dst. This intrinsic // may perform better than _mm_loadu_si128 when the data crosses a cache line // boundary. -// -// dst[127:0] := MEM[mem_addr+127:mem_addr] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_lddqu_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_lddqu_si128 #define _mm_lddqu_si128 _mm_loadu_si128 // Load a double-precision (64-bit) floating-point element from memory into both // elements of dst. -// -// dst[63:0] := MEM[mem_addr+63:mem_addr] -// dst[127:64] := MEM[mem_addr+63:mem_addr] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_loaddup_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loaddup_pd #define _mm_loaddup_pd _mm_load1_pd // Duplicate the low double-precision (64-bit) floating-point element from a, // and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movedup_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movedup_pd FORCE_INLINE __m128d _mm_movedup_pd(__m128d a) { #if defined(__aarch64__) @@ -6624,10 +5936,13 @@ FORCE_INLINE __m128d _mm_movedup_pd(__m128d a) // Duplicate odd-indexed single-precision (32-bit) floating-point elements // from a, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_movehdup_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movehdup_ps FORCE_INLINE __m128 _mm_movehdup_ps(__m128 a) { -#ifdef _sse2neon_shuffle +#if defined(__aarch64__) + return vreinterpretq_m128_f32( + vtrn2q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a))); +#elif defined(_sse2neon_shuffle) return vreinterpretq_m128_f32(vshuffleq_s32( vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 1, 1, 3, 3)); #else @@ -6640,10 +5955,13 @@ FORCE_INLINE __m128 _mm_movehdup_ps(__m128 a) // Duplicate even-indexed single-precision (32-bit) floating-point elements // from a, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_moveldup_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_moveldup_ps FORCE_INLINE __m128 _mm_moveldup_ps(__m128 a) { -#ifdef _sse2neon_shuffle +#if defined(__aarch64__) + return vreinterpretq_m128_f32( + vtrn1q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a))); +#elif defined(_sse2neon_shuffle) return vreinterpretq_m128_f32(vshuffleq_s32( vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 0, 0, 2, 2)); #else @@ -6658,13 +5976,7 @@ FORCE_INLINE __m128 _mm_moveldup_ps(__m128 a) // Compute the absolute value of packed signed 16-bit integers in a, and store // the unsigned results in dst. -// -// FOR j := 0 to 7 -// i := j*16 -// dst[i+15:i] := ABS(a[i+15:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_epi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_epi16 FORCE_INLINE __m128i _mm_abs_epi16(__m128i a) { return vreinterpretq_m128i_s16(vabsq_s16(vreinterpretq_s16_m128i(a))); @@ -6672,13 +5984,7 @@ FORCE_INLINE __m128i _mm_abs_epi16(__m128i a) // Compute the absolute value of packed signed 32-bit integers in a, and store // the unsigned results in dst. -// -// FOR j := 0 to 3 -// i := j*32 -// dst[i+31:i] := ABS(a[i+31:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_epi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_epi32 FORCE_INLINE __m128i _mm_abs_epi32(__m128i a) { return vreinterpretq_m128i_s32(vabsq_s32(vreinterpretq_s32_m128i(a))); @@ -6686,13 +5992,7 @@ FORCE_INLINE __m128i _mm_abs_epi32(__m128i a) // Compute the absolute value of packed signed 8-bit integers in a, and store // the unsigned results in dst. -// -// FOR j := 0 to 15 -// i := j*8 -// dst[i+7:i] := ABS(a[i+7:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_epi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_epi8 FORCE_INLINE __m128i _mm_abs_epi8(__m128i a) { return vreinterpretq_m128i_s8(vabsq_s8(vreinterpretq_s8_m128i(a))); @@ -6700,13 +6000,7 @@ FORCE_INLINE __m128i _mm_abs_epi8(__m128i a) // Compute the absolute value of packed signed 16-bit integers in a, and store // the unsigned results in dst. -// -// FOR j := 0 to 3 -// i := j*16 -// dst[i+15:i] := ABS(a[i+15:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_pi16 FORCE_INLINE __m64 _mm_abs_pi16(__m64 a) { return vreinterpret_m64_s16(vabs_s16(vreinterpret_s16_m64(a))); @@ -6714,13 +6008,7 @@ FORCE_INLINE __m64 _mm_abs_pi16(__m64 a) // Compute the absolute value of packed signed 32-bit integers in a, and store // the unsigned results in dst. -// -// FOR j := 0 to 1 -// i := j*32 -// dst[i+31:i] := ABS(a[i+31:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_pi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_pi32 FORCE_INLINE __m64 _mm_abs_pi32(__m64 a) { return vreinterpret_m64_s32(vabs_s32(vreinterpret_s32_m64(a))); @@ -6728,13 +6016,7 @@ FORCE_INLINE __m64 _mm_abs_pi32(__m64 a) // Compute the absolute value of packed signed 8-bit integers in a, and store // the unsigned results in dst. -// -// FOR j := 0 to 7 -// i := j*8 -// dst[i+7:i] := ABS(a[i+7:i]) -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_abs_pi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_pi8 FORCE_INLINE __m64 _mm_abs_pi8(__m64 a) { return vreinterpret_m64_s8(vabs_s8(vreinterpret_s8_m64(a))); @@ -6742,11 +6024,7 @@ FORCE_INLINE __m64 _mm_abs_pi8(__m64 a) // Concatenate 16-byte blocks in a and b into a 32-byte temporary result, shift // the result right by imm8 bytes, and store the low 16 bytes in dst. -// -// tmp[255:0] := ((a[127:0] << 128)[255:0] OR b[127:0]) >> (imm8*8) -// dst[127:0] := tmp[127:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_alignr_epi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_alignr_epi8 #define _mm_alignr_epi8(a, b, imm) \ __extension__({ \ uint8x16_t _a = vreinterpretq_u8_m128i(a); \ @@ -6764,11 +6042,7 @@ FORCE_INLINE __m64 _mm_abs_pi8(__m64 a) // Concatenate 8-byte blocks in a and b into a 16-byte temporary result, shift // the result right by imm8 bytes, and store the low 8 bytes in dst. -// -// tmp[127:0] := ((a[63:0] << 64)[127:0] OR b[63:0]) >> (imm8*8) -// dst[63:0] := tmp[63:0] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_alignr_pi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_alignr_pi8 #define _mm_alignr_pi8(a, b, imm) \ __extension__({ \ __m64 ret; \ @@ -6791,8 +6065,9 @@ FORCE_INLINE __m64 _mm_abs_pi8(__m64 a) ret; \ }) -// Computes pairwise add of each argument as a 16-bit signed or unsigned integer -// values a and b. +// Horizontally add adjacent pairs of 16-bit integers in a and b, and pack the +// signed 16-bit results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_epi16 FORCE_INLINE __m128i _mm_hadd_epi16(__m128i _a, __m128i _b) { int16x8_t a = vreinterpretq_s16_m128i(_a); @@ -6806,20 +6081,25 @@ FORCE_INLINE __m128i _mm_hadd_epi16(__m128i _a, __m128i _b) #endif } -// Computes pairwise add of each argument as a 32-bit signed or unsigned integer -// values a and b. +// Horizontally add adjacent pairs of 32-bit integers in a and b, and pack the +// signed 32-bit results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_epi32 FORCE_INLINE __m128i _mm_hadd_epi32(__m128i _a, __m128i _b) { int32x4_t a = vreinterpretq_s32_m128i(_a); int32x4_t b = vreinterpretq_s32_m128i(_b); +#if defined(__aarch64__) + return vreinterpretq_m128i_s32(vpaddq_s32(a, b)); +#else return vreinterpretq_m128i_s32( vcombine_s32(vpadd_s32(vget_low_s32(a), vget_high_s32(a)), vpadd_s32(vget_low_s32(b), vget_high_s32(b)))); +#endif } // Horizontally add adjacent pairs of 16-bit integers in a and b, and pack the // signed 16-bit results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadd_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_pi16 FORCE_INLINE __m64 _mm_hadd_pi16(__m64 a, __m64 b) { return vreinterpret_m64_s16( @@ -6828,15 +6108,16 @@ FORCE_INLINE __m64 _mm_hadd_pi16(__m64 a, __m64 b) // Horizontally add adjacent pairs of 32-bit integers in a and b, and pack the // signed 32-bit results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadd_pi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_pi32 FORCE_INLINE __m64 _mm_hadd_pi32(__m64 a, __m64 b) { return vreinterpret_m64_s32( vpadd_s32(vreinterpret_s32_m64(a), vreinterpret_s32_m64(b))); } -// Computes saturated pairwise sub of each argument as a 16-bit signed -// integer values a and b. +// Horizontally add adjacent pairs of signed 16-bit integers in a and b using +// saturation, and pack the signed 16-bit results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadds_epi16 FORCE_INLINE __m128i _mm_hadds_epi16(__m128i _a, __m128i _b) { #if defined(__aarch64__) @@ -6859,7 +6140,7 @@ FORCE_INLINE __m128i _mm_hadds_epi16(__m128i _a, __m128i _b) // Horizontally add adjacent pairs of signed 16-bit integers in a and b using // saturation, and pack the signed 16-bit results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hadds_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadds_pi16 FORCE_INLINE __m64 _mm_hadds_pi16(__m64 _a, __m64 _b) { int16x4_t a = vreinterpret_s16_m64(_a); @@ -6874,7 +6155,7 @@ FORCE_INLINE __m64 _mm_hadds_pi16(__m64 _a, __m64 _b) // Horizontally subtract adjacent pairs of 16-bit integers in a and b, and pack // the signed 16-bit results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsub_epi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_epi16 FORCE_INLINE __m128i _mm_hsub_epi16(__m128i _a, __m128i _b) { int16x8_t a = vreinterpretq_s16_m128i(_a); @@ -6890,7 +6171,7 @@ FORCE_INLINE __m128i _mm_hsub_epi16(__m128i _a, __m128i _b) // Horizontally subtract adjacent pairs of 32-bit integers in a and b, and pack // the signed 32-bit results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsub_epi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_epi32 FORCE_INLINE __m128i _mm_hsub_epi32(__m128i _a, __m128i _b) { int32x4_t a = vreinterpretq_s32_m128i(_a); @@ -6906,7 +6187,7 @@ FORCE_INLINE __m128i _mm_hsub_epi32(__m128i _a, __m128i _b) // Horizontally subtract adjacent pairs of 16-bit integers in a and b, and pack // the signed 16-bit results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsub_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_pi16 FORCE_INLINE __m64 _mm_hsub_pi16(__m64 _a, __m64 _b) { int16x4_t a = vreinterpret_s16_m64(_a); @@ -6921,7 +6202,7 @@ FORCE_INLINE __m64 _mm_hsub_pi16(__m64 _a, __m64 _b) // Horizontally subtract adjacent pairs of 32-bit integers in a and b, and pack // the signed 32-bit results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_hsub_pi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_hsub_pi32 FORCE_INLINE __m64 _mm_hsub_pi32(__m64 _a, __m64 _b) { int32x2_t a = vreinterpret_s32_m64(_a); @@ -6934,9 +6215,9 @@ FORCE_INLINE __m64 _mm_hsub_pi32(__m64 _a, __m64 _b) #endif } -// Computes saturated pairwise difference of each argument as a 16-bit signed -// integer values a and b. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsubs_epi16 +// Horizontally subtract adjacent pairs of signed 16-bit integers in a and b +// using saturation, and pack the signed 16-bit results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsubs_epi16 FORCE_INLINE __m128i _mm_hsubs_epi16(__m128i _a, __m128i _b) { int16x8_t a = vreinterpretq_s16_m128i(_a); @@ -6952,7 +6233,7 @@ FORCE_INLINE __m128i _mm_hsubs_epi16(__m128i _a, __m128i _b) // Horizontally subtract adjacent pairs of signed 16-bit integers in a and b // using saturation, and pack the signed 16-bit results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_hsubs_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsubs_pi16 FORCE_INLINE __m64 _mm_hsubs_pi16(__m64 _a, __m64 _b) { int16x4_t a = vreinterpret_s16_m64(_a); @@ -6969,12 +6250,7 @@ FORCE_INLINE __m64 _mm_hsubs_pi16(__m64 _a, __m64 _b) // signed 8-bit integer from b, producing intermediate signed 16-bit integers. // Horizontally add adjacent pairs of intermediate signed 16-bit integers, // and pack the saturated results in dst. -// -// FOR j := 0 to 7 -// i := j*16 -// dst[i+15:i] := Saturate_To_Int16( a[i+15:i+8]*b[i+15:i+8] + -// a[i+7:i]*b[i+7:i] ) -// ENDFOR +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maddubs_epi16 FORCE_INLINE __m128i _mm_maddubs_epi16(__m128i _a, __m128i _b) { #if defined(__aarch64__) @@ -7013,7 +6289,7 @@ FORCE_INLINE __m128i _mm_maddubs_epi16(__m128i _a, __m128i _b) // signed 8-bit integer from b, producing intermediate signed 16-bit integers. // Horizontally add adjacent pairs of intermediate signed 16-bit integers, and // pack the saturated results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_maddubs_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maddubs_pi16 FORCE_INLINE __m64 _mm_maddubs_pi16(__m64 _a, __m64 _b) { uint16x4_t a = vreinterpret_u16_m64(_a); @@ -7038,12 +6314,7 @@ FORCE_INLINE __m64 _mm_maddubs_pi16(__m64 _a, __m64 _b) // Multiply packed signed 16-bit integers in a and b, producing intermediate // signed 32-bit integers. Shift right by 15 bits while rounding up, and store // the packed 16-bit integers in dst. -// -// r0 := Round(((int32_t)a0 * (int32_t)b0) >> 15) -// r1 := Round(((int32_t)a1 * (int32_t)b1) >> 15) -// r2 := Round(((int32_t)a2 * (int32_t)b2) >> 15) -// ... -// r7 := Round(((int32_t)a7 * (int32_t)b7) >> 15) +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhrs_epi16 FORCE_INLINE __m128i _mm_mulhrs_epi16(__m128i a, __m128i b) { // Has issues due to saturation @@ -7067,7 +6338,7 @@ FORCE_INLINE __m128i _mm_mulhrs_epi16(__m128i a, __m128i b) // Multiply packed signed 16-bit integers in a and b, producing intermediate // signed 32-bit integers. Truncate each intermediate integer to the 18 most // significant bits, round by adding 1, and store bits [16:1] to dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mulhrs_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhrs_pi16 FORCE_INLINE __m64 _mm_mulhrs_pi16(__m64 a, __m64 b) { int32x4_t mul_extend = @@ -7079,7 +6350,7 @@ FORCE_INLINE __m64 _mm_mulhrs_pi16(__m64 a, __m64 b) // Shuffle packed 8-bit integers in a according to shuffle control mask in the // corresponding 8-bit element of b, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_epi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_epi8 FORCE_INLINE __m128i _mm_shuffle_epi8(__m128i a, __m128i b) { int8x16_t tbl = vreinterpretq_s8_m128i(a); // input a @@ -7109,18 +6380,7 @@ FORCE_INLINE __m128i _mm_shuffle_epi8(__m128i a, __m128i b) // Shuffle packed 8-bit integers in a according to shuffle control mask in the // corresponding 8-bit element of b, and store the results in dst. -// -// FOR j := 0 to 7 -// i := j*8 -// IF b[i+7] == 1 -// dst[i+7:i] := 0 -// ELSE -// index[2:0] := b[i+2:i] -// dst[i+7:i] := a[index*8+7:index*8] -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_shuffle_pi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_pi8 FORCE_INLINE __m64 _mm_shuffle_pi8(__m64 a, __m64 b) { const int8x8_t controlMask = @@ -7133,16 +6393,7 @@ FORCE_INLINE __m64 _mm_shuffle_pi8(__m64 a, __m64 b) // 16-bit integer in b is negative, and store the results in dst. // Element in dst are zeroed out when the corresponding element // in b is zero. -// -// for i in 0..7 -// if b[i] < 0 -// r[i] := -a[i] -// else if b[i] == 0 -// r[i] := 0 -// else -// r[i] := a[i] -// fi -// done +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_epi16 FORCE_INLINE __m128i _mm_sign_epi16(__m128i _a, __m128i _b) { int16x8_t a = vreinterpretq_s16_m128i(_a); @@ -7170,16 +6421,7 @@ FORCE_INLINE __m128i _mm_sign_epi16(__m128i _a, __m128i _b) // 32-bit integer in b is negative, and store the results in dst. // Element in dst are zeroed out when the corresponding element // in b is zero. -// -// for i in 0..3 -// if b[i] < 0 -// r[i] := -a[i] -// else if b[i] == 0 -// r[i] := 0 -// else -// r[i] := a[i] -// fi -// done +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_epi32 FORCE_INLINE __m128i _mm_sign_epi32(__m128i _a, __m128i _b) { int32x4_t a = vreinterpretq_s32_m128i(_a); @@ -7208,16 +6450,7 @@ FORCE_INLINE __m128i _mm_sign_epi32(__m128i _a, __m128i _b) // 8-bit integer in b is negative, and store the results in dst. // Element in dst are zeroed out when the corresponding element // in b is zero. -// -// for i in 0..15 -// if b[i] < 0 -// r[i] := -a[i] -// else if b[i] == 0 -// r[i] := 0 -// else -// r[i] := a[i] -// fi -// done +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_epi8 FORCE_INLINE __m128i _mm_sign_epi8(__m128i _a, __m128i _b) { int8x16_t a = vreinterpretq_s8_m128i(_a); @@ -7246,19 +6479,7 @@ FORCE_INLINE __m128i _mm_sign_epi8(__m128i _a, __m128i _b) // Negate packed 16-bit integers in a when the corresponding signed 16-bit // integer in b is negative, and store the results in dst. Element in dst are // zeroed out when the corresponding element in b is zero. -// -// FOR j := 0 to 3 -// i := j*16 -// IF b[i+15:i] < 0 -// dst[i+15:i] := -(a[i+15:i]) -// ELSE IF b[i+15:i] == 0 -// dst[i+15:i] := 0 -// ELSE -// dst[i+15:i] := a[i+15:i] -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sign_pi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_pi16 FORCE_INLINE __m64 _mm_sign_pi16(__m64 _a, __m64 _b) { int16x4_t a = vreinterpret_s16_m64(_a); @@ -7287,19 +6508,7 @@ FORCE_INLINE __m64 _mm_sign_pi16(__m64 _a, __m64 _b) // Negate packed 32-bit integers in a when the corresponding signed 32-bit // integer in b is negative, and store the results in dst. Element in dst are // zeroed out when the corresponding element in b is zero. -// -// FOR j := 0 to 1 -// i := j*32 -// IF b[i+31:i] < 0 -// dst[i+31:i] := -(a[i+31:i]) -// ELSE IF b[i+31:i] == 0 -// dst[i+31:i] := 0 -// ELSE -// dst[i+31:i] := a[i+31:i] -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sign_pi32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_pi32 FORCE_INLINE __m64 _mm_sign_pi32(__m64 _a, __m64 _b) { int32x2_t a = vreinterpret_s32_m64(_a); @@ -7328,19 +6537,7 @@ FORCE_INLINE __m64 _mm_sign_pi32(__m64 _a, __m64 _b) // Negate packed 8-bit integers in a when the corresponding signed 8-bit integer // in b is negative, and store the results in dst. Element in dst are zeroed out // when the corresponding element in b is zero. -// -// FOR j := 0 to 7 -// i := j*8 -// IF b[i+7:i] < 0 -// dst[i+7:i] := -(a[i+7:i]) -// ELSE IF b[i+7:i] == 0 -// dst[i+7:i] := 0 -// ELSE -// dst[i+7:i] := a[i+7:i] -// FI -// ENDFOR -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_sign_pi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_pi8 FORCE_INLINE __m64 _mm_sign_pi8(__m64 _a, __m64 _b) { int8x8_t a = vreinterpret_s8_m64(_a); @@ -7370,15 +6567,7 @@ FORCE_INLINE __m64 _mm_sign_pi8(__m64 _a, __m64 _b) // Blend packed 16-bit integers from a and b using control mask imm8, and store // the results in dst. -// -// FOR j := 0 to 7 -// i := j*16 -// IF imm8[j] -// dst[i+15:i] := b[i+15:i] -// ELSE -// dst[i+15:i] := a[i+15:i] -// FI -// ENDFOR +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blend_epi16 // FORCE_INLINE __m128i _mm_blend_epi16(__m128i a, __m128i b, // __constrange(0,255) int imm) #define _mm_blend_epi16(a, b, imm) \ @@ -7399,7 +6588,7 @@ FORCE_INLINE __m64 _mm_sign_pi8(__m64 _a, __m64 _b) // Blend packed double-precision (64-bit) floating-point elements from a and b // using control mask imm8, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_blend_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blend_pd #define _mm_blend_pd(a, b, imm) \ __extension__({ \ const uint64_t _mask[2] = { \ @@ -7413,7 +6602,7 @@ FORCE_INLINE __m64 _mm_sign_pi8(__m64 _a, __m64 _b) // Blend packed single-precision (32-bit) floating-point elements from a and b // using mask, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_blend_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blend_ps FORCE_INLINE __m128 _mm_blend_ps(__m128 _a, __m128 _b, const char imm8) { const uint32_t ALIGN_STRUCT(16) @@ -7429,15 +6618,7 @@ FORCE_INLINE __m128 _mm_blend_ps(__m128 _a, __m128 _b, const char imm8) // Blend packed 8-bit integers from a and b using mask, and store the results in // dst. -// -// FOR j := 0 to 15 -// i := j*8 -// IF mask[i+7] -// dst[i+7:i] := b[i+7:i] -// ELSE -// dst[i+7:i] := a[i+7:i] -// FI -// ENDFOR +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blendv_epi8 FORCE_INLINE __m128i _mm_blendv_epi8(__m128i _a, __m128i _b, __m128i _mask) { // Use a signed shift right to create a mask with the sign bit @@ -7450,7 +6631,7 @@ FORCE_INLINE __m128i _mm_blendv_epi8(__m128i _a, __m128i _b, __m128i _mask) // Blend packed double-precision (64-bit) floating-point elements from a and b // using mask, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_blendv_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blendv_pd FORCE_INLINE __m128d _mm_blendv_pd(__m128d _a, __m128d _b, __m128d _mask) { uint64x2_t mask = @@ -7468,7 +6649,7 @@ FORCE_INLINE __m128d _mm_blendv_pd(__m128d _a, __m128d _b, __m128d _mask) // Blend packed single-precision (32-bit) floating-point elements from a and b // using mask, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_blendv_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blendv_ps FORCE_INLINE __m128 _mm_blendv_ps(__m128 _a, __m128 _b, __m128 _mask) { // Use a signed shift right to create a mask with the sign bit @@ -7482,7 +6663,7 @@ FORCE_INLINE __m128 _mm_blendv_ps(__m128 _a, __m128 _b, __m128 _mask) // Round the packed double-precision (64-bit) floating-point elements in a up // to an integer value, and store the results as packed double-precision // floating-point elements in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ceil_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_pd FORCE_INLINE __m128d _mm_ceil_pd(__m128d a) { #if defined(__aarch64__) @@ -7496,7 +6677,7 @@ FORCE_INLINE __m128d _mm_ceil_pd(__m128d a) // Round the packed single-precision (32-bit) floating-point elements in a up to // an integer value, and store the results as packed single-precision // floating-point elements in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ceil_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_ps FORCE_INLINE __m128 _mm_ceil_ps(__m128 a) { #if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING) @@ -7511,7 +6692,7 @@ FORCE_INLINE __m128 _mm_ceil_ps(__m128 a) // an integer value, store the result as a double-precision floating-point // element in the lower element of dst, and copy the upper element from a to the // upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ceil_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_sd FORCE_INLINE __m128d _mm_ceil_sd(__m128d a, __m128d b) { return _mm_move_sd(a, _mm_ceil_pd(b)); @@ -7521,11 +6702,7 @@ FORCE_INLINE __m128d _mm_ceil_sd(__m128d a, __m128d b) // an integer value, store the result as a single-precision floating-point // element in the lower element of dst, and copy the upper 3 packed elements // from a to the upper elements of dst. -// -// dst[31:0] := CEIL(b[31:0]) -// dst[127:32] := a[127:32] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_ceil_ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_ss FORCE_INLINE __m128 _mm_ceil_ss(__m128 a, __m128 b) { return _mm_move_ss(a, _mm_ceil_ps(b)); @@ -7548,16 +6725,18 @@ FORCE_INLINE __m128i _mm_cmpeq_epi64(__m128i a, __m128i b) #endif } -// Converts the four signed 16-bit integers in the lower 64 bits to four signed -// 32-bit integers. +// Sign extend packed 16-bit integers in a to packed 32-bit integers, and store +// the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi16_epi32 FORCE_INLINE __m128i _mm_cvtepi16_epi32(__m128i a) { return vreinterpretq_m128i_s32( vmovl_s16(vget_low_s16(vreinterpretq_s16_m128i(a)))); } -// Converts the two signed 16-bit integers in the lower 32 bits two signed -// 32-bit integers. +// Sign extend packed 16-bit integers in a to packed 64-bit integers, and store +// the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi16_epi64 FORCE_INLINE __m128i _mm_cvtepi16_epi64(__m128i a) { int16x8_t s16x8 = vreinterpretq_s16_m128i(a); /* xxxx xxxx xxxx 0B0A */ @@ -7566,16 +6745,18 @@ FORCE_INLINE __m128i _mm_cvtepi16_epi64(__m128i a) return vreinterpretq_m128i_s64(s64x2); } -// Converts the two signed 32-bit integers in the lower 64 bits to two signed -// 64-bit integers. +// Sign extend packed 32-bit integers in a to packed 64-bit integers, and store +// the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi32_epi64 FORCE_INLINE __m128i _mm_cvtepi32_epi64(__m128i a) { return vreinterpretq_m128i_s64( vmovl_s32(vget_low_s32(vreinterpretq_s32_m128i(a)))); } -// Converts the four unsigned 8-bit integers in the lower 16 bits to four -// unsigned 32-bit integers. +// Sign extend packed 8-bit integers in a to packed 16-bit integers, and store +// the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi8_epi16 FORCE_INLINE __m128i _mm_cvtepi8_epi16(__m128i a) { int8x16_t s8x16 = vreinterpretq_s8_m128i(a); /* xxxx xxxx xxxx DCBA */ @@ -7583,8 +6764,9 @@ FORCE_INLINE __m128i _mm_cvtepi8_epi16(__m128i a) return vreinterpretq_m128i_s16(s16x8); } -// Converts the four unsigned 8-bit integers in the lower 32 bits to four -// unsigned 32-bit integers. +// Sign extend packed 8-bit integers in a to packed 32-bit integers, and store +// the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi8_epi32 FORCE_INLINE __m128i _mm_cvtepi8_epi32(__m128i a) { int8x16_t s8x16 = vreinterpretq_s8_m128i(a); /* xxxx xxxx xxxx DCBA */ @@ -7593,8 +6775,9 @@ FORCE_INLINE __m128i _mm_cvtepi8_epi32(__m128i a) return vreinterpretq_m128i_s32(s32x4); } -// Converts the two signed 8-bit integers in the lower 32 bits to four -// signed 64-bit integers. +// Sign extend packed 8-bit integers in the low 8 bytes of a to packed 64-bit +// integers, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi8_epi64 FORCE_INLINE __m128i _mm_cvtepi8_epi64(__m128i a) { int8x16_t s8x16 = vreinterpretq_s8_m128i(a); /* xxxx xxxx xxxx xxBA */ @@ -7604,16 +6787,18 @@ FORCE_INLINE __m128i _mm_cvtepi8_epi64(__m128i a) return vreinterpretq_m128i_s64(s64x2); } -// Converts the four unsigned 16-bit integers in the lower 64 bits to four -// unsigned 32-bit integers. +// Zero extend packed unsigned 16-bit integers in a to packed 32-bit integers, +// and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu16_epi32 FORCE_INLINE __m128i _mm_cvtepu16_epi32(__m128i a) { return vreinterpretq_m128i_u32( vmovl_u16(vget_low_u16(vreinterpretq_u16_m128i(a)))); } -// Converts the two unsigned 16-bit integers in the lower 32 bits to two -// unsigned 64-bit integers. +// Zero extend packed unsigned 16-bit integers in a to packed 64-bit integers, +// and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu16_epi64 FORCE_INLINE __m128i _mm_cvtepu16_epi64(__m128i a) { uint16x8_t u16x8 = vreinterpretq_u16_m128i(a); /* xxxx xxxx xxxx 0B0A */ @@ -7622,8 +6807,9 @@ FORCE_INLINE __m128i _mm_cvtepu16_epi64(__m128i a) return vreinterpretq_m128i_u64(u64x2); } -// Converts the two unsigned 32-bit integers in the lower 64 bits to two -// unsigned 64-bit integers. +// Zero extend packed unsigned 32-bit integers in a to packed 64-bit integers, +// and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu32_epi64 FORCE_INLINE __m128i _mm_cvtepu32_epi64(__m128i a) { return vreinterpretq_m128i_u64( @@ -7632,7 +6818,7 @@ FORCE_INLINE __m128i _mm_cvtepu32_epi64(__m128i a) // Zero extend packed unsigned 8-bit integers in a to packed 16-bit integers, // and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cvtepu8_epi16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu8_epi16 FORCE_INLINE __m128i _mm_cvtepu8_epi16(__m128i a) { uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx HGFE DCBA */ @@ -7640,9 +6826,9 @@ FORCE_INLINE __m128i _mm_cvtepu8_epi16(__m128i a) return vreinterpretq_m128i_u16(u16x8); } -// Converts the four unsigned 8-bit integers in the lower 32 bits to four -// unsigned 32-bit integers. -// https://msdn.microsoft.com/en-us/library/bb531467%28v=vs.100%29.aspx +// Zero extend packed unsigned 8-bit integers in a to packed 32-bit integers, +// and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu8_epi32 FORCE_INLINE __m128i _mm_cvtepu8_epi32(__m128i a) { uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx xxxx DCBA */ @@ -7651,8 +6837,9 @@ FORCE_INLINE __m128i _mm_cvtepu8_epi32(__m128i a) return vreinterpretq_m128i_u32(u32x4); } -// Converts the two unsigned 8-bit integers in the lower 16 bits to two -// unsigned 64-bit integers. +// Zero extend packed unsigned 8-bit integers in the low 8 byte sof a to packed +// 64-bit integers, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu8_epi64 FORCE_INLINE __m128i _mm_cvtepu8_epi64(__m128i a) { uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx xxxx xxBA */ @@ -7665,7 +6852,7 @@ FORCE_INLINE __m128i _mm_cvtepu8_epi64(__m128i a) // Conditionally multiply the packed double-precision (64-bit) floating-point // elements in a and b using the high 4 bits in imm8, sum the four products, and // conditionally store the sum in dst using the low 4 bits of imm8. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_dp_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_dp_pd FORCE_INLINE __m128d _mm_dp_pd(__m128d a, __m128d b, const int imm) { // Generate mask value from constant immediate bit value @@ -7711,7 +6898,7 @@ FORCE_INLINE __m128d _mm_dp_pd(__m128d a, __m128d b, const int imm) // Conditionally multiply the packed single-precision (32-bit) floating-point // elements in a and b using the high 4 bits in imm8, sum the four products, // and conditionally store the sum in dst using the low 4 bits of imm. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_dp_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_dp_ps FORCE_INLINE __m128 _mm_dp_ps(__m128 a, __m128 b, const int imm) { #if defined(__aarch64__) @@ -7752,22 +6939,24 @@ FORCE_INLINE __m128 _mm_dp_ps(__m128 a, __m128 b, const int imm) return vreinterpretq_m128_f32(res); } -// Extracts the selected signed or unsigned 32-bit integer from a and zero -// extends. +// Extract a 32-bit integer from a, selected with imm8, and store the result in +// dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_epi32 // FORCE_INLINE int _mm_extract_epi32(__m128i a, __constrange(0,4) int imm) #define _mm_extract_epi32(a, imm) \ vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm)) -// Extracts the selected signed or unsigned 64-bit integer from a and zero -// extends. +// Extract a 64-bit integer from a, selected with imm8, and store the result in +// dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_epi64 // FORCE_INLINE __int64 _mm_extract_epi64(__m128i a, __constrange(0,2) int imm) #define _mm_extract_epi64(a, imm) \ vgetq_lane_s64(vreinterpretq_s64_m128i(a), (imm)) -// Extracts the selected signed or unsigned 8-bit integer from a and zero -// extends. -// FORCE_INLINE int _mm_extract_epi8(__m128i a, __constrange(0,16) int imm) -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_extract_epi8 +// Extract an 8-bit integer from a, selected with imm8, and store the result in +// the lower element of dst. FORCE_INLINE int _mm_extract_epi8(__m128i a, +// __constrange(0,16) int imm) +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_epi8 #define _mm_extract_epi8(a, imm) vgetq_lane_u8(vreinterpretq_u8_m128i(a), (imm)) // Extracts the selected single-precision (32-bit) floating-point from a. @@ -7777,7 +6966,7 @@ FORCE_INLINE __m128 _mm_dp_ps(__m128 a, __m128 b, const int imm) // Round the packed double-precision (64-bit) floating-point elements in a down // to an integer value, and store the results as packed double-precision // floating-point elements in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_floor_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_pd FORCE_INLINE __m128d _mm_floor_pd(__m128d a) { #if defined(__aarch64__) @@ -7791,7 +6980,7 @@ FORCE_INLINE __m128d _mm_floor_pd(__m128d a) // Round the packed single-precision (32-bit) floating-point elements in a down // to an integer value, and store the results as packed single-precision // floating-point elements in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_floor_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_ps FORCE_INLINE __m128 _mm_floor_ps(__m128 a) { #if defined(__aarch64__) || defined(__ARM_FEATURE_DIRECTED_ROUNDING) @@ -7806,7 +6995,7 @@ FORCE_INLINE __m128 _mm_floor_ps(__m128 a) // an integer value, store the result as a double-precision floating-point // element in the lower element of dst, and copy the upper element from a to the // upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_floor_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_sd FORCE_INLINE __m128d _mm_floor_sd(__m128d a, __m128d b) { return _mm_move_sd(a, _mm_floor_pd(b)); @@ -7816,18 +7005,15 @@ FORCE_INLINE __m128d _mm_floor_sd(__m128d a, __m128d b) // an integer value, store the result as a single-precision floating-point // element in the lower element of dst, and copy the upper 3 packed elements // from a to the upper elements of dst. -// -// dst[31:0] := FLOOR(b[31:0]) -// dst[127:32] := a[127:32] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_floor_ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_ss FORCE_INLINE __m128 _mm_floor_ss(__m128 a, __m128 b) { return _mm_move_ss(a, _mm_floor_ps(b)); } -// Inserts the least significant 32 bits of b into the selected 32-bit integer -// of a. +// Copy a to dst, and insert the 32-bit integer i into dst at the location +// specified by imm8. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_epi32 // FORCE_INLINE __m128i _mm_insert_epi32(__m128i a, int b, // __constrange(0,4) int imm) #define _mm_insert_epi32(a, b, imm) \ @@ -7836,8 +7022,9 @@ FORCE_INLINE __m128 _mm_floor_ss(__m128 a, __m128 b) vsetq_lane_s32((b), vreinterpretq_s32_m128i(a), (imm))); \ }) -// Inserts the least significant 64 bits of b into the selected 64-bit integer -// of a. +// Copy a to dst, and insert the 64-bit integer i into dst at the location +// specified by imm8. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_epi64 // FORCE_INLINE __m128i _mm_insert_epi64(__m128i a, __int64 b, // __constrange(0,2) int imm) #define _mm_insert_epi64(a, b, imm) \ @@ -7846,8 +7033,9 @@ FORCE_INLINE __m128 _mm_floor_ss(__m128 a, __m128 b) vsetq_lane_s64((b), vreinterpretq_s64_m128i(a), (imm))); \ }) -// Inserts the least significant 8 bits of b into the selected 8-bit integer -// of a. +// Copy a to dst, and insert the lower 8-bit integer from i into dst at the +// location specified by imm8. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_epi8 // FORCE_INLINE __m128i _mm_insert_epi8(__m128i a, int b, // __constrange(0,16) int imm) #define _mm_insert_epi8(a, b, imm) \ @@ -7859,7 +7047,7 @@ FORCE_INLINE __m128 _mm_floor_ss(__m128 a, __m128 b) // Copy a to tmp, then insert a single-precision (32-bit) floating-point // element from b into tmp using the control in imm8. Store tmp to dst using // the mask in imm8 (elements are zeroed out when the corresponding bit is set). -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=insert_ps +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=insert_ps #define _mm_insert_ps(a, b, imm8) \ __extension__({ \ float32x4_t tmp1 = \ @@ -7879,17 +7067,9 @@ FORCE_INLINE __m128 _mm_floor_ss(__m128 a, __m128 b) vbslq_f32(mask, all_zeros, vreinterpretq_f32_m128(tmp2))); \ }) -// epi versions of min/max -// Computes the pariwise maximums of the four signed 32-bit integer values of a -// and b. -// -// A 128-bit parameter that can be defined with the following equations: -// r0 := (a0 > b0) ? a0 : b0 -// r1 := (a1 > b1) ? a1 : b1 -// r2 := (a2 > b2) ? a2 : b2 -// r3 := (a3 > b3) ? a3 : b3 -// -// https://msdn.microsoft.com/en-us/library/vstudio/bb514055(v=vs.100).aspx +// Compare packed signed 32-bit integers in a and b, and store packed maximum +// values in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epi32 FORCE_INLINE __m128i _mm_max_epi32(__m128i a, __m128i b) { return vreinterpretq_m128i_s32( @@ -7898,7 +7078,7 @@ FORCE_INLINE __m128i _mm_max_epi32(__m128i a, __m128i b) // Compare packed signed 8-bit integers in a and b, and store packed maximum // values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epi8 FORCE_INLINE __m128i _mm_max_epi8(__m128i a, __m128i b) { return vreinterpretq_m128i_s8( @@ -7907,7 +7087,7 @@ FORCE_INLINE __m128i _mm_max_epi8(__m128i a, __m128i b) // Compare packed unsigned 16-bit integers in a and b, and store packed maximum // values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epu16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu16 FORCE_INLINE __m128i _mm_max_epu16(__m128i a, __m128i b) { return vreinterpretq_m128i_u16( @@ -7916,23 +7096,16 @@ FORCE_INLINE __m128i _mm_max_epu16(__m128i a, __m128i b) // Compare packed unsigned 32-bit integers in a and b, and store packed maximum // values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epu32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu32 FORCE_INLINE __m128i _mm_max_epu32(__m128i a, __m128i b) { return vreinterpretq_m128i_u32( vmaxq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b))); } -// Computes the pariwise minima of the four signed 32-bit integer values of a -// and b. -// -// A 128-bit parameter that can be defined with the following equations: -// r0 := (a0 < b0) ? a0 : b0 -// r1 := (a1 < b1) ? a1 : b1 -// r2 := (a2 < b2) ? a2 : b2 -// r3 := (a3 < b3) ? a3 : b3 -// -// https://msdn.microsoft.com/en-us/library/vstudio/bb531476(v=vs.100).aspx +// Compare packed signed 32-bit integers in a and b, and store packed minimum +// values in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epi32 FORCE_INLINE __m128i _mm_min_epi32(__m128i a, __m128i b) { return vreinterpretq_m128i_s32( @@ -7941,7 +7114,7 @@ FORCE_INLINE __m128i _mm_min_epi32(__m128i a, __m128i b) // Compare packed signed 8-bit integers in a and b, and store packed minimum // values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_epi8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epi8 FORCE_INLINE __m128i _mm_min_epi8(__m128i a, __m128i b) { return vreinterpretq_m128i_s8( @@ -7950,7 +7123,7 @@ FORCE_INLINE __m128i _mm_min_epi8(__m128i a, __m128i b) // Compare packed unsigned 16-bit integers in a and b, and store packed minimum // values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_min_epu16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epu16 FORCE_INLINE __m128i _mm_min_epu16(__m128i a, __m128i b) { return vreinterpretq_m128i_u16( @@ -7959,7 +7132,7 @@ FORCE_INLINE __m128i _mm_min_epu16(__m128i a, __m128i b) // Compare packed unsigned 32-bit integers in a and b, and store packed minimum // values in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_max_epu32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu32 FORCE_INLINE __m128i _mm_min_epu32(__m128i a, __m128i b) { return vreinterpretq_m128i_u32( @@ -7968,29 +7141,22 @@ FORCE_INLINE __m128i _mm_min_epu32(__m128i a, __m128i b) // Horizontally compute the minimum amongst the packed unsigned 16-bit integers // in a, store the minimum and index in dst, and zero the remaining bits in dst. -// -// index[2:0] := 0 -// min[15:0] := a[15:0] -// FOR j := 0 to 7 -// i := j*16 -// IF a[i+15:i] < min[15:0] -// index[2:0] := j -// min[15:0] := a[i+15:i] -// FI -// ENDFOR -// dst[15:0] := min[15:0] -// dst[18:16] := index[2:0] -// dst[127:19] := 0 -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_minpos_epu16 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_minpos_epu16 FORCE_INLINE __m128i _mm_minpos_epu16(__m128i a) { __m128i dst; uint16_t min, idx = 0; - // Find the minimum value #if defined(__aarch64__) + // Find the minimum value min = vminvq_u16(vreinterpretq_u16_m128i(a)); + + // Get the index of the minimum value + static const uint16_t idxv[] = {0, 1, 2, 3, 4, 5, 6, 7}; + uint16x8_t minv = vdupq_n_u16(min); + uint16x8_t cmeq = vceqq_u16(minv, vreinterpretq_u16_m128i(a)); + idx = vminvq_u16(vornq_u16(vld1q_u16(idxv), cmeq)); #else + // Find the minimum value __m64 tmp; tmp = vreinterpret_m64_u16( vmin_u16(vget_low_u16(vreinterpretq_u16_m128i(a)), @@ -8000,7 +7166,6 @@ FORCE_INLINE __m128i _mm_minpos_epu16(__m128i a) tmp = vreinterpret_m64_u16( vpmin_u16(vreinterpret_u16_m64(tmp), vreinterpret_u16_m64(tmp))); min = vget_lane_u16(vreinterpret_u16_m64(tmp), 0); -#endif // Get the index of the minimum value int i; for (i = 0; i < 8; i++) { @@ -8010,6 +7175,7 @@ FORCE_INLINE __m128i _mm_minpos_epu16(__m128i a) } a = _mm_srli_si128(a, 2); } +#endif // Generate result dst = _mm_setzero_si128(); dst = vreinterpretq_m128i_u16( @@ -8025,7 +7191,7 @@ FORCE_INLINE __m128i _mm_minpos_epu16(__m128i a) // quadruplets from a. One quadruplet is selected from b starting at on the // offset specified in imm8. Eight quadruplets are formed from sequential 8-bit // integers selected from a starting at the offset specified in imm8. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_mpsadbw_epu8 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mpsadbw_epu8 FORCE_INLINE __m128i _mm_mpsadbw_epu8(__m128i a, __m128i b, const int imm) { uint8x16_t _a, _b; @@ -8072,13 +7238,13 @@ FORCE_INLINE __m128i _mm_mpsadbw_epu8(__m128i a, __m128i b, const int imm) int16x8_t c04, c15, c26, c37; uint8x8_t low_b = vget_low_u8(_b); - c04 = vabsq_s16(vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(_a), low_b))); - _a = vextq_u8(_a, _a, 1); - c15 = vabsq_s16(vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(_a), low_b))); - _a = vextq_u8(_a, _a, 1); - c26 = vabsq_s16(vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(_a), low_b))); - _a = vextq_u8(_a, _a, 1); - c37 = vabsq_s16(vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(_a), low_b))); + c04 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a), low_b)); + uint8x16_t _a_1 = vextq_u8(_a, _a, 1); + c15 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a_1), low_b)); + uint8x16_t _a_2 = vextq_u8(_a, _a, 2); + c26 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a_2), low_b)); + uint8x16_t _a_3 = vextq_u8(_a, _a, 3); + c37 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a_3), low_b)); #if defined(__aarch64__) // |0|4|2|6| c04 = vpaddq_s16(c04, c26); @@ -8105,9 +7271,7 @@ FORCE_INLINE __m128i _mm_mpsadbw_epu8(__m128i a, __m128i b, const int imm) // Multiply the low signed 32-bit integers from each packed 64-bit element in // a and b, and store the signed 64-bit results in dst. -// -// r0 := (int64_t)(int32_t)a0 * (int64_t)(int32_t)b0 -// r1 := (int64_t)(int32_t)a2 * (int64_t)(int32_t)b2 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_epi32 FORCE_INLINE __m128i _mm_mul_epi32(__m128i a, __m128i b) { // vmull_s32 upcasts instead of masking, so we downcast. @@ -8116,26 +7280,18 @@ FORCE_INLINE __m128i _mm_mul_epi32(__m128i a, __m128i b) return vreinterpretq_m128i_s64(vmull_s32(a_lo, b_lo)); } -// Multiplies the 4 signed or unsigned 32-bit integers from a by the 4 signed or -// unsigned 32-bit integers from b. -// https://msdn.microsoft.com/en-us/library/vstudio/bb531409(v=vs.100).aspx +// Multiply the packed 32-bit integers in a and b, producing intermediate 64-bit +// integers, and store the low 32 bits of the intermediate integers in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mullo_epi32 FORCE_INLINE __m128i _mm_mullo_epi32(__m128i a, __m128i b) { return vreinterpretq_m128i_s32( vmulq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); } -// Packs the 8 unsigned 32-bit integers from a and b into unsigned 16-bit -// integers and saturates. -// -// r0 := UnsignedSaturate(a0) -// r1 := UnsignedSaturate(a1) -// r2 := UnsignedSaturate(a2) -// r3 := UnsignedSaturate(a3) -// r4 := UnsignedSaturate(b0) -// r5 := UnsignedSaturate(b1) -// r6 := UnsignedSaturate(b2) -// r7 := UnsignedSaturate(b3) +// Convert packed signed 32-bit integers from a and b to packed 16-bit integers +// using unsigned saturation, and store the results in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_packus_epi32 FORCE_INLINE __m128i _mm_packus_epi32(__m128i a, __m128i b) { return vreinterpretq_m128i_u16( @@ -8146,7 +7302,7 @@ FORCE_INLINE __m128i _mm_packus_epi32(__m128i a, __m128i b) // Round the packed double-precision (64-bit) floating-point elements in a using // the rounding parameter, and store the results as packed double-precision // floating-point elements in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_round_pd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_pd FORCE_INLINE __m128d _mm_round_pd(__m128d a, int rounding) { #if defined(__aarch64__) @@ -8275,7 +7431,7 @@ FORCE_INLINE __m128 _mm_round_ps(__m128 a, int rounding) // the rounding parameter, store the result as a double-precision floating-point // element in the lower element of dst, and copy the upper element from a to the // upper element of dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_round_sd +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_sd FORCE_INLINE __m128d _mm_round_sd(__m128d a, __m128d b, int rounding) { return _mm_move_sd(a, _mm_round_pd(b, rounding)); @@ -8295,7 +7451,7 @@ FORCE_INLINE __m128d _mm_round_sd(__m128d a, __m128d b, int rounding) // (_MM_FROUND_TO_ZERO |_MM_FROUND_NO_EXC) // truncate, and suppress // exceptions _MM_FROUND_CUR_DIRECTION // use MXCSR.RC; see // _MM_SET_ROUNDING_MODE -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_round_ss +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_ss FORCE_INLINE __m128 _mm_round_ss(__m128 a, __m128 b, int rounding) { return _mm_move_ss(a, _mm_round_ps(b, rounding)); @@ -8304,10 +7460,7 @@ FORCE_INLINE __m128 _mm_round_ss(__m128 a, __m128 b, int rounding) // Load 128-bits of integer data from memory into dst using a non-temporal // memory hint. mem_addr must be aligned on a 16-byte boundary or a // general-protection exception may be generated. -// -// dst[127:0] := MEM[mem_addr+127:mem_addr] -// -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_stream_load_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_load_si128 FORCE_INLINE __m128i _mm_stream_load_si128(__m128i *p) { #if __has_builtin(__builtin_nontemporal_store) @@ -8319,7 +7472,7 @@ FORCE_INLINE __m128i _mm_stream_load_si128(__m128i *p) // Compute the bitwise NOT of a and then AND with a 128-bit vector containing // all 1's, and return 1 if the result is zero, otherwise return 0. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_test_all_ones +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_test_all_ones FORCE_INLINE int _mm_test_all_ones(__m128i a) { return (uint64_t) (vgetq_lane_s64(a, 0) & vgetq_lane_s64(a, 1)) == @@ -8328,7 +7481,7 @@ FORCE_INLINE int _mm_test_all_ones(__m128i a) // Compute the bitwise AND of 128 bits (representing integer data) in a and // mask, and return 1 if the result is zero, otherwise return 0. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_test_all_zeros +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_test_all_zeros FORCE_INLINE int _mm_test_all_zeros(__m128i a, __m128i mask) { int64x2_t a_and_mask = @@ -8341,7 +7494,7 @@ FORCE_INLINE int _mm_test_all_zeros(__m128i a, __m128i mask) // the bitwise NOT of a and then AND with mask, and set CF to 1 if the result is // zero, otherwise set CF to 0. Return 1 if both the ZF and CF values are zero, // otherwise return 0. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=mm_test_mix_ones_zero +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_test_mix_ones_zero FORCE_INLINE int _mm_test_mix_ones_zeros(__m128i a, __m128i mask) { uint64x2_t zf = @@ -8356,12 +7509,11 @@ FORCE_INLINE int _mm_test_mix_ones_zeros(__m128i a, __m128i mask) // and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the // bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero, // otherwise set CF to 0. Return the CF value. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_testc_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testc_si128 FORCE_INLINE int _mm_testc_si128(__m128i a, __m128i b) { int64x2_t s64 = - vandq_s64(vreinterpretq_s64_s32(vmvnq_s32(vreinterpretq_s32_m128i(a))), - vreinterpretq_s64_m128i(b)); + vbicq_s64(vreinterpretq_s64_m128i(b), vreinterpretq_s64_m128i(a)); return !(vgetq_lane_s64(s64, 0) | vgetq_lane_s64(s64, 1)); } @@ -8370,14 +7522,14 @@ FORCE_INLINE int _mm_testc_si128(__m128i a, __m128i b) // bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero, // otherwise set CF to 0. Return 1 if both the ZF and CF values are zero, // otherwise return 0. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_testnzc_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testnzc_si128 #define _mm_testnzc_si128(a, b) _mm_test_mix_ones_zeros(a, b) // Compute the bitwise AND of 128 bits (representing integer data) in a and b, // and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the // bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero, // otherwise set CF to 0. Return the ZF value. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_testz_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testz_si128 FORCE_INLINE int _mm_testz_si128(__m128i a, __m128i b) { int64x2_t s64 = @@ -8597,35 +7749,6 @@ const static uint8_t _sse2neon_cmpestr_mask8b[16] ALIGN_STRUCT(16) = { SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type), la, lb, mtx); \ } -#if !defined(__aarch64__) -/* emulate vaddv u8 variant */ -static inline uint8_t vaddv_u8(uint8x8_t v8) -{ - const uint64x1_t v1 = vpaddl_u32(vpaddl_u16(vpaddl_u8(v8))); - return vget_lane_u8(vreinterpret_u8_u64(v1), 0); -} - -/* emulate vaddvq u8 variant */ -static inline uint8_t vaddvq_u8(uint8x16_t a) -{ - uint8x8_t tmp = vpadd_u8(vget_low_u8(a), vget_high_u8(a)); - uint8_t res = 0; - for (int i = 0; i < 8; ++i) - res += tmp[i]; - return res; -} - -/* emulate vaddvq u16 variant */ -static inline uint16_t vaddvq_u16(uint16x8_t a) -{ - uint32x4_t m = vpaddlq_u16(a); - uint64x2_t n = vpaddlq_u32(m); - uint64x1_t o = vget_low_u64(n) + vget_high_u64(n); - - return vget_lane_u32((uint32x2_t) o, 0); -} -#endif - static int _sse2neon_aggregate_equal_any_8x16(int la, int lb, __m128i mtx[16]) { int res = 0; @@ -8639,7 +7762,7 @@ static int _sse2neon_aggregate_equal_any_8x16(int la, int lb, __m128i mtx[16]) vandq_u8(vec, vreinterpretq_u8_m128i(mtx[j]))); mtx[j] = vreinterpretq_m128i_u8( vshrq_n_u8(vreinterpretq_u8_m128i(mtx[j]), 7)); - int tmp = vaddvq_u8(vreinterpretq_u8_m128i(mtx[j])) ? 1 : 0; + int tmp = _sse2neon_vaddvq_u8(vreinterpretq_u8_m128i(mtx[j])) ? 1 : 0; res |= (tmp << j); } return res; @@ -8656,14 +7779,17 @@ static int _sse2neon_aggregate_equal_any_16x8(int la, int lb, __m128i mtx[16]) vandq_u16(vec, vreinterpretq_u16_m128i(mtx[j]))); mtx[j] = vreinterpretq_m128i_u16( vshrq_n_u16(vreinterpretq_u16_m128i(mtx[j]), 15)); - int tmp = vaddvq_u16(vreinterpretq_u16_m128i(mtx[j])) ? 1 : 0; + int tmp = _sse2neon_vaddvq_u16(vreinterpretq_u16_m128i(mtx[j])) ? 1 : 0; res |= (tmp << j); } return res; } -#define SSE2NEON_GENERATE_CMP_EQUAL_ANY(f_prefix) \ - f_prefix##IMPL(byte) f_prefix##IMPL(word) +/* clang-format off */ +#define SSE2NEON_GENERATE_CMP_EQUAL_ANY(prefix) \ + prefix##IMPL(byte) \ + prefix##IMPL(word) +/* clang-format on */ SSE2NEON_GENERATE_CMP_EQUAL_ANY(SSE2NEON_CMP_EQUAL_ANY_) @@ -8710,7 +7836,7 @@ static int _sse2neon_aggregate_ranges_8x16(int la, int lb, __m128i mtx[16]) vshrq_n_u16(vreinterpretq_u16_m128i(mtx[j]), 8)); uint16x8_t vec_res = vandq_u16(vreinterpretq_u16_m128i(mtx[j]), vreinterpretq_u16_m128i(tmp)); - int t = vaddvq_u16(vec_res) ? 1 : 0; + int t = _sse2neon_vaddvq_u16(vec_res) ? 1 : 0; res |= (t << j); } return res; @@ -8719,11 +7845,13 @@ static int _sse2neon_aggregate_ranges_8x16(int la, int lb, __m128i mtx[16]) #define SSE2NEON_CMP_RANGES_IS_BYTE 1 #define SSE2NEON_CMP_RANGES_IS_WORD 0 -#define SSE2NEON_GENERATE_CMP_RANGES(f_prefix) \ - f_prefix##IMPL(byte, uint, u, f_prefix##IS_BYTE) \ - f_prefix##IMPL(byte, int, s, f_prefix##IS_BYTE) \ - f_prefix##IMPL(word, uint, u, f_prefix##IS_WORD) \ - f_prefix##IMPL(word, int, s, f_prefix##IS_WORD) +/* clang-format off */ +#define SSE2NEON_GENERATE_CMP_RANGES(prefix) \ + prefix##IMPL(byte, uint, u, prefix##IS_BYTE) \ + prefix##IMPL(byte, int, s, prefix##IS_BYTE) \ + prefix##IMPL(word, uint, u, prefix##IS_WORD) \ + prefix##IMPL(word, int, s, prefix##IS_WORD) +/* clang-format on */ SSE2NEON_GENERATE_CMP_RANGES(SSE2NEON_CMP_RANGES_) @@ -8754,7 +7882,7 @@ static int _sse2neon_cmp_byte_equal_each(__m128i a, int la, __m128i b, int lb) res_lo = vand_u8(res_lo, vec_mask); res_hi = vand_u8(res_hi, vec_mask); - int res = vaddv_u8(res_lo) + (vaddv_u8(res_hi) << 8); + int res = _sse2neon_vaddv_u8(res_lo) + (_sse2neon_vaddv_u8(res_hi) << 8); return res; } @@ -8772,7 +7900,7 @@ static int _sse2neon_cmp_word_equal_each(__m128i a, int la, __m128i b, int lb) mtx = vbslq_u16(vec0, vdupq_n_u16(0), mtx); mtx = vbslq_u16(vec1, tmp, mtx); mtx = vandq_u16(mtx, vec_mask); - return vaddvq_u16(mtx); + return _sse2neon_vaddvq_u16(mtx); } #define SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UBYTE 1 @@ -8812,17 +7940,22 @@ static int _sse2neon_cmp_word_equal_each(__m128i a, int la, __m128i b, int lb) return res; \ } -#define SSE2NEON_GENERATE_AGGREGATE_EQUAL_ORDER(f_prefix) \ - f_prefix##IMPL(8, 16, f_prefix##IS_UBYTE) \ - f_prefix##IMPL(16, 8, f_prefix##IS_UWORD) +/* clang-format off */ +#define SSE2NEON_GENERATE_AGGREGATE_EQUAL_ORDER(prefix) \ + prefix##IMPL(8, 16, prefix##IS_UBYTE) \ + prefix##IMPL(16, 8, prefix##IS_UWORD) +/* clang-format on */ SSE2NEON_GENERATE_AGGREGATE_EQUAL_ORDER(SSE2NEON_AGGREGATE_EQUAL_ORDER_) #undef SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UBYTE #undef SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UWORD -#define SSE2NEON_GENERATE_CMP_EQUAL_ORDERED(f_prefix) \ - f_prefix##IMPL(byte) f_prefix##IMPL(word) +/* clang-format off */ +#define SSE2NEON_GENERATE_CMP_EQUAL_ORDERED(prefix) \ + prefix##IMPL(byte) \ + prefix##IMPL(word) +/* clang-format on */ SSE2NEON_GENERATE_CMP_EQUAL_ORDERED(SSE2NEON_CMP_EQUAL_ORDERED_) @@ -8856,7 +7989,7 @@ static cmpestr_func_t _sse2neon_cmpfunc_table[] = { #undef _ }; -static inline int _sse2neon_sido_negative(int res, int lb, int imm8, int bound) +FORCE_INLINE int _sse2neon_sido_negative(int res, int lb, int imm8, int bound) { switch (imm8 & 0x30) { case _SIDD_NEGATIVE_POLARITY: @@ -8872,73 +8005,288 @@ static inline int _sse2neon_sido_negative(int res, int lb, int imm8, int bound) return res & ((bound == 8) ? 0xFF : 0xFFFF); } +FORCE_INLINE int _sse2neon_clz(unsigned int x) +{ +#if _MSC_VER + DWORD cnt = 0; + if (_BitScanForward(&cnt, x)) + return cnt; + return 32; +#else + return x != 0 ? __builtin_clz(x) : 32; +#endif +} + +FORCE_INLINE int _sse2neon_ctz(unsigned int x) +{ +#if _MSC_VER + DWORD cnt = 0; + if (_BitScanReverse(&cnt, x)) + return 31 - cnt; + return 32; +#else + return x != 0 ? __builtin_ctz(x) : 32; +#endif +} + +FORCE_INLINE int _sse2neon_ctzll(unsigned long long x) +{ +#if _MSC_VER + unsigned long cnt; +#ifdef defined(SSE2NEON_HAS_BITSCAN64) + (defined(_M_AMD64) || defined(__x86_64__)) + if((_BitScanForward64(&cnt, x)) + return (int)(cnt); +#else + if (_BitScanForward(&cnt, (unsigned long) (x))) + return (int) cnt; + if (_BitScanForward(&cnt, (unsigned long) (x >> 32))) + return (int) (cnt + 32); +#endif + return 64; +#else + return x != 0 ? __builtin_ctzll(x) : 64; +#endif +} + #define SSE2NEON_MIN(x, y) (x) < (y) ? (x) : (y) -#define SSE2NEON_GET_LENGTH_OR_BOUND(la, lb, bound) \ - int tmp1 = la ^ (la >> 31); \ - la = tmp1 - (la >> 31); \ - int tmp2 = lb ^ (lb >> 31); \ - lb = tmp2 - (lb >> 31); \ - la = SSE2NEON_MIN(la, bound); \ - lb = SSE2NEON_MIN(lb, bound); + +#define SSE2NEON_CMPSTR_SET_UPPER(var, imm) \ + const int var = (imm & 0x01) ? 8 : 16 + +#define SSE2NEON_CMPESTRX_LEN_PAIR(a, b, la, lb) \ + int tmp1 = la ^ (la >> 31); \ + la = tmp1 - (la >> 31); \ + int tmp2 = lb ^ (lb >> 31); \ + lb = tmp2 - (lb >> 31); \ + la = SSE2NEON_MIN(la, bound); \ + lb = SSE2NEON_MIN(lb, bound) + +// Compare all pairs of character in string a and b, +// then aggregate the result. +// As the only difference of PCMPESTR* and PCMPISTR* is the way to calculate the +// length of string, we use SSE2NEON_CMP{I,E}STRX_GET_LEN to get the length of +// string a and b. +#define SSE2NEON_COMP_AGG(a, b, la, lb, imm8, IE) \ + SSE2NEON_CMPSTR_SET_UPPER(bound, imm8); \ + SSE2NEON_##IE##_LEN_PAIR(a, b, la, lb); \ + int r2 = (_sse2neon_cmpfunc_table[imm8 & 0x0f])(a, la, b, lb); \ + r2 = _sse2neon_sido_negative(r2, lb, imm8, bound) + +#define SSE2NEON_CMPSTR_GENERATE_INDEX(r2, bound, imm8) \ + return (r2 == 0) ? bound \ + : ((imm8 & 0x40) ? (31 - _sse2neon_clz(r2)) \ + : _sse2neon_ctz(r2)) + +#define SSE2NEON_CMPSTR_GENERATE_MASK(dst) \ + __m128i dst = vreinterpretq_m128i_u8(vdupq_n_u8(0)); \ + if (imm8 & 0x40) { \ + if (bound == 8) { \ + uint16x8_t tmp = vtstq_u16(vdupq_n_u16(r2), \ + vld1q_u16(_sse2neon_cmpestr_mask16b)); \ + dst = vreinterpretq_m128i_u16(vbslq_u16( \ + tmp, vdupq_n_u16(-1), vreinterpretq_u16_m128i(dst))); \ + } else { \ + uint8x16_t vec_r2 = \ + vcombine_u8(vdup_n_u8(r2), vdup_n_u8(r2 >> 8)); \ + uint8x16_t tmp = \ + vtstq_u8(vec_r2, vld1q_u8(_sse2neon_cmpestr_mask8b)); \ + dst = vreinterpretq_m128i_u8( \ + vbslq_u8(tmp, vdupq_n_u8(-1), vreinterpretq_u8_m128i(dst))); \ + } \ + } else { \ + if (bound == 16) { \ + dst = vreinterpretq_m128i_u16( \ + vsetq_lane_u16(r2 & 0xffff, vreinterpretq_u16_m128i(dst), 0)); \ + } else { \ + dst = vreinterpretq_m128i_u8( \ + vsetq_lane_u8(r2 & 0xff, vreinterpretq_u8_m128i(dst), 0)); \ + } \ + } \ + return dst + +// Compare packed strings in a and b with lengths la and lb using the control +// in imm8, and returns 1 if b did not contain a null character and the +// resulting mask was zero, and 0 otherwise. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestra +FORCE_INLINE int _mm_cmpestra(__m128i a, + int la, + __m128i b, + int lb, + const int imm8) +{ + int lb_cpy = lb; + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX); + return !r2 & (lb_cpy > bound); +} + +// Compare packed strings in a and b with lengths la and lb using the control in +// imm8, and returns 1 if the resulting mask was non-zero, and 0 otherwise. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrc +FORCE_INLINE int _mm_cmpestrc(__m128i a, + int la, + __m128i b, + int lb, + const int imm8) +{ + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX); + return r2 != 0; +} // Compare packed strings in a and b with lengths la and lb using the control // in imm8, and store the generated index in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpestri +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestri FORCE_INLINE int _mm_cmpestri(__m128i a, int la, __m128i b, int lb, const int imm8) { - const int upper = (imm8 & 0x01) ? 8 : 16; - - SSE2NEON_GET_LENGTH_OR_BOUND(la, lb, upper) - - int r2 = (_sse2neon_cmpfunc_table[imm8 & 0x0f])(a, la, b, lb); - r2 = _sse2neon_sido_negative(r2, lb, imm8, upper); - return (r2 == 0) - ? upper - : ((imm8 & 0x40) ? (31 - __builtin_clz(r2)) : __builtin_ctz(r2)); + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX); + SSE2NEON_CMPSTR_GENERATE_INDEX(r2, bound, imm8); } // Compare packed strings in a and b with lengths la and lb using the control // in imm8, and store the generated mask in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_cmpestrm +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrm FORCE_INLINE __m128i _mm_cmpestrm(__m128i a, int la, __m128i b, int lb, const int imm8) { - const int bound = (imm8 & 0x01) ? 8 : 16; + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX); + SSE2NEON_CMPSTR_GENERATE_MASK(dst); +} - SSE2NEON_GET_LENGTH_OR_BOUND(la, lb, bound) +// Compare packed strings in a and b with lengths la and lb using the control in +// imm8, and returns bit 0 of the resulting bit mask. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestro +FORCE_INLINE int _mm_cmpestro(__m128i a, + int la, + __m128i b, + int lb, + const int imm8) +{ + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX); + return r2 & 1; +} - int r2 = (_sse2neon_cmpfunc_table[imm8 & 0x0f])(a, la, b, lb); - r2 = _sse2neon_sido_negative(r2, lb, imm8, bound); +// Compare packed strings in a and b with lengths la and lb using the control in +// imm8, and returns 1 if any character in a was null, and 0 otherwise. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrs +FORCE_INLINE int _mm_cmpestrs(__m128i a, + int la, + __m128i b, + int lb, + const int imm8) +{ + SSE2NEON_CMPSTR_SET_UPPER(bound, imm8); + return la <= (bound - 1); +} - __m128i dst = vreinterpretq_m128i_u8(vdupq_n_u8(0)); - if (imm8 & 0x40) { - if (bound == 8) { - uint16x8_t tmp = vtstq_u16(vdupq_n_u16(r2), - vld1q_u16(_sse2neon_cmpestr_mask16b)); - dst = vreinterpretq_m128i_u16( - vbslq_u16(tmp, vdupq_n_u16(-1), vreinterpretq_u16_m128i(dst))); - } else { - uint8x16_t vec_r2 = vcombine_u8(vdup_n_u8(r2), vdup_n_u8(r2 >> 8)); - uint8x16_t tmp = - vtstq_u8(vec_r2, vld1q_u8(_sse2neon_cmpestr_mask8b)); - dst = vreinterpretq_m128i_u8( - vbslq_u8(tmp, vdupq_n_u8(-1), vreinterpretq_u8_m128i(dst))); - } - } else { - if (bound == 16) { - dst = vreinterpretq_m128i_u16( - vsetq_lane_u16(r2 & 0xffff, vreinterpretq_u16_m128i(dst), 0)); - } else { - dst = vreinterpretq_m128i_u8( - vsetq_lane_u8(r2 & 0xff, vreinterpretq_u8_m128i(dst), 0)); - } - } +// Compare packed strings in a and b with lengths la and lb using the control in +// imm8, and returns 1 if any character in b was null, and 0 otherwise. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrz +FORCE_INLINE int _mm_cmpestrz(__m128i a, + int la, + __m128i b, + int lb, + const int imm8) +{ + SSE2NEON_CMPSTR_SET_UPPER(bound, imm8); + return lb <= (bound - 1); +} - return dst; +#define SSE2NEON_CMPISTRX_LENGTH(str, len, imm8) \ + do { \ + if (imm8 & 0x01) { \ + uint16x8_t equal_mask_##str = \ + vceqq_u16(vreinterpretq_u16_m128i(str), vdupq_n_u16(0)); \ + uint8x8_t res_##str = vshrn_n_u16(equal_mask_##str, 4); \ + uint64_t matches_##str = \ + vget_lane_u64(vreinterpret_u64_u8(res_##str), 0); \ + len = _sse2neon_ctzll(matches_##str) >> 3; \ + } else { \ + uint16x8_t equal_mask_##str = vreinterpretq_u16_u8( \ + vceqq_u8(vreinterpretq_u8_m128i(str), vdupq_n_u8(0))); \ + uint8x8_t res_##str = vshrn_n_u16(equal_mask_##str, 4); \ + uint64_t matches_##str = \ + vget_lane_u64(vreinterpret_u64_u8(res_##str), 0); \ + len = _sse2neon_ctzll(matches_##str) >> 2; \ + } \ + } while (0) + +#define SSE2NEON_CMPISTRX_LEN_PAIR(a, b, la, lb) \ + int la, lb; \ + do { \ + SSE2NEON_CMPISTRX_LENGTH(a, la, imm8); \ + SSE2NEON_CMPISTRX_LENGTH(b, lb, imm8); \ + } while (0) + +// Compare packed strings with implicit lengths in a and b using the control in +// imm8, and returns 1 if b did not contain a null character and the resulting +// mask was zero, and 0 otherwise. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistra +FORCE_INLINE int _mm_cmpistra(__m128i a, __m128i b, const int imm8) +{ + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX); + return !r2 & (lb >= bound); +} + +// Compare packed strings with implicit lengths in a and b using the control in +// imm8, and returns 1 if the resulting mask was non-zero, and 0 otherwise. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrc +FORCE_INLINE int _mm_cmpistrc(__m128i a, __m128i b, const int imm8) +{ + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX); + return r2 != 0; +} + +// Compare packed strings with implicit lengths in a and b using the control in +// imm8, and store the generated index in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistri +FORCE_INLINE int _mm_cmpistri(__m128i a, __m128i b, const int imm8) +{ + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX); + SSE2NEON_CMPSTR_GENERATE_INDEX(r2, bound, imm8); +} + +// Compare packed strings with implicit lengths in a and b using the control in +// imm8, and store the generated mask in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrm +FORCE_INLINE __m128i _mm_cmpistrm(__m128i a, __m128i b, const int imm8) +{ + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX); + SSE2NEON_CMPSTR_GENERATE_MASK(dst); +} + +// Compare packed strings with implicit lengths in a and b using the control in +// imm8, and returns bit 0 of the resulting bit mask. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistro +FORCE_INLINE int _mm_cmpistro(__m128i a, __m128i b, const int imm8) +{ + SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX); + return r2 & 1; +} + +// Compare packed strings with implicit lengths in a and b using the control in +// imm8, and returns 1 if any character in a was null, and 0 otherwise. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrs +FORCE_INLINE int _mm_cmpistrs(__m128i a, __m128i b, const int imm8) +{ + SSE2NEON_CMPSTR_SET_UPPER(bound, imm8); + int la; + SSE2NEON_CMPISTRX_LENGTH(a, la, imm8); + return la <= (bound - 1); +} + +// Compare packed strings with implicit lengths in a and b using the control in +// imm8, and returns 1 if any character in b was null, and 0 otherwise. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrz +FORCE_INLINE int _mm_cmpistrz(__m128i a, __m128i b, const int imm8) +{ + SSE2NEON_CMPSTR_SET_UPPER(bound, imm8); + int lb; + SSE2NEON_CMPISTRX_LENGTH(b, lb, imm8); + return lb <= (bound - 1); } // Compares the 2 signed 64-bit integers in a and the 2 signed 64-bit integers @@ -8956,8 +8304,8 @@ FORCE_INLINE __m128i _mm_cmpgt_epi64(__m128i a, __m128i b) } // Starting with the initial value in crc, accumulates a CRC32 value for -// unsigned 16-bit integer v. -// https://msdn.microsoft.com/en-us/library/bb531411(v=vs.100) +// unsigned 16-bit integer v, and stores the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_crc32_u16 FORCE_INLINE uint32_t _mm_crc32_u16(uint32_t crc, uint16_t v) { #if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) @@ -8974,8 +8322,8 @@ FORCE_INLINE uint32_t _mm_crc32_u16(uint32_t crc, uint16_t v) } // Starting with the initial value in crc, accumulates a CRC32 value for -// unsigned 32-bit integer v. -// https://msdn.microsoft.com/en-us/library/bb531394(v=vs.100) +// unsigned 32-bit integer v, and stores the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_crc32_u32 FORCE_INLINE uint32_t _mm_crc32_u32(uint32_t crc, uint32_t v) { #if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) @@ -8992,8 +8340,8 @@ FORCE_INLINE uint32_t _mm_crc32_u32(uint32_t crc, uint32_t v) } // Starting with the initial value in crc, accumulates a CRC32 value for -// unsigned 64-bit integer v. -// https://msdn.microsoft.com/en-us/library/bb514033(v=vs.100) +// unsigned 64-bit integer v, and stores the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_crc32_u64 FORCE_INLINE uint64_t _mm_crc32_u64(uint64_t crc, uint64_t v) { #if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) @@ -9008,8 +8356,8 @@ FORCE_INLINE uint64_t _mm_crc32_u64(uint64_t crc, uint64_t v) } // Starting with the initial value in crc, accumulates a CRC32 value for -// unsigned 8-bit integer v. -// https://msdn.microsoft.com/en-us/library/bb514036(v=vs.100) +// unsigned 8-bit integer v, and stores the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_crc32_u8 FORCE_INLINE uint32_t _mm_crc32_u8(uint32_t crc, uint8_t v) { #if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) @@ -9034,7 +8382,7 @@ FORCE_INLINE uint32_t _mm_crc32_u8(uint32_t crc, uint8_t v) #if !defined(__ARM_FEATURE_CRYPTO) /* clang-format off */ -#define SSE2NEON_AES_DATA(w) \ +#define SSE2NEON_AES_SBOX(w) \ { \ w(0x63), w(0x7c), w(0x77), w(0x7b), w(0xf2), w(0x6b), w(0x6f), \ w(0xc5), w(0x30), w(0x01), w(0x67), w(0x2b), w(0xfe), w(0xd7), \ @@ -9074,53 +8422,114 @@ FORCE_INLINE uint32_t _mm_crc32_u8(uint32_t crc, uint8_t v) w(0xe6), w(0x42), w(0x68), w(0x41), w(0x99), w(0x2d), w(0x0f), \ w(0xb0), w(0x54), w(0xbb), w(0x16) \ } +#define SSE2NEON_AES_RSBOX(w) \ + { \ + w(0x52), w(0x09), w(0x6a), w(0xd5), w(0x30), w(0x36), w(0xa5), \ + w(0x38), w(0xbf), w(0x40), w(0xa3), w(0x9e), w(0x81), w(0xf3), \ + w(0xd7), w(0xfb), w(0x7c), w(0xe3), w(0x39), w(0x82), w(0x9b), \ + w(0x2f), w(0xff), w(0x87), w(0x34), w(0x8e), w(0x43), w(0x44), \ + w(0xc4), w(0xde), w(0xe9), w(0xcb), w(0x54), w(0x7b), w(0x94), \ + w(0x32), w(0xa6), w(0xc2), w(0x23), w(0x3d), w(0xee), w(0x4c), \ + w(0x95), w(0x0b), w(0x42), w(0xfa), w(0xc3), w(0x4e), w(0x08), \ + w(0x2e), w(0xa1), w(0x66), w(0x28), w(0xd9), w(0x24), w(0xb2), \ + w(0x76), w(0x5b), w(0xa2), w(0x49), w(0x6d), w(0x8b), w(0xd1), \ + w(0x25), w(0x72), w(0xf8), w(0xf6), w(0x64), w(0x86), w(0x68), \ + w(0x98), w(0x16), w(0xd4), w(0xa4), w(0x5c), w(0xcc), w(0x5d), \ + w(0x65), w(0xb6), w(0x92), w(0x6c), w(0x70), w(0x48), w(0x50), \ + w(0xfd), w(0xed), w(0xb9), w(0xda), w(0x5e), w(0x15), w(0x46), \ + w(0x57), w(0xa7), w(0x8d), w(0x9d), w(0x84), w(0x90), w(0xd8), \ + w(0xab), w(0x00), w(0x8c), w(0xbc), w(0xd3), w(0x0a), w(0xf7), \ + w(0xe4), w(0x58), w(0x05), w(0xb8), w(0xb3), w(0x45), w(0x06), \ + w(0xd0), w(0x2c), w(0x1e), w(0x8f), w(0xca), w(0x3f), w(0x0f), \ + w(0x02), w(0xc1), w(0xaf), w(0xbd), w(0x03), w(0x01), w(0x13), \ + w(0x8a), w(0x6b), w(0x3a), w(0x91), w(0x11), w(0x41), w(0x4f), \ + w(0x67), w(0xdc), w(0xea), w(0x97), w(0xf2), w(0xcf), w(0xce), \ + w(0xf0), w(0xb4), w(0xe6), w(0x73), w(0x96), w(0xac), w(0x74), \ + w(0x22), w(0xe7), w(0xad), w(0x35), w(0x85), w(0xe2), w(0xf9), \ + w(0x37), w(0xe8), w(0x1c), w(0x75), w(0xdf), w(0x6e), w(0x47), \ + w(0xf1), w(0x1a), w(0x71), w(0x1d), w(0x29), w(0xc5), w(0x89), \ + w(0x6f), w(0xb7), w(0x62), w(0x0e), w(0xaa), w(0x18), w(0xbe), \ + w(0x1b), w(0xfc), w(0x56), w(0x3e), w(0x4b), w(0xc6), w(0xd2), \ + w(0x79), w(0x20), w(0x9a), w(0xdb), w(0xc0), w(0xfe), w(0x78), \ + w(0xcd), w(0x5a), w(0xf4), w(0x1f), w(0xdd), w(0xa8), w(0x33), \ + w(0x88), w(0x07), w(0xc7), w(0x31), w(0xb1), w(0x12), w(0x10), \ + w(0x59), w(0x27), w(0x80), w(0xec), w(0x5f), w(0x60), w(0x51), \ + w(0x7f), w(0xa9), w(0x19), w(0xb5), w(0x4a), w(0x0d), w(0x2d), \ + w(0xe5), w(0x7a), w(0x9f), w(0x93), w(0xc9), w(0x9c), w(0xef), \ + w(0xa0), w(0xe0), w(0x3b), w(0x4d), w(0xae), w(0x2a), w(0xf5), \ + w(0xb0), w(0xc8), w(0xeb), w(0xbb), w(0x3c), w(0x83), w(0x53), \ + w(0x99), w(0x61), w(0x17), w(0x2b), w(0x04), w(0x7e), w(0xba), \ + w(0x77), w(0xd6), w(0x26), w(0xe1), w(0x69), w(0x14), w(0x63), \ + w(0x55), w(0x21), w(0x0c), w(0x7d) \ + } /* clang-format on */ /* X Macro trick. See https://en.wikipedia.org/wiki/X_Macro */ #define SSE2NEON_AES_H0(x) (x) -static const uint8_t SSE2NEON_sbox[256] = SSE2NEON_AES_DATA(SSE2NEON_AES_H0); +static const uint8_t _sse2neon_sbox[256] = SSE2NEON_AES_SBOX(SSE2NEON_AES_H0); +static const uint8_t _sse2neon_rsbox[256] = SSE2NEON_AES_RSBOX(SSE2NEON_AES_H0); #undef SSE2NEON_AES_H0 -// In the absence of crypto extensions, implement aesenc using regular neon +/* x_time function and matrix multiply function */ +#if !defined(__aarch64__) +#define SSE2NEON_XT(x) (((x) << 1) ^ ((((x) >> 7) & 1) * 0x1b)) +#define SSE2NEON_MULTIPLY(x, y) \ + (((y & 1) * x) ^ ((y >> 1 & 1) * SSE2NEON_XT(x)) ^ \ + ((y >> 2 & 1) * SSE2NEON_XT(SSE2NEON_XT(x))) ^ \ + ((y >> 3 & 1) * SSE2NEON_XT(SSE2NEON_XT(SSE2NEON_XT(x)))) ^ \ + ((y >> 4 & 1) * SSE2NEON_XT(SSE2NEON_XT(SSE2NEON_XT(SSE2NEON_XT(x)))))) +#endif + +// In the absence of crypto extensions, implement aesenc using regular NEON // intrinsics instead. See: // https://www.workofard.com/2017/01/accelerated-aes-for-the-arm64-linux-kernel/ // https://www.workofard.com/2017/07/ghash-for-low-end-cores/ and -// https://github.com/ColinIanKing/linux-next-mirror/blob/b5f466091e130caaf0735976648f72bd5e09aa84/crypto/aegis128-neon-inner.c#L52 -// for more information Reproduced with permission of the author. -FORCE_INLINE __m128i _mm_aesenc_si128(__m128i EncBlock, __m128i RoundKey) +// for more information. +FORCE_INLINE __m128i _mm_aesenc_si128(__m128i a, __m128i RoundKey) { #if defined(__aarch64__) - static const uint8_t shift_rows[] = {0x0, 0x5, 0xa, 0xf, 0x4, 0x9, - 0xe, 0x3, 0x8, 0xd, 0x2, 0x7, - 0xc, 0x1, 0x6, 0xb}; - static const uint8_t ror32by8[] = {0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4, - 0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc}; + static const uint8_t shift_rows[] = { + 0x0, 0x5, 0xa, 0xf, 0x4, 0x9, 0xe, 0x3, + 0x8, 0xd, 0x2, 0x7, 0xc, 0x1, 0x6, 0xb, + }; + static const uint8_t ror32by8[] = { + 0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4, + 0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc, + }; uint8x16_t v; - uint8x16_t w = vreinterpretq_u8_m128i(EncBlock); + uint8x16_t w = vreinterpretq_u8_m128i(a); - // shift rows + /* shift rows */ w = vqtbl1q_u8(w, vld1q_u8(shift_rows)); - // sub bytes - v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(SSE2NEON_sbox), w); - v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(SSE2NEON_sbox + 0x40), w - 0x40); - v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(SSE2NEON_sbox + 0x80), w - 0x80); - v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(SSE2NEON_sbox + 0xc0), w - 0xc0); + /* sub bytes */ + // Here, we separate the whole 256-bytes table into 4 64-bytes tables, and + // look up each of the table. After each lookup, we load the next table + // which locates at the next 64-bytes. In the meantime, the index in the + // table would be smaller than it was, so the index parameters of + // `vqtbx4q_u8()` need to be added the same constant as the loaded tables. + v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_sbox), w); + // 'w-0x40' equals to 'vsubq_u8(w, vdupq_n_u8(0x40))' + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x40), w - 0x40); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x80), w - 0x80); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0xc0), w - 0xc0); - // mix columns + /* mix columns */ w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b); w ^= (uint8x16_t) vrev32q_u16((uint16x8_t) v); w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8)); - // add round key + /* add round key */ return vreinterpretq_m128i_u8(w) ^ RoundKey; -#else /* ARMv7-A NEON implementation */ +#else /* ARMv7-A implementation for a table-based AES */ #define SSE2NEON_AES_B2W(b0, b1, b2, b3) \ (((uint32_t) (b3) << 24) | ((uint32_t) (b2) << 16) | \ ((uint32_t) (b1) << 8) | (uint32_t) (b0)) +// muliplying 'x' by 2 in GF(2^8) #define SSE2NEON_AES_F2(x) ((x << 1) ^ (((x >> 7) & 1) * 0x011b /* WPOLY */)) +// muliplying 'x' by 3 in GF(2^8) #define SSE2NEON_AES_F3(x) (SSE2NEON_AES_F2(x) ^ x) #define SSE2NEON_AES_U0(p) \ SSE2NEON_AES_B2W(SSE2NEON_AES_F2(p), p, p, SSE2NEON_AES_F3(p)) @@ -9130,11 +8539,14 @@ FORCE_INLINE __m128i _mm_aesenc_si128(__m128i EncBlock, __m128i RoundKey) SSE2NEON_AES_B2W(p, SSE2NEON_AES_F3(p), SSE2NEON_AES_F2(p), p) #define SSE2NEON_AES_U3(p) \ SSE2NEON_AES_B2W(p, p, SSE2NEON_AES_F3(p), SSE2NEON_AES_F2(p)) + + // this generates a table containing every possible permutation of + // shift_rows() and sub_bytes() with mix_columns(). static const uint32_t ALIGN_STRUCT(16) aes_table[4][256] = { - SSE2NEON_AES_DATA(SSE2NEON_AES_U0), - SSE2NEON_AES_DATA(SSE2NEON_AES_U1), - SSE2NEON_AES_DATA(SSE2NEON_AES_U2), - SSE2NEON_AES_DATA(SSE2NEON_AES_U3), + SSE2NEON_AES_SBOX(SSE2NEON_AES_U0), + SSE2NEON_AES_SBOX(SSE2NEON_AES_U1), + SSE2NEON_AES_SBOX(SSE2NEON_AES_U2), + SSE2NEON_AES_SBOX(SSE2NEON_AES_U3), }; #undef SSE2NEON_AES_B2W #undef SSE2NEON_AES_F2 @@ -9144,11 +8556,15 @@ FORCE_INLINE __m128i _mm_aesenc_si128(__m128i EncBlock, __m128i RoundKey) #undef SSE2NEON_AES_U2 #undef SSE2NEON_AES_U3 - uint32_t x0 = _mm_cvtsi128_si32(EncBlock); - uint32_t x1 = _mm_cvtsi128_si32(_mm_shuffle_epi32(EncBlock, 0x55)); - uint32_t x2 = _mm_cvtsi128_si32(_mm_shuffle_epi32(EncBlock, 0xAA)); - uint32_t x3 = _mm_cvtsi128_si32(_mm_shuffle_epi32(EncBlock, 0xFF)); + uint32_t x0 = _mm_cvtsi128_si32(a); // get a[31:0] + uint32_t x1 = + _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0x55)); // get a[63:32] + uint32_t x2 = + _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0xAA)); // get a[95:64] + uint32_t x3 = + _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0xFF)); // get a[127:96] + // finish the modulo addition step in mix_columns() __m128i out = _mm_set_epi32( (aes_table[0][x3 & 0xff] ^ aes_table[1][(x0 >> 8) & 0xff] ^ aes_table[2][(x1 >> 16) & 0xff] ^ aes_table[3][x2 >> 24]), @@ -9163,54 +8579,254 @@ FORCE_INLINE __m128i _mm_aesenc_si128(__m128i EncBlock, __m128i RoundKey) #endif } -// Perform the last round of an AES encryption flow on data (state) in a using -// the round key in RoundKey, and store the result in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_aesenclast_si128 -FORCE_INLINE __m128i _mm_aesenclast_si128(__m128i a, __m128i RoundKey) +// Perform one round of an AES decryption flow on data (state) in a using the +// round key in RoundKey, and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdec_si128 +FORCE_INLINE __m128i _mm_aesdec_si128(__m128i a, __m128i RoundKey) { - /* FIXME: optimized for NEON */ - uint8_t v[4][4] = { - {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 0)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 5)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 10)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 15)]}, - {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 4)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 9)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 14)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 3)]}, - {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 8)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 13)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 2)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 7)]}, - {SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 12)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 1)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 6)], - SSE2NEON_sbox[vreinterpretq_nth_u8_m128i(a, 11)]}, +#if defined(__aarch64__) + static const uint8_t inv_shift_rows[] = { + 0x0, 0xd, 0xa, 0x7, 0x4, 0x1, 0xe, 0xb, + 0x8, 0x5, 0x2, 0xf, 0xc, 0x9, 0x6, 0x3, }; - for (int i = 0; i < 16; i++) - vreinterpretq_nth_u8_m128i(a, i) = - v[i / 4][i % 4] ^ vreinterpretq_nth_u8_m128i(RoundKey, i); - return a; + static const uint8_t ror32by8[] = { + 0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4, + 0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc, + }; + + uint8x16_t v; + uint8x16_t w = vreinterpretq_u8_m128i(a); + + // inverse shift rows + w = vqtbl1q_u8(w, vld1q_u8(inv_shift_rows)); + + // inverse sub bytes + v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_rsbox), w); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x40), w - 0x40); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x80), w - 0x80); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0xc0), w - 0xc0); + + // inverse mix columns + // muliplying 'v' by 4 in GF(2^8) + w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b); + w = (w << 1) ^ (uint8x16_t) (((int8x16_t) w >> 7) & 0x1b); + v ^= w; + v ^= (uint8x16_t) vrev32q_u16((uint16x8_t) w); + + w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & + 0x1b); // muliplying 'v' by 2 in GF(2^8) + w ^= (uint8x16_t) vrev32q_u16((uint16x8_t) v); + w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8)); + + // add round key + return vreinterpretq_m128i_u8(w) ^ RoundKey; + +#else /* ARMv7-A NEON implementation */ + /* FIXME: optimized for NEON */ + uint8_t i, e, f, g, h, v[4][4]; + uint8_t *_a = (uint8_t *) &a; + for (i = 0; i < 16; ++i) { + v[((i / 4) + (i % 4)) % 4][i % 4] = _sse2neon_rsbox[_a[i]]; + } + + // inverse mix columns + for (i = 0; i < 4; ++i) { + e = v[i][0]; + f = v[i][1]; + g = v[i][2]; + h = v[i][3]; + + v[i][0] = SSE2NEON_MULTIPLY(e, 0x0e) ^ SSE2NEON_MULTIPLY(f, 0x0b) ^ + SSE2NEON_MULTIPLY(g, 0x0d) ^ SSE2NEON_MULTIPLY(h, 0x09); + v[i][1] = SSE2NEON_MULTIPLY(e, 0x09) ^ SSE2NEON_MULTIPLY(f, 0x0e) ^ + SSE2NEON_MULTIPLY(g, 0x0b) ^ SSE2NEON_MULTIPLY(h, 0x0d); + v[i][2] = SSE2NEON_MULTIPLY(e, 0x0d) ^ SSE2NEON_MULTIPLY(f, 0x09) ^ + SSE2NEON_MULTIPLY(g, 0x0e) ^ SSE2NEON_MULTIPLY(h, 0x0b); + v[i][3] = SSE2NEON_MULTIPLY(e, 0x0b) ^ SSE2NEON_MULTIPLY(f, 0x0d) ^ + SSE2NEON_MULTIPLY(g, 0x09) ^ SSE2NEON_MULTIPLY(h, 0x0e); + } + + return vreinterpretq_m128i_u8(vld1q_u8((uint8_t *) v)) ^ RoundKey; +#endif } +// Perform the last round of an AES encryption flow on data (state) in a using +// the round key in RoundKey, and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesenclast_si128 +FORCE_INLINE __m128i _mm_aesenclast_si128(__m128i a, __m128i RoundKey) +{ +#if defined(__aarch64__) + static const uint8_t shift_rows[] = { + 0x0, 0x5, 0xa, 0xf, 0x4, 0x9, 0xe, 0x3, + 0x8, 0xd, 0x2, 0x7, 0xc, 0x1, 0x6, 0xb, + }; + + uint8x16_t v; + uint8x16_t w = vreinterpretq_u8_m128i(a); + + // shift rows + w = vqtbl1q_u8(w, vld1q_u8(shift_rows)); + + // sub bytes + v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_sbox), w); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x40), w - 0x40); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x80), w - 0x80); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0xc0), w - 0xc0); + + // add round key + return vreinterpretq_m128i_u8(v) ^ RoundKey; + +#else /* ARMv7-A implementation */ + uint8_t v[16] = { + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 0)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 5)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 10)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 15)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 4)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 9)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 14)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 3)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 8)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 13)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 2)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 7)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 12)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 1)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 6)], + _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 11)], + }; + + return vreinterpretq_m128i_u8(vld1q_u8(v)) ^ RoundKey; +#endif +} + +// Perform the last round of an AES decryption flow on data (state) in a using +// the round key in RoundKey, and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdeclast_si128 +FORCE_INLINE __m128i _mm_aesdeclast_si128(__m128i a, __m128i RoundKey) +{ +#if defined(__aarch64__) + static const uint8_t inv_shift_rows[] = { + 0x0, 0xd, 0xa, 0x7, 0x4, 0x1, 0xe, 0xb, + 0x8, 0x5, 0x2, 0xf, 0xc, 0x9, 0x6, 0x3, + }; + + uint8x16_t v; + uint8x16_t w = vreinterpretq_u8_m128i(a); + + // inverse shift rows + w = vqtbl1q_u8(w, vld1q_u8(inv_shift_rows)); + + // inverse sub bytes + v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_rsbox), w); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x40), w - 0x40); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x80), w - 0x80); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0xc0), w - 0xc0); + + // add round key + return vreinterpretq_m128i_u8(v) ^ RoundKey; + +#else /* ARMv7-A NEON implementation */ + /* FIXME: optimized for NEON */ + uint8_t v[4][4]; + uint8_t *_a = (uint8_t *) &a; + for (int i = 0; i < 16; ++i) { + v[((i / 4) + (i % 4)) % 4][i % 4] = _sse2neon_rsbox[_a[i]]; + } + + return vreinterpretq_m128i_u8(vld1q_u8((uint8_t *) v)) ^ RoundKey; +#endif +} + +// Perform the InvMixColumns transformation on a and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesimc_si128 +FORCE_INLINE __m128i _mm_aesimc_si128(__m128i a) +{ +#if defined(__aarch64__) + static const uint8_t ror32by8[] = { + 0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4, + 0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc, + }; + uint8x16_t v = vreinterpretq_u8_m128i(a); + uint8x16_t w; + + // multiplying 'v' by 4 in GF(2^8) + w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b); + w = (w << 1) ^ (uint8x16_t) (((int8x16_t) w >> 7) & 0x1b); + v ^= w; + v ^= (uint8x16_t) vrev32q_u16((uint16x8_t) w); + + // multiplying 'v' by 2 in GF(2^8) + w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b); + w ^= (uint8x16_t) vrev32q_u16((uint16x8_t) v); + w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8)); + return vreinterpretq_m128i_u8(w); + +#else /* ARMv7-A NEON implementation */ + uint8_t i, e, f, g, h, v[4][4]; + vst1q_u8((uint8_t *) v, vreinterpretq_u8_m128i(a)); + for (i = 0; i < 4; ++i) { + e = v[i][0]; + f = v[i][1]; + g = v[i][2]; + h = v[i][3]; + + v[i][0] = SSE2NEON_MULTIPLY(e, 0x0e) ^ SSE2NEON_MULTIPLY(f, 0x0b) ^ + SSE2NEON_MULTIPLY(g, 0x0d) ^ SSE2NEON_MULTIPLY(h, 0x09); + v[i][1] = SSE2NEON_MULTIPLY(e, 0x09) ^ SSE2NEON_MULTIPLY(f, 0x0e) ^ + SSE2NEON_MULTIPLY(g, 0x0b) ^ SSE2NEON_MULTIPLY(h, 0x0d); + v[i][2] = SSE2NEON_MULTIPLY(e, 0x0d) ^ SSE2NEON_MULTIPLY(f, 0x09) ^ + SSE2NEON_MULTIPLY(g, 0x0e) ^ SSE2NEON_MULTIPLY(h, 0x0b); + v[i][3] = SSE2NEON_MULTIPLY(e, 0x0b) ^ SSE2NEON_MULTIPLY(f, 0x0d) ^ + SSE2NEON_MULTIPLY(g, 0x09) ^ SSE2NEON_MULTIPLY(h, 0x0e); + } + + return vreinterpretq_m128i_u8(vld1q_u8((uint8_t *) v)); +#endif +} + +// Assist in expanding the AES cipher key by computing steps towards generating +// a round key for encryption cipher using data from a and an 8-bit round +// constant specified in imm8, and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aeskeygenassist_si128 +// // Emits the Advanced Encryption Standard (AES) instruction aeskeygenassist. // This instruction generates a round key for AES encryption. See // https://kazakov.life/2017/11/01/cryptocurrency-mining-on-ios-devices/ // for details. -// -// https://msdn.microsoft.com/en-us/library/cc714138(v=vs.120).aspx -FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i key, const int rcon) +FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i a, const int rcon) { - uint32_t X1 = _mm_cvtsi128_si32(_mm_shuffle_epi32(key, 0x55)); - uint32_t X3 = _mm_cvtsi128_si32(_mm_shuffle_epi32(key, 0xFF)); +#if defined(__aarch64__) + uint8x16_t _a = vreinterpretq_u8_m128i(a); + uint8x16_t v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_sbox), _a); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x40), _a - 0x40); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x80), _a - 0x80); + v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0xc0), _a - 0xc0); + + uint32x4_t v_u32 = vreinterpretq_u32_u8(v); + uint32x4_t ror_v = vorrq_u32(vshrq_n_u32(v_u32, 8), vshlq_n_u32(v_u32, 24)); + uint32x4_t ror_xor_v = veorq_u32(ror_v, vdupq_n_u32(rcon)); + + return vreinterpretq_m128i_u32(vtrn2q_u32(v_u32, ror_xor_v)); + +#else /* ARMv7-A NEON implementation */ + uint32_t X1 = _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0x55)); + uint32_t X3 = _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0xFF)); for (int i = 0; i < 4; ++i) { - ((uint8_t *) &X1)[i] = SSE2NEON_sbox[((uint8_t *) &X1)[i]]; - ((uint8_t *) &X3)[i] = SSE2NEON_sbox[((uint8_t *) &X3)[i]]; + ((uint8_t *) &X1)[i] = _sse2neon_sbox[((uint8_t *) &X1)[i]]; + ((uint8_t *) &X3)[i] = _sse2neon_sbox[((uint8_t *) &X3)[i]]; } return _mm_set_epi32(((X3 >> 8) | (X3 << 24)) ^ rcon, X3, ((X1 >> 8) | (X1 << 24)) ^ rcon, X1); +#endif } -#undef SSE2NEON_AES_DATA +#undef SSE2NEON_AES_SBOX +#undef SSE2NEON_AES_RSBOX + +#if defined(__aarch64__) +#undef SSE2NEON_XT +#undef SSE2NEON_MULTIPLY +#endif #else /* __ARM_FEATURE_CRYPTO */ // Implements equivalent of 'aesenc' by combining AESE (with an empty key) and @@ -9226,7 +8842,19 @@ FORCE_INLINE __m128i _mm_aesenc_si128(__m128i a, __m128i b) vreinterpretq_u8_m128i(b)); } -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_aesenclast_si128 +// Perform one round of an AES decryption flow on data (state) in a using the +// round key in RoundKey, and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdec_si128 +FORCE_INLINE __m128i _mm_aesdec_si128(__m128i a, __m128i RoundKey) +{ + return vreinterpretq_m128i_u8(veorq_u8( + vaesimcq_u8(vaesdq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0))), + vreinterpretq_u8_m128i(RoundKey))); +} + +// Perform the last round of an AES encryption flow on data (state) in a using +// the round key in RoundKey, and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesenclast_si128 FORCE_INLINE __m128i _mm_aesenclast_si128(__m128i a, __m128i RoundKey) { return _mm_xor_si128(vreinterpretq_m128i_u8(vaeseq_u8( @@ -9234,6 +8862,27 @@ FORCE_INLINE __m128i _mm_aesenclast_si128(__m128i a, __m128i RoundKey) RoundKey); } +// Perform the last round of an AES decryption flow on data (state) in a using +// the round key in RoundKey, and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdeclast_si128 +FORCE_INLINE __m128i _mm_aesdeclast_si128(__m128i a, __m128i RoundKey) +{ + return vreinterpretq_m128i_u8( + vaesdq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0)) ^ + vreinterpretq_u8_m128i(RoundKey)); +} + +// Perform the InvMixColumns transformation on a and store the result in dst. +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesimc_si128 +FORCE_INLINE __m128i _mm_aesimc_si128(__m128i a) +{ + return vreinterpretq_m128i_u8(vaesimcq_u8(vreinterpretq_u8_m128i(a))); +} + +// Assist in expanding the AES cipher key by computing steps towards generating +// a round key for encryption cipher using data from a and an 8-bit round +// constant specified in imm8, and store the result in dst." +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aeskeygenassist_si128 FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i a, const int rcon) { // AESE does ShiftRows and SubBytes on A @@ -9255,7 +8904,7 @@ FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i a, const int rcon) // Perform a carry-less multiplication of two 64-bit integers, selected from a // and b according to imm8, and store the results in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_clmulepi64_si128 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_clmulepi64_si128 FORCE_INLINE __m128i _mm_clmulepi64_si128(__m128i _a, __m128i _b, const int imm) { uint64x2_t a = vreinterpretq_u64_m128i(_a); @@ -9300,7 +8949,7 @@ FORCE_INLINE unsigned int _sse2neon_mm_get_denormals_zero_mode() // Count the number of bits set to 1 in unsigned 32-bit integer a, and // return that count in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_popcnt_u32 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_popcnt_u32 FORCE_INLINE int _mm_popcnt_u32(unsigned int a) { #if defined(__aarch64__) @@ -9327,7 +8976,7 @@ FORCE_INLINE int _mm_popcnt_u32(unsigned int a) // Count the number of bits set to 1 in unsigned 64-bit integer a, and // return that count in dst. -// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_popcnt_u64 +// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_popcnt_u64 FORCE_INLINE int64_t _mm_popcnt_u64(uint64_t a) { #if defined(__aarch64__) @@ -9383,7 +9032,6 @@ FORCE_INLINE void _sse2neon_mm_set_denormals_zero_mode(unsigned int flag) // Return the current 64-bit value of the processor's time-stamp counter. // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=rdtsc - FORCE_INLINE uint64_t _rdtsc(void) { #if defined(__aarch64__) From afe2aa4402d8b5eb3d6b277c3060388945354f16 Mon Sep 17 00:00:00 2001 From: xmrig Date: Mon, 23 Jan 2023 20:54:46 +0700 Subject: [PATCH 14/19] Update CHANGELOG.md --- CHANGELOG.md | 10 ++++++++++ 1 file changed, 10 insertions(+) diff --git a/CHANGELOG.md b/CHANGELOG.md index 8827e7e83..feaeb8547 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -1,3 +1,13 @@ +# v6.18.2 +- [#3144](https://github.com/xmrig/xmrig/pull/3144) Update to latest `sse2neon.h`. +- [#3161](https://github.com/xmrig/xmrig/pull/3161) MSVC build: enabled parallel compilation. +- [#3163](https://github.com/xmrig/xmrig/pull/3163) Improved Zen 3 MSR mod. +- [#3176](https://github.com/xmrig/xmrig/pull/3176) Update cmake required version to 3.1. +- [#3182](https://github.com/xmrig/xmrig/pull/3182) DragonflyBSD compilation fixes. +- [#3196](https://github.com/xmrig/xmrig/pull/3196) Show IP address for failed connections. +- [#3185](https://github.com/xmrig/xmrig/issues/3185) Fixed macOS DMI reader. +- [#3198](https://github.com/xmrig/xmrig/pull/3198) Fixed broken RandomX light mode mining. + # v6.18.1 - [#3129](https://github.com/xmrig/xmrig/pull/3129) Fix: protectRX flushed CPU cache only on MacOS/iOS. - [#3126](https://github.com/xmrig/xmrig/pull/3126) Don't reset when pool sends the same job blob. From 0ed4b35cd3390219fe448a1d0b8f3e42560d22d9 Mon Sep 17 00:00:00 2001 From: XMRig Date: Fri, 27 Jan 2023 01:07:58 +0700 Subject: [PATCH 15/19] Update hwloc for MSVC builds to 2.9.0. --- src/3rdparty/hwloc/NEWS | 44 ++++ src/3rdparty/hwloc/README | 2 +- src/3rdparty/hwloc/VERSION | 8 +- src/3rdparty/hwloc/include/hwloc.h | 29 ++- .../hwloc/include/hwloc/autogen/config.h | 8 +- src/3rdparty/hwloc/include/hwloc/bitmap.h | 14 +- src/3rdparty/hwloc/include/hwloc/deprecated.h | 4 +- src/3rdparty/hwloc/include/hwloc/distances.h | 9 +- src/3rdparty/hwloc/include/hwloc/helper.h | 5 +- src/3rdparty/hwloc/include/hwloc/intel-mic.h | 136 ---------- src/3rdparty/hwloc/include/hwloc/memattrs.h | 85 +++++- src/3rdparty/hwloc/include/hwloc/plugins.h | 9 +- src/3rdparty/hwloc/include/hwloc/rename.h | 11 +- src/3rdparty/hwloc/include/private/private.h | 4 +- src/3rdparty/hwloc/include/private/windows.h | 13 +- src/3rdparty/hwloc/src/components.c | 14 +- src/3rdparty/hwloc/src/cpukinds.c | 4 +- src/3rdparty/hwloc/src/diff.c | 4 +- src/3rdparty/hwloc/src/distances.c | 4 +- src/3rdparty/hwloc/src/memattrs.c | 243 +++++++++++++++++- src/3rdparty/hwloc/src/pci-common.c | 144 +++++++++-- src/3rdparty/hwloc/src/topology-synthetic.c | 28 +- src/3rdparty/hwloc/src/topology-windows.c | 4 +- src/3rdparty/hwloc/src/topology-x86.c | 4 +- src/3rdparty/hwloc/src/topology-xml.c | 46 +++- src/3rdparty/hwloc/src/topology.c | 45 +++- 26 files changed, 658 insertions(+), 263 deletions(-) delete mode 100644 src/3rdparty/hwloc/include/hwloc/intel-mic.h diff --git a/src/3rdparty/hwloc/NEWS b/src/3rdparty/hwloc/NEWS index 75557e5f4..4ddcbf440 100644 --- a/src/3rdparty/hwloc/NEWS +++ b/src/3rdparty/hwloc/NEWS @@ -17,6 +17,50 @@ bug fixes (and other actions) for each version of hwloc since version 0.9. +Version 2.9.0 +------------- +* Backends + + Expose the memory size of CXL memory devices (Type 3) on Linux. + + The LevelZero backend now reports the "XeLinkBandwidth" distance + matrix between L0 devices (and subdevices) when available. + + Add support for CUDA compute capability up to 9.0. +* Tools + + lstopo now switches to console mode when its output is redirected. + Graphical window mode may be forced back with --of window. + + hwloc-calc now accepts "numa" in -H, and I/O subtypes such as "gpu" + in -I and -N. + + +Version 2.8.0 +------------- +* API + + Add HWLOC_TOPOLOGY_FLAG_NO_DISTANCES, _NO_MEMATTRS and _NO_CPUKINDS + to reduce the overhead when unneeded. + + Add separate Read/Write Bandwidth/Latency memory attributes and + implement them on Linux. +* Backends + + NUMA nodes may now have a subtype such as DRAM, HBM, SPM, or NVM + on heterogeneous memory platforms on Linux. + - Add DAXType and DAXParent attributes on Linux to tell where a + DAX device or its corresponding NUMA node come from (SPM for + Specific-Purpose or NVM for Non-Volatile Memory). + + Detect heterogeneous caches in hybrid CPUs on MacOS X, + thanks to Paul Bone for the help. + + Max frequencies are not ignored in Linux cpukinds anymore (they were + ignored in hwloc 2.7.0), but they may be slightly adjusted to avoid + reporting hybrid CPUs because Intel Turbo Boost Max 3.0. + - See the documentation of environment variable HWLOC_CPUKINDS_MAXFREQ. + + Hardwire the PCI locality of HPE Cray EX235a nodes. +* Tools + + lstopo and other tools may now load Linux and x86 cpuid topology files + from a tarball. + + lstopo may now replace the P# and L# index prefixes with custom strings + thanks to --os-index-prefix and --logical-index-prefix options. +* Misc + + Add --disable-readme to avoid regenerating the top-level hwloc README + file from the documentation. + + Version 2.7.1 ------------- * Workaround crashes when virtual machines report incoherent x86 CPUID diff --git a/src/3rdparty/hwloc/README b/src/3rdparty/hwloc/README index 932d6d09d..43210e636 100644 --- a/src/3rdparty/hwloc/README +++ b/src/3rdparty/hwloc/README @@ -78,7 +78,7 @@ debug and report issues. Questions may be sent to the users or developers mailing lists (https:// www.open-mpi.org/community/lists/hwloc.php). -There is also a #hwloc IRC channel on Freenode (irc.freenode.net). +There is also a #hwloc IRC channel on Libera Chat (irc.libera.chat). diff --git a/src/3rdparty/hwloc/VERSION b/src/3rdparty/hwloc/VERSION index d17fb44e2..af3c48898 100644 --- a/src/3rdparty/hwloc/VERSION +++ b/src/3rdparty/hwloc/VERSION @@ -8,8 +8,8 @@ # Please update HWLOC_VERSION* in contrib/windows/hwloc_config.h too. major=2 -minor=7 -release=1 +minor=9 +release=0 # greek is used for alpha or beta release tags. If it is non-empty, # it will be appended to the version number. It does not have to be @@ -22,7 +22,7 @@ greek= # The date when this release was created -date="Mar 20, 2022" +date="Dec 14, 2022" # If snapshot=1, then use the value from snapshot_version as the # entire hwloc version (i.e., ignore major, minor, release, and @@ -41,7 +41,7 @@ snapshot_version=${major}.${minor}.${release}${greek}-git # 2. Version numbers are described in the Libtool current:revision:age # format. -libhwloc_so_version=20:3:5 +libhwloc_so_version=21:1:6 libnetloc_so_version=0:0:0 # Please also update the lines in contrib/windows/libhwloc.vcxproj diff --git a/src/3rdparty/hwloc/include/hwloc.h b/src/3rdparty/hwloc/include/hwloc.h index 35bbcc717..18ea1dfa1 100644 --- a/src/3rdparty/hwloc/include/hwloc.h +++ b/src/3rdparty/hwloc/include/hwloc.h @@ -1,6 +1,6 @@ /* * Copyright © 2009 CNRS - * Copyright © 2009-2021 Inria. All rights reserved. + * Copyright © 2009-2022 Inria. All rights reserved. * Copyright © 2009-2012 Université Bordeaux * Copyright © 2009-2020 Cisco Systems, Inc. All rights reserved. * See COPYING in top-level directory. @@ -93,7 +93,7 @@ extern "C" { * Two stable releases of the same series usually have the same ::HWLOC_API_VERSION * even if their HWLOC_VERSION are different. */ -#define HWLOC_API_VERSION 0x00020500 +#define HWLOC_API_VERSION 0x00020800 /** \brief Indicate at runtime which hwloc API version was used at build time. * @@ -971,7 +971,7 @@ HWLOC_DECLSPEC const char * hwloc_obj_type_string (hwloc_obj_type_t type) __hwlo * * If \p size is 0, \p string may safely be \c NULL. * - * \return the number of character that were actually written if not truncating, + * \return the number of characters that were actually written if not truncating, * or that would have been written (not including the ending \\0). */ HWLOC_DECLSPEC int hwloc_obj_type_snprintf(char * __hwloc_restrict string, size_t size, @@ -986,7 +986,7 @@ HWLOC_DECLSPEC int hwloc_obj_type_snprintf(char * __hwloc_restrict string, size_ * * If \p size is 0, \p string may safely be \c NULL. * - * \return the number of character that were actually written if not truncating, + * \return the number of characters that were actually written if not truncating, * or that would have been written (not including the ending \\0). */ HWLOC_DECLSPEC int hwloc_obj_attr_snprintf(char * __hwloc_restrict string, size_t size, @@ -2060,7 +2060,26 @@ enum hwloc_topology_flags_e { * not change to due thread binding changes on Windows * (see ::HWLOC_TOPOLOGY_FLAG_RESTRICT_TO_CPUBINDING). */ - HWLOC_TOPOLOGY_FLAG_DONT_CHANGE_BINDING = (1UL<<6) + HWLOC_TOPOLOGY_FLAG_DONT_CHANGE_BINDING = (1UL<<6), + + /** \brief Ignore distances. + * + * Ignore distance information from the operating systems (and from XML) + * and hence do not use distances for grouping. + */ + HWLOC_TOPOLOGY_FLAG_NO_DISTANCES = (1UL<<7), + + /** \brief Ignore memory attributes. + * + * Ignore memory attribues from the operating systems (and from XML). + */ + HWLOC_TOPOLOGY_FLAG_NO_MEMATTRS = (1UL<<8), + + /** \brief Ignore CPU Kinds. + * + * Ignore CPU kind information from the operating systems (and from XML). + */ + HWLOC_TOPOLOGY_FLAG_NO_CPUKINDS = (1UL<<9) }; /** \brief Set OR'ed flags to non-yet-loaded topology. diff --git a/src/3rdparty/hwloc/include/hwloc/autogen/config.h b/src/3rdparty/hwloc/include/hwloc/autogen/config.h index 562a48115..fcaf70ca8 100644 --- a/src/3rdparty/hwloc/include/hwloc/autogen/config.h +++ b/src/3rdparty/hwloc/include/hwloc/autogen/config.h @@ -1,6 +1,6 @@ /* * Copyright © 2009 CNRS - * Copyright © 2009-2021 Inria. All rights reserved. + * Copyright © 2009-2022 Inria. All rights reserved. * Copyright © 2009-2012 Université Bordeaux * Copyright © 2009-2011 Cisco Systems, Inc. All rights reserved. * See COPYING in top-level directory. @@ -11,10 +11,10 @@ #ifndef HWLOC_CONFIG_H #define HWLOC_CONFIG_H -#define HWLOC_VERSION "2.7.1" +#define HWLOC_VERSION "2.9.0" #define HWLOC_VERSION_MAJOR 2 -#define HWLOC_VERSION_MINOR 7 -#define HWLOC_VERSION_RELEASE 1 +#define HWLOC_VERSION_MINOR 9 +#define HWLOC_VERSION_RELEASE 0 #define HWLOC_VERSION_GREEK "" #define __hwloc_restrict diff --git a/src/3rdparty/hwloc/include/hwloc/bitmap.h b/src/3rdparty/hwloc/include/hwloc/bitmap.h index 8d9bb9c88..cd118b387 100644 --- a/src/3rdparty/hwloc/include/hwloc/bitmap.h +++ b/src/3rdparty/hwloc/include/hwloc/bitmap.h @@ -1,6 +1,6 @@ /* * Copyright © 2009 CNRS - * Copyright © 2009-2020 Inria. All rights reserved. + * Copyright © 2009-2022 Inria. All rights reserved. * Copyright © 2009-2012 Université Bordeaux * Copyright © 2009-2011 Cisco Systems, Inc. All rights reserved. * See COPYING in top-level directory. @@ -112,7 +112,7 @@ HWLOC_DECLSPEC int hwloc_bitmap_copy(hwloc_bitmap_t dst, hwloc_const_bitmap_t sr * * If \p buflen is 0, \p buf may safely be \c NULL. * - * \return the number of character that were actually written if not truncating, + * \return the number of characters that were actually written if not truncating, * or that would have been written (not including the ending \\0). */ HWLOC_DECLSPEC int hwloc_bitmap_snprintf(char * __hwloc_restrict buf, size_t buflen, hwloc_const_bitmap_t bitmap); @@ -137,7 +137,7 @@ HWLOC_DECLSPEC int hwloc_bitmap_sscanf(hwloc_bitmap_t bitmap, const char * __hwl * * If \p buflen is 0, \p buf may safely be \c NULL. * - * \return the number of character that were actually written if not truncating, + * \return the number of characters that were actually written if not truncating, * or that would have been written (not including the ending \\0). */ HWLOC_DECLSPEC int hwloc_bitmap_list_snprintf(char * __hwloc_restrict buf, size_t buflen, hwloc_const_bitmap_t bitmap); @@ -161,7 +161,7 @@ HWLOC_DECLSPEC int hwloc_bitmap_list_sscanf(hwloc_bitmap_t bitmap, const char * * * If \p buflen is 0, \p buf may safely be \c NULL. * - * \return the number of character that were actually written if not truncating, + * \return the number of characters that were actually written if not truncating, * or that would have been written (not including the ending \\0). */ HWLOC_DECLSPEC int hwloc_bitmap_taskset_snprintf(char * __hwloc_restrict buf, size_t buflen, hwloc_const_bitmap_t bitmap); @@ -357,11 +357,11 @@ HWLOC_DECLSPEC int hwloc_bitmap_last_unset(hwloc_const_bitmap_t bitmap) __hwloc_ * The loop must start with hwloc_bitmap_foreach_begin() and end * with hwloc_bitmap_foreach_end() followed by a terminating ';'. * - * \p index is the loop variable; it should be an unsigned int. The - * first iteration will set \p index to the lowest index in the bitmap. + * \p id is the loop variable; it should be an unsigned int. The + * first iteration will set \p id to the lowest index in the bitmap. * Successive iterations will iterate through, in order, all remaining * indexes set in the bitmap. To be specific: each iteration will return a - * value for \p index such that hwloc_bitmap_isset(bitmap, index) is true. + * value for \p id such that hwloc_bitmap_isset(bitmap, id) is true. * * The assert prevents the loop from being infinite if the bitmap is infinitely set. * diff --git a/src/3rdparty/hwloc/include/hwloc/deprecated.h b/src/3rdparty/hwloc/include/hwloc/deprecated.h index f2419dd48..d563b4379 100644 --- a/src/3rdparty/hwloc/include/hwloc/deprecated.h +++ b/src/3rdparty/hwloc/include/hwloc/deprecated.h @@ -1,6 +1,6 @@ /* * Copyright © 2009 CNRS - * Copyright © 2009-2021 Inria. All rights reserved. + * Copyright © 2009-2022 Inria. All rights reserved. * Copyright © 2009-2012 Université Bordeaux * Copyright © 2009-2010 Cisco Systems, Inc. All rights reserved. * See COPYING in top-level directory. @@ -55,7 +55,7 @@ hwloc_topology_insert_misc_object_by_parent(hwloc_topology_t topology, hwloc_obj * * If \p size is 0, \p string may safely be \c NULL. * - * \return the number of character that were actually written if not truncating, + * \return the number of characters that were actually written if not truncating, * or that would have been written (not including the ending \\0). */ static __hwloc_inline int diff --git a/src/3rdparty/hwloc/include/hwloc/distances.h b/src/3rdparty/hwloc/include/hwloc/distances.h index 44cd7ea1f..effa8663e 100644 --- a/src/3rdparty/hwloc/include/hwloc/distances.h +++ b/src/3rdparty/hwloc/include/hwloc/distances.h @@ -1,5 +1,5 @@ /* - * Copyright © 2010-2021 Inria. All rights reserved. + * Copyright © 2010-2022 Inria. All rights reserved. * See COPYING in top-level directory. */ @@ -35,8 +35,8 @@ extern "C" { * from a core in another node. * The corresponding kind is ::HWLOC_DISTANCES_KIND_FROM_OS | ::HWLOC_DISTANCES_KIND_FROM_USER. * The name of this distances structure is "NUMALatency". - * Others distance structures include and "XGMIBandwidth", "XGMIHops" - * and "NVLinkBandwidth". + * Others distance structures include and "XGMIBandwidth", "XGMIHops", + * "XeLinkBandwidth" and "NVLinkBandwidth". * * The matrix may also contain bandwidths between random sets of objects, * possibly provided by the user, as specified in the \p kind attribute. @@ -160,7 +160,8 @@ hwloc_distances_get_by_type(hwloc_topology_t topology, hwloc_obj_type_t type, * Usually only one distances structure may match a given name. * * The name of the most common structure is "NUMALatency". - * Others include "XGMIBandwidth", "XGMIHops" and "NVLinkBandwidth". + * Others include "XGMIBandwidth", "XGMIHops", "XeLinkBandwidth", + * and "NVLinkBandwidth". */ HWLOC_DECLSPEC int hwloc_distances_get_by_name(hwloc_topology_t topology, const char *name, diff --git a/src/3rdparty/hwloc/include/hwloc/helper.h b/src/3rdparty/hwloc/include/hwloc/helper.h index f918d8163..44994211f 100644 --- a/src/3rdparty/hwloc/include/hwloc/helper.h +++ b/src/3rdparty/hwloc/include/hwloc/helper.h @@ -1,6 +1,6 @@ /* * Copyright © 2009 CNRS - * Copyright © 2009-2021 Inria. All rights reserved. + * Copyright © 2009-2022 Inria. All rights reserved. * Copyright © 2009-2012 Université Bordeaux * Copyright © 2009-2010 Cisco Systems, Inc. All rights reserved. * See COPYING in top-level directory. @@ -886,9 +886,6 @@ enum hwloc_distrib_flags_e { * \p flags should be 0 or a OR'ed set of ::hwloc_distrib_flags_e. * * \note This function requires the \p roots objects to have a CPU set. - * - * \note This function replaces the now deprecated hwloc_distribute() - * and hwloc_distributev() functions. */ static __hwloc_inline int hwloc_distrib(hwloc_topology_t topology, diff --git a/src/3rdparty/hwloc/include/hwloc/intel-mic.h b/src/3rdparty/hwloc/include/hwloc/intel-mic.h deleted file mode 100644 index c504cd7e0..000000000 --- a/src/3rdparty/hwloc/include/hwloc/intel-mic.h +++ /dev/null @@ -1,136 +0,0 @@ -/* - * Copyright © 2013-2016 Inria. All rights reserved. - * See COPYING in top-level directory. - */ - -/** \file - * \brief Macros to help interaction between hwloc and Intel Xeon Phi (MIC). - * - * Applications that use both hwloc and Intel Xeon Phi (MIC) may want to - * include this file so as to get topology information for MIC devices. - */ - -#ifndef HWLOC_INTEL_MIC_H -#define HWLOC_INTEL_MIC_H - -#include "hwloc.h" -#include "hwloc/autogen/config.h" -#include "hwloc/helper.h" - -#ifdef HWLOC_LINUX_SYS -#include "hwloc/linux.h" - -#include -#include -#endif - -#include -#include - - -#ifdef __cplusplus -extern "C" { -#endif - - -/** \defgroup hwlocality_intel_mic Interoperability with Intel Xeon Phi (MIC) - * - * This interface offers ways to retrieve topology information about - * Intel Xeon Phi (MIC) devices. - * - * @{ - */ - -/** \brief Get the CPU set of logical processors that are physically - * close to MIC device whose index is \p idx. - * - * Return the CPU set describing the locality of the MIC device whose index is \p idx. - * - * Topology \p topology and device index \p idx must match the local machine. - * I/O devices detection is not needed in the topology. - * - * The function only returns the locality of the device. - * If more information about the device is needed, OS objects should - * be used instead, see hwloc_intel_mic_get_device_osdev_by_index(). - * - * This function is currently only implemented in a meaningful way for - * Linux; other systems will simply get a full cpuset. - */ -static __hwloc_inline int -hwloc_intel_mic_get_device_cpuset(hwloc_topology_t topology __hwloc_attribute_unused, - int idx __hwloc_attribute_unused, - hwloc_cpuset_t set) -{ -#ifdef HWLOC_LINUX_SYS - /* If we're on Linux, use the sysfs mechanism to get the local cpus */ -#define HWLOC_INTEL_MIC_DEVICE_SYSFS_PATH_MAX 128 - char path[HWLOC_INTEL_MIC_DEVICE_SYSFS_PATH_MAX]; - DIR *sysdir = NULL; - struct dirent *dirent; - unsigned pcibus, pcidev, pcifunc; - - if (!hwloc_topology_is_thissystem(topology)) { - errno = EINVAL; - return -1; - } - - sprintf(path, "/sys/class/mic/mic%d", idx); - sysdir = opendir(path); - if (!sysdir) - return -1; - - while ((dirent = readdir(sysdir)) != NULL) { - if (sscanf(dirent->d_name, "pci_%02x:%02x.%02x", &pcibus, &pcidev, &pcifunc) == 3) { - sprintf(path, "/sys/class/mic/mic%d/pci_%02x:%02x.%02x/local_cpus", idx, pcibus, pcidev, pcifunc); - if (hwloc_linux_read_path_as_cpumask(path, set) < 0 - || hwloc_bitmap_iszero(set)) - hwloc_bitmap_copy(set, hwloc_topology_get_complete_cpuset(topology)); - break; - } - } - - closedir(sysdir); -#else - /* Non-Linux systems simply get a full cpuset */ - hwloc_bitmap_copy(set, hwloc_topology_get_complete_cpuset(topology)); -#endif - return 0; -} - -/** \brief Get the hwloc OS device object corresponding to the - * MIC device for the given index. - * - * Return the OS device object describing the MIC device whose index is \p idx. - * Return NULL if there is none. - * - * The topology \p topology does not necessarily have to match the current - * machine. For instance the topology may be an XML import of a remote host. - * I/O devices detection must be enabled in the topology. - * - * \note The corresponding PCI device object can be obtained by looking - * at the OS device parent object. - */ -static __hwloc_inline hwloc_obj_t -hwloc_intel_mic_get_device_osdev_by_index(hwloc_topology_t topology, - unsigned idx) -{ - hwloc_obj_t osdev = NULL; - while ((osdev = hwloc_get_next_osdev(topology, osdev)) != NULL) { - if (HWLOC_OBJ_OSDEV_COPROC == osdev->attr->osdev.type - && osdev->name - && !strncmp("mic", osdev->name, 3) - && atoi(osdev->name + 3) == (int) idx) - return osdev; - } - return NULL; -} - -/** @} */ - - -#ifdef __cplusplus -} /* extern "C" */ -#endif - - -#endif /* HWLOC_INTEL_MIC_H */ diff --git a/src/3rdparty/hwloc/include/hwloc/memattrs.h b/src/3rdparty/hwloc/include/hwloc/memattrs.h index 02ffa8326..acf4da537 100644 --- a/src/3rdparty/hwloc/include/hwloc/memattrs.h +++ b/src/3rdparty/hwloc/include/hwloc/memattrs.h @@ -54,6 +54,8 @@ extern "C" { * Attribute values for these nodes, if any, may then be obtained with * hwloc_memattr_get_value() and manually compared with the desired criteria. * + * \sa An example is available in doc/examples/memory-attributes.c in the source tree. + * * \note The API also supports specific objects as initiator, * but it is currently not used internally by hwloc. * Users may for instance use it to provide custom performance @@ -65,19 +67,19 @@ extern "C" { /** \brief Memory node attributes. */ enum hwloc_memattr_id_e { - /** \brief "Capacity". - * The capacity is returned in bytes - * (local_memory attribute in objects). + /** \brief + * The \"Capacity\" is returned in bytes (local_memory attribute in objects). * * Best capacity nodes are nodes with higher capacity. * * No initiator is involved when looking at this attribute. * The corresponding attribute flags are ::HWLOC_MEMATTR_FLAG_HIGHER_FIRST. + * \hideinitializer */ HWLOC_MEMATTR_ID_CAPACITY = 0, - /** \brief "Locality". - * The locality is returned as the number of PUs in that locality + /** \brief + * The \"Locality\" is returned as the number of PUs in that locality * (e.g. the weight of its cpuset). * * Best locality nodes are nodes with smaller locality @@ -87,26 +89,87 @@ enum hwloc_memattr_id_e { * * No initiator is involved when looking at this attribute. * The corresponding attribute flags are ::HWLOC_MEMATTR_FLAG_HIGHER_FIRST. + * \hideinitializer */ HWLOC_MEMATTR_ID_LOCALITY = 1, - /** \brief "Bandwidth". - * The bandwidth is returned in MiB/s, as seen from the given initiator location. + /** \brief + * The \"Bandwidth\" is returned in MiB/s, as seen from the given initiator location. + * * Best bandwidth nodes are nodes with higher bandwidth. + * * The corresponding attribute flags are ::HWLOC_MEMATTR_FLAG_HIGHER_FIRST * and ::HWLOC_MEMATTR_FLAG_NEED_INITIATOR. + * + * This is the average bandwidth for read and write accesses. If the platform + * provides individual read and write bandwidths but no explicit average value, + * hwloc computes and returns the average. + * \hideinitializer */ HWLOC_MEMATTR_ID_BANDWIDTH = 2, - /** \brief "Latency". - * The latency is returned as nanoseconds, as seen from the given initiator location. + /** \brief + * The \"ReadBandwidth\" is returned in MiB/s, as seen from the given initiator location. + * + * Best bandwidth nodes are nodes with higher bandwidth. + * + * The corresponding attribute flags are ::HWLOC_MEMATTR_FLAG_HIGHER_FIRST + * and ::HWLOC_MEMATTR_FLAG_NEED_INITIATOR. + * \hideinitializer + */ + HWLOC_MEMATTR_ID_READ_BANDWIDTH = 4, + + /** \brief + * The \"WriteBandwidth\" is returned in MiB/s, as seen from the given initiator location. + * + * Best bandwidth nodes are nodes with higher bandwidth. + * + * The corresponding attribute flags are ::HWLOC_MEMATTR_FLAG_HIGHER_FIRST + * and ::HWLOC_MEMATTR_FLAG_NEED_INITIATOR. + * \hideinitializer + */ + HWLOC_MEMATTR_ID_WRITE_BANDWIDTH = 5, + + /** \brief + * The \"Latency\" is returned as nanoseconds, as seen from the given initiator location. + * * Best latency nodes are nodes with smaller latency. + * * The corresponding attribute flags are ::HWLOC_MEMATTR_FLAG_LOWER_FIRST * and ::HWLOC_MEMATTR_FLAG_NEED_INITIATOR. + * + * This is the average latency for read and write accesses. If the platform + * provides individual read and write latencies but no explicit average value, + * hwloc computes and returns the average. + * \hideinitializer */ - HWLOC_MEMATTR_ID_LATENCY = 3 + HWLOC_MEMATTR_ID_LATENCY = 3, - /* TODO read vs write, persistence? */ + /** \brief + * The \"ReadLatency\" is returned as nanoseconds, as seen from the given initiator location. + * + * Best latency nodes are nodes with smaller latency. + * + * The corresponding attribute flags are ::HWLOC_MEMATTR_FLAG_LOWER_FIRST + * and ::HWLOC_MEMATTR_FLAG_NEED_INITIATOR. + * \hideinitializer + */ + HWLOC_MEMATTR_ID_READ_LATENCY = 6, + + /** \brief + * The \"WriteLatency\" is returned as nanoseconds, as seen from the given initiator location. + * + * Best latency nodes are nodes with smaller latency. + * + * The corresponding attribute flags are ::HWLOC_MEMATTR_FLAG_LOWER_FIRST + * and ::HWLOC_MEMATTR_FLAG_NEED_INITIATOR. + * \hideinitializer + */ + HWLOC_MEMATTR_ID_WRITE_LATENCY = 7, + + /* TODO persistence? */ + + HWLOC_MEMATTR_ID_MAX /**< \private Sentinel value */ }; /** \brief A memory attribute identifier. diff --git a/src/3rdparty/hwloc/include/hwloc/plugins.h b/src/3rdparty/hwloc/include/hwloc/plugins.h index ed4b833d8..d7abb02c5 100644 --- a/src/3rdparty/hwloc/include/hwloc/plugins.h +++ b/src/3rdparty/hwloc/include/hwloc/plugins.h @@ -1,5 +1,5 @@ /* - * Copyright © 2013-2021 Inria. All rights reserved. + * Copyright © 2013-2022 Inria. All rights reserved. * Copyright © 2016 Cisco Systems, Inc. All rights reserved. * See COPYING in top-level directory. */ @@ -338,9 +338,15 @@ struct hwloc_component { * This function return 1 by default (show critical only), * 0 in lstopo (show all), * or anything set in HWLOC_HIDE_ERRORS in the environment. + * + * Use macros HWLOC_SHOW_CRITICAL_ERRORS() and HWLOC_SHOW_ALL_ERRORS() + * for clarity. */ HWLOC_DECLSPEC int hwloc_hide_errors(void); +#define HWLOC_SHOW_CRITICAL_ERRORS() (hwloc_hide_errors() < 2) +#define HWLOC_SHOW_ALL_ERRORS() (hwloc_hide_errors() == 0) + /** \brief Add an object to the topology. * * Insert new object \p obj in the topology starting under existing object \p root @@ -501,6 +507,7 @@ hwloc_filter_check_pcidev_subtype_important(unsigned classid) || baseclass == 0x0b /* PCI_BASE_CLASS_PROCESSOR */ || classid == 0x0c04 /* PCI_CLASS_SERIAL_FIBER */ || classid == 0x0c06 /* PCI_CLASS_SERIAL_INFINIBAND */ + || classid == 0x0502 /* PCI_CLASS_MEMORY_CXL */ || baseclass == 0x06 /* PCI_BASE_CLASS_BRIDGE with non-PCI downstream. the core will drop the useless ones later */ || baseclass == 0x12 /* Processing Accelerators */); } diff --git a/src/3rdparty/hwloc/include/hwloc/rename.h b/src/3rdparty/hwloc/include/hwloc/rename.h index ae439b51c..279ecd842 100644 --- a/src/3rdparty/hwloc/include/hwloc/rename.h +++ b/src/3rdparty/hwloc/include/hwloc/rename.h @@ -1,6 +1,6 @@ /* * Copyright © 2009-2011 Cisco Systems, Inc. All rights reserved. - * Copyright © 2010-2021 Inria. All rights reserved. + * Copyright © 2010-2022 Inria. All rights reserved. * See COPYING in top-level directory. */ @@ -123,6 +123,9 @@ extern "C" { #define HWLOC_TOPOLOGY_FLAG_RESTRICT_TO_CPUBINDING HWLOC_NAME_CAPS(TOPOLOGY_FLAG_RESTRICT_TO_CPUBINDING) #define HWLOC_TOPOLOGY_FLAG_RESTRICT_TO_MEMBINDING HWLOC_NAME_CAPS(TOPOLOGY_FLAG_RESTRICT_TO_MEMBINDING) #define HWLOC_TOPOLOGY_FLAG_DONT_CHANGE_BINDING HWLOC_NAME_CAPS(TOPOLOGY_FLAG_DONT_CHANGE_BINDING) +#define HWLOC_TOPOLOGY_FLAG_NO_DISTANCES HWLOC_NAME_CAPS(TOPOLOGY_FLAG_NO_DISTANCES) +#define HWLOC_TOPOLOGY_FLAG_NO_MEMATTRS HWLOC_NAME_CAPS(TOPOLOGY_FLAG_NO_MEMATTRS) +#define HWLOC_TOPOLOGY_FLAG_NO_CPUKINDS HWLOC_NAME_CAPS(TOPOLOGY_FLAG_NO_CPUKINDS) #define hwloc_topology_set_pid HWLOC_NAME(topology_set_pid) #define hwloc_topology_set_synthetic HWLOC_NAME(topology_set_synthetic) @@ -381,6 +384,11 @@ extern "C" { #define HWLOC_MEMATTR_ID_LOCALITY HWLOC_NAME_CAPS(MEMATTR_ID_LOCALITY) #define HWLOC_MEMATTR_ID_BANDWIDTH HWLOC_NAME_CAPS(MEMATTR_ID_BANDWIDTH) #define HWLOC_MEMATTR_ID_LATENCY HWLOC_NAME_CAPS(MEMATTR_ID_LATENCY) +#define HWLOC_MEMATTR_ID_READ_BANDWIDTH HWLOC_NAME_CAPS(MEMATTR_ID_READ_BANDWIDTH) +#define HWLOC_MEMATTR_ID_WRITE_BANDWIDTH HWLOC_NAME_CAPS(MEMATTR_ID_WRITE_BANDWIDTH) +#define HWLOC_MEMATTR_ID_READ_LATENCY HWLOC_NAME_CAPS(MEMATTR_ID_READ_LATENCY) +#define HWLOC_MEMATTR_ID_WRITE_LATENCY HWLOC_NAME_CAPS(MEMATTR_ID_WRITE_LATENCY) +#define HWLOC_MEMATTR_ID_MAX HWLOC_NAME_CAPS(MEMATTR_ID_MAX) #define hwloc_memattr_id_t HWLOC_NAME(memattr_id_t) #define hwloc_memattr_get_by_name HWLOC_NAME(memattr_get_by_name) @@ -862,6 +870,7 @@ extern "C" { #define hwloc_internal_memattrs_destroy HWLOC_NAME(internal_memattrs_destroy) #define hwloc_internal_memattrs_need_refresh HWLOC_NAME(internal_memattrs_need_refresh) #define hwloc_internal_memattrs_refresh HWLOC_NAME(internal_memattrs_refresh) +#define hwloc_internal_memattrs_guess_memory_tiers HWLOC_NAME(internal_memattrs_guess_memory_tiers) #define hwloc_internal_cpukind_s HWLOC_NAME(internal_cpukind_s) #define hwloc_internal_cpukinds_init HWLOC_NAME(internal_cpukinds_init) diff --git a/src/3rdparty/hwloc/include/private/private.h b/src/3rdparty/hwloc/include/private/private.h index 131b07965..c61acb71f 100644 --- a/src/3rdparty/hwloc/include/private/private.h +++ b/src/3rdparty/hwloc/include/private/private.h @@ -1,6 +1,6 @@ /* * Copyright © 2009 CNRS - * Copyright © 2009-2021 Inria. All rights reserved. + * Copyright © 2009-2022 Inria. All rights reserved. * Copyright © 2009-2012, 2020 Université Bordeaux * Copyright © 2009-2011 Cisco Systems, Inc. All rights reserved. * @@ -259,6 +259,7 @@ struct hwloc_topology { unsigned bus_first, bus_last; hwloc_bitmap_t cpuset; } * pci_forced_locality; + hwloc_uint64_t pci_locality_quirks; /* component blacklisting */ unsigned nr_blacklisted_components; @@ -419,6 +420,7 @@ extern void hwloc_internal_memattrs_need_refresh(hwloc_topology_t topology); extern void hwloc_internal_memattrs_refresh(hwloc_topology_t topology); extern int hwloc_internal_memattrs_dup(hwloc_topology_t new, hwloc_topology_t old); extern int hwloc_internal_memattr_set_value(hwloc_topology_t topology, hwloc_memattr_id_t id, hwloc_obj_type_t target_type, hwloc_uint64_t target_gp_index, unsigned target_os_index, struct hwloc_internal_location_s *initiator, hwloc_uint64_t value); +extern int hwloc_internal_memattrs_guess_memory_tiers(hwloc_topology_t topology); extern void hwloc_internal_cpukinds_init(hwloc_topology_t topology); extern int hwloc_internal_cpukinds_rank(hwloc_topology_t topology); diff --git a/src/3rdparty/hwloc/include/private/windows.h b/src/3rdparty/hwloc/include/private/windows.h index 0a061b094..cb3e0d62c 100644 --- a/src/3rdparty/hwloc/include/private/windows.h +++ b/src/3rdparty/hwloc/include/private/windows.h @@ -1,6 +1,6 @@ /* * Copyright © 2009 Université Bordeaux - * Copyright © 2020 Inria. All rights reserved. + * Copyright © 2020-2022 Inria. All rights reserved. * * See COPYING in top-level directory. */ @@ -8,13 +8,22 @@ #ifndef HWLOC_PRIVATE_WINDOWS_H #define HWLOC_PRIVATE_WINDOWS_H +#ifndef _ANONYMOUS_UNION #ifdef __GNUC__ #define _ANONYMOUS_UNION __extension__ -#define _ANONYMOUS_STRUCT __extension__ #else #define _ANONYMOUS_UNION +#endif /* __GNUC__ */ +#endif /* _ANONYMOUS_UNION */ + +#ifndef _ANONYMOUS_STRUCT +#ifdef __GNUC__ +#define _ANONYMOUS_STRUCT __extension__ +#else #define _ANONYMOUS_STRUCT #endif /* __GNUC__ */ +#endif /* _ANONYMOUS_STRUCT */ + #define DUMMYUNIONNAME #define DUMMYSTRUCTNAME diff --git a/src/3rdparty/hwloc/src/components.c b/src/3rdparty/hwloc/src/components.c index 81e3116b3..b0381c83a 100644 --- a/src/3rdparty/hwloc/src/components.c +++ b/src/3rdparty/hwloc/src/components.c @@ -1,5 +1,5 @@ /* - * Copyright © 2009-2021 Inria. All rights reserved. + * Copyright © 2009-2022 Inria. All rights reserved. * Copyright © 2012 Université Bordeaux * See COPYING in top-level directory. */ @@ -386,7 +386,7 @@ hwloc_disc_component_register(struct hwloc_disc_component *component, |HWLOC_DISC_PHASE_MISC |HWLOC_DISC_PHASE_ANNOTATE |HWLOC_DISC_PHASE_TWEAK))) { - if (hwloc_hide_errors() < 2) + if (HWLOC_SHOW_CRITICAL_ERRORS()) fprintf(stderr, "hwloc: Cannot register discovery component `%s' with invalid phases 0x%x\n", component->name, component->phases); return -1; @@ -476,7 +476,7 @@ hwloc_components_init(void) /* hwloc_static_components is created by configure in static-components.h */ for(i=0; NULL != hwloc_static_components[i]; i++) { if (hwloc_static_components[i]->flags) { - if (hwloc_hide_errors() < 2) + if (HWLOC_SHOW_CRITICAL_ERRORS()) fprintf(stderr, "hwloc: Ignoring static component with invalid flags %lx\n", hwloc_static_components[i]->flags); continue; @@ -505,7 +505,7 @@ hwloc_components_init(void) #ifdef HWLOC_HAVE_PLUGINS for(desc = hwloc_plugins; NULL != desc; desc = desc->next) { if (desc->component->flags) { - if (hwloc_hide_errors() < 2) + if (HWLOC_SHOW_CRITICAL_ERRORS()) fprintf(stderr, "hwloc: Ignoring plugin `%s' component with invalid flags %lx\n", desc->name, desc->component->flags); continue; @@ -738,7 +738,7 @@ hwloc_disc_component_try_enable(struct hwloc_topology *topology, backend = comp->instantiate(topology, comp, topology->backend_excluded_phases | blacklisted_phases, NULL, NULL, NULL); if (!backend) { - if (hwloc_components_verbose || (envvar_forced && hwloc_hide_errors() < 2)) + if (hwloc_components_verbose || (envvar_forced && HWLOC_SHOW_CRITICAL_ERRORS())) fprintf(stderr, "hwloc: Failed to instantiate discovery component `%s'\n", comp->name); return -1; } @@ -835,7 +835,7 @@ hwloc_disc_components_enable_others(struct hwloc_topology *topology) if (comp->phases & ~blacklisted_phases) hwloc_disc_component_try_enable(topology, comp, 1 /* envvar forced */, blacklisted_phases); } else { - if (hwloc_hide_errors() < 2) + if (HWLOC_SHOW_CRITICAL_ERRORS()) fprintf(stderr, "hwloc: Cannot find discovery component `%s'\n", name); } @@ -967,7 +967,7 @@ hwloc_backend_enable(struct hwloc_backend *backend) /* check backend flags */ if (backend->flags) { - if (hwloc_hide_errors() < 2) + if (HWLOC_SHOW_CRITICAL_ERRORS()) fprintf(stderr, "hwloc: Cannot enable discovery component `%s' phases 0x%x with unknown flags %lx\n", backend->component->name, backend->component->phases, backend->flags); return -1; diff --git a/src/3rdparty/hwloc/src/cpukinds.c b/src/3rdparty/hwloc/src/cpukinds.c index fc05f17ee..6c7c087fb 100644 --- a/src/3rdparty/hwloc/src/cpukinds.c +++ b/src/3rdparty/hwloc/src/cpukinds.c @@ -1,5 +1,5 @@ /* - * Copyright © 2020-2021 Inria. All rights reserved. + * Copyright © 2020-2022 Inria. All rights reserved. * See COPYING in top-level directory. */ @@ -504,7 +504,7 @@ hwloc_internal_cpukinds_rank(struct hwloc_topology *topology) heuristics = HWLOC_CPUKINDS_RANKING_FORCED_EFFICIENCY; else if (!strcmp(env, "no_forced_efficiency")) heuristics = HWLOC_CPUKINDS_RANKING_NO_FORCED_EFFICIENCY; - else if (hwloc_hide_errors() < 2) + else if (HWLOC_SHOW_CRITICAL_ERRORS()) fprintf(stderr, "hwloc: Failed to recognize HWLOC_CPUKINDS_RANKING value %s\n", env); } diff --git a/src/3rdparty/hwloc/src/diff.c b/src/3rdparty/hwloc/src/diff.c index 7449a8582..81e12c558 100644 --- a/src/3rdparty/hwloc/src/diff.c +++ b/src/3rdparty/hwloc/src/diff.c @@ -1,5 +1,5 @@ /* - * Copyright © 2013-2020 Inria. All rights reserved. + * Copyright © 2013-2022 Inria. All rights reserved. * See COPYING in top-level directory. */ @@ -218,7 +218,7 @@ hwloc_diff_trees(hwloc_topology_t topo1, hwloc_obj_t obj1, struct hwloc_info_s *info1 = &obj1->infos[i], *info2 = &obj2->infos[i]; if (strcmp(info1->name, info2->name)) goto out_too_complex; - if (strcmp(obj1->infos[i].value, obj2->infos[i].value)) { + if (strcmp(info1->value, info2->value)) { err = hwloc_append_diff_obj_attr_string(obj1, HWLOC_TOPOLOGY_DIFF_OBJ_ATTR_INFO, info1->name, diff --git a/src/3rdparty/hwloc/src/distances.c b/src/3rdparty/hwloc/src/distances.c index 252c253e5..bfc7d61d5 100644 --- a/src/3rdparty/hwloc/src/distances.c +++ b/src/3rdparty/hwloc/src/distances.c @@ -1,5 +1,5 @@ /* - * Copyright © 2010-2021 Inria. All rights reserved. + * Copyright © 2010-2022 Inria. All rights reserved. * Copyright © 2011-2012 Université Bordeaux * Copyright © 2011 Cisco Systems, Inc. All rights reserved. * See COPYING in top-level directory. @@ -860,7 +860,7 @@ struct hwloc_distances_container_s { struct hwloc_distances_s distances; }; -#define HWLOC_DISTANCES_CONTAINER_OFFSET ((char*)&((struct hwloc_distances_container_s*)NULL)->distances - (char*)NULL) +#define HWLOC_DISTANCES_CONTAINER_OFFSET ((uintptr_t)(&((struct hwloc_distances_container_s*)NULL)->distances) - (uintptr_t)NULL) #define HWLOC_DISTANCES_CONTAINER(_d) (struct hwloc_distances_container_s *) ( ((char*)_d) - HWLOC_DISTANCES_CONTAINER_OFFSET ) static struct hwloc_internal_distances_s * diff --git a/src/3rdparty/hwloc/src/memattrs.c b/src/3rdparty/hwloc/src/memattrs.c index 92efe5757..b27ed3ec5 100644 --- a/src/3rdparty/hwloc/src/memattrs.c +++ b/src/3rdparty/hwloc/src/memattrs.c @@ -1,11 +1,12 @@ /* - * Copyright © 2020-2021 Inria. All rights reserved. + * Copyright © 2020-2022 Inria. All rights reserved. * See COPYING in top-level directory. */ #include "private/autogen/config.h" #include "hwloc.h" #include "private/private.h" +#include "private/debug.h" /***************************** @@ -49,36 +50,51 @@ hwloc__setup_memattr(struct hwloc_internal_memattr_s *imattr, void hwloc_internal_memattrs_prepare(struct hwloc_topology *topology) { -#define NR_DEFAULT_MEMATTRS 4 - topology->memattrs = malloc(NR_DEFAULT_MEMATTRS * sizeof(*topology->memattrs)); + topology->memattrs = malloc(HWLOC_MEMATTR_ID_MAX * sizeof(*topology->memattrs)); if (!topology->memattrs) return; - assert(HWLOC_MEMATTR_ID_CAPACITY < NR_DEFAULT_MEMATTRS); hwloc__setup_memattr(&topology->memattrs[HWLOC_MEMATTR_ID_CAPACITY], (char *) "Capacity", HWLOC_MEMATTR_FLAG_HIGHER_FIRST, HWLOC_IMATTR_FLAG_STATIC_NAME|HWLOC_IMATTR_FLAG_CONVENIENCE); - assert(HWLOC_MEMATTR_ID_LOCALITY < NR_DEFAULT_MEMATTRS); hwloc__setup_memattr(&topology->memattrs[HWLOC_MEMATTR_ID_LOCALITY], (char *) "Locality", HWLOC_MEMATTR_FLAG_LOWER_FIRST, HWLOC_IMATTR_FLAG_STATIC_NAME|HWLOC_IMATTR_FLAG_CONVENIENCE); - assert(HWLOC_MEMATTR_ID_BANDWIDTH < NR_DEFAULT_MEMATTRS); hwloc__setup_memattr(&topology->memattrs[HWLOC_MEMATTR_ID_BANDWIDTH], (char *) "Bandwidth", HWLOC_MEMATTR_FLAG_HIGHER_FIRST|HWLOC_MEMATTR_FLAG_NEED_INITIATOR, HWLOC_IMATTR_FLAG_STATIC_NAME); - assert(HWLOC_MEMATTR_ID_LATENCY < NR_DEFAULT_MEMATTRS); + hwloc__setup_memattr(&topology->memattrs[HWLOC_MEMATTR_ID_READ_BANDWIDTH], + (char *) "ReadBandwidth", + HWLOC_MEMATTR_FLAG_HIGHER_FIRST|HWLOC_MEMATTR_FLAG_NEED_INITIATOR, + HWLOC_IMATTR_FLAG_STATIC_NAME); + + hwloc__setup_memattr(&topology->memattrs[HWLOC_MEMATTR_ID_WRITE_BANDWIDTH], + (char *) "WriteBandwidth", + HWLOC_MEMATTR_FLAG_HIGHER_FIRST|HWLOC_MEMATTR_FLAG_NEED_INITIATOR, + HWLOC_IMATTR_FLAG_STATIC_NAME); + hwloc__setup_memattr(&topology->memattrs[HWLOC_MEMATTR_ID_LATENCY], (char *) "Latency", HWLOC_MEMATTR_FLAG_LOWER_FIRST|HWLOC_MEMATTR_FLAG_NEED_INITIATOR, HWLOC_IMATTR_FLAG_STATIC_NAME); - topology->nr_memattrs = NR_DEFAULT_MEMATTRS; + hwloc__setup_memattr(&topology->memattrs[HWLOC_MEMATTR_ID_READ_LATENCY], + (char *) "ReadLatency", + HWLOC_MEMATTR_FLAG_LOWER_FIRST|HWLOC_MEMATTR_FLAG_NEED_INITIATOR, + HWLOC_IMATTR_FLAG_STATIC_NAME); + + hwloc__setup_memattr(&topology->memattrs[HWLOC_MEMATTR_ID_WRITE_LATENCY], + (char *) "WriteLatency", + HWLOC_MEMATTR_FLAG_LOWER_FIRST|HWLOC_MEMATTR_FLAG_NEED_INITIATOR, + HWLOC_IMATTR_FLAG_STATIC_NAME); + + topology->nr_memattrs = HWLOC_MEMATTR_ID_MAX; } static void @@ -1197,3 +1213,214 @@ hwloc_get_local_numanode_objs(hwloc_topology_t topology, *nrp = i; return 0; } + + +/************************************** + * Using memattrs to identify HBM/DRAM + */ + +struct hwloc_memory_tier_s { + hwloc_obj_t node; + uint64_t local_bw; + enum hwloc_memory_tier_type_e { + /* warning the order is important for guess_memory_tiers() after qsort() */ + HWLOC_MEMORY_TIER_UNKNOWN, + HWLOC_MEMORY_TIER_DRAM, + HWLOC_MEMORY_TIER_HBM, + HWLOC_MEMORY_TIER_SPM, /* Specific-Purpose Memory is usually HBM, we'll use BW to confirm */ + HWLOC_MEMORY_TIER_NVM, + HWLOC_MEMORY_TIER_GPU, + } type; +}; + +static int compare_tiers(const void *_a, const void *_b) +{ + const struct hwloc_memory_tier_s *a = _a, *b = _b; + /* sort by type of tier first */ + if (a->type != b->type) + return a->type - b->type; + /* then by bandwidth */ + if (a->local_bw > b->local_bw) + return -1; + else if (a->local_bw < b->local_bw) + return 1; + return 0; +} + +int +hwloc_internal_memattrs_guess_memory_tiers(hwloc_topology_t topology) +{ + struct hwloc_internal_memattr_s *imattr; + struct hwloc_memory_tier_s *tiers; + unsigned i, j, n; + const char *env; + int spm_is_hbm = -1; /* -1 will guess from BW, 0 no, 1 forced */ + int mark_dram = 1; + unsigned first_spm, first_nvm; + hwloc_uint64_t max_unknown_bw, min_spm_bw; + + env = getenv("HWLOC_MEMTIERS_GUESS"); + if (env) { + if (!strcmp(env, "none")) { + return 0; + } else if (!strcmp(env, "default")) { + /* nothing */ + } else if (!strcmp(env, "spm_is_hbm")) { + hwloc_debug("Assuming SPM-tier is HBM, ignore bandwidth\n"); + spm_is_hbm = 1; + } else if (HWLOC_SHOW_CRITICAL_ERRORS()) { + fprintf(stderr, "hwloc: Failed to recognize HWLOC_MEMTIERS_GUESS value %s\n", env); + } + } + + imattr = &topology->memattrs[HWLOC_MEMATTR_ID_BANDWIDTH]; + + if (!(imattr->iflags & HWLOC_IMATTR_FLAG_CACHE_VALID)) + hwloc__imattr_refresh(topology, imattr); + + n = hwloc_get_nbobjs_by_depth(topology, HWLOC_TYPE_DEPTH_NUMANODE); + assert(n); + + tiers = malloc(n * sizeof(*tiers)); + if (!tiers) + return -1; + + for(i=0; isubtype && !strcmp(node->subtype, "GPUMemory")) + tiers[i].type = HWLOC_MEMORY_TIER_GPU; + + if (spm_is_hbm == -1) { + for(j=0; jnr_targets; j++) + if (imattr->targets[j].obj == node) { + imtg = &imattr->targets[j]; + break; + } + if (imtg && !hwloc_bitmap_iszero(node->cpuset)) { + iloc.type = HWLOC_LOCATION_TYPE_CPUSET; + iloc.location.cpuset = node->cpuset; + imi = hwloc__memattr_target_get_initiator(imtg, &iloc, 0); + if (imi) + tiers[i].local_bw = imi->value; + } + } + } + + /* sort tiers */ + qsort(tiers, n, sizeof(*tiers), compare_tiers); + hwloc_debug("Sorting memory tiers...\n"); + for(i=0; ilogical_index, tiers[i].node->os_index, + tiers[i].type, (unsigned long long) tiers[i].local_bw); + + /* now we have UNKNOWN tiers (sorted by BW), then SPM tiers (sorted by BW), then NVM, then GPU */ + + /* iterate over UNKNOWN tiers, and find their BW */ + for(i=0; i HWLOC_MEMORY_TIER_UNKNOWN) + break; + } + first_spm = i; + /* get max BW from first */ + if (first_spm > 0) + max_unknown_bw = tiers[0].local_bw; + else + max_unknown_bw = 0; + + /* there are no DRAM or HBM tiers yet */ + + /* iterate over SPM tiers, and find their BW */ + for(i=first_spm; i HWLOC_MEMORY_TIER_SPM) + break; + } + first_nvm = i; + /* get min BW from last */ + if (first_nvm > first_spm) + min_spm_bw = tiers[first_nvm-1].local_bw; + else + min_spm_bw = 0; + + /* FIXME: if there's more than 10% between some sets of nodes inside a tier, split it? */ + /* FIXME: if there are cpuset-intersecting nodes in same tier, abort? */ + + if (spm_is_hbm == -1) { + /* if we have BW for all SPM and UNKNOWN + * and all SPM BW are 2x superior to all UNKNOWN BW + */ + hwloc_debug("UNKNOWN-memory-tier max bandwidth %llu\n", (unsigned long long) max_unknown_bw); + hwloc_debug("SPM-memory-tier min bandwidth %llu\n", (unsigned long long) min_spm_bw); + if (max_unknown_bw > 0 && min_spm_bw > 0 && max_unknown_bw*2 < min_spm_bw) { + hwloc_debug("assuming SPM means HBM and !SPM means DRAM since bandwidths are very different\n"); + spm_is_hbm = 1; + } else { + hwloc_debug("cannot assume SPM means HBM\n"); + spm_is_hbm = 0; + } + } + + if (spm_is_hbm) { + for(i=0; isubtype) /* don't overwrite the existing subtype */ + continue; + switch (tiers[i].type) { + case HWLOC_MEMORY_TIER_DRAM: + if (mark_dram) + type = "DRAM"; + break; + case HWLOC_MEMORY_TIER_HBM: + type = "HBM"; + break; + case HWLOC_MEMORY_TIER_SPM: + type = "SPM"; + break; + case HWLOC_MEMORY_TIER_NVM: + type = "NVM"; + break; + default: + /* GPU memory is already marked with subtype="GPUMemory", + * UNKNOWN doesn't deserve any subtype + */ + break; + } + if (type) { + hwloc_debug("Marking node L#%u P#%u as %s\n", tiers[i].node->logical_index, tiers[i].node->os_index, type); + tiers[i].node->subtype = strdup(type); + } + } + + free(tiers); + return 0; +} diff --git a/src/3rdparty/hwloc/src/pci-common.c b/src/3rdparty/hwloc/src/pci-common.c index 977475ebd..b5a4b5444 100644 --- a/src/3rdparty/hwloc/src/pci-common.c +++ b/src/3rdparty/hwloc/src/pci-common.c @@ -1,5 +1,5 @@ /* - * Copyright © 2009-2021 Inria. All rights reserved. + * Copyright © 2009-2022 Inria. All rights reserved. * See COPYING in top-level directory. */ @@ -119,6 +119,13 @@ hwloc_pci_discovery_init(struct hwloc_topology *topology) topology->pci_forced_locality = NULL; topology->first_pci_locality = topology->last_pci_locality = NULL; + +#define HWLOC_PCI_LOCALITY_QUIRK_CRAY_EX235A (1ULL<<0) +#define HWLOC_PCI_LOCALITY_QUIRK_FAKE (1ULL<<62) + topology->pci_locality_quirks = (uint64_t) -1; + /* -1 is unknown, 0 is disabled, >0 is bitmask of enabled quirks. + * bit 63 should remain unused so that -1 is unaccessible as a bitmask. + */ } void @@ -146,7 +153,7 @@ hwloc_pci_discovery_prepare(struct hwloc_topology *topology) } free(buffer); } else { - if (hwloc_hide_errors() < 2) + if (HWLOC_SHOW_CRITICAL_ERRORS()) fprintf(stderr, "hwloc/pci: Ignoring HWLOC_PCI_LOCALITY file `%s' too large (%lu bytes)\n", env, (unsigned long) st.st_size); } @@ -333,7 +340,7 @@ hwloc_pci_add_object(struct hwloc_obj *parent, struct hwloc_obj **parent_io_firs } case HWLOC_PCI_BUSID_EQUAL: { static int reported = 0; - if (!reported && hwloc_hide_errors() < 2) { + if (!reported && HWLOC_SHOW_CRITICAL_ERRORS()) { fprintf(stderr, "*********************************************************\n"); fprintf(stderr, "* hwloc %s received invalid PCI information.\n", HWLOC_VERSION); fprintf(stderr, "*\n"); @@ -442,13 +449,90 @@ hwloc_pcidisc_add_hostbridges(struct hwloc_topology *topology, return new; } -static struct hwloc_obj * -hwloc_pci_fixup_busid_parent(struct hwloc_topology *topology __hwloc_attribute_unused, - struct hwloc_pcidev_attr_s *busid __hwloc_attribute_unused, - struct hwloc_obj *parent __hwloc_attribute_unused) +/* return 1 if a quirk was applied */ +static int +hwloc__pci_find_busid_parent_quirk(struct hwloc_topology *topology, + struct hwloc_pcidev_attr_s *busid, + hwloc_cpuset_t cpuset) { - /* no quirk for now */ - return parent; + if (topology->pci_locality_quirks == (uint64_t)-1 /* unknown */) { + const char *dmi_board_name, *env; + + /* first invokation, detect which quirks are needed */ + topology->pci_locality_quirks = 0; /* no quirk yet */ + + dmi_board_name = hwloc_obj_get_info_by_name(hwloc_get_root_obj(topology), "DMIBoardName"); + if (dmi_board_name && !strcmp(dmi_board_name, "HPE CRAY EX235A")) { + hwloc_debug("enabling for PCI locality quirk for HPE Cray EX235A\n"); + topology->pci_locality_quirks |= HWLOC_PCI_LOCALITY_QUIRK_CRAY_EX235A; + } + + env = getenv("HWLOC_PCI_LOCALITY_QUIRK_FAKE"); + if (env && atoi(env)) { + hwloc_debug("enabling for PCI locality fake quirk (attaching everything to last PU)\n"); + topology->pci_locality_quirks |= HWLOC_PCI_LOCALITY_QUIRK_FAKE; + } + } + + if (topology->pci_locality_quirks & HWLOC_PCI_LOCALITY_QUIRK_FAKE) { + unsigned last = hwloc_bitmap_last(hwloc_topology_get_topology_cpuset(topology)); + hwloc_bitmap_set(cpuset, last); + return 1; + } + + if (topology->pci_locality_quirks & HWLOC_PCI_LOCALITY_QUIRK_CRAY_EX235A) { + /* AMD Trento has xGMI ports connected to individual CCDs (8 cores + L3) + * instead of NUMA nodes (pairs of CCDs within Trento) as is usual in AMD EPYC CPUs. + * This is not described by the ACPI tables, hence we need to manually hardwire + * the xGMI locality for the (currently single) server that currently uses that CPU. + * It's not clear if ACPI tables can/will ever be fixed (would require one initiator + * proximity domain per CCD), or if Linux can/will work around the issue. + */ + if (busid->domain == 0) { + if (busid->bus >= 0xd0 && busid->bus <= 0xd1) { + hwloc_bitmap_set_range(cpuset, 0, 7); + hwloc_bitmap_set_range(cpuset, 64, 71); + return 1; + } + if (busid->bus >= 0xd4 && busid->bus <= 0xd6) { + hwloc_bitmap_set_range(cpuset, 8, 15); + hwloc_bitmap_set_range(cpuset, 72, 79); + return 1; + } + if (busid->bus >= 0xc8 && busid->bus <= 0xc9) { + hwloc_bitmap_set_range(cpuset, 16, 23); + hwloc_bitmap_set_range(cpuset, 80, 87); + return 1; + } + if (busid->bus >= 0xcc && busid->bus <= 0xce) { + hwloc_bitmap_set_range(cpuset, 24, 31); + hwloc_bitmap_set_range(cpuset, 88, 95); + return 1; + } + if (busid->bus >= 0xd8 && busid->bus <= 0xd9) { + hwloc_bitmap_set_range(cpuset, 32, 39); + hwloc_bitmap_set_range(cpuset, 96, 103); + return 1; + } + if (busid->bus >= 0xdc && busid->bus <= 0xde) { + hwloc_bitmap_set_range(cpuset, 40, 47); + hwloc_bitmap_set_range(cpuset, 104, 111); + return 1; + } + if (busid->bus >= 0xc0 && busid->bus <= 0xc1) { + hwloc_bitmap_set_range(cpuset, 48, 55); + hwloc_bitmap_set_range(cpuset, 112, 119); + return 1; + } + if (busid->bus >= 0xc4 && busid->bus <= 0xc6) { + hwloc_bitmap_set_range(cpuset, 56, 63); + hwloc_bitmap_set_range(cpuset, 120, 127); + return 1; + } + } + } + + return 0; } static struct hwloc_obj * @@ -457,7 +541,7 @@ hwloc__pci_find_busid_parent(struct hwloc_topology *topology, struct hwloc_pcide hwloc_bitmap_t cpuset = hwloc_bitmap_alloc(); hwloc_obj_t parent; int forced = 0; - int noquirks = 0; + int noquirks = 0, got_quirked = 0; unsigned i; int err; @@ -490,7 +574,7 @@ hwloc__pci_find_busid_parent(struct hwloc_topology *topology, struct hwloc_pcide if (env) { static int reported = 0; if (!topology->pci_has_forced_locality && !reported) { - if (!hwloc_hide_errors()) + if (HWLOC_SHOW_ALL_ERRORS()) fprintf(stderr, "hwloc/pci: Environment variable %s is deprecated, please use HWLOC_PCI_LOCALITY instead.\n", env); reported = 1; } @@ -505,7 +589,13 @@ hwloc__pci_find_busid_parent(struct hwloc_topology *topology, struct hwloc_pcide } } - if (!forced) { + if (!forced && !noquirks && topology->pci_locality_quirks /* either quirks are unknown yet, or some are enabled */) { + err = hwloc__pci_find_busid_parent_quirk(topology, busid, cpuset); + if (err > 0) + got_quirked = 1; + } + + if (!forced && !got_quirked) { /* get the cpuset by asking the backend that provides the relevant hook, if any. */ struct hwloc_backend *backend = topology->get_pci_busid_cpuset_backend; if (backend) @@ -520,11 +610,7 @@ hwloc__pci_find_busid_parent(struct hwloc_topology *topology, struct hwloc_pcide hwloc_debug_bitmap(" will attach PCI bus to cpuset %s\n", cpuset); parent = hwloc_find_insert_io_parent_by_complete_cpuset(topology, cpuset); - if (parent) { - if (!noquirks) - /* We found a valid parent. Check that the OS didn't report invalid locality */ - parent = hwloc_pci_fixup_busid_parent(topology, busid, parent); - } else { + if (!parent) { /* Fallback to root */ parent = hwloc_get_root_obj(topology); } @@ -805,19 +891,28 @@ hwloc_pcidisc_find_linkspeed(const unsigned char *config, memcpy(&linksta, &config[offset + HWLOC_PCI_EXP_LNKSTA], 4); speed = linksta & HWLOC_PCI_EXP_LNKSTA_SPEED; /* PCIe generation */ width = (linksta & HWLOC_PCI_EXP_LNKSTA_WIDTH) >> 4; /* how many lanes */ - /* PCIe Gen1 = 2.5GT/s signal-rate per lane with 8/10 encoding = 0.25GB/s data-rate per lane - * PCIe Gen2 = 5 GT/s signal-rate per lane with 8/10 encoding = 0.5 GB/s data-rate per lane - * PCIe Gen3 = 8 GT/s signal-rate per lane with 128/130 encoding = 1 GB/s data-rate per lane - * PCIe Gen4 = 16 GT/s signal-rate per lane with 128/130 encoding = 2 GB/s data-rate per lane - * PCIe Gen5 = 32 GT/s signal-rate per lane with 128/130 encoding = 4 GB/s data-rate per lane - * PCIe Gen6 = 64 GT/s signal-rate per lane with 128/130 encoding = 8 GB/s data-rate per lane + /* + * These are single-direction bandwidths only. + * + * Gen1 used NRZ with 8/10 encoding. + * PCIe Gen1 = 2.5GT/s signal-rate per lane x 8/10 = 0.25GB/s data-rate per lane + * PCIe Gen2 = 5 GT/s signal-rate per lane x 8/10 = 0.5 GB/s data-rate per lane + * Gen3 switched to NRZ with 128/130 encoding. + * PCIe Gen3 = 8 GT/s signal-rate per lane x 128/130 = 1 GB/s data-rate per lane + * PCIe Gen4 = 16 GT/s signal-rate per lane x 128/130 = 2 GB/s data-rate per lane + * PCIe Gen5 = 32 GT/s signal-rate per lane x 128/130 = 4 GB/s data-rate per lane + * Gen6 switched to PAM with with 242/256 FLIT (242B payload protected by 8B CRC + 6B FEC). + * PCIe Gen6 = 64 GT/s signal-rate per lane x 242/256 = 8 GB/s data-rate per lane + * PCIe Gen7 = 128GT/s signal-rate per lane x 242/256 = 16 GB/s data-rate per lane */ /* lanespeed in Gbit/s */ if (speed <= 2) lanespeed = 2.5f * speed * 0.8f; + else if (speed <= 5) + lanespeed = 8.0f * (1<<(speed-3)) * 128/130; else - lanespeed = 8.0f * (1<<(speed-3)) * 128/130; /* assume Gen7 will be 128 GT/s and so on */ + lanespeed = 8.0f * (1<<(speed-3)) * 242/256; /* assume Gen8 will be 256 GT/s and so on */ /* linkspeed in GB/s */ *linkspeed = lanespeed * width / 8; @@ -944,6 +1039,7 @@ hwloc_pci_class_string(unsigned short class_id) switch (class_id) { case 0x0500: return "RAM"; case 0x0501: return "Flash"; + case 0x0502: return "CXLMem"; } return "Memory"; case 0x06: diff --git a/src/3rdparty/hwloc/src/topology-synthetic.c b/src/3rdparty/hwloc/src/topology-synthetic.c index 5dd4baaa2..7b3e515d2 100644 --- a/src/3rdparty/hwloc/src/topology-synthetic.c +++ b/src/3rdparty/hwloc/src/topology-synthetic.c @@ -1,6 +1,6 @@ /* * Copyright © 2009 CNRS - * Copyright © 2009-2020 Inria. All rights reserved. + * Copyright © 2009-2022 Inria. All rights reserved. * Copyright © 2009-2010 Université Bordeaux * Copyright © 2009-2011 Cisco Systems, Inc. All rights reserved. * See COPYING in top-level directory. @@ -323,17 +323,29 @@ hwloc_synthetic_parse_memory_attr(const char *attr, const char **endp) hwloc_uint64_t size; size = strtoull(attr, (char **) &endptr, 0); if (!hwloc_strncasecmp(endptr, "TB", 2)) { + size *= 1000ULL*1000ULL*1000ULL*1000ULL; + endptr += 2; + } else if (!hwloc_strncasecmp(endptr, "TiB", 3)) { size <<= 40; - endptr += 2; + endptr += 3; } else if (!hwloc_strncasecmp(endptr, "GB", 2)) { + size *= 1000ULL*1000ULL*1000ULL; + endptr += 2; + } else if (!hwloc_strncasecmp(endptr, "GiB", 3)) { size <<= 30; - endptr += 2; + endptr += 3; } else if (!hwloc_strncasecmp(endptr, "MB", 2)) { + size *= 1000ULL*1000ULL; + endptr += 2; + } else if (!hwloc_strncasecmp(endptr, "MiB", 3)) { size <<= 20; - endptr += 2; + endptr += 3; } else if (!hwloc_strncasecmp(endptr, "kB", 2)) { - size <<= 10; + size *= 1000ULL; endptr += 2; + } else if (!hwloc_strncasecmp(endptr, "kiB", 3)) { + size <<= 10; + endptr += 3; } *endp = endptr; return size; @@ -802,15 +814,15 @@ hwloc_backend_synthetic_init(struct hwloc_synthetic_backend_data_s *data, } else if (hwloc__obj_type_is_cache(type)) { if (!curlevel->attr.memorysize) { if (1 == curlevel->attr.depth) - /* 32Kb in L1 */ + /* 32KiB in L1 */ curlevel->attr.memorysize = 32*1024; else - /* *4 at each level, starting from 1MB for L2, unified */ + /* *4 at each level, starting from 1MiB for L2, unified */ curlevel->attr.memorysize = 256ULL*1024 << (2*curlevel->attr.depth); } } else if (type == HWLOC_OBJ_NUMANODE && !curlevel->attr.memorysize) { - /* 1GB in memory nodes. */ + /* 1GiB in memory nodes. */ curlevel->attr.memorysize = 1024*1024*1024; } diff --git a/src/3rdparty/hwloc/src/topology-windows.c b/src/3rdparty/hwloc/src/topology-windows.c index df93c5e9c..20b617a9b 100644 --- a/src/3rdparty/hwloc/src/topology-windows.c +++ b/src/3rdparty/hwloc/src/topology-windows.c @@ -1,6 +1,6 @@ /* * Copyright © 2009 CNRS - * Copyright © 2009-2021 Inria. All rights reserved. + * Copyright © 2009-2022 Inria. All rights reserved. * Copyright © 2009-2012, 2020 Université Bordeaux * Copyright © 2011 Cisco Systems, Inc. All rights reserved. * See COPYING in top-level directory. @@ -366,7 +366,7 @@ hwloc_win_get_processor_groups(void) hwloc_debug("found %lu windows processor groups\n", nr_processor_groups); if (nr_processor_groups > 1 && SIZEOF_VOID_P == 4) { - if (!hwloc_hide_errors()) + if (HWLOC_SHOW_ALL_ERRORS()) fprintf(stderr, "hwloc: multiple processor groups found on 32bits Windows, topology may be invalid/incomplete.\n"); } diff --git a/src/3rdparty/hwloc/src/topology-x86.c b/src/3rdparty/hwloc/src/topology-x86.c index b9bc7fb09..a1558f077 100644 --- a/src/3rdparty/hwloc/src/topology-x86.c +++ b/src/3rdparty/hwloc/src/topology-x86.c @@ -1,5 +1,5 @@ /* - * Copyright © 2010-2021 Inria. All rights reserved. + * Copyright © 2010-2022 Inria. All rights reserved. * Copyright © 2010-2013 Université Bordeaux * Copyright © 2010-2011 Cisco Systems, Inc. All rights reserved. * See COPYING in top-level directory. @@ -1349,7 +1349,7 @@ look_procs(struct hwloc_backend *backend, struct procinfo *infos, unsigned long if (data->apicid_unique) { summarize(backend, infos, flags); - if (has_hybrid(features)) { + if (has_hybrid(features) && !(topology->flags & HWLOC_TOPOLOGY_FLAG_NO_CPUKINDS)) { /* use hybrid info for cpukinds */ hwloc_bitmap_t atomset = hwloc_bitmap_alloc(); hwloc_bitmap_t coreset = hwloc_bitmap_alloc(); diff --git a/src/3rdparty/hwloc/src/topology-xml.c b/src/3rdparty/hwloc/src/topology-xml.c index 2075d6fa6..b1f20dbf2 100644 --- a/src/3rdparty/hwloc/src/topology-xml.c +++ b/src/3rdparty/hwloc/src/topology-xml.c @@ -1,6 +1,6 @@ /* * Copyright © 2009 CNRS - * Copyright © 2009-2021 Inria. All rights reserved. + * Copyright © 2009-2022 Inria. All rights reserved. * Copyright © 2009-2011, 2020 Université Bordeaux * Copyright © 2009-2018 Cisco Systems, Inc. All rights reserved. * See COPYING in top-level directory. @@ -123,6 +123,17 @@ hwloc__xml_import_object_attr(struct hwloc_topology *topology, fprintf(stderr, "%s: unexpected zero gp_index, topology may be invalid\n", state->global->msgprefix); if (obj->gp_index >= topology->next_gp_index) topology->next_gp_index = obj->gp_index + 1; + } else if (!strcmp(name, "id")) { /* forward compat */ + if (!strncmp(value, "obj", 3)) { + obj->gp_index = strtoull(value+3, NULL, 10); + if (!obj->gp_index && hwloc__xml_verbose()) + fprintf(stderr, "%s: unexpected zero id, topology may be invalid\n", state->global->msgprefix); + if (obj->gp_index >= topology->next_gp_index) + topology->next_gp_index = obj->gp_index + 1; + } else { + if (hwloc__xml_verbose()) + fprintf(stderr, "%s: unexpected id `%s' not-starting with `obj', ignoring\n", state->global->msgprefix, value); + } } else if (!strcmp(name, "cpuset")) { if (!obj->cpuset) obj->cpuset = hwloc_bitmap_alloc(); @@ -263,7 +274,7 @@ hwloc__xml_import_object_attr(struct hwloc_topology *topology, #ifndef HWLOC_HAVE_32BITS_PCI_DOMAIN } else if (domain > 0xffff) { static int warned = 0; - if (!warned && hwloc_hide_errors() < 2) + if (!warned && HWLOC_SHOW_ALL_ERRORS()) fprintf(stderr, "hwloc/xml: Ignoring PCI device with non-16bit domain.\nPass --enable-32bits-pci-domain to configure to support such devices\n(warning: it would break the library ABI, don't enable unless really needed).\n"); warned = 1; *ignore = 1; @@ -363,7 +374,7 @@ hwloc__xml_import_object_attr(struct hwloc_topology *topology, #ifndef HWLOC_HAVE_32BITS_PCI_DOMAIN } else if (domain > 0xffff) { static int warned = 0; - if (!warned && hwloc_hide_errors() < 2) + if (!warned && HWLOC_SHOW_ALL_ERRORS()) fprintf(stderr, "hwloc/xml: Ignoring bridge to PCI with non-16bit domain.\nPass --enable-32bits-pci-domain to configure to support such devices\n(warning: it would break the library ABI, don't enable unless really needed).\n"); warned = 1; *ignore = 1; @@ -1235,7 +1246,7 @@ hwloc__xml_import_object(hwloc_topology_t topology, /* next should be before cur */ if (!childrengotignored) { static int reported = 0; - if (!reported && hwloc_hide_errors() < 2) { + if (!reported && HWLOC_SHOW_CRITICAL_ERRORS()) { hwloc__xml_import_report_outoforder(topology, next, cur); reported = 1; } @@ -1568,6 +1579,9 @@ hwloc__xml_v2import_distances(hwloc_topology_t topology, } } + if (topology->flags & HWLOC_TOPOLOGY_FLAG_NO_DISTANCES) + goto out_ignore; + hwloc_internal_distances_add_by_index(topology, name, unique_type, different_types, nbobjs, indexes, u64values, kind, 0 /* assume grouping was applied when this matrix was discovered before exporting to XML */); /* prevent freeing below */ @@ -1722,7 +1736,8 @@ hwloc__xml_import_memattr(hwloc_topology_t topology, } } - if (name && flags != (unsigned long) -1) { + if (name && flags != (unsigned long) -1 + && !(topology->flags & HWLOC_TOPOLOGY_FLAG_NO_MEMATTRS)) { hwloc_memattr_id_t _id; ret = hwloc_memattr_get_by_name(topology, name, &_id); @@ -1833,7 +1848,13 @@ hwloc__xml_import_cpukind(hwloc_topology_t topology, goto error; } - hwloc_internal_cpukinds_register(topology, cpuset, forced_efficiency, infos, nr_infos, HWLOC_CPUKINDS_REGISTER_FLAG_OVERWRITE_FORCED_EFFICIENCY); + if (topology->flags & HWLOC_TOPOLOGY_FLAG_NO_CPUKINDS) { + hwloc__free_infos(infos, nr_infos); + hwloc_bitmap_free(cpuset); + } else { + hwloc_internal_cpukinds_register(topology, cpuset, forced_efficiency, infos, nr_infos, HWLOC_CPUKINDS_REGISTER_FLAG_OVERWRITE_FORCED_EFFICIENCY); + hwloc__free_infos(infos, nr_infos); + } return state->global->close_tag(state); @@ -2168,7 +2189,8 @@ done: * but it would require to have those objects in the original XML order (like the first_numanode cousin-list). * because the topology order can be different if some parents are ignored during load. */ - if (nbobjs == data->nbnumanodes) { + if (nbobjs == data->nbnumanodes + && !(topology->flags & HWLOC_TOPOLOGY_FLAG_NO_DISTANCES)) { hwloc_obj_t *objs = malloc(nbobjs*sizeof(hwloc_obj_t)); uint64_t *values = malloc(nbobjs*nbobjs*sizeof(*values)); assert(data->nbnumanodes > 0); /* v1dist->nbobjs is >0 after import */ @@ -2650,7 +2672,7 @@ hwloc__xml_export_object_contents (hwloc__xml_export_state_t state, hwloc_topolo logical_to_v2array = malloc(nbobjs * sizeof(*logical_to_v2array)); if (!logical_to_v2array) { - if (!hwloc_hide_errors()) + if (HWLOC_SHOW_ALL_ERRORS()) fprintf(stderr, "hwloc/xml/export/v1: failed to allocated logical_to_v2array\n"); continue; } @@ -3124,9 +3146,11 @@ hwloc__xml_export_memattrs(hwloc__xml_export_state_t state, hwloc_topology_t top continue; imattr = &topology->memattrs[id]; - if ((id == HWLOC_MEMATTR_ID_LATENCY || id == HWLOC_MEMATTR_ID_BANDWIDTH) - && !imattr->nr_targets) - /* no need to export target-less attributes for initial attributes, no release support attributes without those definitions */ + if (id < HWLOC_MEMATTR_ID_MAX && !imattr->nr_targets) + /* no need to export standard attributes without any target, + * their definition is now standardized, + * the old hwloc importing this XML may recreate these attributes just like it would for a non-imported topology. + */ continue; state->new_child(state, &mstate, "memattr"); diff --git a/src/3rdparty/hwloc/src/topology.c b/src/3rdparty/hwloc/src/topology.c index 54b772ffb..47b4658c2 100644 --- a/src/3rdparty/hwloc/src/topology.c +++ b/src/3rdparty/hwloc/src/topology.c @@ -1,6 +1,6 @@ /* * Copyright © 2009 CNRS - * Copyright © 2009-2021 Inria. All rights reserved. + * Copyright © 2009-2022 Inria. All rights reserved. * Copyright © 2009-2012, 2020 Université Bordeaux * Copyright © 2009-2011 Cisco Systems, Inc. All rights reserved. * Copyright © 2022 IBM Corporation. All rights reserved. @@ -114,14 +114,25 @@ int hwloc_topology_abi_check(hwloc_topology_t topology) return topology->topology_abi != HWLOC_TOPOLOGY_ABI ? -1 : 0; } +/* callers should rather use wrappers HWLOC_SHOW_ALL_ERRORS() and HWLOC_SHOW_CRITICAL_ERRORS() for clarity */ int hwloc_hide_errors(void) { static int hide = 1; /* only show critical errors by default. lstopo will show others */ static int checked = 0; if (!checked) { const char *envvar = getenv("HWLOC_HIDE_ERRORS"); - if (envvar) + if (envvar) { hide = atoi(envvar); +#ifdef HWLOC_DEBUG + } else { + /* if debug is enabled and HWLOC_DEBUG_VERBOSE isn't forced to 0, + * show all errors jus like we show all debug messages. + */ + envvar = getenv("HWLOC_DEBUG_VERBOSE"); + if (!envvar || atoi(envvar)) + hide = 0; +#endif + } checked = 1; } return hide; @@ -158,7 +169,7 @@ static void report_insert_error(hwloc_obj_t new, hwloc_obj_t old, const char *ms { static int reported = 0; - if (reason && !reported && hwloc_hide_errors() < 2) { + if (reason && !reported && HWLOC_SHOW_CRITICAL_ERRORS()) { char newstr[512]; char oldstr[512]; report_insert_error_format_obj(newstr, sizeof(newstr), new); @@ -3178,7 +3189,7 @@ hwloc_connect_levels(hwloc_topology_t topology) tmpnbobjs = realloc(topology->level_nbobjects, 2 * topology->nb_levels_allocated * sizeof(*topology->level_nbobjects)); if (!tmplevels || !tmpnbobjs) { - if (hwloc_hide_errors() < 2) + if (HWLOC_SHOW_CRITICAL_ERRORS()) fprintf(stderr, "hwloc: failed to realloc level arrays to %u\n", topology->nb_levels_allocated * 2); /* if one realloc succeeded, make sure the caller will free the new buffer */ @@ -3536,6 +3547,8 @@ hwloc_discover(struct hwloc_topology *topology, /* * Additional discovery */ + hwloc_pci_discovery_prepare(topology); + if (topology->backend_phases & HWLOC_DISC_PHASE_PCI) { dstatus->phase = HWLOC_DISC_PHASE_PCI; hwloc_discover_by_phase(topology, dstatus, "PCI"); @@ -3553,6 +3566,8 @@ hwloc_discover(struct hwloc_topology *topology, hwloc_discover_by_phase(topology, dstatus, "ANNOTATE"); } + hwloc_pci_discovery_exit(topology); /* pci needed up to annotate */ + if (getenv("HWLOC_DEBUG_SORT_CHILDREN")) hwloc_debug_sort_children(topology->levels[0][0]); @@ -3565,17 +3580,17 @@ hwloc_discover(struct hwloc_topology *topology, hwloc_debug("%s", "\nRemoving empty objects\n"); remove_empty(topology, &topology->levels[0][0]); if (!topology->levels[0][0]) { - if (hwloc_hide_errors() < 2) + if (HWLOC_SHOW_CRITICAL_ERRORS()) fprintf(stderr, "hwloc: Topology became empty, aborting!\n"); return -1; } if (hwloc_bitmap_iszero(topology->levels[0][0]->cpuset)) { - if (hwloc_hide_errors() < 2) + if (HWLOC_SHOW_CRITICAL_ERRORS()) fprintf(stderr, "hwloc: Topology does not contain any PU, aborting!\n"); return -1; } if (hwloc_bitmap_iszero(topology->levels[0][0]->nodeset)) { - if (hwloc_hide_errors() < 2) + if (HWLOC_SHOW_CRITICAL_ERRORS()) fprintf(stderr, "hwloc: Topology does not contain any NUMA node, aborting!\n"); return -1; } @@ -3811,7 +3826,16 @@ hwloc_topology_set_flags (struct hwloc_topology *topology, unsigned long flags) return -1; } - if (flags & ~(HWLOC_TOPOLOGY_FLAG_INCLUDE_DISALLOWED|HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM|HWLOC_TOPOLOGY_FLAG_THISSYSTEM_ALLOWED_RESOURCES|HWLOC_TOPOLOGY_FLAG_IMPORT_SUPPORT|HWLOC_TOPOLOGY_FLAG_RESTRICT_TO_CPUBINDING|HWLOC_TOPOLOGY_FLAG_RESTRICT_TO_MEMBINDING|HWLOC_TOPOLOGY_FLAG_DONT_CHANGE_BINDING)) { + if (flags & ~(HWLOC_TOPOLOGY_FLAG_INCLUDE_DISALLOWED + |HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM + |HWLOC_TOPOLOGY_FLAG_THISSYSTEM_ALLOWED_RESOURCES + |HWLOC_TOPOLOGY_FLAG_IMPORT_SUPPORT + |HWLOC_TOPOLOGY_FLAG_RESTRICT_TO_CPUBINDING + |HWLOC_TOPOLOGY_FLAG_RESTRICT_TO_MEMBINDING + |HWLOC_TOPOLOGY_FLAG_DONT_CHANGE_BINDING + |HWLOC_TOPOLOGY_FLAG_NO_DISTANCES + |HWLOC_TOPOLOGY_FLAG_NO_MEMATTRS + |HWLOC_TOPOLOGY_FLAG_NO_CPUKINDS)) { errno = EINVAL; return -1; } @@ -4076,15 +4100,11 @@ hwloc_topology_load (struct hwloc_topology *topology) */ hwloc_set_binding_hooks(topology); - hwloc_pci_discovery_prepare(topology); - /* actual topology discovery */ err = hwloc_discover(topology, &dstatus); if (err < 0) goto out; - hwloc_pci_discovery_exit(topology); - #ifndef HWLOC_DEBUG if (getenv("HWLOC_DEBUG_CHECK")) #endif @@ -4106,6 +4126,7 @@ hwloc_topology_load (struct hwloc_topology *topology) /* Same for memattrs */ hwloc_internal_memattrs_need_refresh(topology); hwloc_internal_memattrs_refresh(topology); + hwloc_internal_memattrs_guess_memory_tiers(topology); topology->is_loaded = 1; From e2c58126e98a49415f7ff56177fb7da30e601519 Mon Sep 17 00:00:00 2001 From: SChernykh Date: Sat, 28 Jan 2023 19:42:02 +0100 Subject: [PATCH 16/19] Solo mining: added job timeout (default is 15 seconds) It's important to update jobs frequently to get new transactions into the block template. See https://rucknium.me/posts/monero-pool-transaction-delay/ for more details. --- src/base/kernel/config/BaseTransform.cpp | 4 ++++ src/base/kernel/interfaces/IConfig.h | 1 + src/base/net/stratum/DaemonClient.cpp | 24 +++++++++++++++++++++++- src/base/net/stratum/DaemonClient.h | 1 + src/base/net/stratum/Pool.cpp | 7 +++++++ src/base/net/stratum/Pool.h | 4 ++++ src/core/config/Config_platform.h | 1 + src/core/config/usage.h | 2 ++ 8 files changed, 43 insertions(+), 1 deletion(-) diff --git a/src/base/kernel/config/BaseTransform.cpp b/src/base/kernel/config/BaseTransform.cpp index c924dd59a..a1b430da3 100644 --- a/src/base/kernel/config/BaseTransform.cpp +++ b/src/base/kernel/config/BaseTransform.cpp @@ -247,6 +247,7 @@ void xmrig::BaseTransform::transform(rapidjson::Document &doc, int key, const ch case IConfig::HttpPort: /* --http-port */ case IConfig::DonateLevelKey: /* --donate-level */ case IConfig::DaemonPollKey: /* --daemon-poll-interval */ + case IConfig::DaemonJobTimeoutKey: /* --daemon-job-timeout */ case IConfig::DnsTtlKey: /* --dns-ttl */ case IConfig::DaemonZMQPortKey: /* --daemon-zmq-port */ return transformUint64(doc, key, static_cast(strtol(arg, nullptr, 10))); @@ -360,6 +361,9 @@ void xmrig::BaseTransform::transformUint64(rapidjson::Document &doc, int key, ui case IConfig::DaemonPollKey: /* --daemon-poll-interval */ return add(doc, Pools::kPools, Pool::kDaemonPollInterval, arg); + case IConfig::DaemonJobTimeoutKey: /* --daemon-job-timeout */ + return add(doc, Pools::kPools, Pool::kDaemonJobTimeout, arg); + case IConfig::DaemonZMQPortKey: /* --daemon-zmq-port */ return add(doc, Pools::kPools, Pool::kDaemonZMQPort, arg); # endif diff --git a/src/base/kernel/interfaces/IConfig.h b/src/base/kernel/interfaces/IConfig.h index ed76f4cd2..98957fc4b 100644 --- a/src/base/kernel/interfaces/IConfig.h +++ b/src/base/kernel/interfaces/IConfig.h @@ -88,6 +88,7 @@ public: DaemonZMQPortKey = 1056, HugePagesJitKey = 1057, RotationKey = 1058, + DaemonJobTimeoutKey = 1059, // xmrig common CPUPriorityKey = 1021, diff --git a/src/base/net/stratum/DaemonClient.cpp b/src/base/net/stratum/DaemonClient.cpp index f383308c5..10c041163 100644 --- a/src/base/net/stratum/DaemonClient.cpp +++ b/src/base/net/stratum/DaemonClient.cpp @@ -303,6 +303,18 @@ void xmrig::DaemonClient::onHttpData(const HttpData &data) void xmrig::DaemonClient::onTimer(const Timer *) { + if (m_pool.zmq_port() >= 0) { + m_prevHash = nullptr; + m_blocktemplateRequestHash = nullptr; + send(kGetHeight); + return; + } + + if (Chrono::steadyMSecs() >= m_jobSteadyMs + m_pool.jobTimeout()) { + m_prevHash = nullptr; + m_blocktemplateRequestHash = nullptr; + } + if (m_state == ConnectingState) { connect(); } @@ -352,7 +364,7 @@ void xmrig::DaemonClient::onResolved(const DnsRecords &records, int status, cons bool xmrig::DaemonClient::isOutdated(uint64_t height, const char *hash) const { - return m_job.height() != height || m_prevHash != hash; + return m_job.height() != height || m_prevHash != hash || Chrono::steadyMSecs() >= m_jobSteadyMs + m_pool.jobTimeout(); } @@ -468,6 +480,7 @@ bool xmrig::DaemonClient::parseJob(const rapidjson::Value ¶ms, int *code) m_job = std::move(job); m_blocktemplateStr = std::move(blocktemplate); m_prevHash = Json::getString(params, "prev_hash"); + m_jobSteadyMs = Chrono::steadyMSecs(); if (m_state == ConnectingState) { setState(ConnectedState); @@ -596,6 +609,10 @@ void xmrig::DaemonClient::setState(SocketState state) const uint64_t interval = std::max(20, m_pool.pollInterval()); m_timer->start(interval, interval); } + else { + const uint64_t t = m_pool.jobTimeout(); + m_timer->start(t, t); + } } break; @@ -865,7 +882,12 @@ void xmrig::DaemonClient::ZMQParse() // Clear previous hash and check daemon height to guarantee that xmrig will call get_block_template RPC later // We can't call get_block_template directly because daemon is not ready yet m_prevHash = nullptr; + m_blocktemplateRequestHash = nullptr; send(kGetHeight); + + const uint64_t t = m_pool.jobTimeout(); + m_timer->stop(); + m_timer->start(t, t); } diff --git a/src/base/net/stratum/DaemonClient.h b/src/base/net/stratum/DaemonClient.h index 7880de404..94d2b973a 100644 --- a/src/base/net/stratum/DaemonClient.h +++ b/src/base/net/stratum/DaemonClient.h @@ -104,6 +104,7 @@ private: String m_blocktemplateStr; String m_currentJobId; String m_prevHash; + uint64_t m_jobSteadyMs = 0; String m_tlsFingerprint; String m_tlsVersion; Timer *m_timer; diff --git a/src/base/net/stratum/Pool.cpp b/src/base/net/stratum/Pool.cpp index 7a58f4cb5..b1773c46d 100644 --- a/src/base/net/stratum/Pool.cpp +++ b/src/base/net/stratum/Pool.cpp @@ -65,6 +65,7 @@ const char *Pool::kAlgo = "algo"; const char *Pool::kCoin = "coin"; const char *Pool::kDaemon = "daemon"; const char *Pool::kDaemonPollInterval = "daemon-poll-interval"; +const char *Pool::kDaemonJobTimeout = "daemon-job-timeout"; const char *Pool::kDaemonZMQPort = "daemon-zmq-port"; const char *Pool::kEnabled = "enabled"; const char *Pool::kFingerprint = "tls-fingerprint"; @@ -88,6 +89,7 @@ const char *Pool::kNicehashHost = "nicehash.com"; xmrig::Pool::Pool(const char *url) : m_flags(1 << FLAG_ENABLED), m_pollInterval(kDefaultPollInterval), + m_jobTimeout(kDefaultJobTimeout), m_url(url) { } @@ -101,6 +103,7 @@ xmrig::Pool::Pool(const char *host, uint16_t port, const char *user, const char m_user(user), m_spendSecretKey(spendSecretKey), m_pollInterval(kDefaultPollInterval), + m_jobTimeout(kDefaultJobTimeout), m_url(host, port, tls) { m_flags.set(FLAG_NICEHASH, nicehash || strstr(host, kNicehashHost)); @@ -111,6 +114,7 @@ xmrig::Pool::Pool(const char *host, uint16_t port, const char *user, const char xmrig::Pool::Pool(const rapidjson::Value &object) : m_flags(1 << FLAG_ENABLED), m_pollInterval(kDefaultPollInterval), + m_jobTimeout(kDefaultJobTimeout), m_url(Json::getString(object, kUrl)) { if (!m_url.isValid()) { @@ -123,6 +127,7 @@ xmrig::Pool::Pool(const rapidjson::Value &object) : m_rigId = Json::getString(object, kRigId); m_fingerprint = Json::getString(object, kFingerprint); m_pollInterval = Json::getUint64(object, kDaemonPollInterval, kDefaultPollInterval); + m_jobTimeout = Json::getUint64(object, kDaemonJobTimeout, kDefaultJobTimeout); m_algorithm = Json::getString(object, kAlgo); m_coin = Json::getString(object, kCoin); m_daemon = Json::getString(object, kSelfSelect); @@ -207,6 +212,7 @@ bool xmrig::Pool::isEqual(const Pool &other) const && m_url == other.m_url && m_user == other.m_user && m_pollInterval == other.m_pollInterval + && m_jobTimeout == other.m_jobTimeout && m_daemon == other.m_daemon && m_proxy == other.m_proxy ); @@ -299,6 +305,7 @@ rapidjson::Value xmrig::Pool::toJSON(rapidjson::Document &doc) const if (m_mode == MODE_DAEMON) { obj.AddMember(StringRef(kDaemonPollInterval), m_pollInterval, allocator); + obj.AddMember(StringRef(kDaemonJobTimeout), m_jobTimeout, allocator); obj.AddMember(StringRef(kDaemonZMQPort), m_zmqPort, allocator); } else { diff --git a/src/base/net/stratum/Pool.h b/src/base/net/stratum/Pool.h index 78684510f..8374f20ff 100644 --- a/src/base/net/stratum/Pool.h +++ b/src/base/net/stratum/Pool.h @@ -59,6 +59,7 @@ public: static const char *kCoin; static const char *kDaemon; static const char *kDaemonPollInterval; + static const char* kDaemonJobTimeout; static const char *kEnabled; static const char *kFingerprint; static const char *kKeepalive; @@ -78,6 +79,7 @@ public: constexpr static int kKeepAliveTimeout = 60; constexpr static uint16_t kDefaultPort = 3333; constexpr static uint64_t kDefaultPollInterval = 1000; + constexpr static uint64_t kDefaultJobTimeout = 15000; Pool() = default; Pool(const char *host, uint16_t port, const char *user, const char *password, const char* spendSecretKey, int keepAlive, bool nicehash, bool tls, Mode mode); @@ -110,6 +112,7 @@ public: inline uint16_t port() const { return m_url.port(); } inline int zmq_port() const { return m_zmqPort; } inline uint64_t pollInterval() const { return m_pollInterval; } + inline uint64_t jobTimeout() const { return m_jobTimeout; } inline void setAlgo(const Algorithm &algorithm) { m_algorithm = algorithm; } inline void setUrl(const char *url) { m_url = Url(url); } inline void setPassword(const String &password) { m_password = password; } @@ -156,6 +159,7 @@ private: String m_user; String m_spendSecretKey; uint64_t m_pollInterval = kDefaultPollInterval; + uint64_t m_jobTimeout = kDefaultJobTimeout; Url m_daemon; Url m_url; int m_zmqPort = -1; diff --git a/src/core/config/Config_platform.h b/src/core/config/Config_platform.h index d3d3157c3..52f66f301 100644 --- a/src/core/config/Config_platform.h +++ b/src/core/config/Config_platform.h @@ -50,6 +50,7 @@ static const option options[] = { { "http-no-restricted", 0, nullptr, IConfig::HttpRestrictedKey }, { "daemon", 0, nullptr, IConfig::DaemonKey }, { "daemon-poll-interval", 1, nullptr, IConfig::DaemonPollKey }, + { "daemon-job-timeout", 1, nullptr, IConfig::DaemonJobTimeoutKey }, { "self-select", 1, nullptr, IConfig::SelfSelectKey }, { "submit-to-origin", 0, nullptr, IConfig::SubmitToOriginKey }, { "daemon-zmq-port", 1, nullptr, IConfig::DaemonZMQPortKey }, diff --git a/src/core/config/usage.h b/src/core/config/usage.h index 6f74b21e5..eb7a9ec72 100644 --- a/src/core/config/usage.h +++ b/src/core/config/usage.h @@ -64,7 +64,9 @@ static inline const std::string &usage() # ifdef XMRIG_FEATURE_HTTP u += " --daemon use daemon RPC instead of pool for solo mining\n"; + u += " --daemon-zmq-port daemon's zmq-pub port number (only use it if daemon has it enabled)\n"; u += " --daemon-poll-interval=N daemon poll interval in milliseconds (default: 1000)\n"; + u += " --daemon-job-timeout=N daemon job timeout in milliseconds (default: 15000)\n"; u += " --self-select=URL self-select block templates from URL\n"; u += " --submit-to-origin also submit solution back to self-select URL\n"; # endif From 490acd6e55c8bbf4cb7a0e7f6220b29aee5cc146 Mon Sep 17 00:00:00 2001 From: xmrig Date: Sun, 29 Jan 2023 11:13:28 +0700 Subject: [PATCH 17/19] Update CHANGELOG.md --- CHANGELOG.md | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index feaeb8547..c5a94dbe1 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -1,4 +1,4 @@ -# v6.18.2 +# v6.19.0 - [#3144](https://github.com/xmrig/xmrig/pull/3144) Update to latest `sse2neon.h`. - [#3161](https://github.com/xmrig/xmrig/pull/3161) MSVC build: enabled parallel compilation. - [#3163](https://github.com/xmrig/xmrig/pull/3163) Improved Zen 3 MSR mod. @@ -7,6 +7,7 @@ - [#3196](https://github.com/xmrig/xmrig/pull/3196) Show IP address for failed connections. - [#3185](https://github.com/xmrig/xmrig/issues/3185) Fixed macOS DMI reader. - [#3198](https://github.com/xmrig/xmrig/pull/3198) Fixed broken RandomX light mode mining. +- [#3202](https://github.com/xmrig/xmrig/pull/3202) Solo mining: added job timeout (default is 15 seconds) # v6.18.1 - [#3129](https://github.com/xmrig/xmrig/pull/3129) Fix: protectRX flushed CPU cache only on MacOS/iOS. From 1c7a3395277b63b580c5dad4c380912c35a3cc93 Mon Sep 17 00:00:00 2001 From: XMRig Date: Sun, 29 Jan 2023 11:16:37 +0700 Subject: [PATCH 18/19] v6.19.0-dev (new config options added). --- CHANGELOG.md | 2 +- src/version.h | 14 +++++++------- 2 files changed, 8 insertions(+), 8 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index c5a94dbe1..51d8c7699 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -7,7 +7,7 @@ - [#3196](https://github.com/xmrig/xmrig/pull/3196) Show IP address for failed connections. - [#3185](https://github.com/xmrig/xmrig/issues/3185) Fixed macOS DMI reader. - [#3198](https://github.com/xmrig/xmrig/pull/3198) Fixed broken RandomX light mode mining. -- [#3202](https://github.com/xmrig/xmrig/pull/3202) Solo mining: added job timeout (default is 15 seconds) +- [#3202](https://github.com/xmrig/xmrig/pull/3202) Solo mining: added job timeout (default is 15 seconds). # v6.18.1 - [#3129](https://github.com/xmrig/xmrig/pull/3129) Fix: protectRX flushed CPU cache only on MacOS/iOS. diff --git a/src/version.h b/src/version.h index fd245efaf..a76efa076 100644 --- a/src/version.h +++ b/src/version.h @@ -1,6 +1,6 @@ /* XMRig - * Copyright (c) 2018-2022 SChernykh - * Copyright (c) 2016-2022 XMRig , + * Copyright (c) 2018-2023 SChernykh + * Copyright (c) 2016-2023 XMRig , * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by @@ -22,15 +22,15 @@ #define APP_ID "xmrig" #define APP_NAME "XMRig" #define APP_DESC "XMRig miner" -#define APP_VERSION "6.18.2-dev" +#define APP_VERSION "6.19.0-dev" #define APP_DOMAIN "xmrig.com" #define APP_SITE "www.xmrig.com" -#define APP_COPYRIGHT "Copyright (C) 2016-2022 xmrig.com" +#define APP_COPYRIGHT "Copyright (C) 2016-2023 xmrig.com" #define APP_KIND "miner" #define APP_VER_MAJOR 6 -#define APP_VER_MINOR 18 -#define APP_VER_PATCH 2 +#define APP_VER_MINOR 19 +#define APP_VER_PATCH 0 #ifdef _MSC_VER # if (_MSC_VER >= 1930) @@ -52,4 +52,4 @@ # endif #endif -#endif /* XMRIG_VERSION_H */ +#endif // XMRIG_VERSION_H From 8a4da33bea083288cf00191e14ce9afdf6ea6431 Mon Sep 17 00:00:00 2001 From: XMRig Date: Mon, 30 Jan 2023 00:19:55 +0700 Subject: [PATCH 19/19] Update scripts/build.*.sh. --- scripts/build.hwloc.sh | 4 ++-- scripts/build.openssl.sh | 2 +- scripts/build.openssl3.sh | 2 +- scripts/build.uv.sh | 2 +- 4 files changed, 5 insertions(+), 5 deletions(-) diff --git a/scripts/build.hwloc.sh b/scripts/build.hwloc.sh index 12fed195f..223c5fb0c 100755 --- a/scripts/build.hwloc.sh +++ b/scripts/build.hwloc.sh @@ -1,8 +1,8 @@ #!/bin/bash -e HWLOC_VERSION_MAJOR="2" -HWLOC_VERSION_MINOR="7" -HWLOC_VERSION_PATCH="1" +HWLOC_VERSION_MINOR="9" +HWLOC_VERSION_PATCH="0" HWLOC_VERSION="${HWLOC_VERSION_MAJOR}.${HWLOC_VERSION_MINOR}.${HWLOC_VERSION_PATCH}" diff --git a/scripts/build.openssl.sh b/scripts/build.openssl.sh index c1e024f2c..a89b281fa 100755 --- a/scripts/build.openssl.sh +++ b/scripts/build.openssl.sh @@ -1,6 +1,6 @@ #!/bin/bash -e -OPENSSL_VERSION="1.1.1o" +OPENSSL_VERSION="1.1.1s" mkdir -p deps mkdir -p deps/include diff --git a/scripts/build.openssl3.sh b/scripts/build.openssl3.sh index d89688a18..ffd1b9536 100755 --- a/scripts/build.openssl3.sh +++ b/scripts/build.openssl3.sh @@ -1,6 +1,6 @@ #!/bin/bash -e -OPENSSL_VERSION="3.0.3" +OPENSSL_VERSION="3.0.7" mkdir -p deps mkdir -p deps/include diff --git a/scripts/build.uv.sh b/scripts/build.uv.sh index 9c9bcf802..3ee766a7c 100755 --- a/scripts/build.uv.sh +++ b/scripts/build.uv.sh @@ -1,6 +1,6 @@ #!/bin/bash -e -UV_VERSION="1.44.1" +UV_VERSION="1.44.2" mkdir -p deps mkdir -p deps/include