Merge pull request #2761 from SChernykh/dev

Refactored Chrono::highResolutionMSecs()
This commit is contained in:
xmrig 2021-11-30 19:13:24 +07:00 committed by GitHub
commit 56158779de
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
5 changed files with 59 additions and 34 deletions

View file

@ -132,6 +132,7 @@ set(SOURCES_BASE
src/base/net/tools/LineReader.cpp src/base/net/tools/LineReader.cpp
src/base/net/tools/NetBuffer.cpp src/base/net/tools/NetBuffer.cpp
src/base/tools/Arguments.cpp src/base/tools/Arguments.cpp
src/base/tools/Chrono.cpp
src/base/tools/cryptonote/BlockTemplate.cpp src/base/tools/cryptonote/BlockTemplate.cpp
src/base/tools/cryptonote/crypto-ops-data.c src/base/tools/cryptonote/crypto-ops-data.c
src/base/tools/cryptonote/crypto-ops.c src/base/tools/cryptonote/crypto-ops.c

44
src/base/tools/Chrono.cpp Normal file
View file

@ -0,0 +1,44 @@
/* XMRig
* Copyright (c) 2018-2021 SChernykh <https://github.com/SChernykh>
* Copyright (c) 2016-2021 XMRig <https://github.com/xmrig>, <support@xmrig.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "Chrono.h"
#ifdef XMRIG_OS_WIN
# include <Windows.h>
#endif
namespace xmrig {
double Chrono::highResolutionMSecs()
{
# ifdef XMRIG_OS_WIN
LARGE_INTEGER f, t;
QueryPerformanceFrequency(&f);
QueryPerformanceCounter(&t);
return static_cast<double>(t.QuadPart) * 1e3 / f.QuadPart;
# else
using namespace std::chrono;
return static_cast<uint64_t>(duration_cast<nanoseconds>(high_resolution_clock::now().time_since_epoch()).count()) / 1e6;
# endif
}
} /* namespace xmrig */

View file

@ -29,12 +29,7 @@ namespace xmrig {
class Chrono class Chrono
{ {
public: public:
static inline uint64_t highResolutionMSecs() static double highResolutionMSecs();
{
using namespace std::chrono;
return static_cast<uint64_t>(time_point_cast<milliseconds>(high_resolution_clock::now()).time_since_epoch().count());
}
static inline uint64_t steadyMSecs() static inline uint64_t steadyMSecs()

View file

@ -36,6 +36,7 @@
#include "base/io/log/Log.h" #include "base/io/log/Log.h"
#include "base/io/log/Tags.h" #include "base/io/log/Tags.h"
#include "base/tools/Chrono.h"
#include "backend/cpu/Cpu.h" #include "backend/cpu/Cpu.h"
#include "crypto/cn/CnHash.h" #include "crypto/cn/CnHash.h"
#include "crypto/cn/CnCtx.h" #include "crypto/cn/CnCtx.h"
@ -44,7 +45,6 @@
#include <thread> #include <thread>
#include <atomic> #include <atomic>
#include <chrono>
#include <uv.h> #include <uv.h>
#ifdef XMRIG_FEATURE_HWLOC #ifdef XMRIG_FEATURE_HWLOC
@ -61,10 +61,6 @@
# include <intrin.h> # include <intrin.h>
#endif #endif
#ifdef XMRIG_OS_WIN
# include <Windows.h>
#endif
#define CORE_HASH(i, x) static void h##i(const uint8_t* data, size_t size, uint8_t* output) \ #define CORE_HASH(i, x) static void h##i(const uint8_t* data, size_t size, uint8_t* output) \
{ \ { \
sph_##x##_context ctx; \ sph_##x##_context ctx; \
@ -332,17 +328,6 @@ void benchmark()
LOG_VERBOSE("%24s | N | Hashrate", "Algorithm"); LOG_VERBOSE("%24s | N | Hashrate", "Algorithm");
LOG_VERBOSE("-------------------------|-----|-------------"); LOG_VERBOSE("-------------------------|-----|-------------");
# ifdef XMRIG_OS_WIN
LARGE_INTEGER timer_freq;
QueryPerformanceFrequency(&timer_freq);
auto measure_time = []() { LARGE_INTEGER t; QueryPerformanceCounter(&t); return t.QuadPart; };
auto delta_time = [&timer_freq](LONGLONG t1, LONGLONG t2) { return static_cast<double>(t2 - t1) / timer_freq.QuadPart; };
# else
using namespace std::chrono;
auto measure_time = []() { return high_resolution_clock::now(); };
auto delta_time = [](const high_resolution_clock::time_point& t1, const high_resolution_clock::time_point& t2) { return duration_cast<nanoseconds>(t2 - t1).count() / 1e9; };
# endif
for (uint32_t algo = 0; algo < 6; ++algo) { for (uint32_t algo = 0; algo < 6; ++algo) {
for (uint64_t step : { 1, 2, 4}) { for (uint64_t step : { 1, 2, 4}) {
const size_t cur_scratchpad_size = cn_sizes[algo] * step; const size_t cur_scratchpad_size = cn_sizes[algo] * step;
@ -352,26 +337,26 @@ void benchmark()
auto f = CnHash::fn(cn_hash[algo], av[step], Assembly::AUTO); auto f = CnHash::fn(cn_hash[algo], av[step], Assembly::AUTO);
auto start_time = measure_time(); double start_time = Chrono::highResolutionMSecs();
double min_dt = 1e10; double min_dt = 1e10;
for (uint32_t iter = 0;; ++iter) { for (uint32_t iter = 0;; ++iter) {
auto t1 = measure_time(); double t1 = Chrono::highResolutionMSecs();
// Stop after 15 milliseconds, but only if at least 10 iterations were done // Stop after 15 milliseconds, but only if at least 10 iterations were done
if ((iter >= 10) && (delta_time(start_time, t1) >= 0.015)) { if ((iter >= 10) && (t1 - start_time >= 15.0)) {
break; break;
} }
f(buf, sizeof(buf), hash, ctx, 0); f(buf, sizeof(buf), hash, ctx, 0);
const double dt = delta_time(t1, measure_time()); const double dt = Chrono::highResolutionMSecs() - t1;
if (dt < min_dt) { if (dt < min_dt) {
min_dt = dt; min_dt = dt;
} }
} }
const double hashrate = step / min_dt; const double hashrate = step * 1e3 / min_dt;
LOG_VERBOSE("%24s | %" PRIu64 "x1 | %.2f h/s", cn_names[algo], step, hashrate); LOG_VERBOSE("%24s | %" PRIu64 "x1 | %.2f h/s", cn_names[algo], step, hashrate);
if (hashrate > tune8MB[algo].hashrate) { if (hashrate > tune8MB[algo].hashrate) {
@ -401,14 +386,14 @@ void benchmark()
auto f = CnHash::fn(cn_hash[algo], av[step], Assembly::AUTO); auto f = CnHash::fn(cn_hash[algo], av[step], Assembly::AUTO);
auto start_time = measure_time(); double start_time = Chrono::highResolutionMSecs();
double min_dt = 1e10; double min_dt = 1e10;
for (uint32_t iter = 0;; ++iter) { for (uint32_t iter = 0;; ++iter) {
auto t1 = measure_time(); double t1 = Chrono::highResolutionMSecs();
// Stop after 30 milliseconds, but only if at least 10 iterations were done // Stop after 30 milliseconds, but only if at least 10 iterations were done
if ((iter >= 10) && (delta_time(start_time, t1) >= 0.03)) { if ((iter >= 10) && (t1 - start_time >= 30.0)) {
break; break;
} }
@ -416,13 +401,13 @@ void benchmark()
f(buf, sizeof(buf), hash, ctx, 0); f(buf, sizeof(buf), hash, ctx, 0);
helper->wait(); helper->wait();
const double dt = delta_time(t1, measure_time()); const double dt = Chrono::highResolutionMSecs() - t1;
if (dt < min_dt) { if (dt < min_dt) {
min_dt = dt; min_dt = dt;
} }
} }
const double hashrate = step * 2.0 / min_dt * 1.0075; const double hashrate = step * 2e3 / min_dt * 1.0075;
LOG_VERBOSE("%24s | %" PRIu64 "x2 | %.2f h/s", cn_names[algo], step, hashrate); LOG_VERBOSE("%24s | %" PRIu64 "x2 | %.2f h/s", cn_names[algo], step, hashrate);
if (hashrate > tune8MB[algo].hashrate) { if (hashrate > tune8MB[algo].hashrate) {

View file

@ -382,7 +382,7 @@ void SelectSoftAESImpl(size_t threadsCount)
double fast_speed = 0.0; double fast_speed = 0.0;
for (size_t run = 0; run < 3; ++run) { for (size_t run = 0; run < 3; ++run) {
for (size_t i = 0; i < impl.size(); ++i) { for (size_t i = 0; i < impl.size(); ++i) {
const uint64_t t1 = xmrig::Chrono::highResolutionMSecs(); const double t1 = xmrig::Chrono::highResolutionMSecs();
std::vector<uint32_t> count(threadsCount, 0); std::vector<uint32_t> count(threadsCount, 0);
std::vector<std::thread> threads; std::vector<std::thread> threads;
for (size_t t = 0; t < threadsCount; ++t) { for (size_t t = 0; t < threadsCount; ++t) {
@ -401,7 +401,7 @@ void SelectSoftAESImpl(size_t threadsCount)
threads[t].join(); threads[t].join();
total += count[t]; total += count[t];
} }
const uint64_t t2 = xmrig::Chrono::highResolutionMSecs(); const double t2 = xmrig::Chrono::highResolutionMSecs();
const double speed = total * 1e3 / (t2 - t1); const double speed = total * 1e3 / (t2 - t1);
if (speed > fast_speed) { if (speed > fast_speed) {
fast_idx = i; fast_idx = i;