Rename algo variants again, should be final numbers.

This commit is contained in:
XMRig 2017-04-21 10:40:11 +03:00
parent d2fd43ca03
commit 1474d3fe53
14 changed files with 238 additions and 894 deletions

View file

@ -101,11 +101,10 @@ if (CMAKE_SIZEOF_VOID_P EQUAL 8)
set(CRYPTONIGHT64 set(CRYPTONIGHT64
algo/cryptonight/cryptonight_av1_aesni.c algo/cryptonight/cryptonight_av1_aesni.c
algo/cryptonight/cryptonight_av3_aesni_alt.c algo/cryptonight/cryptonight_av2_aesni_stak.c
algo/cryptonight/cryptonight_av3_aesni_bmi2.c
algo/cryptonight/cryptonight_av4_softaes.c algo/cryptonight/cryptonight_av4_softaes.c
algo/cryptonight/cryptonight_av5_aesni_stak.c algo/cryptonight/cryptonight_av5_aesni_experimental.c
algo/cryptonight/cryptonight_av6_aesni_stak_no_prefetch.c
algo/cryptonight/cryptonight_av7_aesni_experimental.c
) )
add_executable(xmrig ${HEADERS} ${HEADERS_CRYPTO} ${SOURCES} ${SOURCES_CRYPTO} ${HEADERS_UTILS} ${SOURCES_UTILS} ${HEADERS_COMPAT} ${SOURCES_COMPAT} ${SOURCES_OS} ${CRYPTONIGHT64}) add_executable(xmrig ${HEADERS} ${HEADERS_CRYPTO} ${SOURCES} ${SOURCES_CRYPTO} ${HEADERS_UTILS} ${SOURCES_UTILS} ${HEADERS_COMPAT} ${SOURCES_COMPAT} ${SOURCES_OS} ${CRYPTONIGHT64})

View file

@ -1,2 +1,2 @@
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mbmi2") set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -mbmi2")
add_library(cryptonight_av3_aesni_bmi2 STATIC ../cryptonight_av2_aesni_bmi2.c) add_library(cryptonight_av3_aesni_bmi2 STATIC ../cryptonight_av3_aesni_bmi2.c)

View file

@ -4,6 +4,7 @@
* Copyright 2014 Lucas Jones <https://github.com/lucasjones> * Copyright 2014 Lucas Jones <https://github.com/lucasjones>
* Copyright 2014-2016 Wolf9466 <https://github.com/OhGodAPet> * Copyright 2014-2016 Wolf9466 <https://github.com/OhGodAPet>
* Copyright 2016 Jay D Dee <jayddee246@gmail.com> * Copyright 2016 Jay D Dee <jayddee246@gmail.com>
* Copyright 2017 fireice-uk <https://github.com/fireice-uk>
* Copyright 2016-2017 XMRig <support@xmrig.com> * Copyright 2016-2017 XMRig <support@xmrig.com>
* *
* *
@ -28,186 +29,241 @@
#include "crypto/c_keccak.h" #include "crypto/c_keccak.h"
static inline void ExpandAESKey256_sub1(__m128i *tmp1, __m128i *tmp2) #ifdef __GNUC__
static inline uint64_t _umul128(uint64_t a, uint64_t b, uint64_t* hi)
{
unsigned __int128 r = (unsigned __int128)a * (unsigned __int128)b;
*hi = r >> 64;
return (uint64_t)r;
}
#endif
#define aes_genkey_sub(imm8) \
__m128i xout1 = _mm_aeskeygenassist_si128(*xout2, (imm8)); \
xout1 = _mm_shuffle_epi32(xout1, 0xFF); \
*xout0 = sl_xor(*xout0); \
*xout0 = _mm_xor_si128(*xout0, xout1); \
xout1 = _mm_aeskeygenassist_si128(*xout0, 0x00);\
xout1 = _mm_shuffle_epi32(xout1, 0xAA); \
*xout2 = sl_xor(*xout2); \
*xout2 = _mm_xor_si128(*xout2, xout1); \
// This will shift and xor tmp1 into itself as 4 32-bit vals such as
// sl_xor(a1 a2 a3 a4) = a1 (a2^a1) (a3^a2^a1) (a4^a3^a2^a1)
static inline __m128i sl_xor(__m128i tmp1)
{ {
__m128i tmp4; __m128i tmp4;
*tmp2 = _mm_shuffle_epi32(*tmp2, 0xFF); tmp4 = _mm_slli_si128(tmp1, 0x04);
tmp4 = _mm_slli_si128(*tmp1, 0x04); tmp1 = _mm_xor_si128(tmp1, tmp4);
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04); tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp1 = _mm_xor_si128(*tmp1, tmp4); tmp1 = _mm_xor_si128(tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04); tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp1 = _mm_xor_si128(*tmp1, tmp4); tmp1 = _mm_xor_si128(tmp1, tmp4);
*tmp1 = _mm_xor_si128(*tmp1, *tmp2); return tmp1;
} }
static inline void ExpandAESKey256_sub2(__m128i *tmp1, __m128i *tmp3)
{
__m128i tmp2, tmp4;
tmp4 = _mm_aeskeygenassist_si128(*tmp1, 0x00); static inline void aes_genkey_sub1(__m128i* xout0, __m128i* xout2)
tmp2 = _mm_shuffle_epi32(tmp4, 0xAA); {
tmp4 = _mm_slli_si128(*tmp3, 0x04); aes_genkey_sub(0x1)
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
*tmp3 = _mm_xor_si128(*tmp3, tmp2);
} }
// Special thanks to Intel for helping me
// with ExpandAESKey256() and its subroutines static inline void aes_genkey_sub2(__m128i* xout0, __m128i* xout2)
static inline void ExpandAESKey256(char *keybuf)
{ {
__m128i tmp1, tmp2, tmp3, *keys; aes_genkey_sub(0x2)
keys = (__m128i *)keybuf;
tmp1 = _mm_load_si128((__m128i *)keybuf);
tmp3 = _mm_load_si128((__m128i *)(keybuf+0x10));
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x01);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[2] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[3] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x02);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[4] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[5] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x04);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[6] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[7] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x08);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[8] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[9] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x10);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[10] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[11] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x20);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[12] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[13] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x40);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[14] = tmp1;
} }
void cryptonight_av1_aesni(void *restrict output, const void *restrict input, const char *restrict memory, struct cryptonight_ctx *restrict ctx)
static inline void aes_genkey_sub4(__m128i* xout0, __m128i* xout2)
{ {
uint64_t* state = ctx->state.hs.w; aes_genkey_sub(0x4)
}
keccak((const uint8_t *)input, 76, (uint8_t *) state, 200);
uint8_t ExpandedKey[256];
size_t i, j;
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE); static inline void aes_genkey_sub8(__m128i* xout0, __m128i* xout2)
memcpy(ExpandedKey, ctx->state.hs.b, AES_KEY_SIZE); {
ExpandAESKey256(ExpandedKey); aes_genkey_sub(0x8)
}
__m128i *longoutput, *expkey, *xmminput;
longoutput = (__m128i *) memory;
expkey = (__m128i *)ExpandedKey;
xmminput = (__m128i *)ctx->text;
for (i = 0; __builtin_expect(i < MEMORY, 1); i += INIT_SIZE_BYTE) static inline void aes_genkey(const __m128i* memory, __m128i* k0, __m128i* k1, __m128i* k2, __m128i* k3, __m128i* k4, __m128i* k5, __m128i* k6, __m128i* k7, __m128i* k8, __m128i* k9)
{
__m128i xout0 = _mm_load_si128(memory);
__m128i xout2 = _mm_load_si128(memory + 1);
*k0 = xout0;
*k1 = xout2;
aes_genkey_sub1(&xout0, &xout2);
*k2 = xout0;
*k3 = xout2;
aes_genkey_sub2(&xout0, &xout2);
*k4 = xout0;
*k5 = xout2;
aes_genkey_sub4(&xout0, &xout2);
*k6 = xout0;
*k7 = xout2;
aes_genkey_sub8(&xout0, &xout2);
*k8 = xout0;
*k9 = xout2;
}
static inline void aes_round(__m128i key, __m128i* x0, __m128i* x1, __m128i* x2, __m128i* x3, __m128i* x4, __m128i* x5, __m128i* x6, __m128i* x7)
{
*x0 = _mm_aesenc_si128(*x0, key);
*x1 = _mm_aesenc_si128(*x1, key);
*x2 = _mm_aesenc_si128(*x2, key);
*x3 = _mm_aesenc_si128(*x3, key);
*x4 = _mm_aesenc_si128(*x4, key);
*x5 = _mm_aesenc_si128(*x5, key);
*x6 = _mm_aesenc_si128(*x6, key);
*x7 = _mm_aesenc_si128(*x7, key);
}
static inline void cn_explode_scratchpad(const __m128i* input, __m128i* output)
{
// This is more than we have registers, compiler will assign 2 keys on the stack
__m128i xin0, xin1, xin2, xin3, xin4, xin5, xin6, xin7;
__m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9;
aes_genkey(input, &k0, &k1, &k2, &k3, &k4, &k5, &k6, &k7, &k8, &k9);
xin0 = _mm_load_si128(input + 4);
xin1 = _mm_load_si128(input + 5);
xin2 = _mm_load_si128(input + 6);
xin3 = _mm_load_si128(input + 7);
xin4 = _mm_load_si128(input + 8);
xin5 = _mm_load_si128(input + 9);
xin6 = _mm_load_si128(input + 10);
xin7 = _mm_load_si128(input + 11);
for (size_t i = 0; i < MEMORY / sizeof(__m128i); i += 8) {
aes_round(k0, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k1, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k2, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k3, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k4, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k5, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k6, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k7, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k8, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round(k9, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
_mm_store_si128(output + i + 0, xin0);
_mm_store_si128(output + i + 1, xin1);
_mm_store_si128(output + i + 2, xin2);
_mm_store_si128(output + i + 3, xin3);
_mm_prefetch((const char*)output + i + 0, _MM_HINT_T2);
_mm_store_si128(output + i + 4, xin4);
_mm_store_si128(output + i + 5, xin5);
_mm_store_si128(output + i + 6, xin6);
_mm_store_si128(output + i + 7, xin7);
_mm_prefetch((const char*)output + i + 4, _MM_HINT_T2);
}
}
static inline void cn_implode_scratchpad(const __m128i* input, __m128i* output)
{
// This is more than we have registers, compiler will assign 2 keys on the stack
__m128i xout0, xout1, xout2, xout3, xout4, xout5, xout6, xout7;
__m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9;
aes_genkey(output + 2, &k0, &k1, &k2, &k3, &k4, &k5, &k6, &k7, &k8, &k9);
xout0 = _mm_load_si128(output + 4);
xout1 = _mm_load_si128(output + 5);
xout2 = _mm_load_si128(output + 6);
xout3 = _mm_load_si128(output + 7);
xout4 = _mm_load_si128(output + 8);
xout5 = _mm_load_si128(output + 9);
xout6 = _mm_load_si128(output + 10);
xout7 = _mm_load_si128(output + 11);
for (size_t i = 0; i < MEMORY / sizeof(__m128i); i += 8)
{ {
for(j = 0; j < 10; j++) _mm_prefetch((const char*)input + i + 0, _MM_HINT_NTA);
{ xout0 = _mm_xor_si128(_mm_load_si128(input + i + 0), xout0);
xmminput[0] = _mm_aesenc_si128(xmminput[0], expkey[j]); xout1 = _mm_xor_si128(_mm_load_si128(input + i + 1), xout1);
xmminput[1] = _mm_aesenc_si128(xmminput[1], expkey[j]); xout2 = _mm_xor_si128(_mm_load_si128(input + i + 2), xout2);
xmminput[2] = _mm_aesenc_si128(xmminput[2], expkey[j]); xout3 = _mm_xor_si128(_mm_load_si128(input + i + 3), xout3);
xmminput[3] = _mm_aesenc_si128(xmminput[3], expkey[j]); _mm_prefetch((const char*)input + i + 4, _MM_HINT_NTA);
xmminput[4] = _mm_aesenc_si128(xmminput[4], expkey[j]); xout4 = _mm_xor_si128(_mm_load_si128(input + i + 4), xout4);
xmminput[5] = _mm_aesenc_si128(xmminput[5], expkey[j]); xout5 = _mm_xor_si128(_mm_load_si128(input + i + 5), xout5);
xmminput[6] = _mm_aesenc_si128(xmminput[6], expkey[j]); xout6 = _mm_xor_si128(_mm_load_si128(input + i + 6), xout6);
xmminput[7] = _mm_aesenc_si128(xmminput[7], expkey[j]); xout7 = _mm_xor_si128(_mm_load_si128(input + i + 7), xout7);
}
_mm_store_si128(&(longoutput[(i >> 4)]), xmminput[0]); aes_round(k0, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
_mm_store_si128(&(longoutput[(i >> 4) + 1]), xmminput[1]); aes_round(k1, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
_mm_store_si128(&(longoutput[(i >> 4) + 2]), xmminput[2]); aes_round(k2, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
_mm_store_si128(&(longoutput[(i >> 4) + 3]), xmminput[3]); aes_round(k3, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
_mm_store_si128(&(longoutput[(i >> 4) + 4]), xmminput[4]); aes_round(k4, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
_mm_store_si128(&(longoutput[(i >> 4) + 5]), xmminput[5]); aes_round(k5, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
_mm_store_si128(&(longoutput[(i >> 4) + 6]), xmminput[6]); aes_round(k6, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
_mm_store_si128(&(longoutput[(i >> 4) + 7]), xmminput[7]); aes_round(k7, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k8, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round(k9, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
} }
uint64_t a[2] __attribute((aligned(16))) = { state[0] ^ state[4], state[1] ^ state[5] }; _mm_store_si128(output + 4, xout0);
uint64_t c __attribute((aligned(16))); _mm_store_si128(output + 5, xout1);
uint64_t d[2] __attribute((aligned(16))); _mm_store_si128(output + 6, xout2);
_mm_store_si128(output + 7, xout3);
_mm_store_si128(output + 8, xout4);
_mm_store_si128(output + 9, xout5);
_mm_store_si128(output + 10, xout6);
_mm_store_si128(output + 11, xout7);
}
__m128i a_x = _mm_load_si128((__m128i *) &memory[a[0] & 0x1FFFF0]);
__m128i b_x = _mm_set_epi64x(state[3] ^ state[7], state[2] ^ state[6]);
for (i = 0; __builtin_expect(i < 0x80000, 1); i++) { void cryptonight_av1_aesni(void *restrict output, const void *restrict input, char *restrict memory, struct cryptonight_ctx *restrict ctx)
__m128i c_x = _mm_aesenc_si128(a_x, _mm_load_si128((__m128i *) a)); {
c = _mm_cvtsi128_si64(c_x); keccak((const uint8_t *) input, 76, (uint8_t *) &ctx->state.hs, 200);
uint64_t *restrict d_ptr = (uint64_t *) &memory[c & 0x1FFFF0]; cn_explode_scratchpad((__m128i*) &ctx->state.hs, (__m128i*) memory);
_mm_store_si128((__m128i *) &memory[a[0] & 0x1FFFF0], _mm_xor_si128(b_x, c_x));
b_x = c_x;
d[0] = d_ptr[0]; const uint8_t* l0 = memory;
d[1] = d_ptr[1]; uint64_t* h0 = (uint64_t*) &ctx->state.hs;
{ uint64_t al0 = h0[0] ^ h0[4];
unsigned __int128 res = (unsigned __int128) c * d[0]; uint64_t ah0 = h0[1] ^ h0[5];
__m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
d_ptr[0] = a[0] += res >> 64; uint64_t idx0 = h0[0] ^ h0[4];
d_ptr[1] = a[1] += (uint64_t) res;
for (size_t i = 0; __builtin_expect(i < 0x80000, 1); i++) {
__m128i cx;
cx = _mm_load_si128((__m128i *)&l0[idx0 & 0x1FFFF0]);
cx = _mm_aesenc_si128(cx, _mm_set_epi64x(ah0, al0));
_mm_store_si128((__m128i *)&l0[idx0 & 0x1FFFF0], _mm_xor_si128(bx0, cx));
idx0 = _mm_cvtsi128_si64(cx);
bx0 = cx;
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*)&l0[idx0 & 0x1FFFF0])[0];
ch = ((uint64_t*)&l0[idx0 & 0x1FFFF0])[1];
lo = _umul128(idx0, cl, &hi);
al0 += hi;
ah0 += lo;
((uint64_t*)&l0[idx0 & 0x1FFFF0])[0] = al0;
((uint64_t*)&l0[idx0 & 0x1FFFF0])[1] = ah0;
ah0 ^= ch;
al0 ^= cl;
idx0 = al0;
} }
a[0] ^= d[0]; cn_implode_scratchpad((__m128i*) memory, (__m128i*) &ctx->state.hs);
a[1] ^= d[1];
a_x = _mm_load_si128((__m128i *) &memory[a[0] & 0x1FFFF0]); keccakf((uint64_t*) &ctx->state.hs, 24);
}
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
memcpy(ExpandedKey, &ctx->state.hs.b[32], AES_KEY_SIZE);
ExpandAESKey256(ExpandedKey);
for (i = 0; __builtin_expect(i < MEMORY, 1); i += INIT_SIZE_BYTE) {
xmminput[0] = _mm_xor_si128(longoutput[(i >> 4)], xmminput[0]);
xmminput[1] = _mm_xor_si128(longoutput[(i >> 4) + 1], xmminput[1]);
xmminput[2] = _mm_xor_si128(longoutput[(i >> 4) + 2], xmminput[2]);
xmminput[3] = _mm_xor_si128(longoutput[(i >> 4) + 3], xmminput[3]);
xmminput[4] = _mm_xor_si128(longoutput[(i >> 4) + 4], xmminput[4]);
xmminput[5] = _mm_xor_si128(longoutput[(i >> 4) + 5], xmminput[5]);
xmminput[6] = _mm_xor_si128(longoutput[(i >> 4) + 6], xmminput[6]);
xmminput[7] = _mm_xor_si128(longoutput[(i >> 4) + 7], xmminput[7]);
for(j = 0; j < 10; j++)
{
xmminput[0] = _mm_aesenc_si128(xmminput[0], expkey[j]);
xmminput[1] = _mm_aesenc_si128(xmminput[1], expkey[j]);
xmminput[2] = _mm_aesenc_si128(xmminput[2], expkey[j]);
xmminput[3] = _mm_aesenc_si128(xmminput[3], expkey[j]);
xmminput[4] = _mm_aesenc_si128(xmminput[4], expkey[j]);
xmminput[5] = _mm_aesenc_si128(xmminput[5], expkey[j]);
xmminput[6] = _mm_aesenc_si128(xmminput[6], expkey[j]);
xmminput[7] = _mm_aesenc_si128(xmminput[7], expkey[j]);
}
}
memcpy(ctx->state.init, ctx->text, INIT_SIZE_BYTE);
keccakf((uint64_t *) state, 24);
extra_hashes[ctx->state.hs.b[0] & 3](&ctx->state, 200, output); extra_hashes[ctx->state.hs.b[0] & 3](&ctx->state, 200, output);
} }

View file

@ -1,239 +0,0 @@
/* XMRig
* Copyright 2010 Jeff Garzik <jgarzik@pobox.com>
* Copyright 2012-2014 pooler <pooler@litecoinpool.org>
* Copyright 2014 Lucas Jones <https://github.com/lucasjones>
* Copyright 2014-2016 Wolf9466 <https://github.com/OhGodAPet>
* Copyright 2016 Jay D Dee <jayddee246@gmail.com>
* Copyright 2016-2017 XMRig <support@xmrig.com>
*
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <x86intrin.h>
#include <string.h>
#include "cryptonight.h"
#include "crypto/c_keccak.h"
static inline uint64_t mul128(uint64_t multiplier, uint64_t multiplicand, uint64_t *product_hi) {
// multiplier = ab = a * 2^32 + b
// multiplicand = cd = c * 2^32 + d
// ab * cd = a * c * 2^64 + (a * d + b * c) * 2^32 + b * d
uint64_t a = multiplier >> 32;
uint64_t b = multiplier & 0xFFFFFFFF;
uint64_t c = multiplicand >> 32;
uint64_t d = multiplicand & 0xFFFFFFFF;
//uint64_t ac = a * c;
uint64_t ad = a * d;
//uint64_t bc = b * c;
uint64_t bd = b * d;
uint64_t adbc = ad + (b * c);
uint64_t adbc_carry = adbc < ad ? 1 : 0;
// multiplier * multiplicand = product_hi * 2^64 + product_lo
uint64_t product_lo = bd + (adbc << 32);
uint64_t product_lo_carry = product_lo < bd ? 1 : 0;
*product_hi = (a * c) + (adbc >> 32) + (adbc_carry << 32) + product_lo_carry;
return product_lo;
}
static inline void ExpandAESKey256_sub1(__m128i *tmp1, __m128i *tmp2)
{
__m128i tmp4;
*tmp2 = _mm_shuffle_epi32(*tmp2, 0xFF);
tmp4 = _mm_slli_si128(*tmp1, 0x04);
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
*tmp1 = _mm_xor_si128(*tmp1, *tmp2);
}
static inline void ExpandAESKey256_sub2(__m128i *tmp1, __m128i *tmp3)
{
__m128i tmp2, tmp4;
tmp4 = _mm_aeskeygenassist_si128(*tmp1, 0x00);
tmp2 = _mm_shuffle_epi32(tmp4, 0xAA);
tmp4 = _mm_slli_si128(*tmp3, 0x04);
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
*tmp3 = _mm_xor_si128(*tmp3, tmp2);
}
// Special thanks to Intel for helping me
// with ExpandAESKey256() and its subroutines
static inline void ExpandAESKey256(char *keybuf)
{
__m128i tmp1, tmp2, tmp3, *keys;
keys = (__m128i *)keybuf;
tmp1 = _mm_load_si128((__m128i *)keybuf);
tmp3 = _mm_load_si128((__m128i *)(keybuf+0x10));
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x01);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[2] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[3] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x02);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[4] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[5] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x04);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[6] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[7] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x08);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[8] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[9] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x10);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[10] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[11] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x20);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[12] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[13] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x40);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[14] = tmp1;
}
void cryptonight_av1_aesni32(void *restrict output, const void *restrict input, const char *restrict memory, struct cryptonight_ctx *restrict ctx)
{
keccak((const uint8_t *)input, 76, (uint8_t *) &ctx->state.hs, 200);
uint8_t ExpandedKey[256];
size_t i, j;
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
memcpy(ExpandedKey, ctx->state.hs.b, AES_KEY_SIZE);
ExpandAESKey256(ExpandedKey);
__m128i *longoutput, *expkey, *xmminput;
longoutput = (__m128i *) memory;
expkey = (__m128i *)ExpandedKey;
xmminput = (__m128i *)ctx->text;
for (i = 0; __builtin_expect(i < MEMORY, 1); i += INIT_SIZE_BYTE)
{
for(j = 0; j < 10; j++)
{
xmminput[0] = _mm_aesenc_si128(xmminput[0], expkey[j]);
xmminput[1] = _mm_aesenc_si128(xmminput[1], expkey[j]);
xmminput[2] = _mm_aesenc_si128(xmminput[2], expkey[j]);
xmminput[3] = _mm_aesenc_si128(xmminput[3], expkey[j]);
xmminput[4] = _mm_aesenc_si128(xmminput[4], expkey[j]);
xmminput[5] = _mm_aesenc_si128(xmminput[5], expkey[j]);
xmminput[6] = _mm_aesenc_si128(xmminput[6], expkey[j]);
xmminput[7] = _mm_aesenc_si128(xmminput[7], expkey[j]);
}
_mm_store_si128(&(longoutput[(i >> 4)]), xmminput[0]);
_mm_store_si128(&(longoutput[(i >> 4) + 1]), xmminput[1]);
_mm_store_si128(&(longoutput[(i >> 4) + 2]), xmminput[2]);
_mm_store_si128(&(longoutput[(i >> 4) + 3]), xmminput[3]);
_mm_store_si128(&(longoutput[(i >> 4) + 4]), xmminput[4]);
_mm_store_si128(&(longoutput[(i >> 4) + 5]), xmminput[5]);
_mm_store_si128(&(longoutput[(i >> 4) + 6]), xmminput[6]);
_mm_store_si128(&(longoutput[(i >> 4) + 7]), xmminput[7]);
}
for (i = 0; i < 2; i++)
{
ctx->a[i] = ((uint64_t *)ctx->state.k)[i] ^ ((uint64_t *)ctx->state.k)[i+4];
ctx->b[i] = ((uint64_t *)ctx->state.k)[i+2] ^ ((uint64_t *)ctx->state.k)[i+6];
}
__m128i a_x = _mm_load_si128((__m128i *) &memory[ctx->a[0] & 0x1FFFF0]);
__m128i b_x = _mm_load_si128((__m128i *) ctx->b);
uint64_t c[2] __attribute((aligned(16)));
uint64_t d[2] __attribute((aligned(16)));
uint64_t hi;
for (i = 0; __builtin_expect(i < 0x80000, 1); i++) {
__m128i c_x = _mm_aesenc_si128(a_x, _mm_load_si128((__m128i *) ctx->a));
_mm_store_si128((__m128i *) c, c_x);
uint64_t *restrict d_ptr = (uint64_t *) &memory[c[0] & 0x1FFFF0];
_mm_store_si128((__m128i *) &memory[ctx->a[0] & 0x1FFFF0], _mm_xor_si128(b_x, c_x));
b_x = c_x;
d[0] = d_ptr[0];
d[1] = d_ptr[1];
d_ptr[1] = ctx->a[1] += mul128(c[0], d[0], &hi);
d_ptr[0] = ctx->a[0] += hi;
ctx->a[0] ^= d[0];
ctx->a[1] ^= d[1];
a_x = _mm_load_si128((__m128i *) &memory[ctx->a[0] & 0x1FFFF0]);
}
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
memcpy(ExpandedKey, &ctx->state.hs.b[32], AES_KEY_SIZE);
ExpandAESKey256(ExpandedKey);
for (i = 0; __builtin_expect(i < MEMORY, 1); i += INIT_SIZE_BYTE) {
xmminput[0] = _mm_xor_si128(longoutput[(i >> 4)], xmminput[0]);
xmminput[1] = _mm_xor_si128(longoutput[(i >> 4) + 1], xmminput[1]);
xmminput[2] = _mm_xor_si128(longoutput[(i >> 4) + 2], xmminput[2]);
xmminput[3] = _mm_xor_si128(longoutput[(i >> 4) + 3], xmminput[3]);
xmminput[4] = _mm_xor_si128(longoutput[(i >> 4) + 4], xmminput[4]);
xmminput[5] = _mm_xor_si128(longoutput[(i >> 4) + 5], xmminput[5]);
xmminput[6] = _mm_xor_si128(longoutput[(i >> 4) + 6], xmminput[6]);
xmminput[7] = _mm_xor_si128(longoutput[(i >> 4) + 7], xmminput[7]);
for(j = 0; j < 10; j++)
{
xmminput[0] = _mm_aesenc_si128(xmminput[0], expkey[j]);
xmminput[1] = _mm_aesenc_si128(xmminput[1], expkey[j]);
xmminput[2] = _mm_aesenc_si128(xmminput[2], expkey[j]);
xmminput[3] = _mm_aesenc_si128(xmminput[3], expkey[j]);
xmminput[4] = _mm_aesenc_si128(xmminput[4], expkey[j]);
xmminput[5] = _mm_aesenc_si128(xmminput[5], expkey[j]);
xmminput[6] = _mm_aesenc_si128(xmminput[6], expkey[j]);
xmminput[7] = _mm_aesenc_si128(xmminput[7], expkey[j]);
}
}
memcpy(ctx->state.init, ctx->text, INIT_SIZE_BYTE);
keccakf((uint64_t *) &ctx->state.hs, 24);
extra_hashes[ctx->state.hs.b[0] & 3](&ctx->state, 200, output);
}

View file

@ -1,211 +0,0 @@
/* XMRig
* Copyright 2010 Jeff Garzik <jgarzik@pobox.com>
* Copyright 2012-2014 pooler <pooler@litecoinpool.org>
* Copyright 2014 Lucas Jones <https://github.com/lucasjones>
* Copyright 2014-2016 Wolf9466 <https://github.com/OhGodAPet>
* Copyright 2016 Jay D Dee <jayddee246@gmail.com>
* Copyright 2016-2017 XMRig <support@xmrig.com>
*
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <x86intrin.h>
#include <string.h>
#include "cryptonight.h"
#include "crypto/c_keccak.h"
static inline void ExpandAESKey256_sub1(__m128i *tmp1, __m128i *tmp2)
{
__m128i tmp4;
*tmp2 = _mm_shuffle_epi32(*tmp2, 0xFF);
tmp4 = _mm_slli_si128(*tmp1, 0x04);
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
*tmp1 = _mm_xor_si128(*tmp1, *tmp2);
}
static inline void ExpandAESKey256_sub2(__m128i *tmp1, __m128i *tmp3)
{
__m128i tmp2, tmp4;
tmp4 = _mm_aeskeygenassist_si128(*tmp1, 0x00);
tmp2 = _mm_shuffle_epi32(tmp4, 0xAA);
tmp4 = _mm_slli_si128(*tmp3, 0x04);
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
*tmp3 = _mm_xor_si128(*tmp3, tmp2);
}
// Special thanks to Intel for helping me
// with ExpandAESKey256() and its subroutines
static inline void ExpandAESKey256(char *keybuf)
{
__m128i tmp1, tmp2, tmp3, *keys;
keys = (__m128i *)keybuf;
tmp1 = _mm_load_si128((__m128i *)keybuf);
tmp3 = _mm_load_si128((__m128i *)(keybuf+0x10));
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x01);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[2] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[3] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x02);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[4] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[5] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x04);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[6] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[7] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x08);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[8] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[9] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x10);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[10] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[11] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x20);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[12] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[13] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x40);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[14] = tmp1;
}
void cryptonight_av2_aesni_bmi2(void *restrict output, const void *restrict input, const char *restrict memory, struct cryptonight_ctx *restrict ctx)
{
uint64_t* state = ctx->state.hs.w;
keccak((const uint8_t *)input, 76, (uint8_t *) state, 200);
uint8_t ExpandedKey[256];
size_t i, j;
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
memcpy(ExpandedKey, ctx->state.hs.b, AES_KEY_SIZE);
ExpandAESKey256(ExpandedKey);
__m128i *longoutput, *expkey, *xmminput;
longoutput = (__m128i *) memory;
expkey = (__m128i *)ExpandedKey;
xmminput = (__m128i *)ctx->text;
for (i = 0; __builtin_expect(i < MEMORY, 1); i += INIT_SIZE_BYTE)
{
for(j = 0; j < 10; j++)
{
xmminput[0] = _mm_aesenc_si128(xmminput[0], expkey[j]);
xmminput[1] = _mm_aesenc_si128(xmminput[1], expkey[j]);
xmminput[2] = _mm_aesenc_si128(xmminput[2], expkey[j]);
xmminput[3] = _mm_aesenc_si128(xmminput[3], expkey[j]);
xmminput[4] = _mm_aesenc_si128(xmminput[4], expkey[j]);
xmminput[5] = _mm_aesenc_si128(xmminput[5], expkey[j]);
xmminput[6] = _mm_aesenc_si128(xmminput[6], expkey[j]);
xmminput[7] = _mm_aesenc_si128(xmminput[7], expkey[j]);
}
_mm_store_si128(&(longoutput[(i >> 4)]), xmminput[0]);
_mm_store_si128(&(longoutput[(i >> 4) + 1]), xmminput[1]);
_mm_store_si128(&(longoutput[(i >> 4) + 2]), xmminput[2]);
_mm_store_si128(&(longoutput[(i >> 4) + 3]), xmminput[3]);
_mm_store_si128(&(longoutput[(i >> 4) + 4]), xmminput[4]);
_mm_store_si128(&(longoutput[(i >> 4) + 5]), xmminput[5]);
_mm_store_si128(&(longoutput[(i >> 4) + 6]), xmminput[6]);
_mm_store_si128(&(longoutput[(i >> 4) + 7]), xmminput[7]);
}
uint64_t a[2] __attribute((aligned(16))) = { state[0] ^ state[4], state[1] ^ state[5] };
uint64_t c __attribute((aligned(16)));
uint64_t d[2] __attribute((aligned(16)));
uint64_t hi;
__m128i a_x = _mm_load_si128((__m128i *) &memory[a[0] & 0x1FFFF0]);
__m128i b_x = _mm_set_epi64x(state[3] ^ state[7], state[2] ^ state[6]);
for (i = 0; __builtin_expect(i < 0x80000, 1); i++) {
__m128i c_x = _mm_aesenc_si128(a_x, _mm_load_si128((__m128i *) a));
c = _mm_cvtsi128_si64(c_x);
uint64_t *restrict d_ptr = (uint64_t *) &memory[c & 0x1FFFF0];
_mm_store_si128((__m128i *) &memory[a[0] & 0x1FFFF0], _mm_xor_si128(b_x, c_x));
b_x = c_x;
d[0] = d_ptr[0];
d[1] = d_ptr[1];
d_ptr[1] = a[1] += _mulx_u64(c, d[0], &hi);
d_ptr[0] = a[0] += hi;
a[0] ^= d[0];
a[1] ^= d[1];
a_x = _mm_load_si128((__m128i *) &memory[a[0] & 0x1FFFF0]);
}
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
memcpy(ExpandedKey, &ctx->state.hs.b[32], AES_KEY_SIZE);
ExpandAESKey256(ExpandedKey);
for (i = 0; __builtin_expect(i < MEMORY, 1); i += INIT_SIZE_BYTE) {
xmminput[0] = _mm_xor_si128(longoutput[(i >> 4)], xmminput[0]);
xmminput[1] = _mm_xor_si128(longoutput[(i >> 4) + 1], xmminput[1]);
xmminput[2] = _mm_xor_si128(longoutput[(i >> 4) + 2], xmminput[2]);
xmminput[3] = _mm_xor_si128(longoutput[(i >> 4) + 3], xmminput[3]);
xmminput[4] = _mm_xor_si128(longoutput[(i >> 4) + 4], xmminput[4]);
xmminput[5] = _mm_xor_si128(longoutput[(i >> 4) + 5], xmminput[5]);
xmminput[6] = _mm_xor_si128(longoutput[(i >> 4) + 6], xmminput[6]);
xmminput[7] = _mm_xor_si128(longoutput[(i >> 4) + 7], xmminput[7]);
for(j = 0; j < 10; j++)
{
xmminput[0] = _mm_aesenc_si128(xmminput[0], expkey[j]);
xmminput[1] = _mm_aesenc_si128(xmminput[1], expkey[j]);
xmminput[2] = _mm_aesenc_si128(xmminput[2], expkey[j]);
xmminput[3] = _mm_aesenc_si128(xmminput[3], expkey[j]);
xmminput[4] = _mm_aesenc_si128(xmminput[4], expkey[j]);
xmminput[5] = _mm_aesenc_si128(xmminput[5], expkey[j]);
xmminput[6] = _mm_aesenc_si128(xmminput[6], expkey[j]);
xmminput[7] = _mm_aesenc_si128(xmminput[7], expkey[j]);
}
}
memcpy(ctx->state.init, ctx->text, INIT_SIZE_BYTE);
keccakf((uint64_t *) state, 24);
extra_hashes[ctx->state.hs.b[0] & 3](&ctx->state, 200, output);
}

View file

@ -222,7 +222,7 @@ static inline void cn_implode_scratchpad(const __m128i* input, __m128i* output)
} }
void cryptonight_av5_aesni_stak(void *restrict output, const void *restrict input, char *restrict memory, struct cryptonight_ctx *restrict ctx) void cryptonight_av2_aesni_stak(void *restrict output, const void *restrict input, char *restrict memory, struct cryptonight_ctx *restrict ctx)
{ {
keccak((const uint8_t *) input, 76, (uint8_t *) &ctx->state.hs, 200); keccak((const uint8_t *) input, 76, (uint8_t *) &ctx->state.hs, 200);

View file

@ -1,216 +0,0 @@
/* XMRig
* Copyright 2010 Jeff Garzik <jgarzik@pobox.com>
* Copyright 2012-2014 pooler <pooler@litecoinpool.org>
* Copyright 2014 Lucas Jones <https://github.com/lucasjones>
* Copyright 2014-2016 Wolf9466 <https://github.com/OhGodAPet>
* Copyright 2016 Jay D Dee <jayddee246@gmail.com>
* Copyright 2016-2017 XMRig <support@xmrig.com>
*
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <x86intrin.h>
#include <string.h>
#include "cryptonight.h"
#include "crypto/c_keccak.h"
static inline void ExpandAESKey256_sub1(__m128i *tmp1, __m128i *tmp2)
{
__m128i tmp4;
*tmp2 = _mm_shuffle_epi32(*tmp2, 0xFF);
tmp4 = _mm_slli_si128(*tmp1, 0x04);
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
*tmp1 = _mm_xor_si128(*tmp1, *tmp2);
}
static inline void ExpandAESKey256_sub2(__m128i *tmp1, __m128i *tmp3)
{
__m128i tmp2, tmp4;
tmp4 = _mm_aeskeygenassist_si128(*tmp1, 0x00);
tmp2 = _mm_shuffle_epi32(tmp4, 0xAA);
tmp4 = _mm_slli_si128(*tmp3, 0x04);
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
*tmp3 = _mm_xor_si128(*tmp3, tmp2);
}
// Special thanks to Intel for helping me
// with ExpandAESKey256() and its subroutines
static inline void ExpandAESKey256(char *keybuf)
{
__m128i tmp1, tmp2, tmp3, *keys;
keys = (__m128i *)keybuf;
tmp1 = _mm_load_si128((__m128i *)keybuf);
tmp3 = _mm_load_si128((__m128i *)(keybuf+0x10));
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x01);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[2] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[3] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x02);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[4] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[5] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x04);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[6] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[7] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x08);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[8] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[9] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x10);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[10] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[11] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x20);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[12] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[13] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x40);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[14] = tmp1;
}
void cryptonight_av3_aesni_alt(void *restrict output, const void *restrict input, const char *restrict memory, struct cryptonight_ctx *restrict ctx)
{
keccak((const uint8_t *)input, 76, (uint8_t *) &ctx->state.hs, 200);
uint8_t ExpandedKey[256];
size_t i, j;
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
memcpy(ExpandedKey, ctx->state.hs.b, AES_KEY_SIZE);
ExpandAESKey256(ExpandedKey);
__m128i *longoutput, *expkey, *xmminput;
longoutput = (__m128i *) memory;
expkey = (__m128i *)ExpandedKey;
xmminput = (__m128i *)ctx->text;
for (i = 0; __builtin_expect(i < MEMORY, 1); i += INIT_SIZE_BYTE)
{
for(j = 0; j < 10; j++)
{
xmminput[0] = _mm_aesenc_si128(xmminput[0], expkey[j]);
xmminput[1] = _mm_aesenc_si128(xmminput[1], expkey[j]);
xmminput[2] = _mm_aesenc_si128(xmminput[2], expkey[j]);
xmminput[3] = _mm_aesenc_si128(xmminput[3], expkey[j]);
xmminput[4] = _mm_aesenc_si128(xmminput[4], expkey[j]);
xmminput[5] = _mm_aesenc_si128(xmminput[5], expkey[j]);
xmminput[6] = _mm_aesenc_si128(xmminput[6], expkey[j]);
xmminput[7] = _mm_aesenc_si128(xmminput[7], expkey[j]);
}
_mm_store_si128(&(longoutput[(i >> 4)]), xmminput[0]);
_mm_store_si128(&(longoutput[(i >> 4) + 1]), xmminput[1]);
_mm_store_si128(&(longoutput[(i >> 4) + 2]), xmminput[2]);
_mm_store_si128(&(longoutput[(i >> 4) + 3]), xmminput[3]);
_mm_store_si128(&(longoutput[(i >> 4) + 4]), xmminput[4]);
_mm_store_si128(&(longoutput[(i >> 4) + 5]), xmminput[5]);
_mm_store_si128(&(longoutput[(i >> 4) + 6]), xmminput[6]);
_mm_store_si128(&(longoutput[(i >> 4) + 7]), xmminput[7]);
}
for (i = 0; i < 2; i++)
{
ctx->a[i] = ((uint64_t *)ctx->state.k)[i] ^ ((uint64_t *)ctx->state.k)[i+4];
ctx->b[i] = ((uint64_t *)ctx->state.k)[i+2] ^ ((uint64_t *)ctx->state.k)[i+6];
}
__m128i a_x = _mm_load_si128((__m128i *) &memory[ctx->a[0] & 0x1FFFF0]);
__m128i b_x = _mm_load_si128((__m128i *) ctx->b);
uint64_t c[2] __attribute((aligned(16)));
uint64_t d[2] __attribute((aligned(16)));
for (i = 0; __builtin_expect(i < 0x80000, 1); i++) {
__m128i c_x = _mm_aesenc_si128(a_x, _mm_load_si128((__m128i *) ctx->a));
_mm_store_si128((__m128i *) c, c_x);
uint64_t *restrict d_ptr = (uint64_t *) &memory[c[0] & 0x1FFFF0];
_mm_store_si128((__m128i *) &memory[ctx->a[0] & 0x1FFFF0], _mm_xor_si128(b_x, c_x));
b_x = c_x;
d[0] = d_ptr[0];
d[1] = d_ptr[1];
{
unsigned __int128 res = (unsigned __int128) c[0] * d[0];
d_ptr[0] = ctx->a[0] += res >> 64;
d_ptr[1] = ctx->a[1] += (uint64_t) res;
}
ctx->a[0] ^= d[0];
ctx->a[1] ^= d[1];
a_x = _mm_load_si128((__m128i *) &memory[ctx->a[0] & 0x1FFFF0]);
}
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
memcpy(ExpandedKey, &ctx->state.hs.b[32], AES_KEY_SIZE);
ExpandAESKey256(ExpandedKey);
for (i = 0; __builtin_expect(i < MEMORY, 1); i += INIT_SIZE_BYTE) {
xmminput[0] = _mm_xor_si128(longoutput[(i >> 4)], xmminput[0]);
xmminput[1] = _mm_xor_si128(longoutput[(i >> 4) + 1], xmminput[1]);
xmminput[2] = _mm_xor_si128(longoutput[(i >> 4) + 2], xmminput[2]);
xmminput[3] = _mm_xor_si128(longoutput[(i >> 4) + 3], xmminput[3]);
xmminput[4] = _mm_xor_si128(longoutput[(i >> 4) + 4], xmminput[4]);
xmminput[5] = _mm_xor_si128(longoutput[(i >> 4) + 5], xmminput[5]);
xmminput[6] = _mm_xor_si128(longoutput[(i >> 4) + 6], xmminput[6]);
xmminput[7] = _mm_xor_si128(longoutput[(i >> 4) + 7], xmminput[7]);
for(j = 0; j < 10; j++)
{
xmminput[0] = _mm_aesenc_si128(xmminput[0], expkey[j]);
xmminput[1] = _mm_aesenc_si128(xmminput[1], expkey[j]);
xmminput[2] = _mm_aesenc_si128(xmminput[2], expkey[j]);
xmminput[3] = _mm_aesenc_si128(xmminput[3], expkey[j]);
xmminput[4] = _mm_aesenc_si128(xmminput[4], expkey[j]);
xmminput[5] = _mm_aesenc_si128(xmminput[5], expkey[j]);
xmminput[6] = _mm_aesenc_si128(xmminput[6], expkey[j]);
xmminput[7] = _mm_aesenc_si128(xmminput[7], expkey[j]);
}
}
memcpy(ctx->state.init, ctx->text, INIT_SIZE_BYTE);
keccakf((uint64_t *) &ctx->state.hs, 24);
extra_hashes[ctx->state.hs.b[0] & 3](&ctx->state, 200, output);
}

View file

@ -222,14 +222,14 @@ static inline void cn_implode_scratchpad(const __m128i* input, __m128i* output)
} }
void cryptonight_av6_aesni_stak_no_prefetch(void *restrict output, const void *restrict input, char *restrict memory, struct cryptonight_ctx *restrict ctx) void cryptonight_av3_aesni_bmi2(void *restrict output, const void *restrict input, char *restrict memory, struct cryptonight_ctx *restrict ctx)
{ {
keccak((const uint8_t *) input, 76, (uint8_t *) &ctx->state.hs, 200); keccak((const uint8_t *) input, 76, (uint8_t *) &ctx->state.hs, 200);
cn_explode_scratchpad((__m128i*) &ctx->state.hs, (__m128i*) memory); cn_explode_scratchpad((__m128i*) &ctx->state, (__m128i*) memory);
const uint8_t* l0 = memory; const uint8_t* l0 = memory;
uint64_t* h0 = (uint64_t*) &ctx->state.hs; uint64_t* h0 = (uint64_t*) &ctx->state;
uint64_t al0 = h0[0] ^ h0[4]; uint64_t al0 = h0[0] ^ h0[4];
uint64_t ah0 = h0[1] ^ h0[5]; uint64_t ah0 = h0[1] ^ h0[5];

View file

@ -213,7 +213,7 @@ static inline void cn_implode_scratchpad(const __m128i* input, __m128i* output)
} }
void cryptonight_av7_aesni_experimental(void *restrict output, const void *restrict input, char *restrict memory, struct cryptonight_ctx *restrict ctx) void cryptonight_av5_aesni_experimental(void *restrict output, const void *restrict input, char *restrict memory, struct cryptonight_ctx *restrict ctx)
{ {
uint64_t* state = ctx->state.hs.w; uint64_t* state = ctx->state.hs.w;

View file

@ -38,11 +38,10 @@
#if defined(__x86_64__) #if defined(__x86_64__)
void cryptonight_av1_aesni(void* output, const void* input, const char *memory, struct cryptonight_ctx* ctx); void cryptonight_av1_aesni(void* output, const void* input, const char *memory, struct cryptonight_ctx* ctx);
void cryptonight_av2_aesni_bmi2(void* output, const void* input, const char *memory, struct cryptonight_ctx* ctx); void cryptonight_av2_aesni_stak(void* output, const void* input, const char *memory, struct cryptonight_ctx* ctx);
void cryptonight_av3_aesni_alt(void* output, const void* input, const char *memory, struct cryptonight_ctx* ctx); void cryptonight_av3_aesni_bmi2(void* output, const void* input, const char *memory, struct cryptonight_ctx* ctx);
void cryptonight_av5_aesni_stak(void* output, const void* input, const char *memory, struct cryptonight_ctx* ctx); void cryptonight_av4_softaes(void* output, const void* input, const char *memory, struct cryptonight_ctx* ctx);
void cryptonight_av6_aesni_stak_no_prefetch(void* output, const void* input, const char *memory, struct cryptonight_ctx* ctx); void cryptonight_av5_aesni_experimental(void* output, const void* input, const char *memory, struct cryptonight_ctx* ctx);
void cryptonight_av7_aesni_experimental(void* output, const void* input, const char *memory, struct cryptonight_ctx* ctx);
#elif defined(__i386__) #elif defined(__i386__)
void cryptonight_av1_aesni32(void* output, const void* input, const char *memory, struct cryptonight_ctx* ctx); void cryptonight_av1_aesni32(void* output, const void* input, const char *memory, struct cryptonight_ctx* ctx);
#endif #endif
@ -60,24 +59,16 @@ void cryptonight_init(int variant)
cryptonight_hash_ctx = cryptonight_av1_aesni; cryptonight_hash_ctx = cryptonight_av1_aesni;
break; break;
case XMR_AV2_AESNI_BMI2: case XMR_AV2_STAK:
cryptonight_hash_ctx = cryptonight_av2_aesni_bmi2; cryptonight_hash_ctx = cryptonight_av2_aesni_stak;
break; break;
case XMR_AV3_AESNI_ALT: case XMR_AV3_AESNI_BMI2:
cryptonight_hash_ctx = cryptonight_av3_aesni_alt; cryptonight_hash_ctx = cryptonight_av3_aesni_bmi2;
break; break;
case XMR_AV5_STAK: case XMR_AV5_EXPERIMENTAL:
cryptonight_hash_ctx = cryptonight_av5_aesni_stak; cryptonight_hash_ctx = cryptonight_av5_aesni_experimental;
break;
case XMR_AV6_STAK_NO_PREFETCH:
cryptonight_hash_ctx = cryptonight_av6_aesni_stak_no_prefetch;
break;
case XMR_AV7_EXPERIMENTAL:
cryptonight_hash_ctx = cryptonight_av7_aesni_experimental;
break; break;
#elif defined(__i386__) #elif defined(__i386__)

View file

@ -35,12 +35,10 @@
enum xmr_algo_variant { enum xmr_algo_variant {
XMR_AV0_AUTO, XMR_AV0_AUTO,
XMR_AV1_AESNI, XMR_AV1_AESNI,
XMR_AV2_AESNI_BMI2, XMR_AV2_STAK,
XMR_AV3_AESNI_ALT, XMR_AV3_AESNI_BMI2,
XMR_AV4_SOFT_AES, XMR_AV4_SOFT_AES,
XMR_AV5_STAK, XMR_AV5_EXPERIMENTAL,
XMR_AV6_STAK_NO_PREFETCH,
XMR_AV7_EXPERIMENTAL,
XMR_AV_MAX XMR_AV_MAX
}; };

View file

@ -16,13 +16,11 @@ if (CMAKE_SIZEOF_VOID_P EQUAL 8)
add_executable(cryptonight_app ${SOURCES} add_executable(cryptonight_app ${SOURCES}
cryptonight.c cryptonight.c
../../algo/cryptonight/cryptonight_av1_aesni.c ../../algo/cryptonight/cryptonight_av1_aesni.c
../../algo/cryptonight/cryptonight_av3_aesni_alt.c ../../algo/cryptonight/cryptonight_av2_aesni_stak.c
../../algo/cryptonight/cryptonight_av5_aesni_stak.c ../../algo/cryptonight/cryptonight_av5_aesni_experimental.c
../../algo/cryptonight/cryptonight_av6_aesni_stak_no_prefetch.c
../../algo/cryptonight/cryptonight_av7_aesni_experimental.c
) )
target_link_libraries(cryptonight_app unity cryptonight_av2_aesni_bmi2) target_link_libraries(cryptonight_app unity cryptonight_av3_aesni_bmi2)
else() else()
add_executable(cryptonight_app ${SOURCES} add_executable(cryptonight_app ${SOURCES}
cryptonight32.c cryptonight32.c

View file

@ -1,3 +1,3 @@
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -maes -mbmi2") set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -maes -mbmi2")
include_directories(../../..) include_directories(../../..)
add_library(cryptonight_av2_aesni_bmi2 STATIC ../../../algo/cryptonight/cryptonight_av2_aesni_bmi2.c) add_library(cryptonight_av3_aesni_bmi2 STATIC ../../../algo/cryptonight/cryptonight_av3_aesni_bmi2.c)

View file

@ -5,12 +5,10 @@
void cryptonight_av1_aesni(void* output, const void* input, const char *memory, struct cryptonight_ctx* ctx); void cryptonight_av1_aesni(void* output, const void* input, const char *memory, struct cryptonight_ctx* ctx);
void cryptonight_av2_aesni_bmi2(void* output, const void* input, const char *memory, struct cryptonight_ctx* ctx); void cryptonight_av2_aesni_stak(void* output, const void* input, const char *memory, struct cryptonight_ctx* ctx);
void cryptonight_av3_aesni_alt(void* output, const void* input, const char *memory, struct cryptonight_ctx* ctx); void cryptonight_av3_aesni_bmi2(void* output, const void* input, const char *memory, struct cryptonight_ctx* ctx);
void cryptonight_av4_softaes(void* output, const void* input, const char *memory, struct cryptonight_ctx* ctx); void cryptonight_av4_softaes(void* output, const void* input, const char *memory, struct cryptonight_ctx* ctx);
void cryptonight_av5_aesni_stak(void* output, const void* input, const char *memory, struct cryptonight_ctx* ctx); void cryptonight_av5_aesni_experimental(void* output, const void* input, const char *memory, struct cryptonight_ctx* ctx);
void cryptonight_av6_aesni_stak_no_prefetch(void* output, const void* input, const char *memory, struct cryptonight_ctx* ctx);
void cryptonight_av7_aesni_experimental(void* output, const void* input, const char *memory, struct cryptonight_ctx* ctx);
char hash[32]; char hash[32];
@ -77,7 +75,7 @@ void test_cryptonight_av2_should_CalcHash(void)
uint8_t *memory = (uint8_t *) malloc(MEMORY); uint8_t *memory = (uint8_t *) malloc(MEMORY);
struct cryptonight_ctx *ctx = (struct cryptonight_ctx*)malloc(sizeof(struct cryptonight_ctx)); struct cryptonight_ctx *ctx = (struct cryptonight_ctx*)malloc(sizeof(struct cryptonight_ctx));
cryptonight_av2_aesni_bmi2(&hash, data, memory, ctx); cryptonight_av2_aesni_stak(&hash, data, memory, ctx);
free(memory); free(memory);
free(ctx); free(ctx);
@ -91,7 +89,7 @@ void test_cryptonight_av3_should_CalcHash(void)
uint8_t *memory = (uint8_t *) malloc(MEMORY); uint8_t *memory = (uint8_t *) malloc(MEMORY);
struct cryptonight_ctx *ctx = (struct cryptonight_ctx*) malloc(sizeof(struct cryptonight_ctx)); struct cryptonight_ctx *ctx = (struct cryptonight_ctx*) malloc(sizeof(struct cryptonight_ctx));
cryptonight_av3_aesni_alt(&hash, data, memory, ctx); cryptonight_av3_aesni_bmi2(&hash, data, memory, ctx);
free(memory); free(memory);
free(ctx); free(ctx);
@ -119,35 +117,7 @@ void test_cryptonight_av5_should_CalcHash(void)
uint8_t *memory = (uint8_t *) malloc(MEMORY); uint8_t *memory = (uint8_t *) malloc(MEMORY);
struct cryptonight_ctx *ctx = (struct cryptonight_ctx*)malloc(sizeof(struct cryptonight_ctx)); struct cryptonight_ctx *ctx = (struct cryptonight_ctx*)malloc(sizeof(struct cryptonight_ctx));
cryptonight_av5_aesni_stak(&hash, data, memory, ctx); cryptonight_av5_aesni_experimental(&hash, data, memory, ctx);
free(memory);
free(ctx);
TEST_ASSERT_EQUAL_STRING(RESULT, bin2hex(hash, 32));
}
void test_cryptonight_av6_should_CalcHash(void)
{
uint8_t *memory = (uint8_t *) malloc(MEMORY);
struct cryptonight_ctx *ctx = (struct cryptonight_ctx*)malloc(sizeof(struct cryptonight_ctx));
cryptonight_av6_aesni_stak_no_prefetch(&hash, data, memory, ctx);
free(memory);
free(ctx);
TEST_ASSERT_EQUAL_STRING(RESULT, bin2hex(hash, 32));
}
void test_cryptonight_av7_should_CalcHash(void)
{
uint8_t *memory = (uint8_t *) malloc(MEMORY);
struct cryptonight_ctx *ctx = (struct cryptonight_ctx*)malloc(sizeof(struct cryptonight_ctx));
cryptonight_av7_aesni_experimental(&hash, data, memory, ctx);
free(memory); free(memory);
free(ctx); free(ctx);
@ -167,8 +137,6 @@ int main(void)
RUN_TEST(test_cryptonight_av3_should_CalcHash); RUN_TEST(test_cryptonight_av3_should_CalcHash);
RUN_TEST(test_cryptonight_av4_should_CalcHash); RUN_TEST(test_cryptonight_av4_should_CalcHash);
RUN_TEST(test_cryptonight_av5_should_CalcHash); RUN_TEST(test_cryptonight_av5_should_CalcHash);
RUN_TEST(test_cryptonight_av6_should_CalcHash);
RUN_TEST(test_cryptonight_av7_should_CalcHash);
return UNITY_END(); return UNITY_END();
} }