diff --git a/CMakeLists.txt b/CMakeLists.txt index c86fe953b..0275320f3 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -6,6 +6,7 @@ option(WITH_AEON "CryptoNight-Lite support" ON) option(WITH_HTTPD "HTTP REST API" ON) include (CheckIncludeFile) +include (cmake/cpu.cmake) set(HEADERS @@ -56,7 +57,6 @@ set(HEADERS_CRYPTO src/crypto/c_keccak.h src/crypto/c_skein.h src/crypto/CryptoNight.h - src/crypto/CryptoNight_p.h src/crypto/CryptoNight_test.h src/crypto/groestl_tables.h src/crypto/hash.h @@ -64,6 +64,12 @@ set(HEADERS_CRYPTO src/crypto/soft_aes.h ) +if (XMRIG_ARM64) + set(HEADERS_CRYPTO "${HEADERS_CRYPTO}" src/crypto/CryptoNight_arm64.h) +else() + set(HEADERS_CRYPTO "${HEADERS_CRYPTO}" src/crypto/CryptoNight_x86.h) +endif() + set(SOURCES src/api/Api.cpp src/api/ApiState.cpp @@ -138,63 +144,13 @@ endif() add_definitions(/D__STDC_FORMAT_MACROS) add_definitions(/DUNICODE) -add_definitions(/DRAPIDJSON_SSE2) #add_definitions(/DAPP_DEBUG) set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} "${CMAKE_SOURCE_DIR}/cmake") find_package(UV REQUIRED) -if ("${CMAKE_BUILD_TYPE}" STREQUAL "") - set(CMAKE_BUILD_TYPE Release) -endif() - - -set(CMAKE_CXX_STANDARD_REQUIRED ON) -set(CMAKE_CXX_EXTENSIONS OFF) -set(CMAKE_CXX_STANDARD 11) - - -# https://cmake.org/cmake/help/latest/variable/CMAKE_LANG_COMPILER_ID.html -if (CMAKE_CXX_COMPILER_ID MATCHES GNU) - - set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -maes -Wall -Wno-strict-aliasing") - set(CMAKE_C_FLAGS_RELEASE "${CMAKE_C_FLAGS_RELEASE} -Ofast -funroll-loops -fvariable-expansion-in-unroller -ftree-loop-if-convert-stores -fmerge-all-constants -fbranch-target-load-optimize2") - - set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -maes -Wall -fno-exceptions -fno-rtti") - set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -Ofast -s -funroll-loops -fvariable-expansion-in-unroller -ftree-loop-if-convert-stores -fmerge-all-constants -fbranch-target-load-optimize2") - - if (WIN32) - set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -static") - else() - set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -static-libgcc -static-libstdc++") - endif() - - add_definitions(/D_GNU_SOURCE) - - if (${CMAKE_VERSION} VERSION_LESS "3.1.0") - set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11") - endif() - - #set(CMAKE_C_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -gdwarf-2") - -elseif (CMAKE_CXX_COMPILER_ID MATCHES MSVC) - - set(CMAKE_C_FLAGS_RELEASE "${CMAKE_C_FLAGS_RELEASE} /Ox /Ot /Oi /MT /GL") - set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /Ox /Ot /Oi /MT /GL") - add_definitions(/D_CRT_SECURE_NO_WARNINGS) - add_definitions(/D_CRT_NONSTDC_NO_WARNINGS) - add_definitions(/DNOMINMAX) - -elseif (CMAKE_CXX_COMPILER_ID MATCHES Clang) - - set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -maes -Wall") - set(CMAKE_C_FLAGS_RELEASE "${CMAKE_C_FLAGS_RELEASE} -Ofast -funroll-loops -fmerge-all-constants") - - set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -maes -Wall -fno-exceptions -fno-rtti -Wno-missing-braces") - set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -Ofast -funroll-loops -fmerge-all-constants") - -endif() +include(cmake/flags.cmake) if (WITH_LIBCPUID) add_subdirectory(src/3rdparty/libcpuid) @@ -204,7 +160,12 @@ if (WITH_LIBCPUID) set(SOURCES_CPUID src/Cpu.cpp) else() add_definitions(/DXMRIG_NO_LIBCPUID) - set(SOURCES_CPUID src/Cpu_stub.cpp) + + if (XMRIG_ARM64) + set(SOURCES_CPUID src/Cpu_arm.cpp) + else() + set(SOURCES_CPUID src/Cpu_stub.cpp) + endif() endif() CHECK_INCLUDE_FILE (syslog.h HAVE_SYSLOG_H) diff --git a/cmake/cpu.cmake b/cmake/cpu.cmake new file mode 100644 index 000000000..56bbef961 --- /dev/null +++ b/cmake/cpu.cmake @@ -0,0 +1,16 @@ +if (NOT CMAKE_SYSTEM_PROCESSOR) + message(WARNING "CMAKE_SYSTEM_PROCESSOR not defined") +endif() + + +if (CMAKE_SYSTEM_PROCESSOR MATCHES "^(x86_64|AMD64)$") + add_definitions(/DRAPIDJSON_SSE2) +endif() + + +if (CMAKE_SYSTEM_PROCESSOR MATCHES "^(aarch64)$") + set(XMRIG_ARM64 ON) + set(WITH_LIBCPUID OFF) + + add_definitions(/DXMRIG_ARM) +endif() diff --git a/cmake/flags.cmake b/cmake/flags.cmake new file mode 100644 index 000000000..7f32e1151 --- /dev/null +++ b/cmake/flags.cmake @@ -0,0 +1,63 @@ +set(CMAKE_CXX_STANDARD_REQUIRED ON) +set(CMAKE_CXX_EXTENSIONS OFF) +set(CMAKE_CXX_STANDARD 11) + +if ("${CMAKE_BUILD_TYPE}" STREQUAL "") + set(CMAKE_BUILD_TYPE Release) +endif() + +if (CMAKE_CXX_COMPILER_ID MATCHES GNU) + + set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -Wall -Wno-strict-aliasing") + set(CMAKE_C_FLAGS_RELEASE "${CMAKE_C_FLAGS_RELEASE} -Ofast -funroll-loops -fvariable-expansion-in-unroller -ftree-loop-if-convert-stores -fmerge-all-constants -fbranch-target-load-optimize2") + + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall -fno-exceptions -fno-rtti") + set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -Ofast -s -funroll-loops -fvariable-expansion-in-unroller -ftree-loop-if-convert-stores -fmerge-all-constants -fbranch-target-load-optimize2") + + if (CMAKE_SYSTEM_PROCESSOR STREQUAL aarch64) + set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -march=armv8-a+crypto") + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -march=armv8-a+crypto -flax-vector-conversions") + else() + set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -maes") + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -maes") + endif() + + if (WIN32) + set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -static") + else() + set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -static-libgcc -static-libstdc++") + endif() + + add_definitions(/D_GNU_SOURCE) + + if (${CMAKE_VERSION} VERSION_LESS "3.1.0") + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11") + endif() + + #set(CMAKE_C_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -gdwarf-2") + +elseif (CMAKE_CXX_COMPILER_ID MATCHES MSVC) + + set(CMAKE_C_FLAGS_RELEASE "${CMAKE_C_FLAGS_RELEASE} /Ox /Ot /Oi /MT /GL") + set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /Ox /Ot /Oi /MT /GL") + add_definitions(/D_CRT_SECURE_NO_WARNINGS) + add_definitions(/D_CRT_NONSTDC_NO_WARNINGS) + add_definitions(/DNOMINMAX) + +elseif (CMAKE_CXX_COMPILER_ID MATCHES Clang) + + set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -Wall") + set(CMAKE_C_FLAGS_RELEASE "${CMAKE_C_FLAGS_RELEASE} -Ofast -funroll-loops -fmerge-all-constants") + + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall -fno-exceptions -fno-rtti -Wno-missing-braces") + set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -Ofast -funroll-loops -fmerge-all-constants") + + if (CMAKE_SYSTEM_PROCESSOR STREQUAL aarch64) + set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -march=armv8-a+crypto") + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -march=armv8-a+crypto") + else() + set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -maes") + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -maes") + endif() + +endif() diff --git a/src/3rdparty/aligned_malloc.h b/src/3rdparty/aligned_malloc.h new file mode 100644 index 000000000..0b74b17e0 --- /dev/null +++ b/src/3rdparty/aligned_malloc.h @@ -0,0 +1,65 @@ +/* XMRig + * Copyright 2010 Jeff Garzik + * Copyright 2012-2014 pooler + * Copyright 2014 Lucas Jones + * Copyright 2014-2016 Wolf9466 + * Copyright 2016 Jay D Dee + * Copyright 2016-2017 XMRig + * + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see . + */ + +#ifndef __ALIGNED_MALLOC_H__ +#define __ALIGNED_MALLOC_H__ + + +#include + + +#ifndef __cplusplus +extern int posix_memalign(void **__memptr, size_t __alignment, size_t __size); +#else +// Some systems (e.g. those with GNU libc) declare posix_memalign with an +// exception specifier. Via an "egregious workaround" in +// Sema::CheckEquivalentExceptionSpec, Clang accepts the following as a valid +// redeclaration of glibc's declaration. +extern "C" int posix_memalign(void **__memptr, size_t __alignment, size_t __size); +#endif + + +static __inline__ void *__attribute__((__always_inline__, __malloc__)) _mm_malloc(size_t __size, size_t __align) +{ + if (__align == 1) { + return malloc(__size); + } + + if (!(__align & (__align - 1)) && __align < sizeof(void *)) + __align = sizeof(void *); + + void *__mallocedMemory; + if (posix_memalign(&__mallocedMemory, __align, __size)) { + return 0; + } + + return __mallocedMemory; +} + + +static __inline__ void __attribute__((__always_inline__)) _mm_free(void *__p) +{ + free(__p); +} + +#endif /* __ALIGNED_MALLOC_H__ */ diff --git a/src/Cpu_arm.cpp b/src/Cpu_arm.cpp new file mode 100644 index 000000000..906e0156d --- /dev/null +++ b/src/Cpu_arm.cpp @@ -0,0 +1,52 @@ +/* XMRig + * Copyright 2010 Jeff Garzik + * Copyright 2012-2014 pooler + * Copyright 2014 Lucas Jones + * Copyright 2014-2016 Wolf9466 + * Copyright 2016 Jay D Dee + * Copyright 2016-2017 XMRig + * + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see . + */ + + +#include + + +#include "Cpu.h" + + +char Cpu::m_brand[64] = { 0 }; +int Cpu::m_flags = 0; +int Cpu::m_l2_cache = 0; +int Cpu::m_l3_cache = 0; +int Cpu::m_sockets = 1; +int Cpu::m_totalCores = 0; +int Cpu::m_totalThreads = 0; + + +int Cpu::optimalThreadsCount(int algo, bool doubleHash, int maxCpuUsage) +{ + return m_totalThreads; +} + + +void Cpu::initCommon() +{ + memcpy(m_brand, "Unknown", 7); + + m_flags |= X86_64; + m_flags |= AES; +} diff --git a/src/Mem_unix.cpp b/src/Mem_unix.cpp index 2cb14bc97..43ffa6644 100644 --- a/src/Mem_unix.cpp +++ b/src/Mem_unix.cpp @@ -23,10 +23,16 @@ #include -#include #include +#if defined(XMRIG_ARM) && !defined(__clang__) +# include "aligned_malloc.h" +#else +# include +#endif + + #include "crypto/CryptoNight.h" #include "log/Log.h" #include "Mem.h" diff --git a/src/crypto/CryptoNight.cpp b/src/crypto/CryptoNight.cpp index c4e566783..6fdf9d92f 100644 --- a/src/crypto/CryptoNight.cpp +++ b/src/crypto/CryptoNight.cpp @@ -23,7 +23,13 @@ #include "crypto/CryptoNight.h" -#include "crypto/CryptoNight_p.h" + +#if defined(__aarch64__) +# include "crypto/CryptoNight_arm64.h" +#else +# include "crypto/CryptoNight_x86.h" +#endif + #include "crypto/CryptoNight_test.h" #include "net/Job.h" #include "net/JobResult.h" diff --git a/src/crypto/CryptoNight_arm64.h b/src/crypto/CryptoNight_arm64.h new file mode 100644 index 000000000..4d70b20d8 --- /dev/null +++ b/src/crypto/CryptoNight_arm64.h @@ -0,0 +1,458 @@ +/* XMRig + * Copyright 2010 Jeff Garzik + * Copyright 2012-2014 pooler + * Copyright 2014 Lucas Jones + * Copyright 2014-2016 Wolf9466 + * Copyright 2016 Jay D Dee + * Copyright 2016 Imran Yusuff + * Copyright 2016-2017 XMRig + * + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see . + */ + +#ifndef __CRYPTONIGHT_ARM64_H__ +#define __CRYPTONIGHT_ARM64_H__ + + +#if defined(XMRIG_ARM) && !defined(__clang__) +# include "aligned_malloc.h" +#else +# include +#endif + + +#include "crypto/CryptoNight.h" +#include "crypto/soft_aes.h" + + +extern "C" +{ +#include "crypto/c_keccak.h" +#include "crypto/c_groestl.h" +#include "crypto/c_blake256.h" +#include "crypto/c_jh.h" +#include "crypto/c_skein.h" +} + + +static inline void do_blake_hash(const void* input, size_t len, char* output) { + blake256_hash(reinterpret_cast(output), static_cast(input), len); +} + + +static inline void do_groestl_hash(const void* input, size_t len, char* output) { + groestl(static_cast(input), len * 8, reinterpret_cast(output)); +} + + +static inline void do_jh_hash(const void* input, size_t len, char* output) { + jh_hash(32 * 8, static_cast(input), 8 * len, reinterpret_cast(output)); +} + + +static inline void do_skein_hash(const void* input, size_t len, char* output) { + xmr_skein(static_cast(input), reinterpret_cast(output)); +} + + +void (* const extra_hashes[4])(const void *, size_t, char *) = {do_blake_hash, do_groestl_hash, do_jh_hash, do_skein_hash}; + + +static inline __attribute__((always_inline)) __m128i _mm_set_epi64x(const uint64_t a, const uint64_t b) +{ + return vcombine_u64(vcreate_u64(b), vcreate_u64(a)); +} + + +/* this one was not implemented yet so here it is */ +static inline __attribute__((always_inline)) uint64_t _mm_cvtsi128_si64(__m128i a) +{ + return vgetq_lane_u64(a, 0); +} + + +#define EXTRACT64(X) _mm_cvtsi128_si64(X) + + +static inline uint64_t __umul128(uint64_t a, uint64_t b, uint64_t* hi) +{ + unsigned __int128 r = (unsigned __int128) a * (unsigned __int128) b; + *hi = r >> 64; + return (uint64_t) r; +} + + +// This will shift and xor tmp1 into itself as 4 32-bit vals such as +// sl_xor(a1 a2 a3 a4) = a1 (a2^a1) (a3^a2^a1) (a4^a3^a2^a1) +static inline __m128i sl_xor(__m128i tmp1) +{ + __m128i tmp4; + tmp4 = _mm_slli_si128(tmp1, 0x04); + tmp1 = _mm_xor_si128(tmp1, tmp4); + tmp4 = _mm_slli_si128(tmp4, 0x04); + tmp1 = _mm_xor_si128(tmp1, tmp4); + tmp4 = _mm_slli_si128(tmp4, 0x04); + tmp1 = _mm_xor_si128(tmp1, tmp4); + return tmp1; +} + + +template +static inline void aes_genkey_sub(__m128i* xout0, __m128i* xout2) +{ +// __m128i xout1 = _mm_aeskeygenassist_si128(*xout2, rcon); +// xout1 = _mm_shuffle_epi32(xout1, 0xFF); // see PSHUFD, set all elems to 4th elem +// *xout0 = sl_xor(*xout0); +// *xout0 = _mm_xor_si128(*xout0, xout1); +// xout1 = _mm_aeskeygenassist_si128(*xout0, 0x00); +// xout1 = _mm_shuffle_epi32(xout1, 0xAA); // see PSHUFD, set all elems to 3rd elem +// *xout2 = sl_xor(*xout2); +// *xout2 = _mm_xor_si128(*xout2, xout1); +} + + +template +static inline void soft_aes_genkey_sub(__m128i* xout0, __m128i* xout2) +{ + __m128i xout1 = soft_aeskeygenassist(*xout2); + xout1 = _mm_shuffle_epi32(xout1, 0xFF); // see PSHUFD, set all elems to 4th elem + *xout0 = sl_xor(*xout0); + *xout0 = _mm_xor_si128(*xout0, xout1); + xout1 = soft_aeskeygenassist<0x00>(*xout0); + xout1 = _mm_shuffle_epi32(xout1, 0xAA); // see PSHUFD, set all elems to 3rd elem + *xout2 = sl_xor(*xout2); + *xout2 = _mm_xor_si128(*xout2, xout1); +} + + +template +static inline void aes_genkey(const __m128i* memory, __m128i* k0, __m128i* k1, __m128i* k2, __m128i* k3, __m128i* k4, __m128i* k5, __m128i* k6, __m128i* k7, __m128i* k8, __m128i* k9) +{ + __m128i xout0 = _mm_load_si128(memory); + __m128i xout2 = _mm_load_si128(memory + 1); + *k0 = xout0; + *k1 = xout2; + + SOFT_AES ? soft_aes_genkey_sub<0x01>(&xout0, &xout2) : soft_aes_genkey_sub<0x01>(&xout0, &xout2); + *k2 = xout0; + *k3 = xout2; + + SOFT_AES ? soft_aes_genkey_sub<0x02>(&xout0, &xout2) : soft_aes_genkey_sub<0x02>(&xout0, &xout2); + *k4 = xout0; + *k5 = xout2; + + SOFT_AES ? soft_aes_genkey_sub<0x04>(&xout0, &xout2) : soft_aes_genkey_sub<0x04>(&xout0, &xout2); + *k6 = xout0; + *k7 = xout2; + + SOFT_AES ? soft_aes_genkey_sub<0x08>(&xout0, &xout2) : soft_aes_genkey_sub<0x08>(&xout0, &xout2); + *k8 = xout0; + *k9 = xout2; +} + + +template +static inline void aes_round(__m128i key, __m128i* x0, __m128i* x1, __m128i* x2, __m128i* x3, __m128i* x4, __m128i* x5, __m128i* x6, __m128i* x7) +{ + if (SOFT_AES) { + *x0 = soft_aesenc(*x0, key); + *x1 = soft_aesenc(*x1, key); + *x2 = soft_aesenc(*x2, key); + *x3 = soft_aesenc(*x3, key); + *x4 = soft_aesenc(*x4, key); + *x5 = soft_aesenc(*x5, key); + *x6 = soft_aesenc(*x6, key); + *x7 = soft_aesenc(*x7, key); + } + else { + *x0 = vaesmcq_u8(vaeseq_u8(*((uint8x16_t *) x0), key)); + *x1 = vaesmcq_u8(vaeseq_u8(*((uint8x16_t *) x1), key)); + *x2 = vaesmcq_u8(vaeseq_u8(*((uint8x16_t *) x2), key)); + *x3 = vaesmcq_u8(vaeseq_u8(*((uint8x16_t *) x3), key)); + *x4 = vaesmcq_u8(vaeseq_u8(*((uint8x16_t *) x4), key)); + *x5 = vaesmcq_u8(vaeseq_u8(*((uint8x16_t *) x5), key)); + *x6 = vaesmcq_u8(vaeseq_u8(*((uint8x16_t *) x6), key)); + *x7 = vaesmcq_u8(vaeseq_u8(*((uint8x16_t *) x7), key)); + } +} + + +template +static inline void cn_explode_scratchpad(const __m128i *input, __m128i *output) +{ + __m128i xin0, xin1, xin2, xin3, xin4, xin5, xin6, xin7; + __m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9; + + aes_genkey(input, &k0, &k1, &k2, &k3, &k4, &k5, &k6, &k7, &k8, &k9); + + xin0 = _mm_load_si128(input + 4); + xin1 = _mm_load_si128(input + 5); + xin2 = _mm_load_si128(input + 6); + xin3 = _mm_load_si128(input + 7); + xin4 = _mm_load_si128(input + 8); + xin5 = _mm_load_si128(input + 9); + xin6 = _mm_load_si128(input + 10); + xin7 = _mm_load_si128(input + 11); + + for (size_t i = 0; i < MEM / sizeof(__m128i); i += 8) { + if (!SOFT_AES) { + aes_round(_mm_setzero_si128(), &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); + } + + aes_round(k0, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); + aes_round(k1, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); + aes_round(k2, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); + aes_round(k3, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); + aes_round(k4, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); + aes_round(k5, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); + aes_round(k6, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); + aes_round(k7, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); + aes_round(k8, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); + + if (!SOFT_AES) { + xin0 ^= k9; + xin1 ^= k9; + xin2 ^= k9; + xin3 ^= k9; + xin4 ^= k9; + xin5 ^= k9; + xin6 ^= k9; + xin7 ^= k9; + } + else { + aes_round(k9, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); + } + + _mm_store_si128(output + i + 0, xin0); + _mm_store_si128(output + i + 1, xin1); + _mm_store_si128(output + i + 2, xin2); + _mm_store_si128(output + i + 3, xin3); + _mm_store_si128(output + i + 4, xin4); + _mm_store_si128(output + i + 5, xin5); + _mm_store_si128(output + i + 6, xin6); + _mm_store_si128(output + i + 7, xin7); + } +} + + +template +static inline void cn_implode_scratchpad(const __m128i *input, __m128i *output) +{ + __m128i xout0, xout1, xout2, xout3, xout4, xout5, xout6, xout7; + __m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9; + + aes_genkey(output + 2, &k0, &k1, &k2, &k3, &k4, &k5, &k6, &k7, &k8, &k9); + + xout0 = _mm_load_si128(output + 4); + xout1 = _mm_load_si128(output + 5); + xout2 = _mm_load_si128(output + 6); + xout3 = _mm_load_si128(output + 7); + xout4 = _mm_load_si128(output + 8); + xout5 = _mm_load_si128(output + 9); + xout6 = _mm_load_si128(output + 10); + xout7 = _mm_load_si128(output + 11); + + for (size_t i = 0; i < MEM / sizeof(__m128i); i += 8) + { + xout0 = _mm_xor_si128(_mm_load_si128(input + i + 0), xout0); + xout1 = _mm_xor_si128(_mm_load_si128(input + i + 1), xout1); + xout2 = _mm_xor_si128(_mm_load_si128(input + i + 2), xout2); + xout3 = _mm_xor_si128(_mm_load_si128(input + i + 3), xout3); + xout4 = _mm_xor_si128(_mm_load_si128(input + i + 4), xout4); + xout5 = _mm_xor_si128(_mm_load_si128(input + i + 5), xout5); + xout6 = _mm_xor_si128(_mm_load_si128(input + i + 6), xout6); + xout7 = _mm_xor_si128(_mm_load_si128(input + i + 7), xout7); + + if (!SOFT_AES) { + aes_round(_mm_setzero_si128(), &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); + } + + aes_round(k0, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); + aes_round(k1, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); + aes_round(k2, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); + aes_round(k3, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); + aes_round(k4, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); + aes_round(k5, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); + aes_round(k6, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); + aes_round(k7, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); + aes_round(k8, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); + + if (!SOFT_AES) { + xout0 ^= k9; + xout1 ^= k9; + xout2 ^= k9; + xout3 ^= k9; + xout4 ^= k9; + xout5 ^= k9; + xout6 ^= k9; + xout7 ^= k9; + } + else { + aes_round(k9, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); + } + } + + _mm_store_si128(output + 4, xout0); + _mm_store_si128(output + 5, xout1); + _mm_store_si128(output + 6, xout2); + _mm_store_si128(output + 7, xout3); + _mm_store_si128(output + 8, xout4); + _mm_store_si128(output + 9, xout5); + _mm_store_si128(output + 10, xout6); + _mm_store_si128(output + 11, xout7); +} + + +template +inline void cryptonight_hash(const void *__restrict__ input, size_t size, void *__restrict__ output, cryptonight_ctx *__restrict__ ctx) +{ + keccak(static_cast(input), (int) size, ctx->state0, 200); + + cn_explode_scratchpad((__m128i*) ctx->state0, (__m128i*) ctx->memory); + + const uint8_t* l0 = ctx->memory; + uint64_t* h0 = reinterpret_cast(ctx->state0); + + uint64_t al0 = h0[0] ^ h0[4]; + uint64_t ah0 = h0[1] ^ h0[5]; + __m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]); + + uint64_t idx0 = h0[0] ^ h0[4]; + + for (size_t i = 0; i < ITERATIONS; i++) { + __m128i cx = _mm_load_si128((__m128i *) &l0[idx0 & MASK]); + + if (SOFT_AES) { + cx = soft_aesenc(cx, _mm_set_epi64x(ah0, al0)); + } + else { + cx = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah0, al0); + } + + _mm_store_si128((__m128i *) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx)); + idx0 = EXTRACT64(cx); + bx0 = cx; + + uint64_t hi, lo, cl, ch; + cl = ((uint64_t*) &l0[idx0 & MASK])[0]; + ch = ((uint64_t*) &l0[idx0 & MASK])[1]; + lo = __umul128(idx0, cl, &hi); + + al0 += hi; + ah0 += lo; + + ((uint64_t*)&l0[idx0 & MASK])[0] = al0; + ((uint64_t*)&l0[idx0 & MASK])[1] = ah0; + + ah0 ^= ch; + al0 ^= cl; + idx0 = al0; + } + + cn_implode_scratchpad((__m128i*) ctx->memory, (__m128i*) ctx->state0); + + keccakf(h0, 24); + extra_hashes[ctx->state0[0] & 3](ctx->state0, 200, static_cast(output)); +} + + +template +inline void cryptonight_double_hash(const void *__restrict__ input, size_t size, void *__restrict__ output, struct cryptonight_ctx *__restrict__ ctx) +{ + keccak((const uint8_t *) input, (int) size, ctx->state0, 200); + keccak((const uint8_t *) input + size, (int) size, ctx->state1, 200); + + const uint8_t* l0 = ctx->memory; + const uint8_t* l1 = ctx->memory + MEM; + uint64_t* h0 = reinterpret_cast(ctx->state0); + uint64_t* h1 = reinterpret_cast(ctx->state1); + + cn_explode_scratchpad((__m128i*) h0, (__m128i*) l0); + cn_explode_scratchpad((__m128i*) h1, (__m128i*) l1); + + uint64_t al0 = h0[0] ^ h0[4]; + uint64_t al1 = h1[0] ^ h1[4]; + uint64_t ah0 = h0[1] ^ h0[5]; + uint64_t ah1 = h1[1] ^ h1[5]; + + __m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]); + __m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]); + + uint64_t idx0 = h0[0] ^ h0[4]; + uint64_t idx1 = h1[0] ^ h1[4]; + + for (size_t i = 0; i < ITERATIONS; i++) { + __m128i cx0 = _mm_load_si128((__m128i *) &l0[idx0 & MASK]); + __m128i cx1 = _mm_load_si128((__m128i *) &l1[idx1 & MASK]); + + if (SOFT_AES) { + cx0 = soft_aesenc(cx0, _mm_set_epi64x(ah0, al0)); + cx1 = soft_aesenc(cx1, _mm_set_epi64x(ah1, al1)); + } + else { + cx0 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx0, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah0, al0); + cx1 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx1, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah1, al1); + } + + _mm_store_si128((__m128i *) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0)); + _mm_store_si128((__m128i *) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1)); + + idx0 = EXTRACT64(cx0); + idx1 = EXTRACT64(cx1); + + bx0 = cx0; + bx1 = cx1; + + uint64_t hi, lo, cl, ch; + cl = ((uint64_t*) &l0[idx0 & MASK])[0]; + ch = ((uint64_t*) &l0[idx0 & MASK])[1]; + lo = __umul128(idx0, cl, &hi); + + al0 += hi; + ah0 += lo; + + ((uint64_t*) &l0[idx0 & MASK])[0] = al0; + ((uint64_t*) &l0[idx0 & MASK])[1] = ah0; + + ah0 ^= ch; + al0 ^= cl; + idx0 = al0; + + cl = ((uint64_t*) &l1[idx1 & MASK])[0]; + ch = ((uint64_t*) &l1[idx1 & MASK])[1]; + lo = __umul128(idx1, cl, &hi); + + al1 += hi; + ah1 += lo; + + ((uint64_t*) &l1[idx1 & MASK])[0] = al1; + ((uint64_t*) &l1[idx1 & MASK])[1] = ah1; + + ah1 ^= ch; + al1 ^= cl; + idx1 = al1; + } + + cn_implode_scratchpad((__m128i*) l0, (__m128i*) h0); + cn_implode_scratchpad((__m128i*) l1, (__m128i*) h1); + + keccakf(h0, 24); + keccakf(h1, 24); + + extra_hashes[ctx->state0[0] & 3](ctx->state0, 200, static_cast(output)); + extra_hashes[ctx->state1[0] & 3](ctx->state1, 200, static_cast(output) + 32); +} + +#endif /* __CRYPTONIGHT_ARM64_H__ */ diff --git a/src/crypto/CryptoNight_p.h b/src/crypto/CryptoNight_x86.h similarity index 100% rename from src/crypto/CryptoNight_p.h rename to src/crypto/CryptoNight_x86.h diff --git a/src/crypto/SSE2NEON.h b/src/crypto/SSE2NEON.h new file mode 100644 index 000000000..6a00448d6 --- /dev/null +++ b/src/crypto/SSE2NEON.h @@ -0,0 +1,1497 @@ +#ifndef SSE2NEON_H +#define SSE2NEON_H + +// This header file provides a simple API translation layer +// between SSE intrinsics to their corresponding ARM NEON versions +// +// This header file does not (yet) translate *all* of the SSE intrinsics. +// Since this is in support of a specific porting effort, I have only +// included the intrinsics I needed to get my port to work. +// +// Questions/Comments/Feedback send to: jratcliffscarab@gmail.com +// +// If you want to improve or add to this project, send me an +// email and I will probably approve your access to the depot. +// +// Project is located here: +// +// https://github.com/jratcliff63367/sse2neon +// +// Show your appreciation for open source by sending me a bitcoin tip to the following +// address. +// +// TipJar: 1PzgWDSyq4pmdAXRH8SPUtta4SWGrt4B1p : +// https://blockchain.info/address/1PzgWDSyq4pmdAXRH8SPUtta4SWGrt4B1p +// +// +// Contributors to this project are: +// +// John W. Ratcliff : jratcliffscarab@gmail.com +// Brandon Rowlett : browlett@nvidia.com +// Ken Fast : kfast@gdeb.com +// Eric van Beurden : evanbeurden@nvidia.com +// Alexander Potylitsin : apotylitsin@nvidia.com +// +// +// ********************************************************************************************************************* +// apoty: March 17, 2017 +// Current version was changed in most to fix issues and potential issues. +// All unit tests were rewritten as a part of forge lib project to cover all implemented functions. +// ********************************************************************************************************************* +// Release notes for January 20, 2017 version: +// +// The unit tests have been refactored. They no longer assert on an error, instead they return a pass/fail condition +// The unit-tests now test 10,000 random float and int values against each intrinsic. +// +// SSE2NEON now supports 95 SSE intrinsics. 39 of them have formal unit tests which have been implemented and +// fully tested on NEON/ARM. The remaining 56 still need unit tests implemented. +// +// A struct is now defined in this header file called 'SIMDVec' which can be used by applications which +// attempt to access the contents of an _m128 struct directly. It is important to note that accessing the __m128 +// struct directly is bad coding practice by Microsoft: @see: https://msdn.microsoft.com/en-us/library/ayeb3ayc.aspx +// +// However, some legacy source code may try to access the contents of an __m128 struct directly so the developer +// can use the SIMDVec as an alias for it. Any casting must be done manually by the developer, as you cannot +// cast or otherwise alias the base NEON data type for intrinsic operations. +// +// A bug was found with the _mm_shuffle_ps intrinsic. If the shuffle permutation was not one of the ones with +// a custom/unique implementation causing it to fall through to the default shuffle implementation it was failing +// to return the correct value. This is now fixed. +// +// A bug was found with the _mm_cvtps_epi32 intrinsic. This converts floating point values to integers. +// It was not honoring the correct rounding mode. In SSE the default rounding mode when converting from float to int +// is to use 'round to even' otherwise known as 'bankers rounding'. ARMv7 did not support this feature but ARMv8 does. +// As it stands today, this header file assumes ARMv8. If you are trying to target really old ARM devices, you may get +// a build error. +// +// Support for a number of new intrinsics was added, however, none of them yet have unit-tests to 100% confirm they are +// producing the correct results on NEON. These unit tests will be added as soon as possible. +// +// Here is the list of new instrinsics which have been added: +// +// _mm_cvtss_f32 : extracts the lower order floating point value from the parameter +// _mm_add_ss : adds the scalar single - precision floating point values of a and b +// _mm_div_ps : Divides the four single - precision, floating - point values of a and b. +// _mm_div_ss : Divides the scalar single - precision floating point value of a by b. +// _mm_sqrt_ss : Computes the approximation of the square root of the scalar single - precision floating point value of in. +// _mm_rsqrt_ps : Computes the approximations of the reciprocal square roots of the four single - precision floating point values of in. +// _mm_comilt_ss : Compares the lower single - precision floating point scalar values of a and b using a less than operation +// _mm_comigt_ss : Compares the lower single - precision floating point scalar values of a and b using a greater than operation. +// _mm_comile_ss : Compares the lower single - precision floating point scalar values of a and b using a less than or equal operation. +// _mm_comige_ss : Compares the lower single - precision floating point scalar values of a and b using a greater than or equal operation. +// _mm_comieq_ss : Compares the lower single - precision floating point scalar values of a and b using an equality operation. +// _mm_comineq_s : Compares the lower single - precision floating point scalar values of a and b using an inequality operation +// _mm_unpackhi_epi8 : Interleaves the upper 8 signed or unsigned 8 - bit integers in a with the upper 8 signed or unsigned 8 - bit integers in b. +// _mm_unpackhi_epi16: Interleaves the upper 4 signed or unsigned 16 - bit integers in a with the upper 4 signed or unsigned 16 - bit integers in b. +// +// ********************************************************************************************************************* +/* +** The MIT license: +** +** Permission is hereby granted, free of charge, to any person obtaining a copy +** of this software and associated documentation files (the "Software"), to deal +** in the Software without restriction, including without limitation the rights +** to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +** copies of the Software, and to permit persons to whom the Software is furnished +** to do so, subject to the following conditions: +** +** The above copyright notice and this permission notice shall be included in all +** copies or substantial portions of the Software. + +** THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +** IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +** FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +** AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, +** WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +** CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. +*/ + +#define ENABLE_CPP_VERSION 0 + +#if defined(__GNUC__) || defined(__clang__) +# pragma push_macro("FORCE_INLINE") +# pragma push_macro("ALIGN_STRUCT") +# define FORCE_INLINE static inline __attribute__((always_inline)) +# define ALIGN_STRUCT(x) __attribute__((aligned(x))) +#else +# error "Macro name collisions may happens with unknown compiler" +# define FORCE_INLINE static inline +# define ALIGN_STRUCT(x) __declspec(align(x)) +#endif + +#include +#include "arm_neon.h" + + +/*******************************************************/ +/* MACRO for shuffle parameter for _mm_shuffle_ps(). */ +/* Argument fp3 is a digit[0123] that represents the fp*/ +/* from argument "b" of mm_shuffle_ps that will be */ +/* placed in fp3 of result. fp2 is the same for fp2 in */ +/* result. fp1 is a digit[0123] that represents the fp */ +/* from argument "a" of mm_shuffle_ps that will be */ +/* places in fp1 of result. fp0 is the same for fp0 of */ +/* result */ +/*******************************************************/ +#define _MM_SHUFFLE(fp3,fp2,fp1,fp0) \ + (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0))) + +/* indicate immediate constant argument in a given range */ +#define __constrange(a,b) \ + const + +typedef float32x4_t __m128; +typedef int32x4_t __m128i; + + +// ****************************************** +// type-safe casting between types +// ****************************************** + +#define vreinterpretq_m128_f16(x) \ + vreinterpretq_f32_f16(x) + +#define vreinterpretq_m128_f32(x) \ + (x) + +#define vreinterpretq_m128_f64(x) \ + vreinterpretq_f32_f64(x) + + +#define vreinterpretq_m128_u8(x) \ + vreinterpretq_f32_u8(x) + +#define vreinterpretq_m128_u16(x) \ + vreinterpretq_f32_u16(x) + +#define vreinterpretq_m128_u32(x) \ + vreinterpretq_f32_u32(x) + +#define vreinterpretq_m128_u64(x) \ + vreinterpretq_f32_u64(x) + + +#define vreinterpretq_m128_s8(x) \ + vreinterpretq_f32_s8(x) + +#define vreinterpretq_m128_s16(x) \ + vreinterpretq_f32_s16(x) + +#define vreinterpretq_m128_s32(x) \ + vreinterpretq_f32_s32(x) + +#define vreinterpretq_m128_s64(x) \ + vreinterpretq_f32_s64(x) + + +#define vreinterpretq_f16_m128(x) \ + vreinterpretq_f16_f32(x) + +#define vreinterpretq_f32_m128(x) \ + (x) + +#define vreinterpretq_f64_m128(x) \ + vreinterpretq_f64_f32(x) + + +#define vreinterpretq_u8_m128(x) \ + vreinterpretq_u8_f32(x) + +#define vreinterpretq_u16_m128(x) \ + vreinterpretq_u16_f32(x) + +#define vreinterpretq_u32_m128(x) \ + vreinterpretq_u32_f32(x) + +#define vreinterpretq_u64_m128(x) \ + vreinterpretq_u64_f32(x) + + +#define vreinterpretq_s8_m128(x) \ + vreinterpretq_s8_f32(x) + +#define vreinterpretq_s16_m128(x) \ + vreinterpretq_s16_f32(x) + +#define vreinterpretq_s32_m128(x) \ + vreinterpretq_s32_f32(x) + +#define vreinterpretq_s64_m128(x) \ + vreinterpretq_s64_f32(x) + + +#define vreinterpretq_m128i_s8(x) \ + vreinterpretq_s32_s8(x) + +#define vreinterpretq_m128i_s16(x) \ + vreinterpretq_s32_s16(x) + +#define vreinterpretq_m128i_s32(x) \ + (x) + +#define vreinterpretq_m128i_s64(x) \ + vreinterpretq_s32_s64(x) + + +#define vreinterpretq_m128i_u8(x) \ + vreinterpretq_s32_u8(x) + +#define vreinterpretq_m128i_u16(x) \ + vreinterpretq_s32_u16(x) + +#define vreinterpretq_m128i_u32(x) \ + vreinterpretq_s32_u32(x) + +#define vreinterpretq_m128i_u64(x) \ + vreinterpretq_s32_u64(x) + + +#define vreinterpretq_s8_m128i(x) \ + vreinterpretq_s8_s32(x) + +#define vreinterpretq_s16_m128i(x) \ + vreinterpretq_s16_s32(x) + +#define vreinterpretq_s32_m128i(x) \ + (x) + +#define vreinterpretq_s64_m128i(x) \ + vreinterpretq_s64_s32(x) + + +#define vreinterpretq_u8_m128i(x) \ + vreinterpretq_u8_s32(x) + +#define vreinterpretq_u16_m128i(x) \ + vreinterpretq_u16_s32(x) + +#define vreinterpretq_u32_m128i(x) \ + vreinterpretq_u32_s32(x) + +#define vreinterpretq_u64_m128i(x) \ + vreinterpretq_u64_s32(x) + + +// union intended to allow direct access to an __m128 variable using the names that the MSVC +// compiler provides. This union should really only be used when trying to access the members +// of the vector as integer values. GCC/clang allow native access to the float members through +// a simple array access operator (in C since 4.6, in C++ since 4.8). +// +// Ideally direct accesses to SIMD vectors should not be used since it can cause a performance +// hit. If it really is needed however, the original __m128 variable can be aliased with a +// pointer to this union and used to access individual components. The use of this union should +// be hidden behind a macro that is used throughout the codebase to access the members instead +// of always declaring this type of variable. +typedef union ALIGN_STRUCT(16) SIMDVec +{ + float m128_f32[4]; // as floats - do not to use this. Added for convenience. + int8_t m128_i8[16]; // as signed 8-bit integers. + int16_t m128_i16[8]; // as signed 16-bit integers. + int32_t m128_i32[4]; // as signed 32-bit integers. + int64_t m128_i64[2]; // as signed 64-bit integers. + uint8_t m128_u8[16]; // as unsigned 8-bit integers. + uint16_t m128_u16[8]; // as unsigned 16-bit integers. + uint32_t m128_u32[4]; // as unsigned 32-bit integers. + uint64_t m128_u64[2]; // as unsigned 64-bit integers. +} SIMDVec; + + +// ****************************************** +// Set/get methods +// ****************************************** + +// extracts the lower order floating point value from the parameter : https://msdn.microsoft.com/en-us/library/bb514059%28v=vs.120%29.aspx?f=255&MSPPError=-2147217396 +FORCE_INLINE float _mm_cvtss_f32(__m128 a) +{ + return vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); +} + +// Sets the 128-bit value to zero https://msdn.microsoft.com/en-us/library/vstudio/ys7dw0kh(v=vs.100).aspx +FORCE_INLINE __m128i _mm_setzero_si128() +{ + return vreinterpretq_m128i_s32(vdupq_n_s32(0)); +} + +// Clears the four single-precision, floating-point values. https://msdn.microsoft.com/en-us/library/vstudio/tk1t2tbz(v=vs.100).aspx +FORCE_INLINE __m128 _mm_setzero_ps(void) +{ + return vreinterpretq_m128_f32(vdupq_n_f32(0)); +} + +// Sets the four single-precision, floating-point values to w. https://msdn.microsoft.com/en-us/library/vstudio/2x1se8ha(v=vs.100).aspx +FORCE_INLINE __m128 _mm_set1_ps(float _w) +{ + return vreinterpretq_m128_f32(vdupq_n_f32(_w)); +} + +// Sets the four single-precision, floating-point values to w. https://msdn.microsoft.com/en-us/library/vstudio/2x1se8ha(v=vs.100).aspx +FORCE_INLINE __m128 _mm_set_ps1(float _w) +{ + return vreinterpretq_m128_f32(vdupq_n_f32(_w)); +} + +// Sets the four single-precision, floating-point values to the four inputs. https://msdn.microsoft.com/en-us/library/vstudio/afh0zf75(v=vs.100).aspx +FORCE_INLINE __m128 _mm_set_ps(float w, float z, float y, float x) +{ + float __attribute__((aligned(16))) data[4] = { x, y, z, w }; + return vreinterpretq_m128_f32(vld1q_f32(data)); +} + +// Sets the four single-precision, floating-point values to the four inputs in reverse order. https://msdn.microsoft.com/en-us/library/vstudio/d2172ct3(v=vs.100).aspx +FORCE_INLINE __m128 _mm_setr_ps(float w, float z , float y , float x ) +{ + float __attribute__ ((aligned (16))) data[4] = { w, z, y, x }; + return vreinterpretq_m128_f32(vld1q_f32(data)); +} + +// Sets the 4 signed 32-bit integer values to i. https://msdn.microsoft.com/en-us/library/vstudio/h4xscxat(v=vs.100).aspx +FORCE_INLINE __m128i _mm_set1_epi32(int _i) +{ + return vreinterpretq_m128i_s32(vdupq_n_s32(_i)); +} + +// Sets the 4 signed 32-bit integer values. https://msdn.microsoft.com/en-us/library/vstudio/019beekt(v=vs.100).aspx +FORCE_INLINE __m128i _mm_set_epi32(int i3, int i2, int i1, int i0) +{ + int32_t __attribute__((aligned(16))) data[4] = { i0, i1, i2, i3 }; + return vreinterpretq_m128i_s32(vld1q_s32(data)); +} + +// Stores four single-precision, floating-point values. https://msdn.microsoft.com/en-us/library/vstudio/s3h4ay6y(v=vs.100).aspx +FORCE_INLINE void _mm_store_ps(float *p, __m128 a) +{ + vst1q_f32(p, vreinterpretq_f32_m128(a)); +} + +// Stores four single-precision, floating-point values. https://msdn.microsoft.com/en-us/library/44e30x22(v=vs.100).aspx +FORCE_INLINE void _mm_storeu_ps(float *p, __m128 a) +{ + vst1q_f32(p, vreinterpretq_f32_m128(a)); +} + +// Stores four 32-bit integer values as (as a __m128i value) at the address p. https://msdn.microsoft.com/en-us/library/vstudio/edk11s13(v=vs.100).aspx +FORCE_INLINE void _mm_store_si128(__m128i *p, __m128i a) +{ + vst1q_s32((int32_t*) p, vreinterpretq_s32_m128i(a)); +} + +// Stores the lower single - precision, floating - point value. https://msdn.microsoft.com/en-us/library/tzz10fbx(v=vs.100).aspx +FORCE_INLINE void _mm_store_ss(float *p, __m128 a) +{ + vst1q_lane_f32(p, vreinterpretq_f32_m128(a), 0); +} + +// Reads the lower 64 bits of b and stores them into the lower 64 bits of a. https://msdn.microsoft.com/en-us/library/hhwf428f%28v=vs.90%29.aspx +FORCE_INLINE void _mm_storel_epi64(__m128i* a, __m128i b) +{ + uint64x1_t hi = vget_high_u64(vreinterpretq_u64_m128i(*a)); + uint64x1_t lo = vget_low_u64(vreinterpretq_u64_m128i(b)); + *a = vreinterpretq_m128i_u64(vcombine_u64(lo, hi)); +} + +// Loads a single single-precision, floating-point value, copying it into all four words https://msdn.microsoft.com/en-us/library/vstudio/5cdkf716(v=vs.100).aspx +FORCE_INLINE __m128 _mm_load1_ps(const float * p) +{ + return vreinterpretq_m128_f32(vld1q_dup_f32(p)); +} + +// Loads four single-precision, floating-point values. https://msdn.microsoft.com/en-us/library/vstudio/zzd50xxt(v=vs.100).aspx +FORCE_INLINE __m128 _mm_load_ps(const float * p) +{ + return vreinterpretq_m128_f32(vld1q_f32(p)); +} + +// Loads four single-precision, floating-point values. https://msdn.microsoft.com/en-us/library/x1b16s7z%28v=vs.90%29.aspx +FORCE_INLINE __m128 _mm_loadu_ps(const float * p) +{ + // for neon, alignment doesn't matter, so _mm_load_ps and _mm_loadu_ps are equivalent for neon + return vreinterpretq_m128_f32(vld1q_f32(p)); +} + +// Loads an single - precision, floating - point value into the low word and clears the upper three words. https://msdn.microsoft.com/en-us/library/548bb9h4%28v=vs.90%29.aspx +FORCE_INLINE __m128 _mm_load_ss(const float * p) +{ + return vreinterpretq_m128_f32(vsetq_lane_f32(*p, vdupq_n_f32(0), 0)); +} + + +// ****************************************** +// Logic/Binary operations +// ****************************************** + +// Compares for inequality. https://msdn.microsoft.com/en-us/library/sf44thbx(v=vs.100).aspx +FORCE_INLINE __m128 _mm_cmpneq_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_u32( vmvnq_u32( vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)) ) ); +} + +// Computes the bitwise AND-NOT of the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/68h7wd02(v=vs.100).aspx +FORCE_INLINE __m128 _mm_andnot_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_s32( vbicq_s32(vreinterpretq_s32_m128(b), vreinterpretq_s32_m128(a)) ); // *NOTE* argument swap +} + +// Computes the bitwise AND of the 128-bit value in b and the bitwise NOT of the 128-bit value in a. https://msdn.microsoft.com/en-us/library/vstudio/1beaceh8(v=vs.100).aspx +FORCE_INLINE __m128i _mm_andnot_si128(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s32( vbicq_s32(vreinterpretq_s32_m128i(b), vreinterpretq_s32_m128i(a)) ); // *NOTE* argument swap +} + +// Computes the bitwise AND of the 128-bit value in a and the 128-bit value in b. https://msdn.microsoft.com/en-us/library/vstudio/6d1txsa8(v=vs.100).aspx +FORCE_INLINE __m128i _mm_and_si128(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s32( vandq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)) ); +} + +// Computes the bitwise AND of the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/73ck1xc5(v=vs.100).aspx +FORCE_INLINE __m128 _mm_and_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_s32( vandq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b)) ); +} + +// Computes the bitwise OR of the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/7ctdsyy0(v=vs.100).aspx +FORCE_INLINE __m128 _mm_or_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_s32( vorrq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b)) ); +} + +// Computes bitwise EXOR (exclusive-or) of the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/ss6k3wk8(v=vs.100).aspx +FORCE_INLINE __m128 _mm_xor_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_s32( veorq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b)) ); +} + +// Computes the bitwise OR of the 128-bit value in a and the 128-bit value in b. https://msdn.microsoft.com/en-us/library/vstudio/ew8ty0db(v=vs.100).aspx +FORCE_INLINE __m128i _mm_or_si128(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s32( vorrq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)) ); +} + +// Computes the bitwise XOR of the 128-bit value in a and the 128-bit value in b. https://msdn.microsoft.com/en-us/library/fzt08www(v=vs.100).aspx +FORCE_INLINE __m128i _mm_xor_si128(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s32( veorq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)) ); +} + +// NEON does not provide this method +// Creates a 4-bit mask from the most significant bits of the four single-precision, floating-point values. https://msdn.microsoft.com/en-us/library/vstudio/4490ys29(v=vs.100).aspx +FORCE_INLINE int _mm_movemask_ps(__m128 a) +{ +#if ENABLE_CPP_VERSION // I am not yet convinced that the NEON version is faster than the C version of this + uint32x4_t &ia = *(uint32x4_t *)&a; + return (ia[0] >> 31) | ((ia[1] >> 30) & 2) | ((ia[2] >> 29) & 4) | ((ia[3] >> 28) & 8); +#else + static const uint32x4_t movemask = { 1, 2, 4, 8 }; + static const uint32x4_t highbit = { 0x80000000, 0x80000000, 0x80000000, 0x80000000 }; + uint32x4_t t0 = vreinterpretq_u32_m128(a); + uint32x4_t t1 = vtstq_u32(t0, highbit); + uint32x4_t t2 = vandq_u32(t1, movemask); + uint32x2_t t3 = vorr_u32(vget_low_u32(t2), vget_high_u32(t2)); + return vget_lane_u32(t3, 0) | vget_lane_u32(t3, 1); +#endif +} + +// Takes the upper 64 bits of a and places it in the low end of the result +// Takes the lower 64 bits of b and places it into the high end of the result. +FORCE_INLINE __m128 _mm_shuffle_ps_1032(__m128 a, __m128 b) +{ + float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a)); + float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b)); + return vreinterpretq_m128_f32(vcombine_f32(a32, b10)); +} + +// takes the lower two 32-bit values from a and swaps them and places in high end of result +// takes the higher two 32 bit values from b and swaps them and places in low end of result. +FORCE_INLINE __m128 _mm_shuffle_ps_2301(__m128 a, __m128 b) +{ + float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a))); + float32x2_t b23 = vrev64_f32(vget_high_f32(vreinterpretq_f32_m128(b))); + return vreinterpretq_m128_f32(vcombine_f32(a01, b23)); +} + +FORCE_INLINE __m128 _mm_shuffle_ps_0321(__m128 a, __m128 b) +{ + float32x2_t a21 = vget_high_f32(vextq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 3)); + float32x2_t b03 = vget_low_f32(vextq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b), 3)); + return vreinterpretq_m128_f32(vcombine_f32(a21, b03)); +} + +FORCE_INLINE __m128 _mm_shuffle_ps_2103(__m128 a, __m128 b) +{ + float32x2_t a03 = vget_low_f32(vextq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 3)); + float32x2_t b21 = vget_high_f32(vextq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b), 3)); + return vreinterpretq_m128_f32(vcombine_f32(a03, b21)); +} + +FORCE_INLINE __m128 _mm_shuffle_ps_1010(__m128 a, __m128 b) +{ + float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a)); + float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b)); + return vreinterpretq_m128_f32(vcombine_f32(a10, b10)); +} + +FORCE_INLINE __m128 _mm_shuffle_ps_1001(__m128 a, __m128 b) +{ + float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a))); + float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b)); + return vreinterpretq_m128_f32(vcombine_f32(a01, b10)); +} + +FORCE_INLINE __m128 _mm_shuffle_ps_0101(__m128 a, __m128 b) +{ + float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a))); + float32x2_t b01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(b))); + return vreinterpretq_m128_f32(vcombine_f32(a01, b01)); +} + +// keeps the low 64 bits of b in the low and puts the high 64 bits of a in the high +FORCE_INLINE __m128 _mm_shuffle_ps_3210(__m128 a, __m128 b) +{ + float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a)); + float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b)); + return vreinterpretq_m128_f32(vcombine_f32(a10, b32)); +} + +FORCE_INLINE __m128 _mm_shuffle_ps_0011(__m128 a, __m128 b) +{ + float32x2_t a11 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(a)), 1); + float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0); + return vreinterpretq_m128_f32(vcombine_f32(a11, b00)); +} + +FORCE_INLINE __m128 _mm_shuffle_ps_0022(__m128 a, __m128 b) +{ + float32x2_t a22 = vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 0); + float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0); + return vreinterpretq_m128_f32(vcombine_f32(a22, b00)); +} + +FORCE_INLINE __m128 _mm_shuffle_ps_2200(__m128 a, __m128 b) +{ + float32x2_t a00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(a)), 0); + float32x2_t b22 = vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(b)), 0); + return vreinterpretq_m128_f32(vcombine_f32(a00, b22)); +} + +FORCE_INLINE __m128 _mm_shuffle_ps_3202(__m128 a, __m128 b) +{ + float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); + float32x2_t a22 = vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 0); + float32x2_t a02 = vset_lane_f32(a0, a22, 1); /* apoty: TODO: use vzip ?*/ + float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b)); + return vreinterpretq_m128_f32(vcombine_f32(a02, b32)); +} + +FORCE_INLINE __m128 _mm_shuffle_ps_1133(__m128 a, __m128 b) +{ + float32x2_t a33 = vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 1); + float32x2_t b11 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 1); + return vreinterpretq_m128_f32(vcombine_f32(a33, b11)); +} + +FORCE_INLINE __m128 _mm_shuffle_ps_2010(__m128 a, __m128 b) +{ + float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a)); + float32_t b2 = vgetq_lane_f32(vreinterpretq_f32_m128(b), 2); + float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0); + float32x2_t b20 = vset_lane_f32(b2, b00, 1); + return vreinterpretq_m128_f32(vcombine_f32(a10, b20)); +} + +FORCE_INLINE __m128 _mm_shuffle_ps_2001(__m128 a, __m128 b) +{ + float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a))); + float32_t b2 = vgetq_lane_f32(b, 2); + float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0); + float32x2_t b20 = vset_lane_f32(b2, b00, 1); + return vreinterpretq_m128_f32(vcombine_f32(a01, b20)); +} + +FORCE_INLINE __m128 _mm_shuffle_ps_2032(__m128 a, __m128 b) +{ + float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a)); + float32_t b2 = vgetq_lane_f32(b, 2); + float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0); + float32x2_t b20 = vset_lane_f32(b2, b00, 1); + return vreinterpretq_m128_f32(vcombine_f32(a32, b20)); +} + +// NEON does not support a general purpose permute intrinsic +// Currently I am not sure whether the C implementation is faster or slower than the NEON version. +// Note, this has to be expanded as a template because the shuffle value must be an immediate value. +// The same is true on SSE as well. +// Selects four specific single-precision, floating-point values from a and b, based on the mask i. https://msdn.microsoft.com/en-us/library/vstudio/5f0858x0(v=vs.100).aspx +#if ENABLE_CPP_VERSION // I am not convinced that the NEON version is faster than the C version yet. +FORCE_INLINE __m128 _mm_shuffle_ps_default(__m128 a, __m128 b, __constrange(0,255) int imm) +{ + __m128 ret; + ret[0] = a[imm & 0x3]; + ret[1] = a[(imm >> 2) & 0x3]; + ret[2] = b[(imm >> 4) & 0x03]; + ret[3] = b[(imm >> 6) & 0x03]; + return ret; +} +#else +#define _mm_shuffle_ps_default(a, b, imm) \ +({ \ + float32x4_t ret; \ + ret = vmovq_n_f32(vgetq_lane_f32(vreinterpretq_f32_m128(a), (imm) & 0x3)); \ + ret = vsetq_lane_f32(vgetq_lane_f32(vreinterpretq_f32_m128(a), ((imm) >> 2) & 0x3), ret, 1); \ + ret = vsetq_lane_f32(vgetq_lane_f32(vreinterpretq_f32_m128(b), ((imm) >> 4) & 0x3), ret, 2); \ + ret = vsetq_lane_f32(vgetq_lane_f32(vreinterpretq_f32_m128(b), ((imm) >> 6) & 0x3), ret, 3); \ + vreinterpretq_m128_f32(ret); \ +}) +#endif + +//FORCE_INLINE __m128 _mm_shuffle_ps(__m128 a, __m128 b, __constrange(0,255) int imm) +#define _mm_shuffle_ps(a, b, imm) \ +({ \ + __m128 ret; \ + switch (imm) \ + { \ + case _MM_SHUFFLE(1, 0, 3, 2): ret = _mm_shuffle_ps_1032((a), (b)); break; \ + case _MM_SHUFFLE(2, 3, 0, 1): ret = _mm_shuffle_ps_2301((a), (b)); break; \ + case _MM_SHUFFLE(0, 3, 2, 1): ret = _mm_shuffle_ps_0321((a), (b)); break; \ + case _MM_SHUFFLE(2, 1, 0, 3): ret = _mm_shuffle_ps_2103((a), (b)); break; \ + case _MM_SHUFFLE(1, 0, 1, 0): ret = _mm_shuffle_ps_1010((a), (b)); break; \ + case _MM_SHUFFLE(1, 0, 0, 1): ret = _mm_shuffle_ps_1001((a), (b)); break; \ + case _MM_SHUFFLE(0, 1, 0, 1): ret = _mm_shuffle_ps_0101((a), (b)); break; \ + case _MM_SHUFFLE(3, 2, 1, 0): ret = _mm_shuffle_ps_3210((a), (b)); break; \ + case _MM_SHUFFLE(0, 0, 1, 1): ret = _mm_shuffle_ps_0011((a), (b)); break; \ + case _MM_SHUFFLE(0, 0, 2, 2): ret = _mm_shuffle_ps_0022((a), (b)); break; \ + case _MM_SHUFFLE(2, 2, 0, 0): ret = _mm_shuffle_ps_2200((a), (b)); break; \ + case _MM_SHUFFLE(3, 2, 0, 2): ret = _mm_shuffle_ps_3202((a), (b)); break; \ + case _MM_SHUFFLE(1, 1, 3, 3): ret = _mm_shuffle_ps_1133((a), (b)); break; \ + case _MM_SHUFFLE(2, 0, 1, 0): ret = _mm_shuffle_ps_2010((a), (b)); break; \ + case _MM_SHUFFLE(2, 0, 0, 1): ret = _mm_shuffle_ps_2001((a), (b)); break; \ + case _MM_SHUFFLE(2, 0, 3, 2): ret = _mm_shuffle_ps_2032((a), (b)); break; \ + default: ret = _mm_shuffle_ps_default((a), (b), (imm)); break; \ + } \ + ret; \ +}) + +// Takes the upper 64 bits of a and places it in the low end of the result +// Takes the lower 64 bits of a and places it into the high end of the result. +FORCE_INLINE __m128i _mm_shuffle_epi_1032(__m128i a) +{ + int32x2_t a32 = vget_high_s32(vreinterpretq_s32_m128i(a)); + int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a)); + return vreinterpretq_m128i_s32(vcombine_s32(a32, a10)); +} + +// takes the lower two 32-bit values from a and swaps them and places in low end of result +// takes the higher two 32 bit values from a and swaps them and places in high end of result. +FORCE_INLINE __m128i _mm_shuffle_epi_2301(__m128i a) +{ + int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a))); + int32x2_t a23 = vrev64_s32(vget_high_s32(vreinterpretq_s32_m128i(a))); + return vreinterpretq_m128i_s32(vcombine_s32(a01, a23)); +} + +// rotates the least significant 32 bits into the most signficant 32 bits, and shifts the rest down +FORCE_INLINE __m128i _mm_shuffle_epi_0321(__m128i a) +{ + return vreinterpretq_m128i_s32(vextq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(a), 1)); +} + +// rotates the most significant 32 bits into the least signficant 32 bits, and shifts the rest up +FORCE_INLINE __m128i _mm_shuffle_epi_2103(__m128i a) +{ + return vreinterpretq_m128i_s32(vextq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(a), 3)); +} + +// gets the lower 64 bits of a, and places it in the upper 64 bits +// gets the lower 64 bits of a and places it in the lower 64 bits +FORCE_INLINE __m128i _mm_shuffle_epi_1010(__m128i a) +{ + int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a)); + return vreinterpretq_m128i_s32(vcombine_s32(a10, a10)); +} + +// gets the lower 64 bits of a, swaps the 0 and 1 elements, and places it in the lower 64 bits +// gets the lower 64 bits of a, and places it in the upper 64 bits +FORCE_INLINE __m128i _mm_shuffle_epi_1001(__m128i a) +{ + int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a))); + int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a)); + return vreinterpretq_m128i_s32(vcombine_s32(a01, a10)); +} + +// gets the lower 64 bits of a, swaps the 0 and 1 elements and places it in the upper 64 bits +// gets the lower 64 bits of a, swaps the 0 and 1 elements, and places it in the lower 64 bits +FORCE_INLINE __m128i _mm_shuffle_epi_0101(__m128i a) +{ + int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a))); + return vreinterpretq_m128i_s32(vcombine_s32(a01, a01)); +} + +FORCE_INLINE __m128i _mm_shuffle_epi_2211(__m128i a) +{ + int32x2_t a11 = vdup_lane_s32(vget_low_s32(vreinterpretq_s32_m128i(a)), 1); + int32x2_t a22 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 0); + return vreinterpretq_m128i_s32(vcombine_s32(a11, a22)); +} + +FORCE_INLINE __m128i _mm_shuffle_epi_0122(__m128i a) +{ + int32x2_t a22 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 0); + int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a))); + return vreinterpretq_m128i_s32(vcombine_s32(a22, a01)); +} + +FORCE_INLINE __m128i _mm_shuffle_epi_3332(__m128i a) +{ + int32x2_t a32 = vget_high_s32(vreinterpretq_s32_m128i(a)); + int32x2_t a33 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 1); + return vreinterpretq_m128i_s32(vcombine_s32(a32, a33)); +} + +//FORCE_INLINE __m128i _mm_shuffle_epi32_default(__m128i a, __constrange(0,255) int imm) +#if ENABLE_CPP_VERSION +FORCE_INLINE __m128i _mm_shuffle_epi32_default(__m128i a, __constrange(0,255) int imm) +{ + __m128i ret; + ret[0] = a[imm & 0x3]; + ret[1] = a[(imm >> 2) & 0x3]; + ret[2] = a[(imm >> 4) & 0x03]; + ret[3] = a[(imm >> 6) & 0x03]; + return ret; +} +#else +#define _mm_shuffle_epi32_default(a, imm) \ +({ \ + int32x4_t ret; \ + ret = vmovq_n_s32(vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm) & 0x3)); \ + ret = vsetq_lane_s32(vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 2) & 0x3), ret, 1); \ + ret = vsetq_lane_s32(vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 4) & 0x3), ret, 2); \ + ret = vsetq_lane_s32(vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 6) & 0x3), ret, 3); \ + vreinterpretq_m128i_s32(ret); \ +}) +#endif + +//FORCE_INLINE __m128i _mm_shuffle_epi32_splat(__m128i a, __constrange(0,255) int imm) +#if defined(__aarch64__) +#define _mm_shuffle_epi32_splat(a, imm) \ +({ \ + vreinterpretq_m128i_s32(vdupq_laneq_s32(vreinterpretq_s32_m128i(a), (imm))); \ +}) +#else +#define _mm_shuffle_epi32_splat(a, imm) \ +({ \ + vreinterpretq_m128i_s32(vdupq_n_s32(vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm)))); \ +}) +#endif + +// Shuffles the 4 signed or unsigned 32-bit integers in a as specified by imm. https://msdn.microsoft.com/en-us/library/56f67xbk%28v=vs.90%29.aspx +//FORCE_INLINE __m128i _mm_shuffle_epi32(__m128i a, __constrange(0,255) int imm) +#define _mm_shuffle_epi32(a, imm) \ +({ \ + __m128i ret; \ + switch (imm) \ + { \ + case _MM_SHUFFLE(1, 0, 3, 2): ret = _mm_shuffle_epi_1032((a)); break; \ + case _MM_SHUFFLE(2, 3, 0, 1): ret = _mm_shuffle_epi_2301((a)); break; \ + case _MM_SHUFFLE(0, 3, 2, 1): ret = _mm_shuffle_epi_0321((a)); break; \ + case _MM_SHUFFLE(2, 1, 0, 3): ret = _mm_shuffle_epi_2103((a)); break; \ + case _MM_SHUFFLE(1, 0, 1, 0): ret = _mm_shuffle_epi_1010((a)); break; \ + case _MM_SHUFFLE(1, 0, 0, 1): ret = _mm_shuffle_epi_1001((a)); break; \ + case _MM_SHUFFLE(0, 1, 0, 1): ret = _mm_shuffle_epi_0101((a)); break; \ + case _MM_SHUFFLE(2, 2, 1, 1): ret = _mm_shuffle_epi_2211((a)); break; \ + case _MM_SHUFFLE(0, 1, 2, 2): ret = _mm_shuffle_epi_0122((a)); break; \ + case _MM_SHUFFLE(3, 3, 3, 2): ret = _mm_shuffle_epi_3332((a)); break; \ + case _MM_SHUFFLE(0, 0, 0, 0): ret = _mm_shuffle_epi32_splat((a),0); break; \ + case _MM_SHUFFLE(1, 1, 1, 1): ret = _mm_shuffle_epi32_splat((a),1); break; \ + case _MM_SHUFFLE(2, 2, 2, 2): ret = _mm_shuffle_epi32_splat((a),2); break; \ + case _MM_SHUFFLE(3, 3, 3, 3): ret = _mm_shuffle_epi32_splat((a),3); break; \ + default: ret = _mm_shuffle_epi32_default((a), (imm)); break; \ + } \ + ret; \ +}) + +// Shuffles the upper 4 signed or unsigned 16 - bit integers in a as specified by imm. https://msdn.microsoft.com/en-us/library/13ywktbs(v=vs.100).aspx +//FORCE_INLINE __m128i _mm_shufflehi_epi16_function(__m128i a, __constrange(0,255) int imm) +#define _mm_shufflehi_epi16_function(a, imm) \ +({ \ + int16x8_t ret = vreinterpretq_s16_s32(a); \ + int16x4_t highBits = vget_high_s16(ret); \ + ret = vsetq_lane_s16(vget_lane_s16(highBits, (imm) & 0x3), ret, 4); \ + ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 2) & 0x3), ret, 5); \ + ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 4) & 0x3), ret, 6); \ + ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 6) & 0x3), ret, 7); \ + vreinterpretq_s32_s16(ret); \ +}) + +//FORCE_INLINE __m128i _mm_shufflehi_epi16(__m128i a, __constrange(0,255) int imm) +#define _mm_shufflehi_epi16(a, imm) \ + _mm_shufflehi_epi16_function((a), (imm)) + + +// Shifts the 4 signed or unsigned 32-bit integers in a left by count bits while shifting in zeros. : https://msdn.microsoft.com/en-us/library/z2k3bbtb%28v=vs.90%29.aspx +//FORCE_INLINE __m128i _mm_slli_epi32(__m128i a, __constrange(0,255) int imm) +#define _mm_slli_epi32(a, imm) \ +({ \ + __m128i ret; \ + if ((imm) <= 0) {\ + ret = a; \ + } \ + else if ((imm) > 31) { \ + ret = _mm_setzero_si128(); \ + } \ + else { \ + ret = vreinterpretq_m128i_s32(vshlq_n_s32(vreinterpretq_s32_m128i(a), (imm))); \ + } \ + ret; \ +}) + +//Shifts the 4 signed or unsigned 32-bit integers in a right by count bits while shifting in zeros. https://msdn.microsoft.com/en-us/library/w486zcfa(v=vs.100).aspx +//FORCE_INLINE __m128i _mm_srli_epi32(__m128i a, __constrange(0,255) int imm) +#define _mm_srli_epi32(a, imm) \ +({ \ + __m128i ret; \ + if ((imm) <= 0) { \ + ret = a; \ + } \ + else if ((imm)> 31) { \ + ret = _mm_setzero_si128(); \ + } \ + else { \ + ret = vreinterpretq_m128i_u32(vshrq_n_u32(vreinterpretq_u32_m128i(a), (imm))); \ + } \ + ret; \ +}) + +// Shifts the 4 signed 32 - bit integers in a right by count bits while shifting in the sign bit. https://msdn.microsoft.com/en-us/library/z1939387(v=vs.100).aspx +//FORCE_INLINE __m128i _mm_srai_epi32(__m128i a, __constrange(0,255) int imm) +#define _mm_srai_epi32(a, imm) \ +({ \ + __m128i ret; \ + if ((imm) <= 0) { \ + ret = a; \ + } \ + else if ((imm) > 31) { \ + ret = vreinterpretq_m128i_s32(vshrq_n_s32(vreinterpretq_s32_m128i(a), 16)); \ + ret = vreinterpretq_m128i_s32(vshrq_n_s32(vreinterpretq_s32_m128i(ret), 16)); \ + } \ + else { \ + ret = vreinterpretq_m128i_s32(vshrq_n_s32(vreinterpretq_s32_m128i(a), (imm))); \ + } \ + ret; \ +}) + +// Shifts the 128 - bit value in a right by imm bytes while shifting in zeros.imm must be an immediate. https://msdn.microsoft.com/en-us/library/305w28yz(v=vs.100).aspx +//FORCE_INLINE _mm_srli_si128(__m128i a, __constrange(0,255) int imm) +#define _mm_srli_si128(a, imm) \ +({ \ + __m128i ret; \ + if ((imm) <= 0) { \ + ret = a; \ + } \ + else if ((imm) > 15) { \ + ret = _mm_setzero_si128(); \ + } \ + else { \ + ret = vreinterpretq_m128i_s8(vextq_s8(vreinterpretq_s8_m128i(a), vdupq_n_s8(0), (imm))); \ + } \ + ret; \ +}) + +// Shifts the 128-bit value in a left by imm bytes while shifting in zeros. imm must be an immediate. https://msdn.microsoft.com/en-us/library/34d3k2kt(v=vs.100).aspx +//FORCE_INLINE __m128i _mm_slli_si128(__m128i a, __constrange(0,255) int imm) +#define _mm_slli_si128(a, imm) \ +({ \ + __m128i ret; \ + if ((imm) <= 0) { \ + ret = a; \ + } \ + else if ((imm) > 15) { \ + ret = _mm_setzero_si128(); \ + } \ + else { \ + ret = vreinterpretq_m128i_s8(vextq_s8(vdupq_n_s8(0), vreinterpretq_s8_m128i(a), 16 - (imm))); \ + } \ + ret; \ +}) + +// NEON does not provide a version of this function, here is an article about some ways to repro the results. +// http://stackoverflow.com/questions/11870910/sse-mm-movemask-epi8-equivalent-method-for-arm-neon +// Creates a 16-bit mask from the most significant bits of the 16 signed or unsigned 8-bit integers in a and zero extends the upper bits. https://msdn.microsoft.com/en-us/library/vstudio/s090c8fk(v=vs.100).aspx +FORCE_INLINE int _mm_movemask_epi8(__m128i _a) +{ + uint8x16_t input = vreinterpretq_u8_m128i(_a); + static const int8_t __attribute__((aligned(16))) xr[8] = { -7, -6, -5, -4, -3, -2, -1, 0 }; + uint8x8_t mask_and = vdup_n_u8(0x80); + int8x8_t mask_shift = vld1_s8(xr); + + uint8x8_t lo = vget_low_u8(input); + uint8x8_t hi = vget_high_u8(input); + + lo = vand_u8(lo, mask_and); + lo = vshl_u8(lo, mask_shift); + + hi = vand_u8(hi, mask_and); + hi = vshl_u8(hi, mask_shift); + + lo = vpadd_u8(lo, lo); + lo = vpadd_u8(lo, lo); + lo = vpadd_u8(lo, lo); + + hi = vpadd_u8(hi, hi); + hi = vpadd_u8(hi, hi); + hi = vpadd_u8(hi, hi); + + return ((hi[0] << 8) | (lo[0] & 0xFF)); +} + + +// ****************************************** +// Math operations +// ****************************************** + +// Subtracts the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/1zad2k61(v=vs.100).aspx +FORCE_INLINE __m128 _mm_sub_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_f32(vsubq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +} + +// Subtracts the 4 signed or unsigned 32-bit integers of b from the 4 signed or unsigned 32-bit integers of a. https://msdn.microsoft.com/en-us/library/vstudio/fhh866h0(v=vs.100).aspx +FORCE_INLINE __m128i _mm_sub_epi32(__m128i a, __m128i b) +{ + return vreinterpretq_m128_f32(vsubq_s32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +} + +FORCE_INLINE __m128i _mm_sub_epi16(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s16(vsubq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); +} + +// Adds the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/c9848chc(v=vs.100).aspx +FORCE_INLINE __m128 _mm_add_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_f32(vaddq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +} + +// adds the scalar single-precision floating point values of a and b. https://msdn.microsoft.com/en-us/library/be94x2y6(v=vs.100).aspx +FORCE_INLINE __m128 _mm_add_ss(__m128 a, __m128 b) +{ + float32_t b0 = vgetq_lane_f32(vreinterpretq_f32_m128(b), 0); + float32x4_t value = vsetq_lane_f32(b0, vdupq_n_f32(0), 0); + //the upper values in the result must be the remnants of . + return vreinterpretq_m128_f32(vaddq_f32(a, value)); +} + +// Adds the 4 signed or unsigned 32-bit integers in a to the 4 signed or unsigned 32-bit integers in b. https://msdn.microsoft.com/en-us/library/vstudio/09xs4fkk(v=vs.100).aspx +FORCE_INLINE __m128i _mm_add_epi32(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s32(vaddq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); +} + +// Adds the 8 signed or unsigned 16-bit integers in a to the 8 signed or unsigned 16-bit integers in b. https://msdn.microsoft.com/en-us/library/fceha5k4(v=vs.100).aspx +FORCE_INLINE __m128i _mm_add_epi16(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s16(vaddq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); +} + +// Multiplies the 8 signed or unsigned 16-bit integers from a by the 8 signed or unsigned 16-bit integers from b. https://msdn.microsoft.com/en-us/library/vstudio/9ks1472s(v=vs.100).aspx +FORCE_INLINE __m128i _mm_mullo_epi16(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s16(vmulq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); +} + +// Multiplies the 4 signed or unsigned 32-bit integers from a by the 4 signed or unsigned 32-bit integers from b. https://msdn.microsoft.com/en-us/library/vstudio/bb531409(v=vs.100).aspx +FORCE_INLINE __m128i _mm_mullo_epi32(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s32(vmulq_s32(vreinterpretq_s32_m128i(a),vreinterpretq_s32_m128i(b))); +} + +// Multiplies the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/22kbk6t9(v=vs.100).aspx +FORCE_INLINE __m128 _mm_mul_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_f32(vmulq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +} + +// Divides the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/edaw8147(v=vs.100).aspx +FORCE_INLINE __m128 _mm_div_ps(__m128 a, __m128 b) +{ + float32x4_t recip0 = vrecpeq_f32(vreinterpretq_f32_m128(b)); + float32x4_t recip1 = vmulq_f32(recip0, vrecpsq_f32(recip0, vreinterpretq_f32_m128(b))); + return vreinterpretq_m128_f32(vmulq_f32(vreinterpretq_f32_m128(a), recip1)); +} + +// Divides the scalar single-precision floating point value of a by b. https://msdn.microsoft.com/en-us/library/4y73xa49(v=vs.100).aspx +FORCE_INLINE __m128 _mm_div_ss(__m128 a, __m128 b) +{ + float32_t value = vgetq_lane_f32(vreinterpretq_f32_m128(_mm_div_ps(a, b)), 0); + return vreinterpretq_m128_f32(vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0)); +} + +// This version does additional iterations to improve accuracy. Between 1 and 4 recommended. +// Computes the approximations of reciprocals of the four single-precision, floating-point values of a. https://msdn.microsoft.com/en-us/library/vstudio/796k1tty(v=vs.100).aspx +FORCE_INLINE __m128 recipq_newton(__m128 in, int n) +{ + int i; + float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(in)); + for (i = 0; i < n; ++i) + { + recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(in))); + } + return vreinterpretq_m128_f32(recip); +} + +// Computes the approximations of reciprocals of the four single-precision, floating-point values of a. https://msdn.microsoft.com/en-us/library/vstudio/796k1tty(v=vs.100).aspx +FORCE_INLINE __m128 _mm_rcp_ps(__m128 in) +{ + float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(in)); + recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(in))); + return vreinterpretq_m128_f32(recip); +} + +// Computes the approximations of square roots of the four single-precision, floating-point values of a. First computes reciprocal square roots and then reciprocals of the four values. https://msdn.microsoft.com/en-us/library/vstudio/8z67bwwk(v=vs.100).aspx +FORCE_INLINE __m128 _mm_sqrt_ps(__m128 in) +{ + float32x4_t recipsq = vrsqrteq_f32(vreinterpretq_f32_m128(in)); + float32x4_t sq = vrecpeq_f32(recipsq); + // ??? use step versions of both sqrt and recip for better accuracy? + return vreinterpretq_m128_f32(sq); +} + +// Computes the approximation of the square root of the scalar single-precision floating point value of in. https://msdn.microsoft.com/en-us/library/ahfsc22d(v=vs.100).aspx +FORCE_INLINE __m128 _mm_sqrt_ss(__m128 in) +{ + float32_t value = vgetq_lane_f32(vreinterpretq_f32_m128(_mm_sqrt_ps(in)), 0); + return vreinterpretq_m128_f32(vsetq_lane_f32(value, vreinterpretq_f32_m128(in), 0)); +} + +// Computes the approximations of the reciprocal square roots of the four single-precision floating point values of in. https://msdn.microsoft.com/en-us/library/22hfsh53(v=vs.100).aspx +FORCE_INLINE __m128 _mm_rsqrt_ps(__m128 in) +{ + return vreinterpretq_m128_f32(vrsqrteq_f32(vreinterpretq_f32_m128(in))); +} + +// Computes the maximums of the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/ff5d607a(v=vs.100).aspx +FORCE_INLINE __m128 _mm_max_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_f32(vmaxq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +} + +// Computes the minima of the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/wh13kadz(v=vs.100).aspx +FORCE_INLINE __m128 _mm_min_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_f32(vminq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +} + +// Computes the maximum of the two lower scalar single-precision floating point values of a and b. https://msdn.microsoft.com/en-us/library/s6db5esz(v=vs.100).aspx +FORCE_INLINE __m128 _mm_max_ss(__m128 a, __m128 b) +{ + float32_t value = vgetq_lane_f32(vmaxq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)), 0); + return vreinterpretq_m128_f32(vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0)); +} + +// Computes the minimum of the two lower scalar single-precision floating point values of a and b. https://msdn.microsoft.com/en-us/library/0a9y7xaa(v=vs.100).aspx +FORCE_INLINE __m128 _mm_min_ss(__m128 a, __m128 b) +{ + float32_t value = vgetq_lane_f32(vminq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)), 0); + return vreinterpretq_m128_f32(vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0)); +} + +// Computes the pairwise minima of the 8 signed 16-bit integers from a and the 8 signed 16-bit integers from b. https://msdn.microsoft.com/en-us/library/vstudio/6te997ew(v=vs.100).aspx +FORCE_INLINE __m128i _mm_min_epi16(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s16(vminq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); +} + +// epi versions of min/max +// Computes the pariwise maximums of the four signed 32-bit integer values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/bb514055(v=vs.100).aspx +FORCE_INLINE __m128i _mm_max_epi32(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s32(vmaxq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); +} + +// Computes the pariwise minima of the four signed 32-bit integer values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/bb531476(v=vs.100).aspx +FORCE_INLINE __m128i _mm_min_epi32(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s32(vminq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); +} + +// Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit integers from b. https://msdn.microsoft.com/en-us/library/vstudio/59hddw1d(v=vs.100).aspx +FORCE_INLINE __m128i _mm_mulhi_epi16(__m128i a, __m128i b) +{ + /* apoty: issue with large values because of result saturation */ + //int16x8_t ret = vqdmulhq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)); /* =2*a*b */ + //return vreinterpretq_m128i_s16(vshrq_n_s16(ret, 1)); + int16x4_t a3210 = vget_low_s16(vreinterpretq_s16_m128i(a)); + int16x4_t b3210 = vget_low_s16(vreinterpretq_s16_m128i(b)); + int32x4_t ab3210 = vmull_s16(a3210, b3210); /* 3333222211110000 */ + int16x4_t a7654 = vget_high_s16(vreinterpretq_s16_m128i(a)); + int16x4_t b7654 = vget_high_s16(vreinterpretq_s16_m128i(b)); + int32x4_t ab7654 = vmull_s16(a7654, b7654); /* 7777666655554444 */ + uint16x8x2_t r = vuzpq_u16(vreinterpretq_u16_s32(ab3210), vreinterpretq_u16_s32(ab7654)); + return vreinterpretq_m128i_u16(r.val[1]); +} + +// Computes pairwise add of each argument as single-precision, floating-point values a and b. +//https://msdn.microsoft.com/en-us/library/yd9wecaa.aspx +FORCE_INLINE __m128 _mm_hadd_ps(__m128 a, __m128 b ) +{ +#if defined(__aarch64__) + return vreinterpretq_m128_f32(vpaddq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); //AArch64 +#else + float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a)); + float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a)); + float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b)); + float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b)); + return vreinterpretq_m128_f32(vcombine_f32(vpadd_f32(a10, a32), vpadd_f32(b10, b32))); +#endif +} + +// ****************************************** +// Compare operations +// ****************************************** + +// Compares for less than https://msdn.microsoft.com/en-us/library/vstudio/f330yhc8(v=vs.100).aspx +FORCE_INLINE __m128 _mm_cmplt_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_u32(vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +} + +// Compares for greater than. https://msdn.microsoft.com/en-us/library/vstudio/11dy102s(v=vs.100).aspx +FORCE_INLINE __m128 _mm_cmpgt_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_u32(vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +} + +// Compares for greater than or equal. https://msdn.microsoft.com/en-us/library/vstudio/fs813y2t(v=vs.100).aspx +FORCE_INLINE __m128 _mm_cmpge_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_u32(vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +} + +// Compares for less than or equal. https://msdn.microsoft.com/en-us/library/vstudio/1s75w83z(v=vs.100).aspx +FORCE_INLINE __m128 _mm_cmple_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_u32(vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +} + +// Compares for equality. https://msdn.microsoft.com/en-us/library/vstudio/36aectz5(v=vs.100).aspx +FORCE_INLINE __m128 _mm_cmpeq_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_u32(vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +} + +// Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers in b for less than. https://msdn.microsoft.com/en-us/library/vstudio/4ak0bf5d(v=vs.100).aspx +FORCE_INLINE __m128i _mm_cmplt_epi32(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_u32(vcltq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); +} + +// Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers in b for greater than. https://msdn.microsoft.com/en-us/library/vstudio/1s9f2z0y(v=vs.100).aspx +FORCE_INLINE __m128i _mm_cmpgt_epi32(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_u32(vcgtq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); +} + +// Compares the four 32-bit floats in a and b to check if any values are NaN. Ordered compare between each value returns true for "orderable" and false for "not orderable" (NaN). https://msdn.microsoft.com/en-us/library/vstudio/0h9w00fx(v=vs.100).aspx +// see also: +// http://stackoverflow.com/questions/8627331/what-does-ordered-unordered-comparison-mean +// http://stackoverflow.com/questions/29349621/neon-isnanval-intrinsics +FORCE_INLINE __m128 _mm_cmpord_ps(__m128 a, __m128 b ) +{ + // Note: NEON does not have ordered compare builtin + // Need to compare a eq a and b eq b to check for NaN + // Do AND of results to get final + uint32x4_t ceqaa = vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)); + uint32x4_t ceqbb = vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b)); + return vreinterpretq_m128_u32(vandq_u32(ceqaa, ceqbb)); +} + +// Compares the lower single-precision floating point scalar values of a and b using a less than operation. : https://msdn.microsoft.com/en-us/library/2kwe606b(v=vs.90).aspx +// Important note!! The documentation on MSDN is incorrect! If either of the values is a NAN the docs say you will get a one, but in fact, it will return a zero!! +FORCE_INLINE int _mm_comilt_ss(__m128 a, __m128 b) +{ + uint32x4_t a_not_nan = vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)); + uint32x4_t b_not_nan = vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b)); + uint32x4_t a_or_b_nan = vmvnq_u32(vandq_u32(a_not_nan, b_not_nan)); + uint32x4_t a_lt_b = vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)); + return (vgetq_lane_u32(vorrq_u32(a_or_b_nan, a_lt_b), 0) != 0) ? 1 : 0; +} + +// Compares the lower single-precision floating point scalar values of a and b using a greater than operation. : https://msdn.microsoft.com/en-us/library/b0738e0t(v=vs.100).aspx +FORCE_INLINE int _mm_comigt_ss(__m128 a, __m128 b) +{ + //return vgetq_lane_u32(vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)), 0); + uint32x4_t a_not_nan = vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)); + uint32x4_t b_not_nan = vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b)); + uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan); + uint32x4_t a_gt_b = vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)); + return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_gt_b), 0) != 0) ? 1 : 0; +} + +// Compares the lower single-precision floating point scalar values of a and b using a less than or equal operation. : https://msdn.microsoft.com/en-us/library/1w4t7c57(v=vs.90).aspx +FORCE_INLINE int _mm_comile_ss(__m128 a, __m128 b) +{ + //return vgetq_lane_u32(vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)), 0); + uint32x4_t a_not_nan = vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)); + uint32x4_t b_not_nan = vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b)); + uint32x4_t a_or_b_nan = vmvnq_u32(vandq_u32(a_not_nan, b_not_nan)); + uint32x4_t a_le_b = vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)); + return (vgetq_lane_u32(vorrq_u32(a_or_b_nan, a_le_b), 0) != 0) ? 1 : 0; +} + +// Compares the lower single-precision floating point scalar values of a and b using a greater than or equal operation. : https://msdn.microsoft.com/en-us/library/8t80des6(v=vs.100).aspx +FORCE_INLINE int _mm_comige_ss(__m128 a, __m128 b) +{ + //return vgetq_lane_u32(vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)), 0); + uint32x4_t a_not_nan = vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)); + uint32x4_t b_not_nan = vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b)); + uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan); + uint32x4_t a_ge_b = vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)); + return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_ge_b), 0) != 0) ? 1 : 0; +} + +// Compares the lower single-precision floating point scalar values of a and b using an equality operation. : https://msdn.microsoft.com/en-us/library/93yx2h2b(v=vs.100).aspx +FORCE_INLINE int _mm_comieq_ss(__m128 a, __m128 b) +{ + //return vgetq_lane_u32(vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)), 0); + uint32x4_t a_not_nan = vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)); + uint32x4_t b_not_nan = vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b)); + uint32x4_t a_or_b_nan = vmvnq_u32(vandq_u32(a_not_nan, b_not_nan)); + uint32x4_t a_eq_b = vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)); + return (vgetq_lane_u32(vorrq_u32(a_or_b_nan, a_eq_b), 0) != 0) ? 1 : 0; +} + +// Compares the lower single-precision floating point scalar values of a and b using an inequality operation. : https://msdn.microsoft.com/en-us/library/bafh5e0a(v=vs.90).aspx +FORCE_INLINE int _mm_comineq_ss(__m128 a, __m128 b) +{ + //return !vgetq_lane_u32(vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)), 0); + uint32x4_t a_not_nan = vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)); + uint32x4_t b_not_nan = vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b)); + uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan); + uint32x4_t a_neq_b = vmvnq_u32(vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); + return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_neq_b), 0) != 0) ? 1 : 0; +} + +// according to the documentation, these intrinsics behave the same as the non-'u' versions. We'll just alias them here. +#define _mm_ucomilt_ss _mm_comilt_ss +#define _mm_ucomile_ss _mm_comile_ss +#define _mm_ucomigt_ss _mm_comigt_ss +#define _mm_ucomige_ss _mm_comige_ss +#define _mm_ucomieq_ss _mm_comieq_ss +#define _mm_ucomineq_ss _mm_comineq_ss + +// ****************************************** +// Conversions +// ****************************************** + +// Converts the four single-precision, floating-point values of a to signed 32-bit integer values using truncate. https://msdn.microsoft.com/en-us/library/vstudio/1h005y6x(v=vs.100).aspx +FORCE_INLINE __m128i _mm_cvttps_epi32(__m128 a) +{ + return vreinterpretq_m128i_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a))); +} + +// Converts the four signed 32-bit integer values of a to single-precision, floating-point values https://msdn.microsoft.com/en-us/library/vstudio/36bwxcx5(v=vs.100).aspx +FORCE_INLINE __m128 _mm_cvtepi32_ps(__m128i a) +{ + return vreinterpretq_m128_f32(vcvtq_f32_s32(vreinterpretq_s32_m128i(a))); +} + +// Converts the four unsigned 8-bit integers in the lower 32 bits to four unsigned 32-bit integers. https://msdn.microsoft.com/en-us/library/bb531467%28v=vs.100%29.aspx +FORCE_INLINE __m128i _mm_cvtepu8_epi32(__m128i a) +{ + uint8x16_t u8x16 = vreinterpretq_u8_s32(a); /* xxxx xxxx xxxx DCBA */ + uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16)); /* 0x0x 0x0x 0D0C 0B0A */ + uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000D 000C 000B 000A */ + return vreinterpretq_s32_u32(u32x4); +} + +// Converts the four signed 16-bit integers in the lower 64 bits to four signed 32-bit integers. https://msdn.microsoft.com/en-us/library/bb514079%28v=vs.100%29.aspx +FORCE_INLINE __m128i _mm_cvtepi16_epi32(__m128i a) +{ + return vreinterpretq_m128i_s32(vmovl_s16(vget_low_s16(vreinterpretq_s16_m128i(a)))); +} + +// Converts the four single-precision, floating-point values of a to signed 32-bit integer values. https://msdn.microsoft.com/en-us/library/vstudio/xdc42k5e(v=vs.100).aspx +// *NOTE*. The default rounding mode on SSE is 'round to even', which ArmV7 does not support! +// It is supported on ARMv8 however. +FORCE_INLINE __m128i _mm_cvtps_epi32(__m128 a) +{ +#if defined(__aarch64__) + return vcvtnq_s32_f32(a); +#else + uint32x4_t signmask = vdupq_n_u32(0x80000000); + float32x4_t half = vbslq_f32(signmask, vreinterpretq_f32_m128(a), vdupq_n_f32(0.5f)); /* +/- 0.5 */ + int32x4_t r_normal = vcvtq_s32_f32(vaddq_f32(vreinterpretq_f32_m128(a), half)); /* round to integer: [a + 0.5]*/ + int32x4_t r_trunc = vcvtq_s32_f32(vreinterpretq_f32_m128(a)); /* truncate to integer: [a] */ + int32x4_t plusone = vreinterpretq_s32_u32(vshrq_n_u32(vreinterpretq_u32_s32(vnegq_s32(r_trunc)), 31)); /* 1 or 0 */ + int32x4_t r_even = vbicq_s32(vaddq_s32(r_trunc, plusone), vdupq_n_s32(1)); /* ([a] + {0,1}) & ~1 */ + float32x4_t delta = vsubq_f32(vreinterpretq_f32_m128(a), vcvtq_f32_s32(r_trunc)); /* compute delta: delta = (a - [a]) */ + uint32x4_t is_delta_half = vceqq_f32(delta, half); /* delta == +/- 0.5 */ + return vreinterpretq_m128i_s32(vbslq_s32(is_delta_half, r_even, r_normal)); +#endif +} + +// Moves the least significant 32 bits of a to a 32-bit integer. https://msdn.microsoft.com/en-us/library/5z7a9642%28v=vs.90%29.aspx +FORCE_INLINE int _mm_cvtsi128_si32(__m128i a) +{ + return vgetq_lane_s32(vreinterpretq_s32_m128i(a), 0); +} + +// Moves 32-bit integer a to the least significant 32 bits of an __m128 object, zero extending the upper bits. https://msdn.microsoft.com/en-us/library/ct3539ha%28v=vs.90%29.aspx +FORCE_INLINE __m128i _mm_cvtsi32_si128(int a) +{ + return vreinterpretq_m128i_s32(vsetq_lane_s32(a, vdupq_n_s32(0), 0)); +} + + +// Applies a type cast to reinterpret four 32-bit floating point values passed in as a 128-bit parameter as packed 32-bit integers. https://msdn.microsoft.com/en-us/library/bb514099.aspx +FORCE_INLINE __m128i _mm_castps_si128(__m128 a) +{ + return vreinterpretq_m128i_s32(vreinterpretq_s32_m128(a)); +} + +// Applies a type cast to reinterpret four 32-bit integers passed in as a 128-bit parameter as packed 32-bit floating point values. https://msdn.microsoft.com/en-us/library/bb514029.aspx +FORCE_INLINE __m128 _mm_castsi128_ps(__m128i a) +{ + return vreinterpretq_m128_s32(vreinterpretq_s32_m128i(a)); +} + +// Loads 128-bit value. : https://msdn.microsoft.com/en-us/library/atzzad1h(v=vs.80).aspx +FORCE_INLINE __m128i _mm_load_si128(const __m128i *p) +{ + return vreinterpretq_m128i_s32(vld1q_s32((int32_t *)p)); +} + +// ****************************************** +// Miscellaneous Operations +// ****************************************** + +// Packs the 16 signed 16-bit integers from a and b into 8-bit integers and saturates. https://msdn.microsoft.com/en-us/library/k4y4f7w5%28v=vs.90%29.aspx +FORCE_INLINE __m128i _mm_packs_epi16(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s8(vcombine_s8(vqmovn_s16(vreinterpretq_s16_m128i(a)), vqmovn_s16(vreinterpretq_s16_m128i(b)))); +} + +// Packs the 16 signed 16 - bit integers from a and b into 8 - bit unsigned integers and saturates. https://msdn.microsoft.com/en-us/library/07ad1wx4(v=vs.100).aspx +FORCE_INLINE __m128i _mm_packus_epi16(const __m128i a, const __m128i b) +{ + return vreinterpretq_m128i_u8(vcombine_u8(vqmovun_s16(vreinterpretq_s16_m128i(a)), vqmovun_s16(vreinterpretq_s16_m128i(b)))); +} + +// Packs the 8 signed 32-bit integers from a and b into signed 16-bit integers and saturates. https://msdn.microsoft.com/en-us/library/393t56f9%28v=vs.90%29.aspx +FORCE_INLINE __m128i _mm_packs_epi32(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s16(vcombine_s16(vqmovn_s32(vreinterpretq_s32_m128i(a)), vqmovn_s32(vreinterpretq_s32_m128i(b)))); +} + +// Interleaves the lower 8 signed or unsigned 8-bit integers in a with the lower 8 signed or unsigned 8-bit integers in b. https://msdn.microsoft.com/en-us/library/xf7k860c%28v=vs.90%29.aspx +FORCE_INLINE __m128i _mm_unpacklo_epi8(__m128i a, __m128i b) +{ + int8x8_t a1 = vreinterpret_s8_s16(vget_low_s16(vreinterpretq_s16_m128i(a))); + int8x8_t b1 = vreinterpret_s8_s16(vget_low_s16(vreinterpretq_s16_m128i(b))); + int8x8x2_t result = vzip_s8(a1, b1); + return vreinterpretq_m128i_s8(vcombine_s8(result.val[0], result.val[1])); +} + +// Interleaves the lower 4 signed or unsigned 16-bit integers in a with the lower 4 signed or unsigned 16-bit integers in b. https://msdn.microsoft.com/en-us/library/btxb17bw%28v=vs.90%29.aspx +FORCE_INLINE __m128i _mm_unpacklo_epi16(__m128i a, __m128i b) +{ + int16x4_t a1 = vget_low_s16(vreinterpretq_s16_m128i(a)); + int16x4_t b1 = vget_low_s16(vreinterpretq_s16_m128i(b)); + int16x4x2_t result = vzip_s16(a1, b1); + return vreinterpretq_m128i_s16(vcombine_s16(result.val[0], result.val[1])); +} + +// Interleaves the lower 2 signed or unsigned 32 - bit integers in a with the lower 2 signed or unsigned 32 - bit integers in b. https://msdn.microsoft.com/en-us/library/x8atst9d(v=vs.100).aspx +FORCE_INLINE __m128i _mm_unpacklo_epi32(__m128i a, __m128i b) +{ + int32x2_t a1 = vget_low_s32(vreinterpretq_s32_m128i(a)); + int32x2_t b1 = vget_low_s32(vreinterpretq_s32_m128i(b)); + int32x2x2_t result = vzip_s32(a1, b1); + return vreinterpretq_m128i_s32(vcombine_s32(result.val[0], result.val[1])); +} + +// Selects and interleaves the lower two single-precision, floating-point values from a and b. https://msdn.microsoft.com/en-us/library/25st103b%28v=vs.90%29.aspx +FORCE_INLINE __m128 _mm_unpacklo_ps(__m128 a, __m128 b) +{ + float32x2_t a1 = vget_low_f32(vreinterpretq_f32_m128(a)); + float32x2_t b1 = vget_low_f32(vreinterpretq_f32_m128(b)); + float32x2x2_t result = vzip_f32(a1, b1); + return vreinterpretq_m128_f32(vcombine_f32(result.val[0], result.val[1])); +} + +// Selects and interleaves the upper two single-precision, floating-point values from a and b. https://msdn.microsoft.com/en-us/library/skccxx7d%28v=vs.90%29.aspx +FORCE_INLINE __m128 _mm_unpackhi_ps(__m128 a, __m128 b) +{ + float32x2_t a1 = vget_high_f32(vreinterpretq_f32_m128(a)); + float32x2_t b1 = vget_high_f32(vreinterpretq_f32_m128(b)); + float32x2x2_t result = vzip_f32(a1, b1); + return vreinterpretq_m128_f32(vcombine_f32(result.val[0], result.val[1])); +} + +// Interleaves the upper 8 signed or unsigned 8-bit integers in a with the upper 8 signed or unsigned 8-bit integers in b. https://msdn.microsoft.com/en-us/library/t5h7783k(v=vs.100).aspx +FORCE_INLINE __m128i _mm_unpackhi_epi8(__m128i a, __m128i b) +{ + int8x8_t a1 = vreinterpret_s8_s16(vget_high_s16(vreinterpretq_s16_m128i(a))); + int8x8_t b1 = vreinterpret_s8_s16(vget_high_s16(vreinterpretq_s16_m128i(b))); + int8x8x2_t result = vzip_s8(a1, b1); + return vreinterpretq_m128i_s8(vcombine_s8(result.val[0], result.val[1])); +} + +// Interleaves the upper 4 signed or unsigned 16-bit integers in a with the upper 4 signed or unsigned 16-bit integers in b. https://msdn.microsoft.com/en-us/library/03196cz7(v=vs.100).aspx +FORCE_INLINE __m128i _mm_unpackhi_epi16(__m128i a, __m128i b) +{ + int16x4_t a1 = vget_high_s16(vreinterpretq_s16_m128i(a)); + int16x4_t b1 = vget_high_s16(vreinterpretq_s16_m128i(b)); + int16x4x2_t result = vzip_s16(a1, b1); + return vreinterpretq_m128i_s16(vcombine_s16(result.val[0], result.val[1])); +} + +// Interleaves the upper 2 signed or unsigned 32-bit integers in a with the upper 2 signed or unsigned 32-bit integers in b. https://msdn.microsoft.com/en-us/library/65sa7cbs(v=vs.100).aspx +FORCE_INLINE __m128i _mm_unpackhi_epi32(__m128i a, __m128i b) +{ + int32x2_t a1 = vget_high_s32(vreinterpretq_s32_m128i(a)); + int32x2_t b1 = vget_high_s32(vreinterpretq_s32_m128i(b)); + int32x2x2_t result = vzip_s32(a1, b1); + return vreinterpretq_m128i_s32(vcombine_s32(result.val[0], result.val[1])); +} + +// Extracts the selected signed or unsigned 16-bit integer from a and zero extends. https://msdn.microsoft.com/en-us/library/6dceta0c(v=vs.100).aspx +//FORCE_INLINE int _mm_extract_epi16(__m128i a, __constrange(0,8) int imm) +#define _mm_extract_epi16(a, imm) \ +({ \ + (vgetq_lane_s16(vreinterpretq_s16_m128i(a), (imm)) & 0x0000ffffUL); \ +}) + +// Inserts the least significant 16 bits of b into the selected 16-bit integer of a. https://msdn.microsoft.com/en-us/library/kaze8hz1%28v=vs.100%29.aspx +//FORCE_INLINE __m128i _mm_insert_epi16(__m128i a, const int b, __constrange(0,8) int imm) +#define _mm_insert_epi16(a, b, imm) \ +({ \ + vreinterpretq_m128i_s16(vsetq_lane_s16((b), vreinterpretq_s16_m128i(a), (imm))); \ +}) + +// ****************************************** +// Streaming Extensions +// ****************************************** + +// Guarantees that every preceding store is globally visible before any subsequent store. https://msdn.microsoft.com/en-us/library/5h2w73d1%28v=vs.90%29.aspx +FORCE_INLINE void _mm_sfence(void) +{ + __sync_synchronize(); +} + +// Stores the data in a to the address p without polluting the caches. If the cache line containing address p is already in the cache, the cache will be updated.Address p must be 16 - byte aligned. https://msdn.microsoft.com/en-us/library/ba08y07y%28v=vs.90%29.aspx +FORCE_INLINE void _mm_stream_si128(__m128i *p, __m128i a) +{ + *p = a; +} + +// Cache line containing p is flushed and invalidated from all caches in the coherency domain. : https://msdn.microsoft.com/en-us/library/ba08y07y(v=vs.100).aspx +FORCE_INLINE void _mm_clflush(void const*p) +{ + // no corollary for Neon? +} + +#if defined(__GNUC__) || defined(__clang__) +# pragma pop_macro("ALIGN_STRUCT") +# pragma pop_macro("FORCE_INLINE") +#endif + +#endif diff --git a/src/crypto/soft_aes.h b/src/crypto/soft_aes.h index e28be3fad..4b1d346f3 100644 --- a/src/crypto/soft_aes.h +++ b/src/crypto/soft_aes.h @@ -26,14 +26,18 @@ */ #pragma once -#ifdef __GNUC__ -#include + +#if defined(__aarch64__) +# include "crypto/SSE2NEON.h" +#elif defined(__GNUC__) +# include #else -#include -#endif // __GNUC__ +# include +#endif #include + #define saes_data(w) {\ w(0x63), w(0x7c), w(0x77), w(0x7b), w(0xf2), w(0x6b), w(0x6f), w(0xc5),\ w(0x30), w(0x01), w(0x67), w(0x2b), w(0xfe), w(0xd7), w(0xab), w(0x76),\ @@ -109,7 +113,7 @@ static inline uint32_t sub_word(uint32_t key) saes_sbox[key & 0xff]; } -#ifdef __clang__ +#if defined(__clang__) || defined(XMRIG_ARM) static inline uint32_t _rotr(uint32_t value, uint32_t amount) { return (value >> amount) | (value << ((32 - amount) & 31));