mirror of
https://github.com/xmrig/xmrig.git
synced 2025-01-12 05:44:52 +00:00
up to 20% perf increase with Cryptonight with non-AES CPU
This time, the performance increase is got with MSVC and GCC. On non-AES CPU, there were an useless load/store SSE2 register. The last MSVC "hack" is replaced by a portable code and he's more complete (a load is saved). On my C2Q6600, with 3 thread, I have +16% with MSVC2015 and +20% with GCC 7.3, compared to official 2.4.4 version.
This commit is contained in:
parent
15fe6ce23f
commit
9a28ad590c
3 changed files with 52 additions and 57 deletions
|
@ -194,14 +194,14 @@ template<bool SOFT_AES>
|
||||||
static inline void aes_round(__m128i key, __m128i* x0, __m128i* x1, __m128i* x2, __m128i* x3, __m128i* x4, __m128i* x5, __m128i* x6, __m128i* x7)
|
static inline void aes_round(__m128i key, __m128i* x0, __m128i* x1, __m128i* x2, __m128i* x3, __m128i* x4, __m128i* x5, __m128i* x6, __m128i* x7)
|
||||||
{
|
{
|
||||||
if (SOFT_AES) {
|
if (SOFT_AES) {
|
||||||
*x0 = soft_aesenc(*x0, key);
|
*x0 = soft_aesenc((uint32_t*)x0, key);
|
||||||
*x1 = soft_aesenc(*x1, key);
|
*x1 = soft_aesenc((uint32_t*)x1, key);
|
||||||
*x2 = soft_aesenc(*x2, key);
|
*x2 = soft_aesenc((uint32_t*)x2, key);
|
||||||
*x3 = soft_aesenc(*x3, key);
|
*x3 = soft_aesenc((uint32_t*)x3, key);
|
||||||
*x4 = soft_aesenc(*x4, key);
|
*x4 = soft_aesenc((uint32_t*)x4, key);
|
||||||
*x5 = soft_aesenc(*x5, key);
|
*x5 = soft_aesenc((uint32_t*)x5, key);
|
||||||
*x6 = soft_aesenc(*x6, key);
|
*x6 = soft_aesenc((uint32_t*)x6, key);
|
||||||
*x7 = soft_aesenc(*x7, key);
|
*x7 = soft_aesenc((uint32_t*)x7, key);
|
||||||
}
|
}
|
||||||
# ifndef XMRIG_ARMv7
|
# ifndef XMRIG_ARMv7
|
||||||
else {
|
else {
|
||||||
|
@ -361,12 +361,13 @@ inline void cryptonight_hash(const void *__restrict__ input, size_t size, void *
|
||||||
uint64_t idx0 = h0[0] ^ h0[4];
|
uint64_t idx0 = h0[0] ^ h0[4];
|
||||||
|
|
||||||
for (size_t i = 0; i < ITERATIONS; i++) {
|
for (size_t i = 0; i < ITERATIONS; i++) {
|
||||||
__m128i cx = _mm_load_si128((__m128i *) &l0[idx0 & MASK]);
|
__m128i cx;
|
||||||
|
|
||||||
if (SOFT_AES) {
|
if (SOFT_AES) {
|
||||||
cx = soft_aesenc(cx, _mm_set_epi64x(ah0, al0));
|
cx = soft_aesenc((uint32_t*)&l0[idx0 & MASK], _mm_set_epi64x(ah0, al0));
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
|
cx = _mm_load_si128((__m128i *) &l0[idx0 & MASK]);
|
||||||
# ifndef XMRIG_ARMv7
|
# ifndef XMRIG_ARMv7
|
||||||
cx = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah0, al0);
|
cx = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah0, al0);
|
||||||
# endif
|
# endif
|
||||||
|
@ -425,14 +426,15 @@ inline void cryptonight_double_hash(const void *__restrict__ input, size_t size,
|
||||||
uint64_t idx1 = h1[0] ^ h1[4];
|
uint64_t idx1 = h1[0] ^ h1[4];
|
||||||
|
|
||||||
for (size_t i = 0; i < ITERATIONS; i++) {
|
for (size_t i = 0; i < ITERATIONS; i++) {
|
||||||
__m128i cx0 = _mm_load_si128((__m128i *) &l0[idx0 & MASK]);
|
__m128i cx0, cx1;
|
||||||
__m128i cx1 = _mm_load_si128((__m128i *) &l1[idx1 & MASK]);
|
|
||||||
|
|
||||||
if (SOFT_AES) {
|
if (SOFT_AES) {
|
||||||
cx0 = soft_aesenc(cx0, _mm_set_epi64x(ah0, al0));
|
cx0 = soft_aesenc((uint32_t*)&l0[idx0 & MASK], _mm_set_epi64x(ah0, al0));
|
||||||
cx1 = soft_aesenc(cx1, _mm_set_epi64x(ah1, al1));
|
cx1 = soft_aesenc((uint32_t*)&l1[idx1 & MASK], _mm_set_epi64x(ah1, al1));
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
|
cx0 = _mm_load_si128((__m128i *) &l0[idx0 & MASK]);
|
||||||
|
cx1 = _mm_load_si128((__m128i *) &l1[idx1 & MASK]);
|
||||||
# ifndef XMRIG_ARMv7
|
# ifndef XMRIG_ARMv7
|
||||||
cx0 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx0, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah0, al0);
|
cx0 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx0, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah0, al0);
|
||||||
cx1 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx1, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah1, al1);
|
cx1 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx1, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah1, al1);
|
||||||
|
|
|
@ -193,14 +193,14 @@ template<bool SOFT_AES>
|
||||||
static inline void aes_round(__m128i key, __m128i* x0, __m128i* x1, __m128i* x2, __m128i* x3, __m128i* x4, __m128i* x5, __m128i* x6, __m128i* x7)
|
static inline void aes_round(__m128i key, __m128i* x0, __m128i* x1, __m128i* x2, __m128i* x3, __m128i* x4, __m128i* x5, __m128i* x6, __m128i* x7)
|
||||||
{
|
{
|
||||||
if (SOFT_AES) {
|
if (SOFT_AES) {
|
||||||
*x0 = soft_aesenc(*x0, key);
|
*x0 = soft_aesenc((uint32_t*)x0, key);
|
||||||
*x1 = soft_aesenc(*x1, key);
|
*x1 = soft_aesenc((uint32_t*)x1, key);
|
||||||
*x2 = soft_aesenc(*x2, key);
|
*x2 = soft_aesenc((uint32_t*)x2, key);
|
||||||
*x3 = soft_aesenc(*x3, key);
|
*x3 = soft_aesenc((uint32_t*)x3, key);
|
||||||
*x4 = soft_aesenc(*x4, key);
|
*x4 = soft_aesenc((uint32_t*)x4, key);
|
||||||
*x5 = soft_aesenc(*x5, key);
|
*x5 = soft_aesenc((uint32_t*)x5, key);
|
||||||
*x6 = soft_aesenc(*x6, key);
|
*x6 = soft_aesenc((uint32_t*)x6, key);
|
||||||
*x7 = soft_aesenc(*x7, key);
|
*x7 = soft_aesenc((uint32_t*)x7, key);
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
*x0 = _mm_aesenc_si128(*x0, key);
|
*x0 = _mm_aesenc_si128(*x0, key);
|
||||||
|
@ -324,19 +324,18 @@ inline void cryptonight_hash(const void *__restrict__ input, size_t size, void *
|
||||||
uint64_t idx0 = h0[0] ^ h0[4];
|
uint64_t idx0 = h0[0] ^ h0[4];
|
||||||
|
|
||||||
for (size_t i = 0; i < ITERATIONS; i++) {
|
for (size_t i = 0; i < ITERATIONS; i++) {
|
||||||
__m128i cx;
|
__m128i cx;
|
||||||
cx = _mm_load_si128((__m128i *) &l0[idx0 & MASK]);
|
|
||||||
|
|
||||||
if (SOFT_AES) {
|
if (SOFT_AES) {
|
||||||
cx = soft_aesenc(cx, _mm_set_epi64x(ah0, al0));
|
cx = soft_aesenc((uint32_t*)&l0[idx0 & MASK], _mm_set_epi64x(ah0, al0));
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
cx = _mm_aesenc_si128(cx, _mm_set_epi64x(ah0, al0));
|
cx = _mm_load_si128((__m128i *) &l0[idx0 & MASK]);
|
||||||
}
|
cx = _mm_aesenc_si128(cx, _mm_set_epi64x(ah0, al0));
|
||||||
|
}
|
||||||
_mm_store_si128((__m128i *) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx));
|
_mm_store_si128((__m128i *) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx));
|
||||||
idx0 = EXTRACT64(cx);
|
idx0 = EXTRACT64(cx);
|
||||||
bx0 = cx;
|
bx0 = cx;
|
||||||
|
|
||||||
uint64_t hi, lo, cl, ch;
|
uint64_t hi, lo, cl, ch;
|
||||||
cl = ((uint64_t*) &l0[idx0 & MASK])[0];
|
cl = ((uint64_t*) &l0[idx0 & MASK])[0];
|
||||||
|
@ -386,18 +385,19 @@ inline void cryptonight_double_hash(const void *__restrict__ input, size_t size,
|
||||||
uint64_t idx0 = h0[0] ^ h0[4];
|
uint64_t idx0 = h0[0] ^ h0[4];
|
||||||
uint64_t idx1 = h1[0] ^ h1[4];
|
uint64_t idx1 = h1[0] ^ h1[4];
|
||||||
|
|
||||||
for (size_t i = 0; i < ITERATIONS; i++) {
|
for (size_t i = 0; i < ITERATIONS; i++) {
|
||||||
__m128i cx0 = _mm_load_si128((__m128i *) &l0[idx0 & MASK]);
|
__m128i cx0, cx1;
|
||||||
__m128i cx1 = _mm_load_si128((__m128i *) &l1[idx1 & MASK]);
|
|
||||||
|
|
||||||
if (SOFT_AES) {
|
if (SOFT_AES) {
|
||||||
cx0 = soft_aesenc(cx0, _mm_set_epi64x(ah0, al0));
|
cx0 = soft_aesenc((uint32_t*)&l0[idx0 & MASK], _mm_set_epi64x(ah0, al0));
|
||||||
cx1 = soft_aesenc(cx1, _mm_set_epi64x(ah1, al1));
|
cx1 = soft_aesenc((uint32_t*)&l1[idx1 & MASK], _mm_set_epi64x(ah1, al1));
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
cx0 = _mm_aesenc_si128(cx0, _mm_set_epi64x(ah0, al0));
|
cx0 = _mm_load_si128((__m128i *) &l0[idx0 & MASK]);
|
||||||
cx1 = _mm_aesenc_si128(cx1, _mm_set_epi64x(ah1, al1));
|
cx1 = _mm_load_si128((__m128i *) &l1[idx1 & MASK]);
|
||||||
}
|
cx0 = _mm_aesenc_si128(cx0, _mm_set_epi64x(ah0, al0));
|
||||||
|
cx1 = _mm_aesenc_si128(cx1, _mm_set_epi64x(ah1, al1));
|
||||||
|
}
|
||||||
|
|
||||||
_mm_store_si128((__m128i *) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0));
|
_mm_store_si128((__m128i *) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0));
|
||||||
_mm_store_si128((__m128i *) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1));
|
_mm_store_si128((__m128i *) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1));
|
||||||
|
|
|
@ -89,19 +89,12 @@
|
||||||
alignas(16) const uint32_t saes_table[4][256] = { saes_data(saes_u0), saes_data(saes_u1), saes_data(saes_u2), saes_data(saes_u3) };
|
alignas(16) const uint32_t saes_table[4][256] = { saes_data(saes_u0), saes_data(saes_u1), saes_data(saes_u2), saes_data(saes_u3) };
|
||||||
alignas(16) const uint8_t saes_sbox[256] = saes_data(saes_h0);
|
alignas(16) const uint8_t saes_sbox[256] = saes_data(saes_h0);
|
||||||
|
|
||||||
static inline __m128i soft_aesenc(__m128i in, __m128i key)
|
static inline __m128i soft_aesenc(const uint32_t* in, __m128i key)
|
||||||
{
|
{
|
||||||
#if defined(_MSC_VER)
|
const uint32_t x0 = in[0];
|
||||||
const uint32_t x0 = in.m128i_u32[0];
|
const uint32_t x1 = in[1];
|
||||||
const uint32_t x1 = in.m128i_u32[1];
|
const uint32_t x2 = in[2];
|
||||||
const uint32_t x2 = in.m128i_u32[2];
|
const uint32_t x3 = in[3];
|
||||||
const uint32_t x3 = in.m128i_u32[3];
|
|
||||||
#else
|
|
||||||
const uint32_t x0 = _mm_cvtsi128_si32(in);
|
|
||||||
const uint32_t x1 = _mm_cvtsi128_si32(_mm_shuffle_epi32(in, 0x55));
|
|
||||||
const uint32_t x2 = _mm_cvtsi128_si32(_mm_shuffle_epi32(in, 0xAA));
|
|
||||||
const uint32_t x3 = _mm_cvtsi128_si32(_mm_shuffle_epi32(in, 0xFF));
|
|
||||||
#endif
|
|
||||||
|
|
||||||
__m128i out = _mm_set_epi32(
|
__m128i out = _mm_set_epi32(
|
||||||
(saes_table[0][x3 & 0xff] ^ saes_table[1][(x0 >> 8) & 0xff] ^ saes_table[2][(x1 >> 16) & 0xff] ^ saes_table[3][x2 >> 24]),
|
(saes_table[0][x3 & 0xff] ^ saes_table[1][(x0 >> 8) & 0xff] ^ saes_table[2][(x1 >> 16) & 0xff] ^ saes_table[3][x2 >> 24]),
|
||||||
|
|
Loading…
Reference in a new issue