Move common code to cryptonight_p.h

This commit is contained in:
XMRig 2017-04-24 13:23:49 +03:00
parent 454c78cf0a
commit b35ecef06f
7 changed files with 231 additions and 745 deletions

View file

@ -4,6 +4,7 @@ project(xmrig C)
set(HEADERS
compat.h
algo/cryptonight/cryptonight.h
algo/cryptonight/cryptonight_p.h
elist.h
xmrig.h
version.h
@ -35,7 +36,7 @@ set(HEADERS_UTILS
set(SOURCES
xmrig.c
algo/cryptonight/cryptonight_common.c
algo/cryptonight/cryptonight.c
util.c
options.c
cpu.c

View file

@ -26,11 +26,12 @@
#include <string.h>
#include "cryptonight.h"
#include "cryptonight_p.h"
#include "crypto/c_keccak.h"
#ifdef __GNUC__
static inline uint64_t _umul128(uint64_t a, uint64_t b, uint64_t* hi)
#ifndef __BMI2__
static inline uint64_t _mulx_u64(uint64_t a, uint64_t b, uint64_t* hi)
{
unsigned __int128 r = (unsigned __int128) a * (unsigned __int128) b;
*hi = r >> 64;
@ -38,189 +39,6 @@ static inline uint64_t _umul128(uint64_t a, uint64_t b, uint64_t* hi)
}
#endif
#define aes_genkey_sub(imm8) \
__m128i xout1 = _mm_aeskeygenassist_si128(*xout2, (imm8)); \
xout1 = _mm_shuffle_epi32(xout1, 0xFF); \
*xout0 = sl_xor(*xout0); \
*xout0 = _mm_xor_si128(*xout0, xout1); \
xout1 = _mm_aeskeygenassist_si128(*xout0, 0x00);\
xout1 = _mm_shuffle_epi32(xout1, 0xAA); \
*xout2 = sl_xor(*xout2); \
*xout2 = _mm_xor_si128(*xout2, xout1); \
// This will shift and xor tmp1 into itself as 4 32-bit vals such as
// sl_xor(a1 a2 a3 a4) = a1 (a2^a1) (a3^a2^a1) (a4^a3^a2^a1)
static inline __m128i sl_xor(__m128i tmp1)
{
__m128i tmp4;
tmp4 = _mm_slli_si128(tmp1, 0x04);
tmp1 = _mm_xor_si128(tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
tmp1 = _mm_xor_si128(tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
tmp1 = _mm_xor_si128(tmp1, tmp4);
return tmp1;
}
static inline void aes_genkey_sub1(__m128i* xout0, __m128i* xout2)
{
aes_genkey_sub(0x1)
}
static inline void aes_genkey_sub2(__m128i* xout0, __m128i* xout2)
{
aes_genkey_sub(0x2)
}
static inline void aes_genkey_sub4(__m128i* xout0, __m128i* xout2)
{
aes_genkey_sub(0x4)
}
static inline void aes_genkey_sub8(__m128i* xout0, __m128i* xout2)
{
aes_genkey_sub(0x8)
}
static inline void aes_genkey(const __m128i* memory, __m128i* k0, __m128i* k1, __m128i* k2, __m128i* k3, __m128i* k4, __m128i* k5, __m128i* k6, __m128i* k7, __m128i* k8, __m128i* k9)
{
__m128i xout0 = _mm_load_si128(memory);
__m128i xout2 = _mm_load_si128(memory + 1);
*k0 = xout0;
*k1 = xout2;
aes_genkey_sub1(&xout0, &xout2);
*k2 = xout0;
*k3 = xout2;
aes_genkey_sub2(&xout0, &xout2);
*k4 = xout0;
*k5 = xout2;
aes_genkey_sub4(&xout0, &xout2);
*k6 = xout0;
*k7 = xout2;
aes_genkey_sub8(&xout0, &xout2);
*k8 = xout0;
*k9 = xout2;
}
static inline void aes_round(__m128i key, __m128i* x0, __m128i* x1, __m128i* x2, __m128i* x3, __m128i* x4, __m128i* x5, __m128i* x6, __m128i* x7)
{
*x0 = _mm_aesenc_si128(*x0, key);
*x1 = _mm_aesenc_si128(*x1, key);
*x2 = _mm_aesenc_si128(*x2, key);
*x3 = _mm_aesenc_si128(*x3, key);
*x4 = _mm_aesenc_si128(*x4, key);
*x5 = _mm_aesenc_si128(*x5, key);
*x6 = _mm_aesenc_si128(*x6, key);
*x7 = _mm_aesenc_si128(*x7, key);
}
static inline void cn_explode_scratchpad(const __m128i* input, __m128i* output)
{
// This is more than we have registers, compiler will assign 2 keys on the stack
__m128i xin0, xin1, xin2, xin3, xin4, xin5, xin6, xin7;
__m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9;
aes_genkey(input, &k0, &k1, &k2, &k3, &k4, &k5, &k6, &k7, &k8, &k9);
xin0 = _mm_load_si128(input + 4);
xin1 = _mm_load_si128(input + 5);
xin2 = _mm_load_si128(input + 6);
xin3 = _mm_load_si128(input + 7);
xin4 = _mm_load_si128(input + 8);
xin5 = _mm_load_si128(input + 9);
xin6 = _mm_load_si128(input + 10);
xin7 = _mm_load_si128(input + 11);
for (size_t i = 0; i < MEMORY / sizeof(__m128i); i += 8) {
aes_round(k0, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k1, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k2, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k3, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k4, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k5, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k6, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k7, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k8, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k9, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
_mm_store_si128(output + i + 0, xin0);
_mm_store_si128(output + i + 1, xin1);
_mm_store_si128(output + i + 2, xin2);
_mm_store_si128(output + i + 3, xin3);
_mm_prefetch((const char*)output + i + 0, _MM_HINT_T2);
_mm_store_si128(output + i + 4, xin4);
_mm_store_si128(output + i + 5, xin5);
_mm_store_si128(output + i + 6, xin6);
_mm_store_si128(output + i + 7, xin7);
_mm_prefetch((const char*)output + i + 4, _MM_HINT_T2);
}
}
static inline void cn_implode_scratchpad(const __m128i* input, __m128i* output)
{
// This is more than we have registers, compiler will assign 2 keys on the stack
__m128i xout0, xout1, xout2, xout3, xout4, xout5, xout6, xout7;
__m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9;
aes_genkey(output + 2, &k0, &k1, &k2, &k3, &k4, &k5, &k6, &k7, &k8, &k9);
xout0 = _mm_load_si128(output + 4);
xout1 = _mm_load_si128(output + 5);
xout2 = _mm_load_si128(output + 6);
xout3 = _mm_load_si128(output + 7);
xout4 = _mm_load_si128(output + 8);
xout5 = _mm_load_si128(output + 9);
xout6 = _mm_load_si128(output + 10);
xout7 = _mm_load_si128(output + 11);
for (size_t i = 0; i < MEMORY / sizeof(__m128i); i += 8)
{
_mm_prefetch((const char*)input + i + 0, _MM_HINT_NTA);
xout0 = _mm_xor_si128(_mm_load_si128(input + i + 0), xout0);
xout1 = _mm_xor_si128(_mm_load_si128(input + i + 1), xout1);
xout2 = _mm_xor_si128(_mm_load_si128(input + i + 2), xout2);
xout3 = _mm_xor_si128(_mm_load_si128(input + i + 3), xout3);
_mm_prefetch((const char*)input + i + 4, _MM_HINT_NTA);
xout4 = _mm_xor_si128(_mm_load_si128(input + i + 4), xout4);
xout5 = _mm_xor_si128(_mm_load_si128(input + i + 5), xout5);
xout6 = _mm_xor_si128(_mm_load_si128(input + i + 6), xout6);
xout7 = _mm_xor_si128(_mm_load_si128(input + i + 7), xout7);
aes_round(k0, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k1, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k2, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k3, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k4, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k5, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k6, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k7, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k8, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k9, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
}
_mm_store_si128(output + 4, xout0);
_mm_store_si128(output + 5, xout1);
_mm_store_si128(output + 6, xout2);
_mm_store_si128(output + 7, xout3);
_mm_store_si128(output + 8, xout4);
_mm_store_si128(output + 9, xout5);
_mm_store_si128(output + 10, xout6);
_mm_store_si128(output + 11, xout7);
}
void cryptonight_av1_aesni(const void *restrict input, size_t size, void *restrict output, struct cryptonight_ctx *restrict ctx)
{
@ -249,7 +67,7 @@ void cryptonight_av1_aesni(const void *restrict input, size_t size, void *restri
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*) &l0[idx0 & 0x1FFFF0])[0];
ch = ((uint64_t*) &l0[idx0 & 0x1FFFF0])[1];
lo = _umul128(idx0, cl, &hi);
lo = _mulx_u64(idx0, cl, &hi);
al0 += hi;
ah0 += lo;

View file

@ -26,11 +26,12 @@
#include <string.h>
#include "cryptonight.h"
#include "cryptonight_p.h"
#include "crypto/c_keccak.h"
#ifdef __GNUC__
static inline uint64_t _umul128(uint64_t a, uint64_t b, uint64_t* hi)
#ifndef __BMI2__
static inline uint64_t _mulx_u64(uint64_t a, uint64_t b, uint64_t* hi)
{
unsigned __int128 r = (unsigned __int128) a * (unsigned __int128) b;
*hi = r >> 64;
@ -38,189 +39,6 @@ static inline uint64_t _umul128(uint64_t a, uint64_t b, uint64_t* hi)
}
#endif
#define aes_genkey_sub(imm8) \
__m128i xout1 = _mm_aeskeygenassist_si128(*xout2, (imm8)); \
xout1 = _mm_shuffle_epi32(xout1, 0xFF); \
*xout0 = sl_xor(*xout0); \
*xout0 = _mm_xor_si128(*xout0, xout1); \
xout1 = _mm_aeskeygenassist_si128(*xout0, 0x00);\
xout1 = _mm_shuffle_epi32(xout1, 0xAA); \
*xout2 = sl_xor(*xout2); \
*xout2 = _mm_xor_si128(*xout2, xout1); \
// This will shift and xor tmp1 into itself as 4 32-bit vals such as
// sl_xor(a1 a2 a3 a4) = a1 (a2^a1) (a3^a2^a1) (a4^a3^a2^a1)
static inline __m128i sl_xor(__m128i tmp1)
{
__m128i tmp4;
tmp4 = _mm_slli_si128(tmp1, 0x04);
tmp1 = _mm_xor_si128(tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
tmp1 = _mm_xor_si128(tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
tmp1 = _mm_xor_si128(tmp1, tmp4);
return tmp1;
}
static inline void aes_genkey_sub1(__m128i* xout0, __m128i* xout2)
{
aes_genkey_sub(0x1)
}
static inline void aes_genkey_sub2(__m128i* xout0, __m128i* xout2)
{
aes_genkey_sub(0x2)
}
static inline void aes_genkey_sub4(__m128i* xout0, __m128i* xout2)
{
aes_genkey_sub(0x4)
}
static inline void aes_genkey_sub8(__m128i* xout0, __m128i* xout2)
{
aes_genkey_sub(0x8)
}
static inline void aes_genkey(const __m128i* memory, __m128i* k0, __m128i* k1, __m128i* k2, __m128i* k3, __m128i* k4, __m128i* k5, __m128i* k6, __m128i* k7, __m128i* k8, __m128i* k9)
{
__m128i xout0 = _mm_load_si128(memory);
__m128i xout2 = _mm_load_si128(memory + 1);
*k0 = xout0;
*k1 = xout2;
aes_genkey_sub1(&xout0, &xout2);
*k2 = xout0;
*k3 = xout2;
aes_genkey_sub2(&xout0, &xout2);
*k4 = xout0;
*k5 = xout2;
aes_genkey_sub4(&xout0, &xout2);
*k6 = xout0;
*k7 = xout2;
aes_genkey_sub8(&xout0, &xout2);
*k8 = xout0;
*k9 = xout2;
}
static inline void aes_round(__m128i key, __m128i* x0, __m128i* x1, __m128i* x2, __m128i* x3, __m128i* x4, __m128i* x5, __m128i* x6, __m128i* x7)
{
*x0 = _mm_aesenc_si128(*x0, key);
*x1 = _mm_aesenc_si128(*x1, key);
*x2 = _mm_aesenc_si128(*x2, key);
*x3 = _mm_aesenc_si128(*x3, key);
*x4 = _mm_aesenc_si128(*x4, key);
*x5 = _mm_aesenc_si128(*x5, key);
*x6 = _mm_aesenc_si128(*x6, key);
*x7 = _mm_aesenc_si128(*x7, key);
}
static inline void cn_explode_scratchpad(const __m128i* input, __m128i* output)
{
// This is more than we have registers, compiler will assign 2 keys on the stack
__m128i xin0, xin1, xin2, xin3, xin4, xin5, xin6, xin7;
__m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9;
aes_genkey(input, &k0, &k1, &k2, &k3, &k4, &k5, &k6, &k7, &k8, &k9);
xin0 = _mm_load_si128(input + 4);
xin1 = _mm_load_si128(input + 5);
xin2 = _mm_load_si128(input + 6);
xin3 = _mm_load_si128(input + 7);
xin4 = _mm_load_si128(input + 8);
xin5 = _mm_load_si128(input + 9);
xin6 = _mm_load_si128(input + 10);
xin7 = _mm_load_si128(input + 11);
for (size_t i = 0; i < MEMORY / sizeof(__m128i); i += 8) {
aes_round(k0, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k1, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k2, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k3, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k4, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k5, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k6, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k7, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k8, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k9, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
_mm_store_si128(output + i + 0, xin0);
_mm_store_si128(output + i + 1, xin1);
_mm_store_si128(output + i + 2, xin2);
_mm_store_si128(output + i + 3, xin3);
_mm_prefetch((const char*)output + i + 0, _MM_HINT_T2);
_mm_store_si128(output + i + 4, xin4);
_mm_store_si128(output + i + 5, xin5);
_mm_store_si128(output + i + 6, xin6);
_mm_store_si128(output + i + 7, xin7);
_mm_prefetch((const char*)output + i + 4, _MM_HINT_T2);
}
}
static inline void cn_implode_scratchpad(const __m128i* input, __m128i* output)
{
// This is more than we have registers, compiler will assign 2 keys on the stack
__m128i xout0, xout1, xout2, xout3, xout4, xout5, xout6, xout7;
__m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9;
aes_genkey(output + 2, &k0, &k1, &k2, &k3, &k4, &k5, &k6, &k7, &k8, &k9);
xout0 = _mm_load_si128(output + 4);
xout1 = _mm_load_si128(output + 5);
xout2 = _mm_load_si128(output + 6);
xout3 = _mm_load_si128(output + 7);
xout4 = _mm_load_si128(output + 8);
xout5 = _mm_load_si128(output + 9);
xout6 = _mm_load_si128(output + 10);
xout7 = _mm_load_si128(output + 11);
for (size_t i = 0; i < MEMORY / sizeof(__m128i); i += 8)
{
_mm_prefetch((const char*)input + i + 0, _MM_HINT_NTA);
xout0 = _mm_xor_si128(_mm_load_si128(input + i + 0), xout0);
xout1 = _mm_xor_si128(_mm_load_si128(input + i + 1), xout1);
xout2 = _mm_xor_si128(_mm_load_si128(input + i + 2), xout2);
xout3 = _mm_xor_si128(_mm_load_si128(input + i + 3), xout3);
_mm_prefetch((const char*)input + i + 4, _MM_HINT_NTA);
xout4 = _mm_xor_si128(_mm_load_si128(input + i + 4), xout4);
xout5 = _mm_xor_si128(_mm_load_si128(input + i + 5), xout5);
xout6 = _mm_xor_si128(_mm_load_si128(input + i + 6), xout6);
xout7 = _mm_xor_si128(_mm_load_si128(input + i + 7), xout7);
aes_round(k0, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k1, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k2, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k3, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k4, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k5, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k6, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k7, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k8, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k9, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
}
_mm_store_si128(output + 4, xout0);
_mm_store_si128(output + 5, xout1);
_mm_store_si128(output + 6, xout2);
_mm_store_si128(output + 7, xout3);
_mm_store_si128(output + 8, xout4);
_mm_store_si128(output + 9, xout5);
_mm_store_si128(output + 10, xout6);
_mm_store_si128(output + 11, xout7);
}
void cryptonight_av2_aesni_stak(const void *restrict input, size_t size, void *restrict output, struct cryptonight_ctx *restrict ctx)
{
@ -251,7 +69,7 @@ void cryptonight_av2_aesni_stak(const void *restrict input, size_t size, void *r
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*)&l0[idx0 & 0x1FFFF0])[0];
ch = ((uint64_t*)&l0[idx0 & 0x1FFFF0])[1];
lo = _umul128(idx0, cl, &hi);
lo = _mulx_u64(idx0, cl, &hi);
al0 += hi;
ah0 += lo;

View file

@ -26,193 +26,10 @@
#include <string.h>
#include "cryptonight.h"
#include "cryptonight_p.h"
#include "crypto/c_keccak.h"
#define aes_genkey_sub(imm8) \
__m128i xout1 = _mm_aeskeygenassist_si128(*xout2, (imm8)); \
xout1 = _mm_shuffle_epi32(xout1, 0xFF); \
*xout0 = sl_xor(*xout0); \
*xout0 = _mm_xor_si128(*xout0, xout1); \
xout1 = _mm_aeskeygenassist_si128(*xout0, 0x00);\
xout1 = _mm_shuffle_epi32(xout1, 0xAA); \
*xout2 = sl_xor(*xout2); \
*xout2 = _mm_xor_si128(*xout2, xout1); \
// This will shift and xor tmp1 into itself as 4 32-bit vals such as
// sl_xor(a1 a2 a3 a4) = a1 (a2^a1) (a3^a2^a1) (a4^a3^a2^a1)
static inline __m128i sl_xor(__m128i tmp1)
{
__m128i tmp4;
tmp4 = _mm_slli_si128(tmp1, 0x04);
tmp1 = _mm_xor_si128(tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
tmp1 = _mm_xor_si128(tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
tmp1 = _mm_xor_si128(tmp1, tmp4);
return tmp1;
}
static inline void aes_genkey_sub1(__m128i* xout0, __m128i* xout2)
{
aes_genkey_sub(0x1)
}
static inline void aes_genkey_sub2(__m128i* xout0, __m128i* xout2)
{
aes_genkey_sub(0x2)
}
static inline void aes_genkey_sub4(__m128i* xout0, __m128i* xout2)
{
aes_genkey_sub(0x4)
}
static inline void aes_genkey_sub8(__m128i* xout0, __m128i* xout2)
{
aes_genkey_sub(0x8)
}
static inline void aes_genkey(const __m128i* memory, __m128i* k0, __m128i* k1, __m128i* k2, __m128i* k3, __m128i* k4, __m128i* k5, __m128i* k6, __m128i* k7, __m128i* k8, __m128i* k9)
{
__m128i xout0 = _mm_load_si128(memory);
__m128i xout2 = _mm_load_si128(memory + 1);
*k0 = xout0;
*k1 = xout2;
aes_genkey_sub1(&xout0, &xout2);
*k2 = xout0;
*k3 = xout2;
aes_genkey_sub2(&xout0, &xout2);
*k4 = xout0;
*k5 = xout2;
aes_genkey_sub4(&xout0, &xout2);
*k6 = xout0;
*k7 = xout2;
aes_genkey_sub8(&xout0, &xout2);
*k8 = xout0;
*k9 = xout2;
}
static inline void aes_round(__m128i key, __m128i* x0, __m128i* x1, __m128i* x2, __m128i* x3, __m128i* x4, __m128i* x5, __m128i* x6, __m128i* x7)
{
*x0 = _mm_aesenc_si128(*x0, key);
*x1 = _mm_aesenc_si128(*x1, key);
*x2 = _mm_aesenc_si128(*x2, key);
*x3 = _mm_aesenc_si128(*x3, key);
*x4 = _mm_aesenc_si128(*x4, key);
*x5 = _mm_aesenc_si128(*x5, key);
*x6 = _mm_aesenc_si128(*x6, key);
*x7 = _mm_aesenc_si128(*x7, key);
}
static inline void cn_explode_scratchpad(const __m128i* input, __m128i* output)
{
// This is more than we have registers, compiler will assign 2 keys on the stack
__m128i xin0, xin1, xin2, xin3, xin4, xin5, xin6, xin7;
__m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9;
aes_genkey(input, &k0, &k1, &k2, &k3, &k4, &k5, &k6, &k7, &k8, &k9);
xin0 = _mm_load_si128(input + 4);
xin1 = _mm_load_si128(input + 5);
xin2 = _mm_load_si128(input + 6);
xin3 = _mm_load_si128(input + 7);
xin4 = _mm_load_si128(input + 8);
xin5 = _mm_load_si128(input + 9);
xin6 = _mm_load_si128(input + 10);
xin7 = _mm_load_si128(input + 11);
for (size_t i = 0; i < MEMORY / sizeof(__m128i); i += 8) {
aes_round(k0, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k1, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k2, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k3, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k4, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k5, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k6, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k7, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k8, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k9, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
_mm_store_si128(output + i + 0, xin0);
_mm_store_si128(output + i + 1, xin1);
_mm_store_si128(output + i + 2, xin2);
_mm_store_si128(output + i + 3, xin3);
_mm_prefetch((const char*)output + i + 0, _MM_HINT_T2);
_mm_store_si128(output + i + 4, xin4);
_mm_store_si128(output + i + 5, xin5);
_mm_store_si128(output + i + 6, xin6);
_mm_store_si128(output + i + 7, xin7);
_mm_prefetch((const char*)output + i + 4, _MM_HINT_T2);
}
}
static inline void cn_implode_scratchpad(const __m128i* input, __m128i* output)
{
// This is more than we have registers, compiler will assign 2 keys on the stack
__m128i xout0, xout1, xout2, xout3, xout4, xout5, xout6, xout7;
__m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9;
aes_genkey(output + 2, &k0, &k1, &k2, &k3, &k4, &k5, &k6, &k7, &k8, &k9);
xout0 = _mm_load_si128(output + 4);
xout1 = _mm_load_si128(output + 5);
xout2 = _mm_load_si128(output + 6);
xout3 = _mm_load_si128(output + 7);
xout4 = _mm_load_si128(output + 8);
xout5 = _mm_load_si128(output + 9);
xout6 = _mm_load_si128(output + 10);
xout7 = _mm_load_si128(output + 11);
for (size_t i = 0; i < MEMORY / sizeof(__m128i); i += 8)
{
_mm_prefetch((const char*)input + i + 0, _MM_HINT_NTA);
xout0 = _mm_xor_si128(_mm_load_si128(input + i + 0), xout0);
xout1 = _mm_xor_si128(_mm_load_si128(input + i + 1), xout1);
xout2 = _mm_xor_si128(_mm_load_si128(input + i + 2), xout2);
xout3 = _mm_xor_si128(_mm_load_si128(input + i + 3), xout3);
_mm_prefetch((const char*)input + i + 4, _MM_HINT_NTA);
xout4 = _mm_xor_si128(_mm_load_si128(input + i + 4), xout4);
xout5 = _mm_xor_si128(_mm_load_si128(input + i + 5), xout5);
xout6 = _mm_xor_si128(_mm_load_si128(input + i + 6), xout6);
xout7 = _mm_xor_si128(_mm_load_si128(input + i + 7), xout7);
aes_round(k0, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k1, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k2, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k3, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k4, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k5, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k6, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k7, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k8, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k9, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
}
_mm_store_si128(output + 4, xout0);
_mm_store_si128(output + 5, xout1);
_mm_store_si128(output + 6, xout2);
_mm_store_si128(output + 7, xout3);
_mm_store_si128(output + 8, xout4);
_mm_store_si128(output + 9, xout5);
_mm_store_si128(output + 10, xout6);
_mm_store_si128(output + 11, xout7);
}
void cryptonight_av3_aesni_bmi2(const void *restrict input, size_t size, void *restrict output, struct cryptonight_ctx *restrict ctx)
{
keccak((const uint8_t *) input, size, ctx->state, 200);

View file

@ -26,193 +26,10 @@
#include <string.h>
#include "cryptonight.h"
#include "cryptonight_p.h"
#include "crypto/c_keccak.h"
#define aes_genkey_sub(imm8) \
__m128i xout1 = _mm_aeskeygenassist_si128(*xout2, (imm8)); \
xout1 = _mm_shuffle_epi32(xout1, 0xFF); \
*xout0 = sl_xor(*xout0); \
*xout0 = _mm_xor_si128(*xout0, xout1); \
xout1 = _mm_aeskeygenassist_si128(*xout0, 0x00);\
xout1 = _mm_shuffle_epi32(xout1, 0xAA); \
*xout2 = sl_xor(*xout2); \
*xout2 = _mm_xor_si128(*xout2, xout1); \
// This will shift and xor tmp1 into itself as 4 32-bit vals such as
// sl_xor(a1 a2 a3 a4) = a1 (a2^a1) (a3^a2^a1) (a4^a3^a2^a1)
static inline __m128i sl_xor(__m128i tmp1)
{
__m128i tmp4;
tmp4 = _mm_slli_si128(tmp1, 0x04);
tmp1 = _mm_xor_si128(tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
tmp1 = _mm_xor_si128(tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
tmp1 = _mm_xor_si128(tmp1, tmp4);
return tmp1;
}
static inline void aes_genkey_sub1(__m128i* xout0, __m128i* xout2)
{
aes_genkey_sub(0x1)
}
static inline void aes_genkey_sub2(__m128i* xout0, __m128i* xout2)
{
aes_genkey_sub(0x2)
}
static inline void aes_genkey_sub4(__m128i* xout0, __m128i* xout2)
{
aes_genkey_sub(0x4)
}
static inline void aes_genkey_sub8(__m128i* xout0, __m128i* xout2)
{
aes_genkey_sub(0x8)
}
static inline void aes_genkey(const __m128i* memory, __m128i* k0, __m128i* k1, __m128i* k2, __m128i* k3, __m128i* k4, __m128i* k5, __m128i* k6, __m128i* k7, __m128i* k8, __m128i* k9)
{
__m128i xout0 = _mm_load_si128(memory);
__m128i xout2 = _mm_load_si128(memory + 1);
*k0 = xout0;
*k1 = xout2;
aes_genkey_sub1(&xout0, &xout2);
*k2 = xout0;
*k3 = xout2;
aes_genkey_sub2(&xout0, &xout2);
*k4 = xout0;
*k5 = xout2;
aes_genkey_sub4(&xout0, &xout2);
*k6 = xout0;
*k7 = xout2;
aes_genkey_sub8(&xout0, &xout2);
*k8 = xout0;
*k9 = xout2;
}
static inline void aes_round(__m128i key, __m128i* x0, __m128i* x1, __m128i* x2, __m128i* x3, __m128i* x4, __m128i* x5, __m128i* x6, __m128i* x7)
{
*x0 = _mm_aesenc_si128(*x0, key);
*x1 = _mm_aesenc_si128(*x1, key);
*x2 = _mm_aesenc_si128(*x2, key);
*x3 = _mm_aesenc_si128(*x3, key);
*x4 = _mm_aesenc_si128(*x4, key);
*x5 = _mm_aesenc_si128(*x5, key);
*x6 = _mm_aesenc_si128(*x6, key);
*x7 = _mm_aesenc_si128(*x7, key);
}
static inline void cn_explode_scratchpad(const __m128i* input, __m128i* output)
{
// This is more than we have registers, compiler will assign 2 keys on the stack
__m128i xin0, xin1, xin2, xin3, xin4, xin5, xin6, xin7;
__m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9;
aes_genkey(input, &k0, &k1, &k2, &k3, &k4, &k5, &k6, &k7, &k8, &k9);
xin0 = _mm_load_si128(input + 4);
xin1 = _mm_load_si128(input + 5);
xin2 = _mm_load_si128(input + 6);
xin3 = _mm_load_si128(input + 7);
xin4 = _mm_load_si128(input + 8);
xin5 = _mm_load_si128(input + 9);
xin6 = _mm_load_si128(input + 10);
xin7 = _mm_load_si128(input + 11);
for (size_t i = 0; i < MEMORY / sizeof(__m128i); i += 8) {
aes_round(k0, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k1, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k2, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k3, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k4, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k5, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k6, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k7, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k8, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k9, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
_mm_store_si128(output + i + 0, xin0);
_mm_store_si128(output + i + 1, xin1);
_mm_store_si128(output + i + 2, xin2);
_mm_store_si128(output + i + 3, xin3);
_mm_prefetch((const char*)output + i + 0, _MM_HINT_T2);
_mm_store_si128(output + i + 4, xin4);
_mm_store_si128(output + i + 5, xin5);
_mm_store_si128(output + i + 6, xin6);
_mm_store_si128(output + i + 7, xin7);
_mm_prefetch((const char*)output + i + 4, _MM_HINT_T2);
}
}
static inline void cn_implode_scratchpad(const __m128i* input, __m128i* output)
{
// This is more than we have registers, compiler will assign 2 keys on the stack
__m128i xout0, xout1, xout2, xout3, xout4, xout5, xout6, xout7;
__m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9;
aes_genkey(output + 2, &k0, &k1, &k2, &k3, &k4, &k5, &k6, &k7, &k8, &k9);
xout0 = _mm_load_si128(output + 4);
xout1 = _mm_load_si128(output + 5);
xout2 = _mm_load_si128(output + 6);
xout3 = _mm_load_si128(output + 7);
xout4 = _mm_load_si128(output + 8);
xout5 = _mm_load_si128(output + 9);
xout6 = _mm_load_si128(output + 10);
xout7 = _mm_load_si128(output + 11);
for (size_t i = 0; i < MEMORY / sizeof(__m128i); i += 8)
{
_mm_prefetch((const char*)input + i + 0, _MM_HINT_NTA);
xout0 = _mm_xor_si128(_mm_load_si128(input + i + 0), xout0);
xout1 = _mm_xor_si128(_mm_load_si128(input + i + 1), xout1);
xout2 = _mm_xor_si128(_mm_load_si128(input + i + 2), xout2);
xout3 = _mm_xor_si128(_mm_load_si128(input + i + 3), xout3);
_mm_prefetch((const char*)input + i + 4, _MM_HINT_NTA);
xout4 = _mm_xor_si128(_mm_load_si128(input + i + 4), xout4);
xout5 = _mm_xor_si128(_mm_load_si128(input + i + 5), xout5);
xout6 = _mm_xor_si128(_mm_load_si128(input + i + 6), xout6);
xout7 = _mm_xor_si128(_mm_load_si128(input + i + 7), xout7);
aes_round(k0, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k1, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k2, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k3, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k4, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k5, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k6, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k7, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k8, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k9, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
}
_mm_store_si128(output + 4, xout0);
_mm_store_si128(output + 5, xout1);
_mm_store_si128(output + 6, xout2);
_mm_store_si128(output + 7, xout3);
_mm_store_si128(output + 8, xout4);
_mm_store_si128(output + 9, xout5);
_mm_store_si128(output + 10, xout6);
_mm_store_si128(output + 11, xout7);
}
void cryptonight_av5_aesni_experimental(const void *restrict input, size_t size, void *restrict output, struct cryptonight_ctx *restrict ctx)
{
const uint8_t* memory = ctx->memory;

View file

@ -0,0 +1,215 @@
/* XMRig
* Copyright 2010 Jeff Garzik <jgarzik@pobox.com>
* Copyright 2012-2014 pooler <pooler@litecoinpool.org>
* Copyright 2014 Lucas Jones <https://github.com/lucasjones>
* Copyright 2014-2016 Wolf9466 <https://github.com/OhGodAPet>
* Copyright 2016 Jay D Dee <jayddee246@gmail.com>
* Copyright 2017 fireice-uk <https://github.com/fireice-uk>
* Copyright 2016-2017 XMRig <support@xmrig.com>
*
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __CRYPTONIGHT_P_H__
#define __CRYPTONIGHT_P_H__
#include <x86intrin.h>
#define aes_genkey_sub(imm8) \
__m128i xout1 = _mm_aeskeygenassist_si128(*xout2, (imm8)); \
xout1 = _mm_shuffle_epi32(xout1, 0xFF); \
*xout0 = sl_xor(*xout0); \
*xout0 = _mm_xor_si128(*xout0, xout1); \
xout1 = _mm_aeskeygenassist_si128(*xout0, 0x00);\
xout1 = _mm_shuffle_epi32(xout1, 0xAA); \
*xout2 = sl_xor(*xout2); \
*xout2 = _mm_xor_si128(*xout2, xout1); \
// This will shift and xor tmp1 into itself as 4 32-bit vals such as
// sl_xor(a1 a2 a3 a4) = a1 (a2^a1) (a3^a2^a1) (a4^a3^a2^a1)
inline __m128i sl_xor(__m128i tmp1)
{
__m128i tmp4;
tmp4 = _mm_slli_si128(tmp1, 0x04);
tmp1 = _mm_xor_si128(tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
tmp1 = _mm_xor_si128(tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
tmp1 = _mm_xor_si128(tmp1, tmp4);
return tmp1;
}
inline void aes_genkey_sub1(__m128i* xout0, __m128i* xout2)
{
aes_genkey_sub(0x1)
}
inline void aes_genkey_sub2(__m128i* xout0, __m128i* xout2)
{
aes_genkey_sub(0x2)
}
inline void aes_genkey_sub4(__m128i* xout0, __m128i* xout2)
{
aes_genkey_sub(0x4)
}
inline void aes_genkey_sub8(__m128i* xout0, __m128i* xout2)
{
aes_genkey_sub(0x8)
}
inline void aes_round(__m128i key, __m128i* x0, __m128i* x1, __m128i* x2, __m128i* x3, __m128i* x4, __m128i* x5, __m128i* x6, __m128i* x7)
{
*x0 = _mm_aesenc_si128(*x0, key);
*x1 = _mm_aesenc_si128(*x1, key);
*x2 = _mm_aesenc_si128(*x2, key);
*x3 = _mm_aesenc_si128(*x3, key);
*x4 = _mm_aesenc_si128(*x4, key);
*x5 = _mm_aesenc_si128(*x5, key);
*x6 = _mm_aesenc_si128(*x6, key);
*x7 = _mm_aesenc_si128(*x7, key);
}
inline void aes_genkey(const __m128i* memory, __m128i* k0, __m128i* k1, __m128i* k2, __m128i* k3, __m128i* k4, __m128i* k5, __m128i* k6, __m128i* k7, __m128i* k8, __m128i* k9)
{
__m128i xout0 = _mm_load_si128(memory);
__m128i xout2 = _mm_load_si128(memory + 1);
*k0 = xout0;
*k1 = xout2;
aes_genkey_sub1(&xout0, &xout2);
*k2 = xout0;
*k3 = xout2;
aes_genkey_sub2(&xout0, &xout2);
*k4 = xout0;
*k5 = xout2;
aes_genkey_sub4(&xout0, &xout2);
*k6 = xout0;
*k7 = xout2;
aes_genkey_sub8(&xout0, &xout2);
*k8 = xout0;
*k9 = xout2;
}
inline void cn_explode_scratchpad(const __m128i* input, __m128i* output)
{
// This is more than we have registers, compiler will assign 2 keys on the stack
__m128i xin0, xin1, xin2, xin3, xin4, xin5, xin6, xin7;
__m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9;
aes_genkey(input, &k0, &k1, &k2, &k3, &k4, &k5, &k6, &k7, &k8, &k9);
xin0 = _mm_load_si128(input + 4);
xin1 = _mm_load_si128(input + 5);
xin2 = _mm_load_si128(input + 6);
xin3 = _mm_load_si128(input + 7);
xin4 = _mm_load_si128(input + 8);
xin5 = _mm_load_si128(input + 9);
xin6 = _mm_load_si128(input + 10);
xin7 = _mm_load_si128(input + 11);
for (size_t i = 0; __builtin_expect(i < MEMORY / sizeof(__m128i), 1); i += 8) {
aes_round(k0, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k1, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k2, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k3, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k4, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k5, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k6, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k7, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k8, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k9, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
_mm_store_si128(output + i + 0, xin0);
_mm_store_si128(output + i + 1, xin1);
_mm_store_si128(output + i + 2, xin2);
_mm_store_si128(output + i + 3, xin3);
_mm_prefetch((const char*)output + i + 0, _MM_HINT_T2);
_mm_store_si128(output + i + 4, xin4);
_mm_store_si128(output + i + 5, xin5);
_mm_store_si128(output + i + 6, xin6);
_mm_store_si128(output + i + 7, xin7);
_mm_prefetch((const char*)output + i + 4, _MM_HINT_T2);
}
}
inline void cn_implode_scratchpad(const __m128i* input, __m128i* output)
{
// This is more than we have registers, compiler will assign 2 keys on the stack
__m128i xout0, xout1, xout2, xout3, xout4, xout5, xout6, xout7;
__m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9;
aes_genkey(output + 2, &k0, &k1, &k2, &k3, &k4, &k5, &k6, &k7, &k8, &k9);
xout0 = _mm_load_si128(output + 4);
xout1 = _mm_load_si128(output + 5);
xout2 = _mm_load_si128(output + 6);
xout3 = _mm_load_si128(output + 7);
xout4 = _mm_load_si128(output + 8);
xout5 = _mm_load_si128(output + 9);
xout6 = _mm_load_si128(output + 10);
xout7 = _mm_load_si128(output + 11);
for (size_t i = 0; __builtin_expect(i < MEMORY / sizeof(__m128i), 1); i += 8)
{
_mm_prefetch((const char*)input + i + 0, _MM_HINT_NTA);
xout0 = _mm_xor_si128(_mm_load_si128(input + i + 0), xout0);
xout1 = _mm_xor_si128(_mm_load_si128(input + i + 1), xout1);
xout2 = _mm_xor_si128(_mm_load_si128(input + i + 2), xout2);
xout3 = _mm_xor_si128(_mm_load_si128(input + i + 3), xout3);
_mm_prefetch((const char*)input + i + 4, _MM_HINT_NTA);
xout4 = _mm_xor_si128(_mm_load_si128(input + i + 4), xout4);
xout5 = _mm_xor_si128(_mm_load_si128(input + i + 5), xout5);
xout6 = _mm_xor_si128(_mm_load_si128(input + i + 6), xout6);
xout7 = _mm_xor_si128(_mm_load_si128(input + i + 7), xout7);
aes_round(k0, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k1, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k2, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k3, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k4, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k5, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k6, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k7, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k8, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k9, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
}
_mm_store_si128(output + 4, xout0);
_mm_store_si128(output + 5, xout1);
_mm_store_si128(output + 6, xout2);
_mm_store_si128(output + 7, xout3);
_mm_store_si128(output + 8, xout4);
_mm_store_si128(output + 9, xout5);
_mm_store_si128(output + 10, xout6);
_mm_store_si128(output + 11, xout7);
}
#endif /* __CRYPTONIGHT_P_H__ */