Merge branch 'dev'

This commit is contained in:
XMRig 2022-10-23 17:43:38 +07:00
commit 54e75bc7c4
No known key found for this signature in database
GPG key ID: 446A53638BE94409
31 changed files with 888 additions and 91 deletions

View file

@ -1,3 +1,13 @@
# v6.18.1
- [#3129](https://github.com/xmrig/xmrig/pull/3129) Fix: protectRX flushed CPU cache only on MacOS/iOS.
- [#3126](https://github.com/xmrig/xmrig/pull/3126) Don't reset when pool sends the same job blob.
- [#3120](https://github.com/xmrig/xmrig/pull/3120) RandomX: optimized `CFROUND` elimination.
- [#3109](https://github.com/xmrig/xmrig/pull/3109) RandomX: added Blake2 AVX2 version.
- [#3082](https://github.com/xmrig/xmrig/pull/3082) Fixed GCC 12 warnings.
- [#3075](https://github.com/xmrig/xmrig/pull/3075) Recognize `armv7ve` as valid ARMv7 target.
- [#3132](https://github.com/xmrig/xmrig/pull/3132) RandomX: added MSR mod for Zen 4.
- [#3134](https://github.com/xmrig/xmrig/pull/3134) Added Zen4 to `randomx_boost.sh`.
# v6.18.0 # v6.18.0
- [#3067](https://github.com/xmrig/xmrig/pull/3067) Monero v15 network upgrade support and more house keeping. - [#3067](https://github.com/xmrig/xmrig/pull/3067) Monero v15 network upgrade support and more house keeping.
- Removed deprecated AstroBWTv1 and v2. - Removed deprecated AstroBWTv1 and v2.

View file

@ -27,6 +27,7 @@ option(WITH_STRICT_CACHE "Enable strict checks for OpenCL cache" ON)
option(WITH_INTERLEAVE_DEBUG_LOG "Enable debug log for threads interleave" OFF) option(WITH_INTERLEAVE_DEBUG_LOG "Enable debug log for threads interleave" OFF)
option(WITH_PROFILING "Enable profiling for developers" OFF) option(WITH_PROFILING "Enable profiling for developers" OFF)
option(WITH_SSE4_1 "Enable SSE 4.1 for Blake2" ON) option(WITH_SSE4_1 "Enable SSE 4.1 for Blake2" ON)
option(WITH_AVX2 "Enable AVX2 for Blake2" ON)
option(WITH_VAES "Enable VAES instructions for Cryptonight" ON) option(WITH_VAES "Enable VAES instructions for Cryptonight" ON)
option(WITH_BENCHMARK "Enable builtin RandomX benchmark and stress test" ON) option(WITH_BENCHMARK "Enable builtin RandomX benchmark and stress test" ON)
option(WITH_SECURE_JIT "Enable secure access to JIT memory" OFF) option(WITH_SECURE_JIT "Enable secure access to JIT memory" OFF)

View file

@ -7,7 +7,7 @@
[![GitHub stars](https://img.shields.io/github/stars/xmrig/xmrig.svg)](https://github.com/xmrig/xmrig/stargazers) [![GitHub stars](https://img.shields.io/github/stars/xmrig/xmrig.svg)](https://github.com/xmrig/xmrig/stargazers)
[![GitHub forks](https://img.shields.io/github/forks/xmrig/xmrig.svg)](https://github.com/xmrig/xmrig/network) [![GitHub forks](https://img.shields.io/github/forks/xmrig/xmrig.svg)](https://github.com/xmrig/xmrig/network)
XMRig is a high performance, open source, cross platform RandomX, KawPow, CryptoNight, AstroBWT and [GhostRider](https://github.com/xmrig/xmrig/tree/master/src/crypto/ghostrider#readme) unified CPU/GPU miner and [RandomX benchmark](https://xmrig.com/benchmark). Official binaries are available for Windows, Linux, macOS and FreeBSD. XMRig is a high performance, open source, cross platform RandomX, KawPow, CryptoNight and [GhostRider](https://github.com/xmrig/xmrig/tree/master/src/crypto/ghostrider#readme) unified CPU/GPU miner and [RandomX benchmark](https://xmrig.com/benchmark). Official binaries are available for Windows, Linux, macOS and FreeBSD.
## Mining backends ## Mining backends
- **CPU** (x64/ARMv7/ARMv8) - **CPU** (x64/ARMv7/ARMv8)

View file

@ -25,13 +25,14 @@ if (XMRIG_64_BIT AND CMAKE_SYSTEM_PROCESSOR MATCHES "^(x86_64|AMD64)$")
add_definitions(-DRAPIDJSON_SSE2) add_definitions(-DRAPIDJSON_SSE2)
else() else()
set(WITH_SSE4_1 OFF) set(WITH_SSE4_1 OFF)
set(WITH_AVX2 OFF)
set(WITH_VAES OFF) set(WITH_VAES OFF)
endif() endif()
if (NOT ARM_TARGET) if (NOT ARM_TARGET)
if (CMAKE_SYSTEM_PROCESSOR MATCHES "^(aarch64|arm64|armv8-a)$") if (CMAKE_SYSTEM_PROCESSOR MATCHES "^(aarch64|arm64|armv8-a)$")
set(ARM_TARGET 8) set(ARM_TARGET 8)
elseif (CMAKE_SYSTEM_PROCESSOR MATCHES "^(armv7|armv7f|armv7s|armv7k|armv7-a|armv7l)$") elseif (CMAKE_SYSTEM_PROCESSOR MATCHES "^(armv7|armv7f|armv7s|armv7k|armv7-a|armv7l|armv7ve)$")
set(ARM_TARGET 7) set(ARM_TARGET 7)
endif() endif()
endif() endif()
@ -57,3 +58,7 @@ endif()
if (WITH_SSE4_1) if (WITH_SSE4_1)
add_definitions(-DXMRIG_FEATURE_SSE4_1) add_definitions(-DXMRIG_FEATURE_SSE4_1)
endif() endif()
if (WITH_AVX2)
add_definitions(-DXMRIG_FEATURE_AVX2)
endif()

View file

@ -76,7 +76,15 @@ if (WITH_RANDOMX)
list(APPEND SOURCES_CRYPTO src/crypto/randomx/blake2/blake2b_sse41.c) list(APPEND SOURCES_CRYPTO src/crypto/randomx/blake2/blake2b_sse41.c)
if (CMAKE_C_COMPILER_ID MATCHES GNU OR CMAKE_C_COMPILER_ID MATCHES Clang) if (CMAKE_C_COMPILER_ID MATCHES GNU OR CMAKE_C_COMPILER_ID MATCHES Clang)
set_source_files_properties(src/crypto/randomx/blake2/blake2b_sse41.c PROPERTIES COMPILE_FLAGS -msse4.1) set_source_files_properties(src/crypto/randomx/blake2/blake2b_sse41.c PROPERTIES COMPILE_FLAGS "-Ofast -msse4.1")
endif()
endif()
if (WITH_AVX2)
list(APPEND SOURCES_CRYPTO src/crypto/randomx/blake2/avx2/blake2b_avx2.c)
if (CMAKE_C_COMPILER_ID MATCHES GNU OR CMAKE_C_COMPILER_ID MATCHES Clang)
set_source_files_properties(src/crypto/randomx/blake2/avx2/blake2b_avx2.c PROPERTIES COMPILE_FLAGS "-Ofast -mavx2")
endif() endif()
endif() endif()

View file

@ -10,14 +10,24 @@ fi
if grep -E 'AMD Ryzen|AMD EPYC' /proc/cpuinfo > /dev/null; if grep -E 'AMD Ryzen|AMD EPYC' /proc/cpuinfo > /dev/null;
then then
if grep "cpu family[[:space:]]:[[:space:]]25" /proc/cpuinfo > /dev/null; if grep "cpu family[[:space:]]\{1,\}:[[:space:]]25" /proc/cpuinfo > /dev/null;
then then
echo "Detected Zen3 CPU" if grep "model[[:space:]]\{1,\}:[[:space:]]97" /proc/cpuinfo > /dev/null;
wrmsr -a 0xc0011020 0x4480000000000 then
wrmsr -a 0xc0011021 0x1c000200000040 echo "Detected Zen4 CPU"
wrmsr -a 0xc0011022 0xc000000401500000 wrmsr -a 0xc0011020 0x4400000000000
wrmsr -a 0xc001102b 0x2000cc14 wrmsr -a 0xc0011021 0x4000000000040
echo "MSR register values for Zen3 applied" wrmsr -a 0xc0011022 0x8680000401570000
wrmsr -a 0xc001102b 0x2040cc10
echo "MSR register values for Zen4 applied"
else
echo "Detected Zen3 CPU"
wrmsr -a 0xc0011020 0x4480000000000
wrmsr -a 0xc0011021 0x1c000200000040
wrmsr -a 0xc0011022 0xc000000401500000
wrmsr -a 0xc001102b 0x2000cc14
echo "MSR register values for Zen3 applied"
fi
else else
echo "Detected Zen1/Zen2 CPU" echo "Detected Zen1/Zen2 CPU"
wrmsr -a 0xc0011020 0 wrmsr -a 0xc0011020 0

View file

@ -77,8 +77,11 @@ xmrig::CpuWorker<N>::CpuWorker(size_t id, const CpuLaunchData &data) :
{ {
# ifdef XMRIG_ALGO_CN_HEAVY # ifdef XMRIG_ALGO_CN_HEAVY
// cn-heavy optimization for Zen3 CPUs // cn-heavy optimization for Zen3 CPUs
const bool is_vermeer = (Cpu::info()->arch() == ICpuInfo::ARCH_ZEN3) && (Cpu::info()->model() == 0x21); const auto arch = Cpu::info()->arch();
if ((N == 1) && (m_av == CnHash::AV_SINGLE) && (m_algorithm.family() == Algorithm::CN_HEAVY) && (m_assembly != Assembly::NONE) && is_vermeer) { const uint32_t model = Cpu::info()->model();
const bool is_vermeer = (arch == ICpuInfo::ARCH_ZEN3) && (model == 0x21);
const bool is_raphael = (arch == ICpuInfo::ARCH_ZEN4) && (model == 0x61);
if ((N == 1) && (m_av == CnHash::AV_SINGLE) && (m_algorithm.family() == Algorithm::CN_HEAVY) && (m_assembly != Assembly::NONE) && (is_vermeer || is_raphael)) {
std::lock_guard<std::mutex> lock(cn_heavyZen3MemoryMutex); std::lock_guard<std::mutex> lock(cn_heavyZen3MemoryMutex);
if (!cn_heavyZen3Memory) { if (!cn_heavyZen3Memory) {
// Round up number of threads to the multiple of 8 // Round up number of threads to the multiple of 8

View file

@ -45,19 +45,21 @@ public:
ARCH_ZEN, ARCH_ZEN,
ARCH_ZEN_PLUS, ARCH_ZEN_PLUS,
ARCH_ZEN2, ARCH_ZEN2,
ARCH_ZEN3 ARCH_ZEN3,
ARCH_ZEN4
}; };
enum MsrMod : uint32_t { enum MsrMod : uint32_t {
MSR_MOD_NONE, MSR_MOD_NONE,
MSR_MOD_RYZEN_17H, MSR_MOD_RYZEN_17H,
MSR_MOD_RYZEN_19H, MSR_MOD_RYZEN_19H,
MSR_MOD_RYZEN_19H_ZEN4,
MSR_MOD_INTEL, MSR_MOD_INTEL,
MSR_MOD_CUSTOM, MSR_MOD_CUSTOM,
MSR_MOD_MAX MSR_MOD_MAX
}; };
# define MSR_NAMES_LIST "none", "ryzen_17h", "ryzen_19h", "intel", "custom" # define MSR_NAMES_LIST "none", "ryzen_17h", "ryzen_19h", "ryzen_19h_zen4", "intel", "custom"
enum Flag : uint32_t { enum Flag : uint32_t {
FLAG_AES, FLAG_AES,

View file

@ -64,7 +64,7 @@ static_assert(kCpuFlagsSize == ICpuInfo::FLAG_MAX, "kCpuFlagsSize and FLAG_MAX m
#ifdef XMRIG_FEATURE_MSR #ifdef XMRIG_FEATURE_MSR
constexpr size_t kMsrArraySize = 5; constexpr size_t kMsrArraySize = 6;
static const std::array<const char *, kMsrArraySize> msrNames = { MSR_NAMES_LIST }; static const std::array<const char *, kMsrArraySize> msrNames = { MSR_NAMES_LIST };
static_assert(kMsrArraySize == ICpuInfo::MSR_MOD_MAX, "kMsrArraySize and MSR_MOD_MAX mismatch"); static_assert(kMsrArraySize == ICpuInfo::MSR_MOD_MAX, "kMsrArraySize and MSR_MOD_MAX mismatch");
#endif #endif
@ -250,8 +250,14 @@ xmrig::BasicCpuInfo::BasicCpuInfo() :
break; break;
case 0x19: case 0x19:
m_arch = ARCH_ZEN3; if (m_model == 0x61) {
m_msrMod = MSR_MOD_RYZEN_19H; m_arch = ARCH_ZEN4;
m_msrMod = MSR_MOD_RYZEN_19H_ZEN4;
}
else {
m_arch = ARCH_ZEN3;
m_msrMod = MSR_MOD_RYZEN_19H;
}
break; break;
default: default:

View file

@ -66,7 +66,6 @@ Storage<DaemonClient> DaemonClient::m_storage;
static const char* kBlocktemplateBlob = "blocktemplate_blob"; static const char* kBlocktemplateBlob = "blocktemplate_blob";
static const char* kBlockhashingBlob = "blockhashing_blob"; static const char* kBlockhashingBlob = "blockhashing_blob";
static const char* kLastError = "lasterror";
static const char *kGetHeight = "/getheight"; static const char *kGetHeight = "/getheight";
static const char *kGetInfo = "/getinfo"; static const char *kGetInfo = "/getinfo";
static const char *kHash = "hash"; static const char *kHash = "hash";

View file

@ -48,7 +48,13 @@ xmrig::Job::Job(bool nicehash, const Algorithm &algorithm, const String &clientI
bool xmrig::Job::isEqual(const Job &other) const bool xmrig::Job::isEqual(const Job &other) const
{ {
return m_id == other.m_id && m_clientId == other.m_clientId && memcmp(m_blob, other.m_blob, sizeof(m_blob)) == 0 && m_target == other.m_target; return m_id == other.m_id && m_clientId == other.m_clientId && isEqualBlob(other) && m_target == other.m_target;
}
bool xmrig::Job::isEqualBlob(const Job &other) const
{
return (m_size == other.m_size) && (memcmp(m_blob, other.m_blob, m_size) == 0);
} }
@ -58,19 +64,19 @@ bool xmrig::Job::setBlob(const char *blob)
return false; return false;
} }
m_size = strlen(blob); size_t size = strlen(blob);
if (m_size % 2 != 0) { if (size % 2 != 0) {
return false; return false;
} }
m_size /= 2; size /= 2;
const size_t minSize = nonceOffset() + nonceSize(); const size_t minSize = nonceOffset() + nonceSize();
if (m_size < minSize || m_size >= sizeof(m_blob)) { if (size < minSize || size >= sizeof(m_blob)) {
return false; return false;
} }
if (!Cvt::fromHex(m_blob, sizeof(m_blob), blob, m_size * 2)) { if (!Cvt::fromHex(m_blob, sizeof(m_blob), blob, size * 2)) {
return false; return false;
} }
@ -80,9 +86,10 @@ bool xmrig::Job::setBlob(const char *blob)
# ifdef XMRIG_PROXY_PROJECT # ifdef XMRIG_PROXY_PROJECT
memset(m_rawBlob, 0, sizeof(m_rawBlob)); memset(m_rawBlob, 0, sizeof(m_rawBlob));
memcpy(m_rawBlob, blob, m_size * 2); memcpy(m_rawBlob, blob, size * 2);
# endif # endif
m_size = size;
return true; return true;
} }

View file

@ -59,6 +59,7 @@ public:
~Job() = default; ~Job() = default;
bool isEqual(const Job &other) const; bool isEqual(const Job &other) const;
bool isEqualBlob(const Job &other) const;
bool setBlob(const char *blob); bool setBlob(const char *blob);
bool setSeedHash(const char *hash); bool setSeedHash(const char *hash);
bool setTarget(const char *target); bool setTarget(const char *target);

View file

@ -561,6 +561,12 @@ void xmrig::Miner::setJob(const Job &job, bool donate)
const uint8_t index = donate ? 1 : 0; const uint8_t index = donate ? 1 : 0;
d_ptr->reset = !(d_ptr->job.index() == 1 && index == 0 && d_ptr->userJobId == job.id()); d_ptr->reset = !(d_ptr->job.index() == 1 && index == 0 && d_ptr->userJobId == job.id());
// Don't reset nonce if pool sends the same hashing blob again, but with different difficulty (for example)
if (d_ptr->job.isEqualBlob(job)) {
d_ptr->reset = false;
}
d_ptr->job = job; d_ptr->job = job;
d_ptr->job.setIndex(index); d_ptr->job.setIndex(index);

View file

@ -407,8 +407,12 @@ xmrig::cn_hash_fun xmrig::CnHash::fn(const Algorithm &algorithm, AlgoVariant av,
} }
# ifdef XMRIG_ALGO_CN_HEAVY # ifdef XMRIG_ALGO_CN_HEAVY
// cn-heavy optimization for Zen3 CPUs // cn-heavy optimization for Zen3/Zen4 CPUs
if ((av == AV_SINGLE) && (assembly != Assembly::NONE) && (Cpu::info()->arch() == ICpuInfo::ARCH_ZEN3) && (Cpu::info()->model() == 0x21)) { const auto arch = Cpu::info()->arch();
const uint32_t model = Cpu::info()->model();
const bool is_vermeer = (arch == ICpuInfo::ARCH_ZEN3) && (model == 0x21);
const bool is_raphael = (arch == ICpuInfo::ARCH_ZEN4) && (model == 0x61);
if ((av == AV_SINGLE) && (assembly != Assembly::NONE) && (is_vermeer || is_raphael)) {
switch (algorithm.id()) { switch (algorithm.id()) {
case Algorithm::CN_HEAVY_0: case Algorithm::CN_HEAVY_0:
return cryptonight_single_hash<Algorithm::CN_HEAVY_0, false, 3>; return cryptonight_single_hash<Algorithm::CN_HEAVY_0, false, 3>;

View file

@ -112,13 +112,19 @@ bool xmrig::VirtualMemory::protectRWX(void *p, size_t size)
bool xmrig::VirtualMemory::protectRX(void *p, size_t size) bool xmrig::VirtualMemory::protectRX(void *p, size_t size)
{ {
bool result = true;
# if defined(XMRIG_OS_APPLE) && defined(XMRIG_ARM) # if defined(XMRIG_OS_APPLE) && defined(XMRIG_ARM)
pthread_jit_write_protect_np(true); pthread_jit_write_protect_np(true);
flushInstructionCache(p, size);
return true;
# else # else
return mprotect(p, size, PROT_READ | PROT_EXEC) == 0; result = (mprotect(p, size, PROT_READ | PROT_EXEC) == 0);
# endif # endif
# if defined(XMRIG_ARM)
flushInstructionCache(p, size);
# endif
return result;
} }

View file

@ -0,0 +1,121 @@
Creative Commons Legal Code
CC0 1.0 Universal
CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
LEGAL SERVICES. DISTRIBUTION OF THIS DOCUMENT DOES NOT CREATE AN
ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS
INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES
REGARDING THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS
PROVIDED HEREUNDER, AND DISCLAIMS LIABILITY FOR DAMAGES RESULTING FROM
THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS PROVIDED
HEREUNDER.
Statement of Purpose
The laws of most jurisdictions throughout the world automatically confer
exclusive Copyright and Related Rights (defined below) upon the creator
and subsequent owner(s) (each and all, an "owner") of an original work of
authorship and/or a database (each, a "Work").
Certain owners wish to permanently relinquish those rights to a Work for
the purpose of contributing to a commons of creative, cultural and
scientific works ("Commons") that the public can reliably and without fear
of later claims of infringement build upon, modify, incorporate in other
works, reuse and redistribute as freely as possible in any form whatsoever
and for any purposes, including without limitation commercial purposes.
These owners may contribute to the Commons to promote the ideal of a free
culture and the further production of creative, cultural and scientific
works, or to gain reputation or greater distribution for their Work in
part through the use and efforts of others.
For these and/or other purposes and motivations, and without any
expectation of additional consideration or compensation, the person
associating CC0 with a Work (the "Affirmer"), to the extent that he or she
is an owner of Copyright and Related Rights in the Work, voluntarily
elects to apply CC0 to the Work and publicly distribute the Work under its
terms, with knowledge of his or her Copyright and Related Rights in the
Work and the meaning and intended legal effect of CC0 on those rights.
1. Copyright and Related Rights. A Work made available under CC0 may be
protected by copyright and related or neighboring rights ("Copyright and
Related Rights"). Copyright and Related Rights include, but are not
limited to, the following:
i. the right to reproduce, adapt, distribute, perform, display,
communicate, and translate a Work;
ii. moral rights retained by the original author(s) and/or performer(s);
iii. publicity and privacy rights pertaining to a person's image or
likeness depicted in a Work;
iv. rights protecting against unfair competition in regards to a Work,
subject to the limitations in paragraph 4(a), below;
v. rights protecting the extraction, dissemination, use and reuse of data
in a Work;
vi. database rights (such as those arising under Directive 96/9/EC of the
European Parliament and of the Council of 11 March 1996 on the legal
protection of databases, and under any national implementation
thereof, including any amended or successor version of such
directive); and
vii. other similar, equivalent or corresponding rights throughout the
world based on applicable law or treaty, and any national
implementations thereof.
2. Waiver. To the greatest extent permitted by, but not in contravention
of, applicable law, Affirmer hereby overtly, fully, permanently,
irrevocably and unconditionally waives, abandons, and surrenders all of
Affirmer's Copyright and Related Rights and associated claims and causes
of action, whether now known or unknown (including existing as well as
future claims and causes of action), in the Work (i) in all territories
worldwide, (ii) for the maximum duration provided by applicable law or
treaty (including future time extensions), (iii) in any current or future
medium and for any number of copies, and (iv) for any purpose whatsoever,
including without limitation commercial, advertising or promotional
purposes (the "Waiver"). Affirmer makes the Waiver for the benefit of each
member of the public at large and to the detriment of Affirmer's heirs and
successors, fully intending that such Waiver shall not be subject to
revocation, rescission, cancellation, termination, or any other legal or
equitable action to disrupt the quiet enjoyment of the Work by the public
as contemplated by Affirmer's express Statement of Purpose.
3. Public License Fallback. Should any part of the Waiver for any reason
be judged legally invalid or ineffective under applicable law, then the
Waiver shall be preserved to the maximum extent permitted taking into
account Affirmer's express Statement of Purpose. In addition, to the
extent the Waiver is so judged Affirmer hereby grants to each affected
person a royalty-free, non transferable, non sublicensable, non exclusive,
irrevocable and unconditional license to exercise Affirmer's Copyright and
Related Rights in the Work (i) in all territories worldwide, (ii) for the
maximum duration provided by applicable law or treaty (including future
time extensions), (iii) in any current or future medium and for any number
of copies, and (iv) for any purpose whatsoever, including without
limitation commercial, advertising or promotional purposes (the
"License"). The License shall be deemed effective as of the date CC0 was
applied by Affirmer to the Work. Should any part of the License for any
reason be judged legally invalid or ineffective under applicable law, such
partial invalidity or ineffectiveness shall not invalidate the remainder
of the License, and in such case Affirmer hereby affirms that he or she
will not (i) exercise any of his or her remaining Copyright and Related
Rights in the Work or (ii) assert any associated claims and causes of
action with respect to the Work, in either case contrary to Affirmer's
express Statement of Purpose.
4. Limitations and Disclaimers.
a. No trademark or patent rights held by Affirmer are waived, abandoned,
surrendered, licensed or otherwise affected by this document.
b. Affirmer offers the Work as-is and makes no representations or
warranties of any kind concerning the Work, express, implied,
statutory or otherwise, including without limitation warranties of
title, merchantability, fitness for a particular purpose, non
infringement, or the absence of latent or other defects, accuracy, or
the present or absence of errors, whether or not discoverable, all to
the greatest extent permissible under applicable law.
c. Affirmer disclaims responsibility for clearing rights of other persons
that may apply to the Work or any use thereof, including without
limitation any person's Copyright and Related Rights in the Work.
Further, Affirmer disclaims responsibility for obtaining any necessary
consents, permissions or other rights required for any use of the
Work.
d. Affirmer understands and acknowledges that Creative Commons is not a
party to this document and has no duty or obligation with respect to
this CC0 or use of the Work.

View file

@ -0,0 +1,38 @@
#ifndef BLAKE2_AVX2_BLAKE2_H
#define BLAKE2_AVX2_BLAKE2_H
#if !defined(__cplusplus) && (!defined(__STDC_VERSION__) || __STDC_VERSION__ < 199901L)
#if defined(_MSC_VER)
#define INLINE __inline
#elif defined(__GNUC__)
#define INLINE __inline__
#else
#define INLINE
#endif
#else
#define INLINE inline
#endif
#if defined(_MSC_VER)
#define ALIGN(x) __declspec(align(x))
#else
#define ALIGN(x) __attribute__((aligned(x)))
#endif
enum blake2s_constant {
BLAKE2S_BLOCKBYTES = 64,
BLAKE2S_OUTBYTES = 32,
BLAKE2S_KEYBYTES = 32,
BLAKE2S_SALTBYTES = 8,
BLAKE2S_PERSONALBYTES = 8
};
enum blake2b_constant {
BLAKE2B_BLOCKBYTES = 128,
BLAKE2B_OUTBYTES = 64,
BLAKE2B_KEYBYTES = 64,
BLAKE2B_SALTBYTES = 16,
BLAKE2B_PERSONALBYTES = 16
};
#endif

View file

@ -0,0 +1,48 @@
#ifndef BLAKE2_AVX2_BLAKE2B_COMMON_H
#define BLAKE2_AVX2_BLAKE2B_COMMON_H
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#include <immintrin.h>
#include "blake2.h"
#define LOAD128(p) _mm_load_si128( (__m128i *)(p) )
#define STORE128(p,r) _mm_store_si128((__m128i *)(p), r)
#define LOADU128(p) _mm_loadu_si128( (__m128i *)(p) )
#define STOREU128(p,r) _mm_storeu_si128((__m128i *)(p), r)
#define LOAD(p) _mm256_load_si256( (__m256i *)(p) )
#define STORE(p,r) _mm256_store_si256((__m256i *)(p), r)
#define LOADU(p) _mm256_loadu_si256( (__m256i *)(p) )
#define STOREU(p,r) _mm256_storeu_si256((__m256i *)(p), r)
static INLINE uint64_t LOADU64(void const * p) {
uint64_t v;
memcpy(&v, p, sizeof v);
return v;
}
#define ROTATE16 _mm256_setr_epi8( 2, 3, 4, 5, 6, 7, 0, 1, 10, 11, 12, 13, 14, 15, 8, 9, \
2, 3, 4, 5, 6, 7, 0, 1, 10, 11, 12, 13, 14, 15, 8, 9 )
#define ROTATE24 _mm256_setr_epi8( 3, 4, 5, 6, 7, 0, 1, 2, 11, 12, 13, 14, 15, 8, 9, 10, \
3, 4, 5, 6, 7, 0, 1, 2, 11, 12, 13, 14, 15, 8, 9, 10 )
#define ADD(a, b) _mm256_add_epi64(a, b)
#define SUB(a, b) _mm256_sub_epi64(a, b)
#define XOR(a, b) _mm256_xor_si256(a, b)
#define AND(a, b) _mm256_and_si256(a, b)
#define OR(a, b) _mm256_or_si256(a, b)
#define ROT32(x) _mm256_shuffle_epi32((x), _MM_SHUFFLE(2, 3, 0, 1))
#define ROT24(x) _mm256_shuffle_epi8((x), ROTATE24)
#define ROT16(x) _mm256_shuffle_epi8((x), ROTATE16)
#define ROT63(x) _mm256_or_si256(_mm256_srli_epi64((x), 63), ADD((x), (x)))
#endif

View file

@ -0,0 +1,340 @@
#ifndef BLAKE2_AVX2_BLAKE2B_LOAD_AVX2_H
#define BLAKE2_AVX2_BLAKE2B_LOAD_AVX2_H
#define BLAKE2B_LOAD_MSG_0_1(b0) do { \
t0 = _mm256_unpacklo_epi64(m0, m1); \
t1 = _mm256_unpacklo_epi64(m2, m3); \
b0 = _mm256_blend_epi32(t0, t1, 0xF0); \
} while(0)
#define BLAKE2B_LOAD_MSG_0_2(b0) \
do { \
t0 = _mm256_unpackhi_epi64(m0, m1);\
t1 = _mm256_unpackhi_epi64(m2, m3);\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#define BLAKE2B_LOAD_MSG_0_3(b0) \
do { \
t0 = _mm256_unpacklo_epi64(m7, m4);\
t1 = _mm256_unpacklo_epi64(m5, m6);\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#define BLAKE2B_LOAD_MSG_0_4(b0) \
do { \
t0 = _mm256_unpackhi_epi64(m7, m4);\
t1 = _mm256_unpackhi_epi64(m5, m6);\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#define BLAKE2B_LOAD_MSG_1_1(b0) \
do { \
t0 = _mm256_unpacklo_epi64(m7, m2);\
t1 = _mm256_unpackhi_epi64(m4, m6);\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#define BLAKE2B_LOAD_MSG_1_2(b0) \
do { \
t0 = _mm256_unpacklo_epi64(m5, m4);\
t1 = _mm256_alignr_epi8(m3, m7, 8);\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#define BLAKE2B_LOAD_MSG_1_3(b0) \
do { \
t0 = _mm256_unpackhi_epi64(m2, m0);\
t1 = _mm256_blend_epi32(m5, m0, 0x33);\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#define BLAKE2B_LOAD_MSG_1_4(b0) \
do { \
t0 = _mm256_alignr_epi8(m6, m1, 8);\
t1 = _mm256_blend_epi32(m3, m1, 0x33);\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#define BLAKE2B_LOAD_MSG_2_1(b0) \
do { \
t0 = _mm256_alignr_epi8(m6, m5, 8);\
t1 = _mm256_unpackhi_epi64(m2, m7);\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#define BLAKE2B_LOAD_MSG_2_2(b0) \
do { \
t0 = _mm256_unpacklo_epi64(m4, m0);\
t1 = _mm256_blend_epi32(m6, m1, 0x33);\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#define BLAKE2B_LOAD_MSG_2_3(b0) \
do { \
t0 = _mm256_alignr_epi8(m5, m4, 8);\
t1 = _mm256_unpackhi_epi64(m1, m3);\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#define BLAKE2B_LOAD_MSG_2_4(b0) \
do { \
t0 = _mm256_unpacklo_epi64(m2, m7);\
t1 = _mm256_blend_epi32(m0, m3, 0x33);\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#define BLAKE2B_LOAD_MSG_3_1(b0) \
do { \
t0 = _mm256_unpackhi_epi64(m3, m1);\
t1 = _mm256_unpackhi_epi64(m6, m5);\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#define BLAKE2B_LOAD_MSG_3_2(b0) \
do { \
t0 = _mm256_unpackhi_epi64(m4, m0);\
t1 = _mm256_unpacklo_epi64(m6, m7);\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#define BLAKE2B_LOAD_MSG_3_3(b0) \
do { \
t0 = _mm256_alignr_epi8(m1, m7, 8);\
t1 = _mm256_shuffle_epi32(m2, _MM_SHUFFLE(1,0,3,2));\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#define BLAKE2B_LOAD_MSG_3_4(b0) \
do { \
t0 = _mm256_unpacklo_epi64(m4, m3);\
t1 = _mm256_unpacklo_epi64(m5, m0);\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#define BLAKE2B_LOAD_MSG_4_1(b0) \
do { \
t0 = _mm256_unpackhi_epi64(m4, m2);\
t1 = _mm256_unpacklo_epi64(m1, m5);\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#define BLAKE2B_LOAD_MSG_4_2(b0) \
do { \
t0 = _mm256_blend_epi32(m3, m0, 0x33);\
t1 = _mm256_blend_epi32(m7, m2, 0x33);\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#define BLAKE2B_LOAD_MSG_4_3(b0) \
do { \
t0 = _mm256_alignr_epi8(m7, m1, 8);\
t1 = _mm256_alignr_epi8(m3, m5, 8);\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#define BLAKE2B_LOAD_MSG_4_4(b0) \
do { \
t0 = _mm256_unpackhi_epi64(m6, m0);\
t1 = _mm256_unpacklo_epi64(m6, m4);\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#define BLAKE2B_LOAD_MSG_5_1(b0) \
do { \
t0 = _mm256_unpacklo_epi64(m1, m3);\
t1 = _mm256_unpacklo_epi64(m0, m4);\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#define BLAKE2B_LOAD_MSG_5_2(b0) \
do { \
t0 = _mm256_unpacklo_epi64(m6, m5);\
t1 = _mm256_unpackhi_epi64(m5, m1);\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#define BLAKE2B_LOAD_MSG_5_3(b0) \
do { \
t0 = _mm256_alignr_epi8(m2, m0, 8);\
t1 = _mm256_unpackhi_epi64(m3, m7);\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#define BLAKE2B_LOAD_MSG_5_4(b0) \
do { \
t0 = _mm256_unpackhi_epi64(m4, m6);\
t1 = _mm256_alignr_epi8(m7, m2, 8);\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#define BLAKE2B_LOAD_MSG_6_1(b0) \
do { \
t0 = _mm256_blend_epi32(m0, m6, 0x33);\
t1 = _mm256_unpacklo_epi64(m7, m2);\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#define BLAKE2B_LOAD_MSG_6_2(b0) \
do { \
t0 = _mm256_unpackhi_epi64(m2, m7);\
t1 = _mm256_alignr_epi8(m5, m6, 8);\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#define BLAKE2B_LOAD_MSG_6_3(b0) \
do { \
t0 = _mm256_unpacklo_epi64(m4, m0);\
t1 = _mm256_blend_epi32(m4, m3, 0x33);\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#define BLAKE2B_LOAD_MSG_6_4(b0) \
do { \
t0 = _mm256_unpackhi_epi64(m5, m3);\
t1 = _mm256_shuffle_epi32(m1, _MM_SHUFFLE(1,0,3,2));\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#define BLAKE2B_LOAD_MSG_7_1(b0) \
do { \
t0 = _mm256_unpackhi_epi64(m6, m3);\
t1 = _mm256_blend_epi32(m1, m6, 0x33);\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#define BLAKE2B_LOAD_MSG_7_2(b0) \
do { \
t0 = _mm256_alignr_epi8(m7, m5, 8);\
t1 = _mm256_unpackhi_epi64(m0, m4);\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#define BLAKE2B_LOAD_MSG_7_3(b0) \
do { \
t0 = _mm256_blend_epi32(m2, m1, 0x33);\
t1 = _mm256_alignr_epi8(m4, m7, 8);\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#define BLAKE2B_LOAD_MSG_7_4(b0) \
do { \
t0 = _mm256_unpacklo_epi64(m5, m0);\
t1 = _mm256_unpacklo_epi64(m2, m3);\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#define BLAKE2B_LOAD_MSG_8_1(b0) \
do { \
t0 = _mm256_unpacklo_epi64(m3, m7);\
t1 = _mm256_alignr_epi8(m0, m5, 8);\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#define BLAKE2B_LOAD_MSG_8_2(b0) \
do { \
t0 = _mm256_unpackhi_epi64(m7, m4);\
t1 = _mm256_alignr_epi8(m4, m1, 8);\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#define BLAKE2B_LOAD_MSG_8_3(b0) \
do { \
t0 = _mm256_unpacklo_epi64(m5, m6);\
t1 = _mm256_unpackhi_epi64(m6, m0);\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#define BLAKE2B_LOAD_MSG_8_4(b0) \
do { \
t0 = _mm256_alignr_epi8(m1, m2, 8);\
t1 = _mm256_alignr_epi8(m2, m3, 8);\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#define BLAKE2B_LOAD_MSG_9_1(b0) \
do { \
t0 = _mm256_unpacklo_epi64(m5, m4);\
t1 = _mm256_unpackhi_epi64(m3, m0);\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#define BLAKE2B_LOAD_MSG_9_2(b0) \
do { \
t0 = _mm256_unpacklo_epi64(m1, m2);\
t1 = _mm256_blend_epi32(m2, m3, 0x33);\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#define BLAKE2B_LOAD_MSG_9_3(b0) \
do { \
t0 = _mm256_unpackhi_epi64(m6, m7);\
t1 = _mm256_unpackhi_epi64(m4, m1);\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#define BLAKE2B_LOAD_MSG_9_4(b0) \
do { \
t0 = _mm256_blend_epi32(m5, m0, 0x33);\
t1 = _mm256_unpacklo_epi64(m7, m6);\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#define BLAKE2B_LOAD_MSG_10_1(b0) \
do { \
t0 = _mm256_unpacklo_epi64(m0, m1);\
t1 = _mm256_unpacklo_epi64(m2, m3);\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#define BLAKE2B_LOAD_MSG_10_2(b0) \
do { \
t0 = _mm256_unpackhi_epi64(m0, m1);\
t1 = _mm256_unpackhi_epi64(m2, m3);\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#define BLAKE2B_LOAD_MSG_10_3(b0) \
do { \
t0 = _mm256_unpacklo_epi64(m7, m4);\
t1 = _mm256_unpacklo_epi64(m5, m6);\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#define BLAKE2B_LOAD_MSG_10_4(b0) \
do { \
t0 = _mm256_unpackhi_epi64(m7, m4);\
t1 = _mm256_unpackhi_epi64(m5, m6);\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#define BLAKE2B_LOAD_MSG_11_1(b0) \
do { \
t0 = _mm256_unpacklo_epi64(m7, m2);\
t1 = _mm256_unpackhi_epi64(m4, m6);\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#define BLAKE2B_LOAD_MSG_11_2(b0) \
do { \
t0 = _mm256_unpacklo_epi64(m5, m4);\
t1 = _mm256_alignr_epi8(m3, m7, 8);\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#define BLAKE2B_LOAD_MSG_11_3(b0) \
do { \
t0 = _mm256_unpackhi_epi64(m2, m0);\
t1 = _mm256_blend_epi32(m5, m0, 0x33);\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#define BLAKE2B_LOAD_MSG_11_4(b0) \
do { \
t0 = _mm256_alignr_epi8(m6, m1, 8);\
t1 = _mm256_blend_epi32(m3, m1, 0x33);\
b0 = _mm256_blend_epi32(t0, t1, 0xF0);\
} while(0)
#endif

View file

@ -0,0 +1,16 @@
#ifndef BLAKE2_AVX2_BLAKE2B_H
#define BLAKE2_AVX2_BLAKE2B_H
#include <stddef.h>
#if defined(__cplusplus)
extern "C" {
#endif
int blake2b_avx2(void* out, size_t outlen, const void* in, size_t inlen);
#if defined(__cplusplus)
}
#endif
#endif

View file

@ -0,0 +1,141 @@
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "blake2.h"
#include "blake2b.h"
#include "blake2b-common.h"
ALIGN(64) static const uint64_t blake2b_IV[8] = {
UINT64_C(0x6A09E667F3BCC908), UINT64_C(0xBB67AE8584CAA73B),
UINT64_C(0x3C6EF372FE94F82B), UINT64_C(0xA54FF53A5F1D36F1),
UINT64_C(0x510E527FADE682D1), UINT64_C(0x9B05688C2B3E6C1F),
UINT64_C(0x1F83D9ABFB41BD6B), UINT64_C(0x5BE0CD19137E2179),
};
#define BLAKE2B_G1_V1(a, b, c, d, m) do { \
a = ADD(a, m); \
a = ADD(a, b); d = XOR(d, a); d = ROT32(d); \
c = ADD(c, d); b = XOR(b, c); b = ROT24(b); \
} while(0)
#define BLAKE2B_G2_V1(a, b, c, d, m) do { \
a = ADD(a, m); \
a = ADD(a, b); d = XOR(d, a); d = ROT16(d); \
c = ADD(c, d); b = XOR(b, c); b = ROT63(b); \
} while(0)
#define BLAKE2B_DIAG_V1(a, b, c, d) do { \
a = _mm256_permute4x64_epi64(a, _MM_SHUFFLE(2,1,0,3)); \
d = _mm256_permute4x64_epi64(d, _MM_SHUFFLE(1,0,3,2)); \
c = _mm256_permute4x64_epi64(c, _MM_SHUFFLE(0,3,2,1)); \
} while(0)
#define BLAKE2B_UNDIAG_V1(a, b, c, d) do { \
a = _mm256_permute4x64_epi64(a, _MM_SHUFFLE(0,3,2,1)); \
d = _mm256_permute4x64_epi64(d, _MM_SHUFFLE(1,0,3,2)); \
c = _mm256_permute4x64_epi64(c, _MM_SHUFFLE(2,1,0,3)); \
} while(0)
#include "blake2b-load-avx2.h"
#define BLAKE2B_ROUND_V1(a, b, c, d, r, m) do { \
__m256i b0; \
BLAKE2B_LOAD_MSG_ ##r ##_1(b0); \
BLAKE2B_G1_V1(a, b, c, d, b0); \
BLAKE2B_LOAD_MSG_ ##r ##_2(b0); \
BLAKE2B_G2_V1(a, b, c, d, b0); \
BLAKE2B_DIAG_V1(a, b, c, d); \
BLAKE2B_LOAD_MSG_ ##r ##_3(b0); \
BLAKE2B_G1_V1(a, b, c, d, b0); \
BLAKE2B_LOAD_MSG_ ##r ##_4(b0); \
BLAKE2B_G2_V1(a, b, c, d, b0); \
BLAKE2B_UNDIAG_V1(a, b, c, d); \
} while(0)
#define BLAKE2B_ROUNDS_V1(a, b, c, d, m) do { \
BLAKE2B_ROUND_V1(a, b, c, d, 0, (m)); \
BLAKE2B_ROUND_V1(a, b, c, d, 1, (m)); \
BLAKE2B_ROUND_V1(a, b, c, d, 2, (m)); \
BLAKE2B_ROUND_V1(a, b, c, d, 3, (m)); \
BLAKE2B_ROUND_V1(a, b, c, d, 4, (m)); \
BLAKE2B_ROUND_V1(a, b, c, d, 5, (m)); \
BLAKE2B_ROUND_V1(a, b, c, d, 6, (m)); \
BLAKE2B_ROUND_V1(a, b, c, d, 7, (m)); \
BLAKE2B_ROUND_V1(a, b, c, d, 8, (m)); \
BLAKE2B_ROUND_V1(a, b, c, d, 9, (m)); \
BLAKE2B_ROUND_V1(a, b, c, d, 10, (m)); \
BLAKE2B_ROUND_V1(a, b, c, d, 11, (m)); \
} while(0)
#define DECLARE_MESSAGE_WORDS(m) \
const __m256i m0 = _mm256_broadcastsi128_si256(LOADU128((m) + 0)); \
const __m256i m1 = _mm256_broadcastsi128_si256(LOADU128((m) + 16)); \
const __m256i m2 = _mm256_broadcastsi128_si256(LOADU128((m) + 32)); \
const __m256i m3 = _mm256_broadcastsi128_si256(LOADU128((m) + 48)); \
const __m256i m4 = _mm256_broadcastsi128_si256(LOADU128((m) + 64)); \
const __m256i m5 = _mm256_broadcastsi128_si256(LOADU128((m) + 80)); \
const __m256i m6 = _mm256_broadcastsi128_si256(LOADU128((m) + 96)); \
const __m256i m7 = _mm256_broadcastsi128_si256(LOADU128((m) + 112)); \
__m256i t0, t1;
#define BLAKE2B_COMPRESS_V1(a, b, m, t0, t1, f0, f1) do { \
DECLARE_MESSAGE_WORDS(m) \
const __m256i iv0 = a; \
const __m256i iv1 = b; \
__m256i c = LOAD(&blake2b_IV[0]); \
__m256i d = XOR( \
LOAD(&blake2b_IV[4]), \
_mm256_set_epi64x(f1, f0, t1, t0) \
); \
BLAKE2B_ROUNDS_V1(a, b, c, d, m); \
a = XOR(a, c); \
b = XOR(b, d); \
a = XOR(a, iv0); \
b = XOR(b, iv1); \
} while(0)
int blake2b_avx2(void* out_ptr, size_t outlen, const void* in_ptr, size_t inlen) {
const __m256i parameter_block = _mm256_set_epi64x(0, 0, 0, 0x01010000UL | (uint32_t)outlen);
ALIGN(64) uint8_t buffer[BLAKE2B_BLOCKBYTES];
__m256i a = XOR(LOAD(&blake2b_IV[0]), parameter_block);
__m256i b = LOAD(&blake2b_IV[4]);
uint64_t counter = 0;
const uint8_t* in = (const uint8_t*)in_ptr;
do {
const uint64_t flag = (inlen <= BLAKE2B_BLOCKBYTES) ? -1 : 0;
size_t block_size = BLAKE2B_BLOCKBYTES;
if(inlen < BLAKE2B_BLOCKBYTES) {
memcpy(buffer, in, inlen);
memset(buffer + inlen, 0, BLAKE2B_BLOCKBYTES - inlen);
block_size = inlen;
in = buffer;
}
counter += block_size;
BLAKE2B_COMPRESS_V1(a, b, in, counter, 0, flag, 0);
inlen -= block_size;
in += block_size;
} while(inlen > 0);
uint8_t* out = (uint8_t*)out_ptr;
switch (outlen) {
case 64:
STOREU(out + 32, b);
// Fall through
case 32:
STOREU(out, a);
break;
default:
STOREU(buffer, a);
STOREU(buffer + 32, b);
memcpy(out, buffer, outlen);
break;
}
_mm256_zeroupper();
return 0;
}

View file

@ -92,7 +92,12 @@ extern "C" {
int rx_blake2b_final(blake2b_state *S, void *out, size_t outlen); int rx_blake2b_final(blake2b_state *S, void *out, size_t outlen);
/* Simple API */ /* Simple API */
int rx_blake2b(void *out, size_t outlen, const void *in, size_t inlen); void rx_blake2b_compress_integer(blake2b_state * S, const uint8_t * block);
void rx_blake2b_compress_sse41(blake2b_state * S, const uint8_t * block);
int rx_blake2b_default(void* out, size_t outlen, const void* in, size_t inlen);
extern void (*rx_blake2b_compress)(blake2b_state * S, const uint8_t * block);
extern int (*rx_blake2b)(void* out, size_t outlen, const void* in, size_t inlen);
/* Argon2 Team - Begin Code */ /* Argon2 Team - Begin Code */
int rxa2_blake2b_long(void *out, size_t outlen, const void *in, size_t inlen); int rxa2_blake2b_long(void *out, size_t outlen, const void *in, size_t inlen);

View file

@ -179,7 +179,7 @@ int rx_blake2b_init_key(blake2b_state *S, size_t outlen, const void *key, size_t
return 0; return 0;
} }
static void rx_blake2b_compress_integer(blake2b_state *S, const uint8_t *block) { void rx_blake2b_compress_integer(blake2b_state *S, const uint8_t *block) {
uint64_t m[16]; uint64_t m[16];
uint64_t v[16]; uint64_t v[16];
unsigned int i, r; unsigned int i, r;
@ -237,21 +237,6 @@ static void rx_blake2b_compress_integer(blake2b_state *S, const uint8_t *block)
#undef ROUND #undef ROUND
} }
#if defined(XMRIG_FEATURE_SSE4_1)
uint32_t rx_blake2b_use_sse41 = 0;
void rx_blake2b_compress_sse41(blake2b_state* S, const uint8_t* block);
#define rx_blake2b_compress(S, block) \
if (rx_blake2b_use_sse41) \
rx_blake2b_compress_sse41(S, block); \
else \
rx_blake2b_compress_integer(S, block);
#else
#define rx_blake2b_compress(S, block) rx_blake2b_compress_integer(S, block);
#endif
int rx_blake2b_update(blake2b_state *S, const void *in, size_t inlen) { int rx_blake2b_update(blake2b_state *S, const void *in, size_t inlen) {
const uint8_t *pin = (const uint8_t *)in; const uint8_t *pin = (const uint8_t *)in;
@ -322,7 +307,7 @@ int rx_blake2b_final(blake2b_state *S, void *out, size_t outlen) {
return 0; return 0;
} }
int rx_blake2b(void *out, size_t outlen, const void *in, size_t inlen) { int rx_blake2b_default(void *out, size_t outlen, const void *in, size_t inlen) {
blake2b_state S; blake2b_state S;
int ret = -1; int ret = -1;

View file

@ -240,10 +240,17 @@ namespace randomx {
return x; return x;
} }
void cleanup() {
for (unsigned i = 0; i < RegistersCount; ++i) {
registerUsage[i] = -1;
}
nreg = nullptr;
}
private: private:
static const int_reg_t zero; static const int_reg_t zero;
int registerUsage[RegistersCount]; int registerUsage[RegistersCount] = {};
NativeRegisterFile* nreg; NativeRegisterFile* nreg = nullptr;
static void* getScratchpadAddress(InstructionByteCode& ibc, uint8_t* scratchpad) { static void* getScratchpadAddress(InstructionByteCode& ibc, uint8_t* scratchpad) {
uint32_t addr = (*ibc.isrc + ibc.imm) & ibc.memMask; uint32_t addr = (*ibc.isrc + ibc.imm) & ibc.memMask;

View file

@ -167,6 +167,11 @@ namespace randomx {
static const uint8_t* NOPX[] = { NOP1, NOP2, NOP3, NOP4, NOP5, NOP6, NOP7, NOP8, NOP9 }; static const uint8_t* NOPX[] = { NOP1, NOP2, NOP3, NOP4, NOP5, NOP6, NOP7, NOP8, NOP9 };
static const uint8_t NOP13[] = { 0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0F, 0x1F, 0x44, 0x00, 0x00 };
static const uint8_t NOP14[] = { 0x0F, 0x1F, 0x80, 0x00, 0x00, 0x00, 0x00, 0x0F, 0x1F, 0x80, 0x00, 0x00, 0x00, 0x00 };
static const uint8_t NOP25[] = { 0x66, 0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00 };
static const uint8_t NOP26[] = { 0x66, 0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00, 0x66, 0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00 };
static const uint8_t JMP_ALIGN_PREFIX[14][16] = { static const uint8_t JMP_ALIGN_PREFIX[14][16] = {
{}, {},
{0x2E}, {0x2E},
@ -257,6 +262,10 @@ namespace randomx {
// AVX2 init is faster on Zen3 // AVX2 init is faster on Zen3
initDatasetAVX2 = true; initDatasetAVX2 = true;
break; break;
case xmrig::ICpuInfo::ARCH_ZEN4:
// AVX2 init is slower on Zen4
initDatasetAVX2 = false;
break;
} }
} }
} }
@ -407,7 +416,7 @@ namespace randomx {
*(uint32_t*)(code + codePos + 14) = RandomX_CurrentConfig.ScratchpadL3Mask64_Calculated; *(uint32_t*)(code + codePos + 14) = RandomX_CurrentConfig.ScratchpadL3Mask64_Calculated;
if (hasAVX) { if (hasAVX) {
uint32_t* p = (uint32_t*)(code + codePos + 61); uint32_t* p = (uint32_t*)(code + codePos + 61);
*p = (*p & 0xFF000000U) | 0x0077F8C5U; *p = (*p & 0xFF000000U) | 0x0077F8C5U; // vzeroupper
} }
# ifdef XMRIG_FIX_RYZEN # ifdef XMRIG_FIX_RYZEN
@ -419,7 +428,8 @@ namespace randomx {
memcpy(imul_rcp_storage - 34, &pcfg.eMask, sizeof(pcfg.eMask)); memcpy(imul_rcp_storage - 34, &pcfg.eMask, sizeof(pcfg.eMask));
codePos = codePosFirst; codePos = codePosFirst;
prevCFROUND = 0; prevCFROUND = -1;
prevFPOperation = -1;
//mark all registers as used //mark all registers as used
uint64_t* r = (uint64_t*)registerUsage; uint64_t* r = (uint64_t*)registerUsage;
@ -1155,7 +1165,7 @@ namespace randomx {
uint8_t* const p = code; uint8_t* const p = code;
uint32_t pos = codePos; uint32_t pos = codePos;
prevCFROUND = 0; prevFPOperation = pos;
const uint64_t dst = instr.dst % RegisterCountFlt; const uint64_t dst = instr.dst % RegisterCountFlt;
const uint64_t src = instr.src % RegisterCountFlt; const uint64_t src = instr.src % RegisterCountFlt;
@ -1170,7 +1180,7 @@ namespace randomx {
uint8_t* const p = code; uint8_t* const p = code;
uint32_t pos = codePos; uint32_t pos = codePos;
prevCFROUND = 0; prevFPOperation = pos;
const uint32_t src = instr.src % RegistersCount; const uint32_t src = instr.src % RegistersCount;
const uint32_t dst = instr.dst % RegisterCountFlt; const uint32_t dst = instr.dst % RegisterCountFlt;
@ -1187,7 +1197,7 @@ namespace randomx {
uint8_t* const p = code; uint8_t* const p = code;
uint32_t pos = codePos; uint32_t pos = codePos;
prevCFROUND = 0; prevFPOperation = pos;
const uint64_t dst = instr.dst % RegisterCountFlt; const uint64_t dst = instr.dst % RegisterCountFlt;
const uint64_t src = instr.src % RegisterCountFlt; const uint64_t src = instr.src % RegisterCountFlt;
@ -1202,7 +1212,7 @@ namespace randomx {
uint8_t* const p = code; uint8_t* const p = code;
uint32_t pos = codePos; uint32_t pos = codePos;
prevCFROUND = 0; prevFPOperation = pos;
const uint32_t src = instr.src % RegistersCount; const uint32_t src = instr.src % RegistersCount;
const uint32_t dst = instr.dst % RegisterCountFlt; const uint32_t dst = instr.dst % RegisterCountFlt;
@ -1230,7 +1240,7 @@ namespace randomx {
uint8_t* const p = code; uint8_t* const p = code;
uint32_t pos = codePos; uint32_t pos = codePos;
prevCFROUND = 0; prevFPOperation = pos;
const uint64_t dst = instr.dst % RegisterCountFlt; const uint64_t dst = instr.dst % RegisterCountFlt;
const uint64_t src = instr.src % RegisterCountFlt; const uint64_t src = instr.src % RegisterCountFlt;
@ -1245,7 +1255,7 @@ namespace randomx {
uint8_t* const p = code; uint8_t* const p = code;
uint32_t pos = codePos; uint32_t pos = codePos;
prevCFROUND = 0; prevFPOperation = pos;
const uint32_t src = instr.src % RegistersCount; const uint32_t src = instr.src % RegistersCount;
const uint64_t dst = instr.dst % RegisterCountFlt; const uint64_t dst = instr.dst % RegisterCountFlt;
@ -1272,7 +1282,7 @@ namespace randomx {
uint8_t* const p = code; uint8_t* const p = code;
uint32_t pos = codePos; uint32_t pos = codePos;
prevCFROUND = 0; prevFPOperation = pos;
const uint32_t dst = instr.dst % RegisterCountFlt; const uint32_t dst = instr.dst % RegisterCountFlt;
@ -1283,21 +1293,18 @@ namespace randomx {
void JitCompilerX86::h_CFROUND(const Instruction& instr) { void JitCompilerX86::h_CFROUND(const Instruction& instr) {
uint8_t* const p = code; uint8_t* const p = code;
uint32_t pos = prevCFROUND; int32_t t = prevCFROUND;
if (pos) { if (t > prevFPOperation) {
if (vm_flags & RANDOMX_FLAG_AMD) { if (vm_flags & RANDOMX_FLAG_AMD) {
memcpy(p + pos + 0, NOP9, 9); memcpy(p + t, NOP26, 26);
memcpy(p + pos + 9, NOP9, 9);
memcpy(p + pos + 18, NOP8, 8);
} }
else { else {
memcpy(p + pos + 0, NOP8, 8); memcpy(p + t, NOP14, 14);
memcpy(p + pos + 8, NOP6, 6);
} }
} }
pos = codePos; uint32_t pos = codePos;
prevCFROUND = pos; prevCFROUND = pos;
const uint32_t src = instr.src % RegistersCount; const uint32_t src = instr.src % RegistersCount;
@ -1322,21 +1329,18 @@ namespace randomx {
void JitCompilerX86::h_CFROUND_BMI2(const Instruction& instr) { void JitCompilerX86::h_CFROUND_BMI2(const Instruction& instr) {
uint8_t* const p = code; uint8_t* const p = code;
uint32_t pos = prevCFROUND; int32_t t = prevCFROUND;
if (pos) { if (t > prevFPOperation) {
if (vm_flags & RANDOMX_FLAG_AMD) { if (vm_flags & RANDOMX_FLAG_AMD) {
memcpy(p + pos + 0, NOP9, 9); memcpy(p + t, NOP25, 25);
memcpy(p + pos + 9, NOP9, 9);
memcpy(p + pos + 18, NOP7, 7);
} }
else { else {
memcpy(p + pos + 0, NOP8, 8); memcpy(p + t, NOP13, 13);
memcpy(p + pos + 8, NOP5, 5);
} }
} }
pos = codePos; uint32_t pos = codePos;
prevCFROUND = pos; prevCFROUND = pos;
const uint64_t src = instr.src % RegistersCount; const uint64_t src = instr.src % RegistersCount;
@ -1363,10 +1367,15 @@ namespace randomx {
uint8_t* const p = code; uint8_t* const p = code;
uint32_t pos = codePos; uint32_t pos = codePos;
prevCFROUND = 0;
const int reg = instr.dst % RegistersCount; const int reg = instr.dst % RegistersCount;
int32_t jmp_offset = registerUsage[reg] - (pos + 16); int32_t jmp_offset = registerUsage[reg];
// if it jumps over the previous FP instruction that uses rounding, treat it as if FP instruction happened now
if (jmp_offset <= prevFPOperation) {
prevFPOperation = pos;
}
jmp_offset -= pos + 16;
if (jccErratum) { if (jccErratum) {
const uint32_t branch_begin = static_cast<uint32_t>(pos + 7); const uint32_t branch_begin = static_cast<uint32_t>(pos + 7);

View file

@ -89,7 +89,8 @@ namespace randomx {
uint32_t codePos = 0; uint32_t codePos = 0;
uint32_t codePosFirst = 0; uint32_t codePosFirst = 0;
uint32_t vm_flags = 0; uint32_t vm_flags = 0;
uint32_t prevCFROUND = 0; int32_t prevCFROUND = -1;
int32_t prevFPOperation = -1;
# ifdef XMRIG_FIX_RYZEN # ifdef XMRIG_FIX_RYZEN
std::pair<const void*, const void*> mainLoopBounds; std::pair<const void*, const void*> mainLoopBounds;

View file

@ -104,6 +104,8 @@ namespace randomx {
for (unsigned i = 0; i < RegisterCountFlt; ++i) for (unsigned i = 0; i < RegisterCountFlt; ++i)
rx_store_vec_f128(&reg.e[i].lo, nreg.e[i]); rx_store_vec_f128(&reg.e[i].lo, nreg.e[i]);
cleanup();
} }
template<int softAes> template<int softAes>

View file

@ -18,6 +18,7 @@
*/ */
#include "crypto/rx/Rx.h" #include "crypto/rx/Rx.h"
#include "backend/cpu/Cpu.h"
#include "backend/cpu/CpuConfig.h" #include "backend/cpu/CpuConfig.h"
#include "backend/cpu/CpuThreads.h" #include "backend/cpu/CpuThreads.h"
#include "crypto/rx/RxConfig.h" #include "crypto/rx/RxConfig.h"
@ -84,6 +85,16 @@ void xmrig::Rx::init(IRxListener *listener)
} }
#include "crypto/randomx/blake2/blake2.h"
#if defined(XMRIG_FEATURE_AVX2)
#include "crypto/randomx/blake2/avx2/blake2b.h"
#endif
void (*rx_blake2b_compress)(blake2b_state* S, const uint8_t * block) = rx_blake2b_compress_integer;
int (*rx_blake2b)(void* out, size_t outlen, const void* in, size_t inlen) = rx_blake2b_default;
template<typename T> template<typename T>
bool xmrig::Rx::init(const T &seed, const RxConfig &config, const CpuConfig &cpu) bool xmrig::Rx::init(const T &seed, const RxConfig &config, const CpuConfig &cpu)
{ {
@ -133,6 +144,19 @@ bool xmrig::Rx::init(const T &seed, const RxConfig &config, const CpuConfig &cpu
if (!cpu.isHwAES()) { if (!cpu.isHwAES()) {
SelectSoftAESImpl(cpu.threads().get(seed.algorithm()).count()); SelectSoftAESImpl(cpu.threads().get(seed.algorithm()).count());
} }
# if defined(XMRIG_FEATURE_SSE4_1)
if (Cpu::info()->has(ICpuInfo::FLAG_SSE41)) {
rx_blake2b_compress = rx_blake2b_compress_sse41;
}
# endif
#if defined(XMRIG_FEATURE_AVX2)
if (Cpu::info()->has(ICpuInfo::FLAG_AVX2)) {
rx_blake2b = blake2b_avx2;
}
# endif
osInitialized = true; osInitialized = true;
} }

View file

@ -58,12 +58,13 @@ static const std::array<const char *, RxConfig::ModeMax> modeNames = { "auto", "
#ifdef XMRIG_FEATURE_MSR #ifdef XMRIG_FEATURE_MSR
constexpr size_t kMsrArraySize = 5; constexpr size_t kMsrArraySize = 6;
static const std::array<MsrItems, kMsrArraySize> msrPresets = { static const std::array<MsrItems, kMsrArraySize> msrPresets = {
MsrItems(), MsrItems(),
MsrItems{{ 0xC0011020, 0ULL }, { 0xC0011021, 0x40ULL, ~0x20ULL }, { 0xC0011022, 0x1510000ULL }, { 0xC001102b, 0x2000cc16ULL }}, MsrItems{{ 0xC0011020, 0ULL }, { 0xC0011021, 0x40ULL, ~0x20ULL }, { 0xC0011022, 0x1510000ULL }, { 0xC001102b, 0x2000cc16ULL }},
MsrItems{{ 0xC0011020, 0x0004480000000000ULL }, { 0xC0011021, 0x001c000200000040ULL, ~0x20ULL }, { 0xC0011022, 0xc000000401500000ULL }, { 0xC001102b, 0x2000cc14ULL }}, MsrItems{{ 0xC0011020, 0x0004480000000000ULL }, { 0xC0011021, 0x001c000200000040ULL, ~0x20ULL }, { 0xC0011022, 0xc000000401500000ULL }, { 0xC001102b, 0x2000cc14ULL }},
MsrItems{{ 0xC0011020, 0x0004400000000000ULL }, { 0xC0011021, 0x0004000000000040ULL, ~0x20ULL }, { 0xC0011022, 0x8680000401570000ULL }, { 0xC001102b, 0x2040cc10ULL }},
MsrItems{{ 0x1a4, 0xf }}, MsrItems{{ 0x1a4, 0xf }},
MsrItems() MsrItems()
}; };

View file

@ -25,11 +25,6 @@
#include "crypto/rx/RxVm.h" #include "crypto/rx/RxVm.h"
#if defined(XMRIG_FEATURE_SSE4_1)
extern "C" uint32_t rx_blake2b_use_sse41;
#endif
randomx_vm *xmrig::RxVm::create(RxDataset *dataset, uint8_t *scratchpad, bool softAes, const Assembly &assembly, uint32_t node) randomx_vm *xmrig::RxVm::create(RxDataset *dataset, uint8_t *scratchpad, bool softAes, const Assembly &assembly, uint32_t node)
{ {
int flags = 0; int flags = 0;
@ -51,10 +46,6 @@ randomx_vm *xmrig::RxVm::create(RxDataset *dataset, uint8_t *scratchpad, bool so
flags |= RANDOMX_FLAG_AMD; flags |= RANDOMX_FLAG_AMD;
} }
# if defined(XMRIG_FEATURE_SSE4_1)
rx_blake2b_use_sse41 = Cpu::info()->has(ICpuInfo::FLAG_SSE41) ? 1 : 0;
# endif
return randomx_create_vm(static_cast<randomx_flags>(flags), !dataset->get() ? dataset->cache()->get() : nullptr, dataset->get(), scratchpad, node); return randomx_create_vm(static_cast<randomx_flags>(flags), !dataset->get() ? dataset->cache()->get() : nullptr, dataset->get(), scratchpad, node);
} }

View file

@ -22,7 +22,7 @@
#define APP_ID "xmrig" #define APP_ID "xmrig"
#define APP_NAME "XMRig" #define APP_NAME "XMRig"
#define APP_DESC "XMRig miner" #define APP_DESC "XMRig miner"
#define APP_VERSION "6.18.0" #define APP_VERSION "6.18.1-dev"
#define APP_DOMAIN "xmrig.com" #define APP_DOMAIN "xmrig.com"
#define APP_SITE "www.xmrig.com" #define APP_SITE "www.xmrig.com"
#define APP_COPYRIGHT "Copyright (C) 2016-2022 xmrig.com" #define APP_COPYRIGHT "Copyright (C) 2016-2022 xmrig.com"
@ -30,7 +30,7 @@
#define APP_VER_MAJOR 6 #define APP_VER_MAJOR 6
#define APP_VER_MINOR 18 #define APP_VER_MINOR 18
#define APP_VER_PATCH 0 #define APP_VER_PATCH 1
#ifdef _MSC_VER #ifdef _MSC_VER
# if (_MSC_VER >= 1930) # if (_MSC_VER >= 1930)