Add xmr-stak-cpu algo as experimental, use --av=5.

This commit is contained in:
XMRig 2017-04-18 12:06:46 +03:00
parent 78a4b9de0f
commit 4acfb213b8
3 changed files with 194 additions and 197 deletions

View file

@ -74,7 +74,6 @@ endif()
include_directories(.) include_directories(.)
add_definitions(/DUSE_NATIVE_THREADS) add_definitions(/DUSE_NATIVE_THREADS)
add_definitions(/D_GNU_SOURCE) add_definitions(/D_GNU_SOURCE)
add_definitions(/DDEBUG_THREADS)
if ("${CMAKE_BUILD_TYPE}" STREQUAL "") if ("${CMAKE_BUILD_TYPE}" STREQUAL "")
set(CMAKE_BUILD_TYPE Release) set(CMAKE_BUILD_TYPE Release)

View file

@ -27,23 +27,19 @@
#include <stddef.h> #include <stddef.h>
#include <stdint.h> #include <stdint.h>
#define MEMORY (1 << 21) /* 2 MiB */ #define MEMORY 2097152 /* 2 MiB */
#define MEMORY_M128I (MEMORY >> 4) // 2 MiB / 16 = 128 ki * __m128i
#define ITER (1 << 20) #define ITER (1 << 20)
#define AES_BLOCK_SIZE 16 #define AES_BLOCK_SIZE 16
#define AES_KEY_SIZE 32 /*16*/ #define AES_KEY_SIZE 32 /*16*/
#define INIT_SIZE_BLK 8 #define INIT_SIZE_BLK 8
#define INIT_SIZE_BYTE (INIT_SIZE_BLK * AES_BLOCK_SIZE) // 128 #define INIT_SIZE_BYTE (INIT_SIZE_BLK * AES_BLOCK_SIZE) // 128
#define INIT_SIZE_M128I (INIT_SIZE_BYTE >> 4) // 8
#pragma pack(push, 1)
union hash_state { union hash_state {
uint8_t b[200]; uint8_t b[200];
uint64_t w[25]; uint64_t w[25];
}; };
#pragma pack(pop)
#pragma pack(push, 1)
union cn_slow_hash_state { union cn_slow_hash_state {
union hash_state hs; union hash_state hs;
struct { struct {
@ -51,7 +47,6 @@ union cn_slow_hash_state {
uint8_t init[INIT_SIZE_BYTE]; uint8_t init[INIT_SIZE_BYTE];
}; };
}; };
#pragma pack(pop)
struct cryptonight_ctx { struct cryptonight_ctx {

View file

@ -28,221 +28,224 @@
#include "crypto/c_keccak.h" #include "crypto/c_keccak.h"
static inline void ExpandAESKey256_sub1(__m128i *tmp1, __m128i *tmp2) #ifdef __GNUC__
static __always_inline uint64_t _umul128(uint64_t a, uint64_t b, uint64_t* hi)
{
unsigned __int128 r = (unsigned __int128)a * (unsigned __int128)b;
*hi = r >> 64;
return (uint64_t)r;
}
#endif
// This will shift and xor tmp1 into itself as 4 32-bit vals such as
// sl_xor(a1 a2 a3 a4) = a1 (a2^a1) (a3^a2^a1) (a4^a3^a2^a1)
static __always_inline __m128i sl_xor(__m128i tmp1)
{ {
__m128i tmp4; __m128i tmp4;
*tmp2 = _mm_shuffle_epi32(*tmp2, 0xFF); tmp4 = _mm_slli_si128(tmp1, 0x04);
tmp4 = _mm_slli_si128(*tmp1, 0x04); tmp1 = _mm_xor_si128(tmp1, tmp4);
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04); tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp1 = _mm_xor_si128(*tmp1, tmp4); tmp1 = _mm_xor_si128(tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04); tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp1 = _mm_xor_si128(*tmp1, tmp4); tmp1 = _mm_xor_si128(tmp1, tmp4);
*tmp1 = _mm_xor_si128(*tmp1, *tmp2); return tmp1;
} }
static inline void ExpandAESKey256_sub2(__m128i *tmp1, __m128i *tmp3)
static __always_inline void aes_genkey_sub(__m128i* xout0, __m128i* xout2, const uint8_t imm8)
{ {
__m128i tmp2, tmp4; __m128i xout1 = _mm_aeskeygenassist_si128(*xout2, imm8);
xout1 = _mm_shuffle_epi32(xout1, 0xFF); // see PSHUFD, set all elems to 4th elem
tmp4 = _mm_aeskeygenassist_si128(*tmp1, 0x00); *xout0 = sl_xor(*xout0);
tmp2 = _mm_shuffle_epi32(tmp4, 0xAA); *xout0 = _mm_xor_si128(*xout0, xout1);
tmp4 = _mm_slli_si128(*tmp3, 0x04); xout1 = _mm_aeskeygenassist_si128(*xout0, 0x00);
*tmp3 = _mm_xor_si128(*tmp3, tmp4); xout1 = _mm_shuffle_epi32(xout1, 0xAA); // see PSHUFD, set all elems to 3rd elem
tmp4 = _mm_slli_si128(tmp4, 0x04); *xout2 = sl_xor(*xout2);
*tmp3 = _mm_xor_si128(*tmp3, tmp4); *xout2 = _mm_xor_si128(*xout2, xout1);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
*tmp3 = _mm_xor_si128(*tmp3, tmp2);
} }
// Special thanks to Intel for helping me
// with ExpandAESKey256() and its subroutines static __always_inline void aes_genkey(const __m128i* memory, __m128i* k0, __m128i* k1, __m128i* k2, __m128i* k3, __m128i* k4, __m128i* k5, __m128i* k6, __m128i* k7, __m128i* k8, __m128i* k9)
static inline void ExpandAESKey256(char *keybuf)
{ {
__m128i tmp1, tmp2, tmp3, *keys; __m128i xout0 = _mm_load_si128(memory);
__m128i xout2 = _mm_load_si128(memory + 1);
*k0 = xout0;
*k1 = xout2;
keys = (__m128i *)keybuf; aes_genkey_sub(&xout0, &xout2, 0x01);
*k2 = xout0;
*k3 = xout2;
tmp1 = _mm_load_si128((__m128i *)keybuf); aes_genkey_sub(&xout0, &xout2, 0x02);
tmp3 = _mm_load_si128((__m128i *)(keybuf+0x10)); *k4 = xout0;
*k5 = xout2;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x01); aes_genkey_sub(&xout0, &xout2, 0x04);
ExpandAESKey256_sub1(&tmp1, &tmp2); *k6 = xout0;
keys[2] = tmp1; *k7 = xout2;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[3] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x02); aes_genkey_sub(&xout0, &xout2, 0x08);
ExpandAESKey256_sub1(&tmp1, &tmp2); *k8 = xout0;
keys[4] = tmp1; *k9 = xout2;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[5] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x04);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[6] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[7] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x08);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[8] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[9] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x10);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[10] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[11] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x20);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[12] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[13] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x40);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[14] = tmp1;
} }
void cryptonight_av5_aesni_experimental(void *restrict output, const void *restrict input, const char *restrict memory, struct cryptonight_ctx *restrict ctx)
static __always_inline void aes_round(__m128i key, __m128i* x0, __m128i* x1, __m128i* x2, __m128i* x3, __m128i* x4, __m128i* x5, __m128i* x6, __m128i* x7)
{
*x0 = _mm_aesenc_si128(*x0, key);
*x1 = _mm_aesenc_si128(*x1, key);
*x2 = _mm_aesenc_si128(*x2, key);
*x3 = _mm_aesenc_si128(*x3, key);
*x4 = _mm_aesenc_si128(*x4, key);
*x5 = _mm_aesenc_si128(*x5, key);
*x6 = _mm_aesenc_si128(*x6, key);
*x7 = _mm_aesenc_si128(*x7, key);
}
static __always_inline void cn_explode_scratchpad(const __m128i* input, __m128i* output)
{
// This is more than we have registers, compiler will assign 2 keys on the stack
__m128i xin0, xin1, xin2, xin3, xin4, xin5, xin6, xin7;
__m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9;
aes_genkey(input, &k0, &k1, &k2, &k3, &k4, &k5, &k6, &k7, &k8, &k9);
xin0 = _mm_load_si128(input + 4);
xin1 = _mm_load_si128(input + 5);
xin2 = _mm_load_si128(input + 6);
xin3 = _mm_load_si128(input + 7);
xin4 = _mm_load_si128(input + 8);
xin5 = _mm_load_si128(input + 9);
xin6 = _mm_load_si128(input + 10);
xin7 = _mm_load_si128(input + 11);
for (size_t i = 0; i < MEMORY / sizeof(__m128i); i += 8) {
aes_round(k0, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k1, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k2, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k3, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k4, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k5, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k6, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k7, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k8, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k9, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
_mm_store_si128(output + i + 0, xin0);
_mm_store_si128(output + i + 1, xin1);
_mm_store_si128(output + i + 2, xin2);
_mm_store_si128(output + i + 3, xin3);
_mm_prefetch((const char*)output + i + 0, _MM_HINT_T2);
_mm_store_si128(output + i + 4, xin4);
_mm_store_si128(output + i + 5, xin5);
_mm_store_si128(output + i + 6, xin6);
_mm_store_si128(output + i + 7, xin7);
_mm_prefetch((const char*)output + i + 4, _MM_HINT_T2);
}
}
static __always_inline void cn_implode_scratchpad(const __m128i* input, __m128i* output)
{
// This is more than we have registers, compiler will assign 2 keys on the stack
__m128i xout0, xout1, xout2, xout3, xout4, xout5, xout6, xout7;
__m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9;
aes_genkey(output + 2, &k0, &k1, &k2, &k3, &k4, &k5, &k6, &k7, &k8, &k9);
xout0 = _mm_load_si128(output + 4);
xout1 = _mm_load_si128(output + 5);
xout2 = _mm_load_si128(output + 6);
xout3 = _mm_load_si128(output + 7);
xout4 = _mm_load_si128(output + 8);
xout5 = _mm_load_si128(output + 9);
xout6 = _mm_load_si128(output + 10);
xout7 = _mm_load_si128(output + 11);
for (size_t i = 0; i < MEMORY / sizeof(__m128i); i += 8)
{
_mm_prefetch((const char*)input + i + 0, _MM_HINT_NTA);
xout0 = _mm_xor_si128(_mm_load_si128(input + i + 0), xout0);
xout1 = _mm_xor_si128(_mm_load_si128(input + i + 1), xout1);
xout2 = _mm_xor_si128(_mm_load_si128(input + i + 2), xout2);
xout3 = _mm_xor_si128(_mm_load_si128(input + i + 3), xout3);
_mm_prefetch((const char*)input + i + 4, _MM_HINT_NTA);
xout4 = _mm_xor_si128(_mm_load_si128(input + i + 4), xout4);
xout5 = _mm_xor_si128(_mm_load_si128(input + i + 5), xout5);
xout6 = _mm_xor_si128(_mm_load_si128(input + i + 6), xout6);
xout7 = _mm_xor_si128(_mm_load_si128(input + i + 7), xout7);
aes_round(k0, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k1, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k2, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k3, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k4, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k5, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k6, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k7, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k8, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k9, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
}
_mm_store_si128(output + 4, xout0);
_mm_store_si128(output + 5, xout1);
_mm_store_si128(output + 6, xout2);
_mm_store_si128(output + 7, xout3);
_mm_store_si128(output + 8, xout4);
_mm_store_si128(output + 9, xout5);
_mm_store_si128(output + 10, xout6);
_mm_store_si128(output + 11, xout7);
}
void cryptonight_av5_aesni_experimental(void *restrict output, const void *restrict input, char *restrict memory, struct cryptonight_ctx *restrict ctx)
{ {
keccak((const uint8_t *) input, 76, (uint8_t *) &ctx->state.hs, 200); keccak((const uint8_t *) input, 76, (uint8_t *) &ctx->state.hs, 200);
uint8_t ExpandedKey[256];
size_t i, j;
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE); cn_explode_scratchpad((__m128i*) &ctx->state.hs, (__m128i*) memory);
memcpy(ExpandedKey, ctx->state.hs.b, AES_KEY_SIZE);
ExpandAESKey256(ExpandedKey);
__m128i *longoutput, *expkey, *xmminput; const uint8_t* l0 = memory;
longoutput = (__m128i *) memory; uint64_t* h0 = (uint64_t*) &ctx->state.hs;
expkey = (__m128i *) ExpandedKey;
xmminput = (__m128i *)ctx->text;
// prefetch expkey, all of xmminput and enough longoutput for 4 loops uint64_t al0 = h0[0] ^ h0[4];
_mm_prefetch(xmminput, _MM_HINT_T0 ); uint64_t ah0 = h0[1] ^ h0[5];
_mm_prefetch(xmminput + 4, _MM_HINT_T0 ); __m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
for (i = 0; i < 64; i += 16) { uint64_t idx0 = h0[0] ^ h0[4];
_mm_prefetch(longoutput + i, _MM_HINT_T0);
_mm_prefetch(longoutput + i + 4, _MM_HINT_T0); for (size_t i = 0; __builtin_expect(i < 0x80000, 1); i++) {
_mm_prefetch(longoutput + i + 8, _MM_HINT_T0); __m128i cx;
_mm_prefetch(longoutput + i + 12, _MM_HINT_T0); cx = _mm_load_si128((__m128i *)&l0[idx0 & 0x1FFFF0]);
cx = _mm_aesenc_si128(cx, _mm_set_epi64x(ah0, al0));
_mm_store_si128((__m128i *)&l0[idx0 & 0x1FFFF0], _mm_xor_si128(bx0, cx));
idx0 = _mm_cvtsi128_si64(cx);
bx0 = cx;
_mm_prefetch((const char*)&l0[idx0 & 0x1FFFF0], _MM_HINT_T0);
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*)&l0[idx0 & 0x1FFFF0])[0];
ch = ((uint64_t*)&l0[idx0 & 0x1FFFF0])[1];
lo = _umul128(idx0, cl, &hi);
al0 += hi;
ah0 += lo;
((uint64_t*)&l0[idx0 & 0x1FFFF0])[0] = al0;
((uint64_t*)&l0[idx0 & 0x1FFFF0])[1] = ah0;
ah0 ^= ch;
al0 ^= cl;
idx0 = al0;
_mm_prefetch((const char*)&l0[idx0 & 0x1FFFF0], _MM_HINT_T0);
} }
_mm_prefetch(expkey, _MM_HINT_T0); cn_implode_scratchpad((__m128i*) memory, (__m128i*) &ctx->state.hs);
_mm_prefetch(expkey + 4, _MM_HINT_T0);
_mm_prefetch(expkey + 8, _MM_HINT_T0);
for (i = 0; __builtin_expect(i < MEMORY_M128I, 1); i += INIT_SIZE_M128I) {
__builtin_prefetch(longoutput + i + 64, 1, 0);
__builtin_prefetch(longoutput + i + 68, 1, 0);
for(j = 0; j < 10; j++) {
xmminput[0] = _mm_aesenc_si128(xmminput[0], expkey[j]);
xmminput[1] = _mm_aesenc_si128(xmminput[1], expkey[j]);
xmminput[2] = _mm_aesenc_si128(xmminput[2], expkey[j]);
xmminput[3] = _mm_aesenc_si128(xmminput[3], expkey[j]);
xmminput[4] = _mm_aesenc_si128(xmminput[4], expkey[j]);
xmminput[5] = _mm_aesenc_si128(xmminput[5], expkey[j]);
xmminput[6] = _mm_aesenc_si128(xmminput[6], expkey[j]);
xmminput[7] = _mm_aesenc_si128(xmminput[7], expkey[j]);
}
_mm_store_si128(&(longoutput[i ]), xmminput[0]);
_mm_store_si128(&(longoutput[i + 1 ]), xmminput[1]);
_mm_store_si128(&(longoutput[i + 2 ]), xmminput[2]);
_mm_store_si128(&(longoutput[i + 3 ]), xmminput[3]);
_mm_store_si128(&(longoutput[i + 4 ]), xmminput[4]);
_mm_store_si128(&(longoutput[i + 5 ]), xmminput[5]);
_mm_store_si128(&(longoutput[i + 6 ]), xmminput[6]);
_mm_store_si128(&(longoutput[i + 7 ]), xmminput[7]);
}
ctx->a[0] = ((uint64_t *) ctx->state.k)[0] ^ ((uint64_t *) ctx->state.k)[4];
ctx->b[0] = ((uint64_t *) ctx->state.k)[2] ^ ((uint64_t *) ctx->state.k)[6];
ctx->a[1] = ((uint64_t *) ctx->state.k)[1] ^ ((uint64_t *) ctx->state.k)[5];
ctx->b[1] = ((uint64_t *) ctx->state.k)[3] ^ ((uint64_t *) ctx->state.k)[7];
__m128i a_x = _mm_load_si128((__m128i *) &memory[ctx->a[0] & 0x1FFFF0]);
__m128i b_x = _mm_load_si128((__m128i *) ctx->b);
uint64_t c[2] __attribute((aligned(16)));
uint64_t d[2] __attribute((aligned(16)));
for (i = 0; __builtin_expect(i < 0x80000, 1); i++) {
__m128i c_x = _mm_aesenc_si128(a_x, _mm_load_si128((__m128i *) ctx->a));
_mm_store_si128((__m128i *) c, c_x);
uint64_t *restrict d_ptr = (uint64_t *) &memory[c[0] & 0x1FFFF0];
_mm_store_si128((__m128i *) &memory[ctx->a[0] & 0x1FFFF0], _mm_xor_si128(b_x, c_x));
b_x = c_x;
d[0] = d_ptr[0];
d[1] = d_ptr[1];
{
unsigned __int128 res = (unsigned __int128) c[0] * d[0];
d_ptr[0] = ctx->a[0] += res >> 64;
d_ptr[1] = ctx->a[1] += (uint64_t) res;
}
ctx->a[0] ^= d[0];
ctx->a[1] ^= d[1];
a_x = _mm_load_si128((__m128i *) &memory[ctx->a[0] & 0x1FFFF0]);
}
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
memcpy(ExpandedKey, &ctx->state.hs.b[32], AES_KEY_SIZE);
ExpandAESKey256(ExpandedKey);
_mm_prefetch(xmminput, _MM_HINT_T0 );
_mm_prefetch(xmminput + 4, _MM_HINT_T0 );
for (i = 0; i < 64; i += 16) {
_mm_prefetch(longoutput + i, _MM_HINT_T0);
_mm_prefetch(longoutput + i + 4, _MM_HINT_T0);
_mm_prefetch(longoutput + i + 8, _MM_HINT_T0);
_mm_prefetch(longoutput + i + 12, _MM_HINT_T0);
}
_mm_prefetch(expkey, _MM_HINT_T0);
_mm_prefetch(expkey + 4, _MM_HINT_T0);
_mm_prefetch(expkey + 8, _MM_HINT_T0);
for (i = 0; __builtin_expect(i < MEMORY_M128I, 1); i += INIT_SIZE_M128I) {
_mm_prefetch(longoutput + i + 64, _MM_HINT_T0);
_mm_prefetch(longoutput + i + 68, _MM_HINT_T0);
xmminput[0] = _mm_xor_si128(longoutput[i ], xmminput[0]);
xmminput[1] = _mm_xor_si128(longoutput[i + 1], xmminput[1]);
xmminput[2] = _mm_xor_si128(longoutput[i + 2], xmminput[2]);
xmminput[3] = _mm_xor_si128(longoutput[i + 3], xmminput[3]);
xmminput[4] = _mm_xor_si128(longoutput[i + 4], xmminput[4]);
xmminput[5] = _mm_xor_si128(longoutput[i + 5], xmminput[5]);
xmminput[6] = _mm_xor_si128(longoutput[i + 6], xmminput[6]);
xmminput[7] = _mm_xor_si128(longoutput[i + 7], xmminput[7]);
for(j = 0; j < 10; j++) {
xmminput[0] = _mm_aesenc_si128(xmminput[0], expkey[j]);
xmminput[1] = _mm_aesenc_si128(xmminput[1], expkey[j]);
xmminput[2] = _mm_aesenc_si128(xmminput[2], expkey[j]);
xmminput[3] = _mm_aesenc_si128(xmminput[3], expkey[j]);
xmminput[4] = _mm_aesenc_si128(xmminput[4], expkey[j]);
xmminput[5] = _mm_aesenc_si128(xmminput[5], expkey[j]);
xmminput[6] = _mm_aesenc_si128(xmminput[6], expkey[j]);
xmminput[7] = _mm_aesenc_si128(xmminput[7], expkey[j]);
}
}
memcpy(ctx->state.init, ctx->text, INIT_SIZE_BYTE);
keccakf((uint64_t*) &ctx->state.hs, 24); keccakf((uint64_t*) &ctx->state.hs, 24);
extra_hashes[ctx->state.hs.b[0] & 3](&ctx->state, 200, output); extra_hashes[ctx->state.hs.b[0] & 3](&ctx->state, 200, output);
} }