Merge pull request #2089 from SChernykh/dev

Optimized cn-heavy for Zen3
This commit is contained in:
xmrig 2021-02-08 16:24:16 +07:00 committed by GitHub
commit 91151ce4a1
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
8 changed files with 208 additions and 83 deletions

View file

@ -81,6 +81,7 @@ public:
inline void start(const std::vector<CpuLaunchData> &threads, size_t memory)
{
m_workersMemory.clear();
m_hugePages.reset();
m_memory = memory;
m_started = 0;
@ -95,8 +96,10 @@ public:
if (ready) {
m_started++;
m_hugePages += worker->memory()->hugePages();
m_ways += worker->intensity();
if (m_workersMemory.insert(worker->memory()).second) {
m_hugePages += worker->memory()->hugePages();
}
m_ways += worker->intensity();
}
else {
m_errors++;
@ -126,6 +129,7 @@ public:
}
private:
std::set<const VirtualMemory*> m_workersMemory;
HugePagesInfo m_hugePages;
size_t m_errors = 0;
size_t m_memory = 0;

View file

@ -103,7 +103,7 @@ rapidjson::Value xmrig::CpuConfig::toJSON(rapidjson::Document &doc) const
size_t xmrig::CpuConfig::memPoolSize() const
{
return m_memoryPool < 0 ? Cpu::info()->threads() : m_memoryPool;
return m_memoryPool < 0 ? std::max(Cpu::info()->threads(), Cpu::info()->L3() >> 21) : m_memoryPool;
}

View file

@ -19,8 +19,10 @@
#include <cassert>
#include <thread>
#include <mutex>
#include "backend/cpu/Cpu.h"
#include "backend/cpu/CpuWorker.h"
#include "base/tools/Chrono.h"
#include "core/config/Config.h"
@ -55,6 +57,12 @@ namespace xmrig {
static constexpr uint32_t kReserveCount = 32768;
#ifdef XMRIG_ALGO_CN_HEAVY
static std::mutex cn_heavyZen3MemoryMutex;
VirtualMemory* cn_heavyZen3Memory = nullptr;
#endif
} // namespace xmrig
@ -73,7 +81,20 @@ xmrig::CpuWorker<N>::CpuWorker(size_t id, const CpuLaunchData &data) :
m_threads(data.threads),
m_ctx()
{
m_memory = new VirtualMemory(m_algorithm.l3() * N, data.hugePages, false, true, node());
# ifdef XMRIG_ALGO_CN_HEAVY
// cn-heavy optimization for Zen3 CPUs
if ((N == 1) && (m_av == CnHash::AV_SINGLE) && (m_algorithm.family() == Algorithm::CN_HEAVY) && (Cpu::info()->arch() == ICpuInfo::ARCH_ZEN3)) {
std::lock_guard<std::mutex> lock(cn_heavyZen3MemoryMutex);
if (!cn_heavyZen3Memory) {
cn_heavyZen3Memory = new VirtualMemory(m_algorithm.l3() * m_threads, data.hugePages, false, false, node());
}
m_memory = cn_heavyZen3Memory;
}
else
# endif
{
m_memory = new VirtualMemory(m_algorithm.l3() * N, data.hugePages, false, true, node());
}
}
@ -85,7 +106,13 @@ xmrig::CpuWorker<N>::~CpuWorker()
# endif
CnCtx::release(m_ctx, N);
delete m_memory;
# ifdef XMRIG_ALGO_CN_HEAVY
if (m_memory != cn_heavyZen3Memory)
# endif
{
delete m_memory;
}
}
@ -387,7 +414,16 @@ template<size_t N>
void xmrig::CpuWorker<N>::allocateCnCtx()
{
if (m_ctx[0] == nullptr) {
CnCtx::create(m_ctx, m_memory->scratchpad(), m_algorithm.l3(), N);
int shift = 0;
# ifdef XMRIG_ALGO_CN_HEAVY
// cn-heavy optimization for Zen3 CPUs
if (m_memory == cn_heavyZen3Memory) {
shift = (id() / 8) * m_algorithm.l3() * 8 + (id() % 8) * 64;
}
# endif
CnCtx::create(m_ctx, m_memory->scratchpad() + shift, m_algorithm.l3(), N);
}
}

View file

@ -363,10 +363,14 @@ void xmrig::HwlocCpuInfo::processTopLevelCache(hwloc_obj_t cache, const Algorith
return;
}
std::vector<std::pair<int64_t, int32_t>> threads_data;
threads_data.reserve(cores.size());
size_t pu_id = 0;
while (cacheHashes > 0 && PUs > 0) {
bool allocated_pu = false;
threads_data.clear();
for (hwloc_obj_t core : cores) {
const std::vector<hwloc_obj_t> units = findByType(core, HWLOC_OBJ_PU);
if (units.size() <= pu_id) {
@ -377,18 +381,31 @@ void xmrig::HwlocCpuInfo::processTopLevelCache(hwloc_obj_t cache, const Algorith
PUs--;
allocated_pu = true;
threads.add(units[pu_id]->os_index, intensity);
threads_data.emplace_back(units[pu_id]->os_index, intensity);
if (cacheHashes == 0) {
break;
}
}
// Reversing of "threads_data" and "cores" is done to fill in virtual cores starting from the last one, but still in order
// For example, cn-heavy threads on 6-core Zen2/Zen3 will have affinity [0,2,4,6,8,10,9,11]
// This is important for Zen3 cn-heavy optimization
if (pu_id & 1) {
std::reverse(threads_data.begin(), threads_data.end());
}
for (const auto& t : threads_data) {
threads.add(t.first, t.second);
}
if (!allocated_pu) {
break;
}
pu_id++;
std::reverse(cores.begin(), cores.end());
}
# endif
}

View file

@ -49,15 +49,15 @@
#define ADD_FN(algo) \
m_map[algo][AV_SINGLE][Assembly::NONE] = cryptonight_single_hash<algo, false>; \
m_map[algo][AV_SINGLE_SOFT][Assembly::NONE] = cryptonight_single_hash<algo, true>; \
m_map[algo][AV_DOUBLE][Assembly::NONE] = cryptonight_double_hash<algo, false>; \
m_map[algo][AV_DOUBLE_SOFT][Assembly::NONE] = cryptonight_double_hash<algo, true>; \
m_map[algo][AV_TRIPLE][Assembly::NONE] = cryptonight_triple_hash<algo, false>; \
m_map[algo][AV_TRIPLE_SOFT][Assembly::NONE] = cryptonight_triple_hash<algo, true>; \
m_map[algo][AV_QUAD][Assembly::NONE] = cryptonight_quad_hash<algo, false>; \
m_map[algo][AV_QUAD_SOFT][Assembly::NONE] = cryptonight_quad_hash<algo, true>; \
m_map[algo][AV_PENTA][Assembly::NONE] = cryptonight_penta_hash<algo, false>; \
m_map[algo][AV_SINGLE][Assembly::NONE] = cryptonight_single_hash<algo, false, 0>; \
m_map[algo][AV_SINGLE_SOFT][Assembly::NONE] = cryptonight_single_hash<algo, true, 0>; \
m_map[algo][AV_DOUBLE][Assembly::NONE] = cryptonight_double_hash<algo, false>; \
m_map[algo][AV_DOUBLE_SOFT][Assembly::NONE] = cryptonight_double_hash<algo, true>; \
m_map[algo][AV_TRIPLE][Assembly::NONE] = cryptonight_triple_hash<algo, false>; \
m_map[algo][AV_TRIPLE_SOFT][Assembly::NONE] = cryptonight_triple_hash<algo, true>; \
m_map[algo][AV_QUAD][Assembly::NONE] = cryptonight_quad_hash<algo, false>; \
m_map[algo][AV_QUAD_SOFT][Assembly::NONE] = cryptonight_quad_hash<algo, true>; \
m_map[algo][AV_PENTA][Assembly::NONE] = cryptonight_penta_hash<algo, false>; \
m_map[algo][AV_PENTA_SOFT][Assembly::NONE] = cryptonight_penta_hash<algo, true>;
@ -298,6 +298,22 @@ xmrig::cn_hash_fun xmrig::CnHash::fn(const Algorithm &algorithm, AlgoVariant av,
return nullptr;
}
# ifdef XMRIG_ALGO_CN_HEAVY
// cn-heavy optimization for Zen3 CPUs
if ((av == AV_SINGLE) && (xmrig::Cpu::info()->arch() == xmrig::ICpuInfo::ARCH_ZEN3)) {
switch (algorithm.id()) {
case xmrig::Algorithm::CN_HEAVY_0:
return cryptonight_single_hash<xmrig::Algorithm::CN_HEAVY_0, false, 3>;
case xmrig::Algorithm::CN_HEAVY_TUBE:
return cryptonight_single_hash<xmrig::Algorithm::CN_HEAVY_TUBE, false, 3>;
case xmrig::Algorithm::CN_HEAVY_XHV:
return cryptonight_single_hash<xmrig::Algorithm::CN_HEAVY_XHV, false, 3>;
default:
break;
}
}
# endif
# ifdef XMRIG_FEATURE_ASM
cn_hash_fun fun = cnHash.m_map[algorithm][av][Cpu::assembly(assembly)];
if (fun) {

View file

@ -431,7 +431,7 @@ static inline void cryptonight_conceal_tweak(__m128i& cx, __m128& conc_var)
}
template<Algorithm::Id ALGO, bool SOFT_AES>
template<Algorithm::Id ALGO, bool SOFT_AES, int interleave>
inline void cryptonight_single_hash(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, cryptonight_ctx **__restrict__ ctx, uint64_t height)
{
constexpr CnAlgo<ALGO> props;

View file

@ -306,7 +306,21 @@ inline void mix_and_propagate(__m128i& x0, __m128i& x1, __m128i& x2, __m128i& x3
namespace xmrig {
template<Algorithm::Id ALGO, bool SOFT_AES>
template<int interleave>
static inline constexpr uint64_t interleaved_index(uint64_t k)
{
return ((k & ~63ULL) << interleave) | (k & 63);
}
template<>
inline constexpr uint64_t interleaved_index<0>(uint64_t k)
{
return k;
}
template<Algorithm::Id ALGO, bool SOFT_AES, int interleave>
static inline void cn_explode_scratchpad(const __m128i *input, __m128i *output)
{
constexpr CnAlgo<ALGO> props;
@ -343,6 +357,11 @@ static inline void cn_explode_scratchpad(const __m128i *input, __m128i *output)
}
for (size_t i = 0; i < props.memory() / sizeof(__m128i); i += 8) {
if (interleave > 0) {
_mm_prefetch((const char*)(output), _MM_HINT_T0);
_mm_prefetch((const char*)(output + (64 << interleave) / sizeof(__m128i)), _MM_HINT_T0);
}
aes_round<SOFT_AES>(k0, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k1, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k2, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
@ -354,19 +373,21 @@ static inline void cn_explode_scratchpad(const __m128i *input, __m128i *output)
aes_round<SOFT_AES>(k8, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k9, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
_mm_store_si128(output + i + 0, xin0);
_mm_store_si128(output + i + 1, xin1);
_mm_store_si128(output + i + 2, xin2);
_mm_store_si128(output + i + 3, xin3);
_mm_store_si128(output + i + 4, xin4);
_mm_store_si128(output + i + 5, xin5);
_mm_store_si128(output + i + 6, xin6);
_mm_store_si128(output + i + 7, xin7);
_mm_store_si128(output + 0, xin0);
_mm_store_si128(output + 1, xin1);
_mm_store_si128(output + 2, xin2);
_mm_store_si128(output + 3, xin3);
output += (64 << interleave) / sizeof(__m128i);
_mm_store_si128(output + 0, xin4);
_mm_store_si128(output + 1, xin5);
_mm_store_si128(output + 2, xin6);
_mm_store_si128(output + 3, xin7);
output += (64 << interleave) / sizeof(__m128i);
}
}
template<Algorithm::Id ALGO, bool SOFT_AES>
template<Algorithm::Id ALGO, bool SOFT_AES, int interleave>
static inline void cn_implode_scratchpad(const __m128i *input, __m128i *output)
{
constexpr CnAlgo<ALGO> props;
@ -387,15 +408,25 @@ static inline void cn_implode_scratchpad(const __m128i *input, __m128i *output)
xout6 = _mm_load_si128(output + 10);
xout7 = _mm_load_si128(output + 11);
for (size_t i = 0; i < props.memory() / sizeof(__m128i); i += 8) {
xout0 = _mm_xor_si128(_mm_load_si128(input + i + 0), xout0);
xout1 = _mm_xor_si128(_mm_load_si128(input + i + 1), xout1);
xout2 = _mm_xor_si128(_mm_load_si128(input + i + 2), xout2);
xout3 = _mm_xor_si128(_mm_load_si128(input + i + 3), xout3);
xout4 = _mm_xor_si128(_mm_load_si128(input + i + 4), xout4);
xout5 = _mm_xor_si128(_mm_load_si128(input + i + 5), xout5);
xout6 = _mm_xor_si128(_mm_load_si128(input + i + 6), xout6);
xout7 = _mm_xor_si128(_mm_load_si128(input + i + 7), xout7);
const __m128i* input_begin = input;
for (size_t i = 0; i < props.memory() / sizeof(__m128i);) {
xout0 = _mm_xor_si128(_mm_load_si128(input + 0), xout0);
xout1 = _mm_xor_si128(_mm_load_si128(input + 1), xout1);
xout2 = _mm_xor_si128(_mm_load_si128(input + 2), xout2);
xout3 = _mm_xor_si128(_mm_load_si128(input + 3), xout3);
input += (64 << interleave) / sizeof(__m128i);
xout4 = _mm_xor_si128(_mm_load_si128(input + 0), xout4);
xout5 = _mm_xor_si128(_mm_load_si128(input + 1), xout5);
xout6 = _mm_xor_si128(_mm_load_si128(input + 2), xout6);
xout7 = _mm_xor_si128(_mm_load_si128(input + 3), xout7);
input += (64 << interleave) / sizeof(__m128i);
i += 8;
if ((interleave > 0) && (i < props.memory() / sizeof(__m128i))) {
_mm_prefetch((const char*)(input), _MM_HINT_T0);
_mm_prefetch((const char*)(input + (64 << interleave) / sizeof(__m128i)), _MM_HINT_T0);
}
aes_round<SOFT_AES>(k0, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k1, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
@ -414,15 +445,25 @@ static inline void cn_implode_scratchpad(const __m128i *input, __m128i *output)
}
if (IS_HEAVY) {
for (size_t i = 0; i < props.memory() / sizeof(__m128i); i += 8) {
xout0 = _mm_xor_si128(_mm_load_si128(input + i + 0), xout0);
xout1 = _mm_xor_si128(_mm_load_si128(input + i + 1), xout1);
xout2 = _mm_xor_si128(_mm_load_si128(input + i + 2), xout2);
xout3 = _mm_xor_si128(_mm_load_si128(input + i + 3), xout3);
xout4 = _mm_xor_si128(_mm_load_si128(input + i + 4), xout4);
xout5 = _mm_xor_si128(_mm_load_si128(input + i + 5), xout5);
xout6 = _mm_xor_si128(_mm_load_si128(input + i + 6), xout6);
xout7 = _mm_xor_si128(_mm_load_si128(input + i + 7), xout7);
input = input_begin;
for (size_t i = 0; i < props.memory() / sizeof(__m128i);) {
xout0 = _mm_xor_si128(_mm_load_si128(input + 0), xout0);
xout1 = _mm_xor_si128(_mm_load_si128(input + 1), xout1);
xout2 = _mm_xor_si128(_mm_load_si128(input + 2), xout2);
xout3 = _mm_xor_si128(_mm_load_si128(input + 3), xout3);
input += (64 << interleave) / sizeof(__m128i);
xout4 = _mm_xor_si128(_mm_load_si128(input + 0), xout4);
xout5 = _mm_xor_si128(_mm_load_si128(input + 1), xout5);
xout6 = _mm_xor_si128(_mm_load_si128(input + 2), xout6);
xout7 = _mm_xor_si128(_mm_load_si128(input + 3), xout7);
input += (64 << interleave) / sizeof(__m128i);
i += 8;
if ((interleave > 0) && (i < props.memory() / sizeof(__m128i))) {
_mm_prefetch((const char*)(input), _MM_HINT_T0);
_mm_prefetch((const char*)(input + (64 << interleave) / sizeof(__m128i)), _MM_HINT_T0);
}
aes_round<SOFT_AES>(k0, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k1, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
@ -558,7 +599,7 @@ static inline void cryptonight_conceal_tweak(__m128i& cx, __m128& conc_var)
cx = _mm_xor_si128(cx, _mm_cvttps_epi32(nc));
}
template<Algorithm::Id ALGO, bool SOFT_AES>
template<Algorithm::Id ALGO, bool SOFT_AES, int interleave>
inline void cryptonight_single_hash(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, cryptonight_ctx **__restrict__ ctx, uint64_t height)
{
constexpr CnAlgo<ALGO> props;
@ -577,7 +618,7 @@ inline void cryptonight_single_hash(const uint8_t *__restrict__ input, size_t si
}
keccak(input, size, ctx[0]->state);
cn_explode_scratchpad<ALGO, SOFT_AES>(reinterpret_cast<const __m128i *>(ctx[0]->state), reinterpret_cast<__m128i *>(ctx[0]->memory));
cn_explode_scratchpad<ALGO, SOFT_AES, interleave>(reinterpret_cast<const __m128i *>(ctx[0]->state), reinterpret_cast<__m128i *>(ctx[0]->memory));
uint64_t *h0 = reinterpret_cast<uint64_t*>(ctx[0]->state);
uint8_t *l0 = ctx[0]->memory;
@ -620,7 +661,7 @@ inline void cryptonight_single_hash(const uint8_t *__restrict__ input, size_t si
for (size_t i = 0; i < props.iterations(); i++) {
__m128i cx;
if (IS_CN_HEAVY_TUBE || !SOFT_AES) {
cx = _mm_load_si128(reinterpret_cast<const __m128i *>(&l0[idx0 & MASK]));
cx = _mm_load_si128(reinterpret_cast<const __m128i *>(&l0[interleaved_index<interleave>(idx0 & MASK)]));
if (ALGO == Algorithm::CN_CCX) {
cryptonight_conceal_tweak(cx, conc_var);
}
@ -632,12 +673,12 @@ inline void cryptonight_single_hash(const uint8_t *__restrict__ input, size_t si
}
else if (SOFT_AES) {
if (ALGO == Algorithm::CN_CCX) {
cx = _mm_load_si128(reinterpret_cast<const __m128i*>(&l0[idx0 & MASK]));
cx = _mm_load_si128(reinterpret_cast<const __m128i*>(&l0[interleaved_index<interleave>(idx0 & MASK)]));
cryptonight_conceal_tweak(cx, conc_var);
cx = soft_aesenc(&cx, ax0, reinterpret_cast<const uint32_t*>(saes_table));
}
else {
cx = soft_aesenc(&l0[idx0 & MASK], ax0, reinterpret_cast<const uint32_t*>(saes_table));
cx = soft_aesenc(&l0[interleaved_index<interleave>(idx0 & MASK)], ax0, reinterpret_cast<const uint32_t*>(saes_table));
}
}
else {
@ -645,16 +686,16 @@ inline void cryptonight_single_hash(const uint8_t *__restrict__ input, size_t si
}
if (BASE == Algorithm::CN_1 || BASE == Algorithm::CN_2) {
cryptonight_monero_tweak<ALGO>(reinterpret_cast<uint64_t*>(&l0[idx0 & MASK]), l0, idx0 & MASK, ax0, bx0, bx1, cx);
cryptonight_monero_tweak<ALGO>(reinterpret_cast<uint64_t*>(&l0[interleaved_index<interleave>(idx0 & MASK)]), l0, idx0 & MASK, ax0, bx0, bx1, cx);
} else {
_mm_store_si128(reinterpret_cast<__m128i *>(&l0[idx0 & MASK]), _mm_xor_si128(bx0, cx));
_mm_store_si128(reinterpret_cast<__m128i *>(&l0[interleaved_index<interleave>(idx0 & MASK)]), _mm_xor_si128(bx0, cx));
}
idx0 = static_cast<uint64_t>(_mm_cvtsi128_si64(cx));
uint64_t hi, lo, cl, ch;
cl = (reinterpret_cast<uint64_t*>(&l0[idx0 & MASK]))[0];
ch = (reinterpret_cast<uint64_t*>(&l0[idx0 & MASK]))[1];
cl = (reinterpret_cast<uint64_t*>(&l0[interleaved_index<interleave>(idx0 & MASK)]))[0];
ch = (reinterpret_cast<uint64_t*>(&l0[interleaved_index<interleave>(idx0 & MASK)]))[1];
if (BASE == Algorithm::CN_2) {
if (props.isR()) {
@ -681,14 +722,14 @@ inline void cryptonight_single_hash(const uint8_t *__restrict__ input, size_t si
al0 += hi;
ah0 += lo;
reinterpret_cast<uint64_t*>(&l0[idx0 & MASK])[0] = al0;
reinterpret_cast<uint64_t*>(&l0[interleaved_index<interleave>(idx0 & MASK)])[0] = al0;
if (IS_CN_HEAVY_TUBE || ALGO == Algorithm::CN_RTO) {
reinterpret_cast<uint64_t*>(&l0[idx0 & MASK])[1] = ah0 ^ tweak1_2_0 ^ al0;
reinterpret_cast<uint64_t*>(&l0[interleaved_index<interleave>(idx0 & MASK)])[1] = ah0 ^ tweak1_2_0 ^ al0;
} else if (BASE == Algorithm::CN_1) {
reinterpret_cast<uint64_t*>(&l0[idx0 & MASK])[1] = ah0 ^ tweak1_2_0;
reinterpret_cast<uint64_t*>(&l0[interleaved_index<interleave>(idx0 & MASK)])[1] = ah0 ^ tweak1_2_0;
} else {
reinterpret_cast<uint64_t*>(&l0[idx0 & MASK])[1] = ah0;
reinterpret_cast<uint64_t*>(&l0[interleaved_index<interleave>(idx0 & MASK)])[1] = ah0;
}
al0 ^= cl;
@ -697,11 +738,11 @@ inline void cryptonight_single_hash(const uint8_t *__restrict__ input, size_t si
# ifdef XMRIG_ALGO_CN_HEAVY
if (props.isHeavy()) {
int64_t n = ((int64_t*)&l0[idx0 & MASK])[0];
int32_t d = ((int32_t*)&l0[idx0 & MASK])[2];
int64_t n = ((int64_t*)&l0[interleaved_index<interleave>(idx0 & MASK)])[0];
int32_t d = ((int32_t*)&l0[interleaved_index<interleave>(idx0 & MASK)])[2];
int64_t q = n / (d | 0x5);
((int64_t*)&l0[idx0 & MASK])[0] = n ^ q;
((int64_t*)&l0[interleaved_index<interleave>(idx0 & MASK)])[0] = n ^ q;
if (ALGO == Algorithm::CN_HEAVY_XHV) {
d = ~d;
@ -722,7 +763,7 @@ inline void cryptonight_single_hash(const uint8_t *__restrict__ input, size_t si
}
# endif
cn_implode_scratchpad<ALGO, SOFT_AES>(reinterpret_cast<const __m128i *>(ctx[0]->memory), reinterpret_cast<__m128i *>(ctx[0]->state));
cn_implode_scratchpad<ALGO, SOFT_AES, interleave>(reinterpret_cast<const __m128i *>(ctx[0]->memory), reinterpret_cast<__m128i *>(ctx[0]->state));
keccakf(h0, 24);
extra_hashes[ctx[0]->state[0] & 3](ctx[0]->state, 200, output);
}
@ -810,7 +851,7 @@ inline void cryptonight_single_hash_asm(const uint8_t *__restrict__ input, size_
}
keccak(input, size, ctx[0]->state);
cn_explode_scratchpad<ALGO, false>(reinterpret_cast<const __m128i*>(ctx[0]->state), reinterpret_cast<__m128i*>(ctx[0]->memory));
cn_explode_scratchpad<ALGO, false, 0>(reinterpret_cast<const __m128i*>(ctx[0]->state), reinterpret_cast<__m128i*>(ctx[0]->memory));
if (ALGO == Algorithm::CN_2) {
if (ASM == Assembly::INTEL) {
@ -887,7 +928,7 @@ inline void cryptonight_single_hash_asm(const uint8_t *__restrict__ input, size_
ctx[0]->generated_code(ctx);
}
cn_implode_scratchpad<ALGO, false>(reinterpret_cast<const __m128i*>(ctx[0]->memory), reinterpret_cast<__m128i*>(ctx[0]->state));
cn_implode_scratchpad<ALGO, false, 0>(reinterpret_cast<const __m128i*>(ctx[0]->memory), reinterpret_cast<__m128i*>(ctx[0]->state));
keccakf(reinterpret_cast<uint64_t*>(ctx[0]->state), 24);
extra_hashes[ctx[0]->state[0] & 3](ctx[0]->state, 200, output);
}
@ -909,8 +950,8 @@ inline void cryptonight_double_hash_asm(const uint8_t *__restrict__ input, size_
keccak(input, size, ctx[0]->state);
keccak(input + size, size, ctx[1]->state);
cn_explode_scratchpad<ALGO, false>(reinterpret_cast<const __m128i*>(ctx[0]->state), reinterpret_cast<__m128i*>(ctx[0]->memory));
cn_explode_scratchpad<ALGO, false>(reinterpret_cast<const __m128i*>(ctx[1]->state), reinterpret_cast<__m128i*>(ctx[1]->memory));
cn_explode_scratchpad<ALGO, false, 0>(reinterpret_cast<const __m128i*>(ctx[0]->state), reinterpret_cast<__m128i*>(ctx[0]->memory));
cn_explode_scratchpad<ALGO, false, 0>(reinterpret_cast<const __m128i*>(ctx[1]->state), reinterpret_cast<__m128i*>(ctx[1]->memory));
if (ALGO == Algorithm::CN_2) {
cnv2_double_mainloop_sandybridge_asm(ctx);
@ -939,8 +980,8 @@ inline void cryptonight_double_hash_asm(const uint8_t *__restrict__ input, size_
ctx[0]->generated_code(ctx);
}
cn_implode_scratchpad<ALGO, false>(reinterpret_cast<const __m128i*>(ctx[0]->memory), reinterpret_cast<__m128i*>(ctx[0]->state));
cn_implode_scratchpad<ALGO, false>(reinterpret_cast<const __m128i*>(ctx[1]->memory), reinterpret_cast<__m128i*>(ctx[1]->state));
cn_implode_scratchpad<ALGO, false, 0>(reinterpret_cast<const __m128i*>(ctx[0]->memory), reinterpret_cast<__m128i*>(ctx[0]->state));
cn_implode_scratchpad<ALGO, false, 0>(reinterpret_cast<const __m128i*>(ctx[1]->memory), reinterpret_cast<__m128i*>(ctx[1]->state));
keccakf(reinterpret_cast<uint64_t*>(ctx[0]->state), 24);
keccakf(reinterpret_cast<uint64_t*>(ctx[1]->state), 24);
@ -991,8 +1032,8 @@ inline void cryptonight_double_hash(const uint8_t *__restrict__ input, size_t si
VARIANT4_RANDOM_MATH_INIT(0);
VARIANT4_RANDOM_MATH_INIT(1);
cn_explode_scratchpad<ALGO, SOFT_AES>(reinterpret_cast<const __m128i *>(h0), reinterpret_cast<__m128i *>(l0));
cn_explode_scratchpad<ALGO, SOFT_AES>(reinterpret_cast<const __m128i *>(h1), reinterpret_cast<__m128i *>(l1));
cn_explode_scratchpad<ALGO, SOFT_AES, 0>(reinterpret_cast<const __m128i *>(h0), reinterpret_cast<__m128i *>(l0));
cn_explode_scratchpad<ALGO, SOFT_AES, 0>(reinterpret_cast<const __m128i *>(h1), reinterpret_cast<__m128i *>(l1));
uint64_t al0 = h0[0] ^ h0[4];
uint64_t al1 = h1[0] ^ h1[4];
@ -1187,8 +1228,8 @@ inline void cryptonight_double_hash(const uint8_t *__restrict__ input, size_t si
bx10 = cx1;
}
cn_implode_scratchpad<ALGO, SOFT_AES>(reinterpret_cast<const __m128i *>(l0), reinterpret_cast<__m128i *>(h0));
cn_implode_scratchpad<ALGO, SOFT_AES>(reinterpret_cast<const __m128i *>(l1), reinterpret_cast<__m128i *>(h1));
cn_implode_scratchpad<ALGO, SOFT_AES, 0>(reinterpret_cast<const __m128i *>(l0), reinterpret_cast<__m128i *>(h0));
cn_implode_scratchpad<ALGO, SOFT_AES, 0>(reinterpret_cast<const __m128i *>(l1), reinterpret_cast<__m128i *>(h1));
keccakf(h0, 24);
keccakf(h1, 24);
@ -1333,7 +1374,7 @@ inline void cryptonight_triple_hash(const uint8_t *__restrict__ input, size_t si
for (size_t i = 0; i < 3; i++) {
keccak(input + size * i, size, ctx[i]->state);
cn_explode_scratchpad<ALGO, SOFT_AES>(reinterpret_cast<const __m128i*>(ctx[i]->state), reinterpret_cast<__m128i*>(ctx[i]->memory));
cn_explode_scratchpad<ALGO, SOFT_AES, 0>(reinterpret_cast<const __m128i*>(ctx[i]->state), reinterpret_cast<__m128i*>(ctx[i]->memory));
}
uint8_t* l0 = ctx[0]->memory;
@ -1378,7 +1419,7 @@ inline void cryptonight_triple_hash(const uint8_t *__restrict__ input, size_t si
}
for (size_t i = 0; i < 3; i++) {
cn_implode_scratchpad<ALGO, SOFT_AES>(reinterpret_cast<const __m128i*>(ctx[i]->memory), reinterpret_cast<__m128i*>(ctx[i]->state));
cn_implode_scratchpad<ALGO, SOFT_AES, 0>(reinterpret_cast<const __m128i*>(ctx[i]->memory), reinterpret_cast<__m128i*>(ctx[i]->state));
keccakf(reinterpret_cast<uint64_t*>(ctx[i]->state), 24);
extra_hashes[ctx[i]->state[0] & 3](ctx[i]->state, 200, output + 32 * i);
}
@ -1407,7 +1448,7 @@ inline void cryptonight_quad_hash(const uint8_t *__restrict__ input, size_t size
for (size_t i = 0; i < 4; i++) {
keccak(input + size * i, size, ctx[i]->state);
cn_explode_scratchpad<ALGO, SOFT_AES>(reinterpret_cast<const __m128i*>(ctx[i]->state), reinterpret_cast<__m128i*>(ctx[i]->memory));
cn_explode_scratchpad<ALGO, SOFT_AES, 0>(reinterpret_cast<const __m128i*>(ctx[i]->state), reinterpret_cast<__m128i*>(ctx[i]->memory));
}
uint8_t* l0 = ctx[0]->memory;
@ -1460,7 +1501,7 @@ inline void cryptonight_quad_hash(const uint8_t *__restrict__ input, size_t size
}
for (size_t i = 0; i < 4; i++) {
cn_implode_scratchpad<ALGO, SOFT_AES>(reinterpret_cast<const __m128i*>(ctx[i]->memory), reinterpret_cast<__m128i*>(ctx[i]->state));
cn_implode_scratchpad<ALGO, SOFT_AES, 0>(reinterpret_cast<const __m128i*>(ctx[i]->memory), reinterpret_cast<__m128i*>(ctx[i]->state));
keccakf(reinterpret_cast<uint64_t*>(ctx[i]->state), 24);
extra_hashes[ctx[i]->state[0] & 3](ctx[i]->state, 200, output + 32 * i);
}
@ -1489,7 +1530,7 @@ inline void cryptonight_penta_hash(const uint8_t *__restrict__ input, size_t siz
for (size_t i = 0; i < 5; i++) {
keccak(input + size * i, size, ctx[i]->state);
cn_explode_scratchpad<ALGO, SOFT_AES>(reinterpret_cast<const __m128i*>(ctx[i]->state), reinterpret_cast<__m128i*>(ctx[i]->memory));
cn_explode_scratchpad<ALGO, SOFT_AES, 0>(reinterpret_cast<const __m128i*>(ctx[i]->state), reinterpret_cast<__m128i*>(ctx[i]->memory));
}
uint8_t* l0 = ctx[0]->memory;
@ -1550,7 +1591,7 @@ inline void cryptonight_penta_hash(const uint8_t *__restrict__ input, size_t siz
}
for (size_t i = 0; i < 5; i++) {
cn_implode_scratchpad<ALGO, SOFT_AES>(reinterpret_cast<const __m128i*>(ctx[i]->memory), reinterpret_cast<__m128i*>(ctx[i]->state));
cn_implode_scratchpad<ALGO, SOFT_AES, 0>(reinterpret_cast<const __m128i*>(ctx[i]->memory), reinterpret_cast<__m128i*>(ctx[i]->state));
keccakf(reinterpret_cast<uint64_t*>(ctx[i]->state), 24);
extra_hashes[ctx[i]->state[0] & 3](ctx[i]->state, 200, output + 32 * i);
}

View file

@ -88,7 +88,12 @@ void xmrig::Rx::init(IRxListener *listener)
template<typename T>
bool xmrig::Rx::init(const T &seed, const RxConfig &config, const CpuConfig &cpu)
{
if (seed.algorithm().family() != Algorithm::RANDOM_X) {
const Algorithm::Family f = seed.algorithm().family();
if ((f != Algorithm::RANDOM_X)
# ifdef XMRIG_ALGO_CN_HEAVY
&& (f != Algorithm::CN_HEAVY)
# endif
) {
# ifdef XMRIG_FEATURE_MSR
RxMsr::destroy();
# endif
@ -96,16 +101,22 @@ bool xmrig::Rx::init(const T &seed, const RxConfig &config, const CpuConfig &cpu
return true;
}
randomx_set_scratchpad_prefetch_mode(config.scratchpadPrefetchMode());
randomx_set_huge_pages_jit(cpu.isHugePagesJit());
randomx_set_optimized_dataset_init(config.initDatasetAVX2());
# ifdef XMRIG_FEATURE_MSR
if (!RxMsr::isInitialized()) {
RxMsr::init(config, cpu.threads().get(seed.algorithm()).data());
}
# endif
# ifdef XMRIG_ALGO_CN_HEAVY
if (f == Algorithm::CN_HEAVY) {
return true;
}
# endif
randomx_set_scratchpad_prefetch_mode(config.scratchpadPrefetchMode());
randomx_set_huge_pages_jit(cpu.isHugePagesJit());
randomx_set_optimized_dataset_init(config.initDatasetAVX2());
if (!osInitialized) {
# ifdef XMRIG_FIX_RYZEN
RxFix::setupMainLoopExceptionFrame();