mirror of
https://github.com/xmrig/xmrig.git
synced 2025-01-07 03:19:28 +00:00
240 lines
8.6 KiB
C
240 lines
8.6 KiB
C
|
/* XMRig
|
||
|
* Copyright 2010 Jeff Garzik <jgarzik@pobox.com>
|
||
|
* Copyright 2012-2014 pooler <pooler@litecoinpool.org>
|
||
|
* Copyright 2014 Lucas Jones <https://github.com/lucasjones>
|
||
|
* Copyright 2014-2016 Wolf9466 <https://github.com/OhGodAPet>
|
||
|
* Copyright 2016 Jay D Dee <jayddee246@gmail.com>
|
||
|
* Copyright 2016-2017 XMRig <support@xmrig.com>
|
||
|
*
|
||
|
*
|
||
|
* This program is free software: you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation, either version 3 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||
|
*/
|
||
|
|
||
|
#include <x86intrin.h>
|
||
|
#include <string.h>
|
||
|
|
||
|
#include "cryptonight.h"
|
||
|
#include "crypto/c_keccak.h"
|
||
|
|
||
|
|
||
|
static inline uint64_t mul128(uint64_t multiplier, uint64_t multiplicand, uint64_t *product_hi) {
|
||
|
// multiplier = ab = a * 2^32 + b
|
||
|
// multiplicand = cd = c * 2^32 + d
|
||
|
// ab * cd = a * c * 2^64 + (a * d + b * c) * 2^32 + b * d
|
||
|
uint64_t a = multiplier >> 32;
|
||
|
uint64_t b = multiplier & 0xFFFFFFFF;
|
||
|
uint64_t c = multiplicand >> 32;
|
||
|
uint64_t d = multiplicand & 0xFFFFFFFF;
|
||
|
|
||
|
//uint64_t ac = a * c;
|
||
|
uint64_t ad = a * d;
|
||
|
//uint64_t bc = b * c;
|
||
|
uint64_t bd = b * d;
|
||
|
|
||
|
uint64_t adbc = ad + (b * c);
|
||
|
uint64_t adbc_carry = adbc < ad ? 1 : 0;
|
||
|
|
||
|
// multiplier * multiplicand = product_hi * 2^64 + product_lo
|
||
|
uint64_t product_lo = bd + (adbc << 32);
|
||
|
uint64_t product_lo_carry = product_lo < bd ? 1 : 0;
|
||
|
*product_hi = (a * c) + (adbc >> 32) + (adbc_carry << 32) + product_lo_carry;
|
||
|
|
||
|
return product_lo;
|
||
|
}
|
||
|
|
||
|
|
||
|
static inline void ExpandAESKey256_sub1(__m128i *tmp1, __m128i *tmp2)
|
||
|
{
|
||
|
__m128i tmp4;
|
||
|
*tmp2 = _mm_shuffle_epi32(*tmp2, 0xFF);
|
||
|
tmp4 = _mm_slli_si128(*tmp1, 0x04);
|
||
|
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
|
||
|
tmp4 = _mm_slli_si128(tmp4, 0x04);
|
||
|
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
|
||
|
tmp4 = _mm_slli_si128(tmp4, 0x04);
|
||
|
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
|
||
|
*tmp1 = _mm_xor_si128(*tmp1, *tmp2);
|
||
|
}
|
||
|
|
||
|
static inline void ExpandAESKey256_sub2(__m128i *tmp1, __m128i *tmp3)
|
||
|
{
|
||
|
__m128i tmp2, tmp4;
|
||
|
|
||
|
tmp4 = _mm_aeskeygenassist_si128(*tmp1, 0x00);
|
||
|
tmp2 = _mm_shuffle_epi32(tmp4, 0xAA);
|
||
|
tmp4 = _mm_slli_si128(*tmp3, 0x04);
|
||
|
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
|
||
|
tmp4 = _mm_slli_si128(tmp4, 0x04);
|
||
|
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
|
||
|
tmp4 = _mm_slli_si128(tmp4, 0x04);
|
||
|
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
|
||
|
*tmp3 = _mm_xor_si128(*tmp3, tmp2);
|
||
|
}
|
||
|
|
||
|
// Special thanks to Intel for helping me
|
||
|
// with ExpandAESKey256() and its subroutines
|
||
|
static inline void ExpandAESKey256(char *keybuf)
|
||
|
{
|
||
|
__m128i tmp1, tmp2, tmp3, *keys;
|
||
|
|
||
|
keys = (__m128i *)keybuf;
|
||
|
|
||
|
tmp1 = _mm_load_si128((__m128i *)keybuf);
|
||
|
tmp3 = _mm_load_si128((__m128i *)(keybuf+0x10));
|
||
|
|
||
|
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x01);
|
||
|
ExpandAESKey256_sub1(&tmp1, &tmp2);
|
||
|
keys[2] = tmp1;
|
||
|
ExpandAESKey256_sub2(&tmp1, &tmp3);
|
||
|
keys[3] = tmp3;
|
||
|
|
||
|
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x02);
|
||
|
ExpandAESKey256_sub1(&tmp1, &tmp2);
|
||
|
keys[4] = tmp1;
|
||
|
ExpandAESKey256_sub2(&tmp1, &tmp3);
|
||
|
keys[5] = tmp3;
|
||
|
|
||
|
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x04);
|
||
|
ExpandAESKey256_sub1(&tmp1, &tmp2);
|
||
|
keys[6] = tmp1;
|
||
|
ExpandAESKey256_sub2(&tmp1, &tmp3);
|
||
|
keys[7] = tmp3;
|
||
|
|
||
|
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x08);
|
||
|
ExpandAESKey256_sub1(&tmp1, &tmp2);
|
||
|
keys[8] = tmp1;
|
||
|
ExpandAESKey256_sub2(&tmp1, &tmp3);
|
||
|
keys[9] = tmp3;
|
||
|
|
||
|
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x10);
|
||
|
ExpandAESKey256_sub1(&tmp1, &tmp2);
|
||
|
keys[10] = tmp1;
|
||
|
ExpandAESKey256_sub2(&tmp1, &tmp3);
|
||
|
keys[11] = tmp3;
|
||
|
|
||
|
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x20);
|
||
|
ExpandAESKey256_sub1(&tmp1, &tmp2);
|
||
|
keys[12] = tmp1;
|
||
|
ExpandAESKey256_sub2(&tmp1, &tmp3);
|
||
|
keys[13] = tmp3;
|
||
|
|
||
|
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x40);
|
||
|
ExpandAESKey256_sub1(&tmp1, &tmp2);
|
||
|
keys[14] = tmp1;
|
||
|
}
|
||
|
|
||
|
void cryptonight_av1_aesni32(void *restrict output, const void *restrict input, const char *restrict memory, struct cryptonight_ctx *restrict ctx)
|
||
|
{
|
||
|
keccak((const uint8_t *)input, 76, (uint8_t *) &ctx->state.hs, 200);
|
||
|
uint8_t ExpandedKey[256];
|
||
|
size_t i, j;
|
||
|
|
||
|
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
|
||
|
memcpy(ExpandedKey, ctx->state.hs.b, AES_KEY_SIZE);
|
||
|
ExpandAESKey256(ExpandedKey);
|
||
|
|
||
|
__m128i *longoutput, *expkey, *xmminput;
|
||
|
longoutput = (__m128i *) memory;
|
||
|
expkey = (__m128i *)ExpandedKey;
|
||
|
xmminput = (__m128i *)ctx->text;
|
||
|
|
||
|
for (i = 0; __builtin_expect(i < MEMORY, 1); i += INIT_SIZE_BYTE)
|
||
|
{
|
||
|
for(j = 0; j < 10; j++)
|
||
|
{
|
||
|
xmminput[0] = _mm_aesenc_si128(xmminput[0], expkey[j]);
|
||
|
xmminput[1] = _mm_aesenc_si128(xmminput[1], expkey[j]);
|
||
|
xmminput[2] = _mm_aesenc_si128(xmminput[2], expkey[j]);
|
||
|
xmminput[3] = _mm_aesenc_si128(xmminput[3], expkey[j]);
|
||
|
xmminput[4] = _mm_aesenc_si128(xmminput[4], expkey[j]);
|
||
|
xmminput[5] = _mm_aesenc_si128(xmminput[5], expkey[j]);
|
||
|
xmminput[6] = _mm_aesenc_si128(xmminput[6], expkey[j]);
|
||
|
xmminput[7] = _mm_aesenc_si128(xmminput[7], expkey[j]);
|
||
|
}
|
||
|
_mm_store_si128(&(longoutput[(i >> 4)]), xmminput[0]);
|
||
|
_mm_store_si128(&(longoutput[(i >> 4) + 1]), xmminput[1]);
|
||
|
_mm_store_si128(&(longoutput[(i >> 4) + 2]), xmminput[2]);
|
||
|
_mm_store_si128(&(longoutput[(i >> 4) + 3]), xmminput[3]);
|
||
|
_mm_store_si128(&(longoutput[(i >> 4) + 4]), xmminput[4]);
|
||
|
_mm_store_si128(&(longoutput[(i >> 4) + 5]), xmminput[5]);
|
||
|
_mm_store_si128(&(longoutput[(i >> 4) + 6]), xmminput[6]);
|
||
|
_mm_store_si128(&(longoutput[(i >> 4) + 7]), xmminput[7]);
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < 2; i++)
|
||
|
{
|
||
|
ctx->a[i] = ((uint64_t *)ctx->state.k)[i] ^ ((uint64_t *)ctx->state.k)[i+4];
|
||
|
ctx->b[i] = ((uint64_t *)ctx->state.k)[i+2] ^ ((uint64_t *)ctx->state.k)[i+6];
|
||
|
}
|
||
|
|
||
|
__m128i a_x = _mm_load_si128((__m128i *) &memory[ctx->a[0] & 0x1FFFF0]);
|
||
|
__m128i b_x = _mm_load_si128((__m128i *) ctx->b);
|
||
|
|
||
|
uint64_t c[2] __attribute((aligned(16)));
|
||
|
uint64_t d[2] __attribute((aligned(16)));
|
||
|
uint64_t hi;
|
||
|
|
||
|
for (i = 0; __builtin_expect(i < 0x80000, 1); i++) {
|
||
|
__m128i c_x = _mm_aesenc_si128(a_x, _mm_load_si128((__m128i *) ctx->a));
|
||
|
_mm_store_si128((__m128i *) c, c_x);
|
||
|
|
||
|
uint64_t *restrict d_ptr = (uint64_t *) &memory[c[0] & 0x1FFFF0];
|
||
|
_mm_store_si128((__m128i *) &memory[ctx->a[0] & 0x1FFFF0], _mm_xor_si128(b_x, c_x));
|
||
|
b_x = c_x;
|
||
|
|
||
|
d[0] = d_ptr[0];
|
||
|
d[1] = d_ptr[1];
|
||
|
|
||
|
d_ptr[1] = ctx->a[1] += mul128(c[0], d[0], &hi);
|
||
|
d_ptr[0] = ctx->a[0] += hi;
|
||
|
|
||
|
ctx->a[0] ^= d[0];
|
||
|
ctx->a[1] ^= d[1];
|
||
|
|
||
|
a_x = _mm_load_si128((__m128i *) &memory[ctx->a[0] & 0x1FFFF0]);
|
||
|
}
|
||
|
|
||
|
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
|
||
|
memcpy(ExpandedKey, &ctx->state.hs.b[32], AES_KEY_SIZE);
|
||
|
ExpandAESKey256(ExpandedKey);
|
||
|
|
||
|
for (i = 0; __builtin_expect(i < MEMORY, 1); i += INIT_SIZE_BYTE) {
|
||
|
xmminput[0] = _mm_xor_si128(longoutput[(i >> 4)], xmminput[0]);
|
||
|
xmminput[1] = _mm_xor_si128(longoutput[(i >> 4) + 1], xmminput[1]);
|
||
|
xmminput[2] = _mm_xor_si128(longoutput[(i >> 4) + 2], xmminput[2]);
|
||
|
xmminput[3] = _mm_xor_si128(longoutput[(i >> 4) + 3], xmminput[3]);
|
||
|
xmminput[4] = _mm_xor_si128(longoutput[(i >> 4) + 4], xmminput[4]);
|
||
|
xmminput[5] = _mm_xor_si128(longoutput[(i >> 4) + 5], xmminput[5]);
|
||
|
xmminput[6] = _mm_xor_si128(longoutput[(i >> 4) + 6], xmminput[6]);
|
||
|
xmminput[7] = _mm_xor_si128(longoutput[(i >> 4) + 7], xmminput[7]);
|
||
|
|
||
|
for(j = 0; j < 10; j++)
|
||
|
{
|
||
|
xmminput[0] = _mm_aesenc_si128(xmminput[0], expkey[j]);
|
||
|
xmminput[1] = _mm_aesenc_si128(xmminput[1], expkey[j]);
|
||
|
xmminput[2] = _mm_aesenc_si128(xmminput[2], expkey[j]);
|
||
|
xmminput[3] = _mm_aesenc_si128(xmminput[3], expkey[j]);
|
||
|
xmminput[4] = _mm_aesenc_si128(xmminput[4], expkey[j]);
|
||
|
xmminput[5] = _mm_aesenc_si128(xmminput[5], expkey[j]);
|
||
|
xmminput[6] = _mm_aesenc_si128(xmminput[6], expkey[j]);
|
||
|
xmminput[7] = _mm_aesenc_si128(xmminput[7], expkey[j]);
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
memcpy(ctx->state.init, ctx->text, INIT_SIZE_BYTE);
|
||
|
keccakf((uint64_t *) &ctx->state.hs, 24);
|
||
|
extra_hashes[ctx->state.hs.b[0] & 3](&ctx->state, 200, output);
|
||
|
}
|