xmrig/src/crypto/c_skein.c

702 lines
29 KiB
C
Raw Normal View History

2017-04-15 06:02:08 +00:00
/***********************************************************************
**
** Implementation of the Skein hash function.
**
** Source code author: Doug Whiting, 2008.
**
** This algorithm and source code is released to the public domain.
**
************************************************************************/
#define SKEIN_PORT_CODE /* instantiate any code in skein_port.h */
#include <stddef.h> /* get size_t definition */
#include <string.h> /* get the memcpy/memset functions */
#include "c_skein.h" /* get the Skein API definitions */
#ifndef SKEIN_512_NIST_MAX_HASHBITS
#define SKEIN_512_NIST_MAX_HASHBITS (512)
#endif
#define SKEIN_MODIFIER_WORDS ( 2) /* number of modifier (tweak) words */
#define SKEIN_512_STATE_WORDS ( 8)
#define SKEIN_MAX_STATE_WORDS (16)
#define SKEIN_512_STATE_BYTES ( 8*SKEIN_512_STATE_WORDS)
#define SKEIN_512_STATE_BITS (64*SKEIN_512_STATE_WORDS)
#define SKEIN_512_BLOCK_BYTES ( 8*SKEIN_512_STATE_WORDS)
#define SKEIN_RND_SPECIAL (1000u)
#define SKEIN_RND_KEY_INITIAL (SKEIN_RND_SPECIAL+0u)
#define SKEIN_RND_KEY_INJECT (SKEIN_RND_SPECIAL+1u)
#define SKEIN_RND_FEED_FWD (SKEIN_RND_SPECIAL+2u)
typedef struct
{
size_t hashBitLen; /* size of hash result, in bits */
size_t bCnt; /* current byte count in buffer b[] */
u64b_t T[SKEIN_MODIFIER_WORDS]; /* tweak words: T[0]=byte cnt, T[1]=flags */
} Skein_Ctxt_Hdr_t;
typedef struct /* 512-bit Skein hash context structure */
{
Skein_Ctxt_Hdr_t h; /* common header context variables */
u64b_t X[SKEIN_512_STATE_WORDS]; /* chaining variables */
u08b_t b[SKEIN_512_BLOCK_BYTES]; /* partial block buffer (8-byte aligned) */
} Skein_512_Ctxt_t;
/* Skein APIs for (incremental) "straight hashing" */
static int Skein_512_Init (Skein_512_Ctxt_t *ctx, size_t hashBitLen);
static int Skein_512_Update(Skein_512_Ctxt_t *ctx, const u08b_t *msg, size_t msgByteCnt);
static int Skein_512_Final (Skein_512_Ctxt_t *ctx, u08b_t * hashVal);
#ifndef SKEIN_TREE_HASH
#define SKEIN_TREE_HASH (1)
#endif
/*****************************************************************
** "Internal" Skein definitions
** -- not needed for sequential hashing API, but will be
** helpful for other uses of Skein (e.g., tree hash mode).
** -- included here so that they can be shared between
** reference and optimized code.
******************************************************************/
/* tweak word T[1]: bit field starting positions */
#define SKEIN_T1_BIT(BIT) ((BIT) - 64) /* offset 64 because it's the second word */
#define SKEIN_T1_POS_TREE_LVL SKEIN_T1_BIT(112) /* bits 112..118: level in hash tree */
#define SKEIN_T1_POS_BIT_PAD SKEIN_T1_BIT(119) /* bit 119 : partial final input byte */
#define SKEIN_T1_POS_BLK_TYPE SKEIN_T1_BIT(120) /* bits 120..125: type field */
#define SKEIN_T1_POS_FIRST SKEIN_T1_BIT(126) /* bits 126 : first block flag */
#define SKEIN_T1_POS_FINAL SKEIN_T1_BIT(127) /* bit 127 : final block flag */
/* tweak word T[1]: flag bit definition(s) */
#define SKEIN_T1_FLAG_FIRST (((u64b_t) 1 ) << SKEIN_T1_POS_FIRST)
#define SKEIN_T1_FLAG_FINAL (((u64b_t) 1 ) << SKEIN_T1_POS_FINAL)
#define SKEIN_T1_FLAG_BIT_PAD (((u64b_t) 1 ) << SKEIN_T1_POS_BIT_PAD)
/* tweak word T[1]: tree level bit field mask */
#define SKEIN_T1_TREE_LVL_MASK (((u64b_t)0x7F) << SKEIN_T1_POS_TREE_LVL)
#define SKEIN_T1_TREE_LEVEL(n) (((u64b_t) (n)) << SKEIN_T1_POS_TREE_LVL)
/* tweak word T[1]: block type field */
#define SKEIN_BLK_TYPE_KEY ( 0) /* key, for MAC and KDF */
#define SKEIN_BLK_TYPE_CFG ( 4) /* configuration block */
#define SKEIN_BLK_TYPE_PERS ( 8) /* personalization string */
#define SKEIN_BLK_TYPE_PK (12) /* public key (for digital signature hashing) */
#define SKEIN_BLK_TYPE_KDF (16) /* key identifier for KDF */
#define SKEIN_BLK_TYPE_NONCE (20) /* nonce for PRNG */
#define SKEIN_BLK_TYPE_MSG (48) /* message processing */
#define SKEIN_BLK_TYPE_OUT (63) /* output stage */
#define SKEIN_BLK_TYPE_MASK (63) /* bit field mask */
#define SKEIN_T1_BLK_TYPE(T) (((u64b_t) (SKEIN_BLK_TYPE_##T)) << SKEIN_T1_POS_BLK_TYPE)
#define SKEIN_T1_BLK_TYPE_KEY SKEIN_T1_BLK_TYPE(KEY) /* key, for MAC and KDF */
#define SKEIN_T1_BLK_TYPE_CFG SKEIN_T1_BLK_TYPE(CFG) /* configuration block */
#define SKEIN_T1_BLK_TYPE_PERS SKEIN_T1_BLK_TYPE(PERS) /* personalization string */
#define SKEIN_T1_BLK_TYPE_PK SKEIN_T1_BLK_TYPE(PK) /* public key (for digital signature hashing) */
#define SKEIN_T1_BLK_TYPE_KDF SKEIN_T1_BLK_TYPE(KDF) /* key identifier for KDF */
#define SKEIN_T1_BLK_TYPE_NONCE SKEIN_T1_BLK_TYPE(NONCE)/* nonce for PRNG */
#define SKEIN_T1_BLK_TYPE_MSG SKEIN_T1_BLK_TYPE(MSG) /* message processing */
#define SKEIN_T1_BLK_TYPE_OUT SKEIN_T1_BLK_TYPE(OUT) /* output stage */
#define SKEIN_T1_BLK_TYPE_MASK SKEIN_T1_BLK_TYPE(MASK) /* field bit mask */
#define SKEIN_T1_BLK_TYPE_CFG_FINAL (SKEIN_T1_BLK_TYPE_CFG | SKEIN_T1_FLAG_FINAL)
#define SKEIN_T1_BLK_TYPE_OUT_FINAL (SKEIN_T1_BLK_TYPE_OUT | SKEIN_T1_FLAG_FINAL)
#define SKEIN_VERSION (1)
#ifndef SKEIN_ID_STRING_LE /* allow compile-time personalization */
#define SKEIN_ID_STRING_LE (0x33414853) /* "SHA3" (little-endian)*/
#endif
#define SKEIN_MK_64(hi32,lo32) ((lo32) + (((u64b_t) (hi32)) << 32))
#define SKEIN_SCHEMA_VER SKEIN_MK_64(SKEIN_VERSION,SKEIN_ID_STRING_LE)
#define SKEIN_KS_PARITY SKEIN_MK_64(0x1BD11BDA,0xA9FC1A22)
#define SKEIN_CFG_STR_LEN (4*8)
/* bit field definitions in config block treeInfo word */
#define SKEIN_CFG_TREE_LEAF_SIZE_POS ( 0)
#define SKEIN_CFG_TREE_NODE_SIZE_POS ( 8)
#define SKEIN_CFG_TREE_MAX_LEVEL_POS (16)
#define SKEIN_CFG_TREE_LEAF_SIZE_MSK (((u64b_t) 0xFF) << SKEIN_CFG_TREE_LEAF_SIZE_POS)
#define SKEIN_CFG_TREE_NODE_SIZE_MSK (((u64b_t) 0xFF) << SKEIN_CFG_TREE_NODE_SIZE_POS)
#define SKEIN_CFG_TREE_MAX_LEVEL_MSK (((u64b_t) 0xFF) << SKEIN_CFG_TREE_MAX_LEVEL_POS)
#define SKEIN_CFG_TREE_INFO(leaf,node,maxLvl) \
( (((u64b_t)(leaf )) << SKEIN_CFG_TREE_LEAF_SIZE_POS) | \
(((u64b_t)(node )) << SKEIN_CFG_TREE_NODE_SIZE_POS) | \
(((u64b_t)(maxLvl)) << SKEIN_CFG_TREE_MAX_LEVEL_POS) )
#define SKEIN_CFG_TREE_INFO_SEQUENTIAL SKEIN_CFG_TREE_INFO(0,0,0) /* use as treeInfo in InitExt() call for sequential processing */
/*
** Skein macros for getting/setting tweak words, etc.
** These are useful for partial input bytes, hash tree init/update, etc.
**/
#define Skein_Get_Tweak(ctxPtr,TWK_NUM) ((ctxPtr)->h.T[TWK_NUM])
#define Skein_Set_Tweak(ctxPtr,TWK_NUM,tVal) {(ctxPtr)->h.T[TWK_NUM] = (tVal);}
#define Skein_Get_T0(ctxPtr) Skein_Get_Tweak(ctxPtr,0)
#define Skein_Get_T1(ctxPtr) Skein_Get_Tweak(ctxPtr,1)
#define Skein_Set_T0(ctxPtr,T0) Skein_Set_Tweak(ctxPtr,0,T0)
#define Skein_Set_T1(ctxPtr,T1) Skein_Set_Tweak(ctxPtr,1,T1)
/* set both tweak words at once */
#define Skein_Set_T0_T1(ctxPtr,T0,T1) \
{ \
Skein_Set_T0(ctxPtr,(T0)); \
Skein_Set_T1(ctxPtr,(T1)); \
}
#define Skein_Set_Type(ctxPtr,BLK_TYPE) \
Skein_Set_T1(ctxPtr,SKEIN_T1_BLK_TYPE_##BLK_TYPE)
/* set up for starting with a new type: h.T[0]=0; h.T[1] = NEW_TYPE; h.bCnt=0; */
#define Skein_Start_New_Type(ctxPtr,BLK_TYPE) \
{ Skein_Set_T0_T1(ctxPtr,0,SKEIN_T1_FLAG_FIRST | SKEIN_T1_BLK_TYPE_##BLK_TYPE); (ctxPtr)->h.bCnt=0; }
#define Skein_Clear_First_Flag(hdr) { (hdr).T[1] &= ~SKEIN_T1_FLAG_FIRST; }
#define Skein_Set_Bit_Pad_Flag(hdr) { (hdr).T[1] |= SKEIN_T1_FLAG_BIT_PAD; }
#define Skein_Set_Tree_Level(hdr,height) { (hdr).T[1] |= SKEIN_T1_TREE_LEVEL(height);}
/*****************************************************************
** "Internal" Skein definitions for debugging and error checking
******************************************************************/
#define Skein_Show_Block(bits,ctx,X,blkPtr,wPtr,ksEvenPtr,ksOddPtr)
#define Skein_Show_Round(bits,ctx,r,X)
#define Skein_Show_R_Ptr(bits,ctx,r,X_ptr)
#define Skein_Show_Final(bits,ctx,cnt,outPtr)
#define Skein_Show_Key(bits,ctx,key,keyBytes)
#ifndef SKEIN_ERR_CHECK /* run-time checks (e.g., bad params, uninitialized context)? */
#define Skein_Assert(x,retCode)/* default: ignore all Asserts, for performance */
#define Skein_assert(x)
#elif defined(SKEIN_ASSERT)
#include <assert.h>
#define Skein_Assert(x,retCode) assert(x)
#define Skein_assert(x) assert(x)
#else
#include <assert.h>
#define Skein_Assert(x,retCode) { if (!(x)) return retCode; } /* caller error */
#define Skein_assert(x) assert(x) /* internal error */
#endif
/*****************************************************************
** Skein block function constants (shared across Ref and Opt code)
******************************************************************/
enum
{
/* Skein_512 round rotation constants */
R_512_0_0=46, R_512_0_1=36, R_512_0_2=19, R_512_0_3=37,
R_512_1_0=33, R_512_1_1=27, R_512_1_2=14, R_512_1_3=42,
R_512_2_0=17, R_512_2_1=49, R_512_2_2=36, R_512_2_3=39,
R_512_3_0=44, R_512_3_1= 9, R_512_3_2=54, R_512_3_3=56,
R_512_4_0=39, R_512_4_1=30, R_512_4_2=34, R_512_4_3=24,
R_512_5_0=13, R_512_5_1=50, R_512_5_2=10, R_512_5_3=17,
R_512_6_0=25, R_512_6_1=29, R_512_6_2=39, R_512_6_3=43,
R_512_7_0= 8, R_512_7_1=35, R_512_7_2=56, R_512_7_3=22,
};
#ifndef SKEIN_ROUNDS
#define SKEIN_512_ROUNDS_TOTAL (72)
#else /* allow command-line define in range 8*(5..14) */
#define SKEIN_512_ROUNDS_TOTAL (8*((((SKEIN_ROUNDS/ 10) + 5) % 10) + 5))
#endif
/*
***************** Pre-computed Skein IVs *******************
**
** NOTE: these values are not "magic" constants, but
** are generated using the Threefish block function.
** They are pre-computed here only for speed; i.e., to
** avoid the need for a Threefish call during Init().
**
** The IV for any fixed hash length may be pre-computed.
** Only the most common values are included here.
**
************************************************************
**/
#define MK_64 SKEIN_MK_64
/* blkSize = 512 bits. hashSize = 256 bits */
const u64b_t SKEIN_512_IV_256[] =
{
MK_64(0xCCD044A1,0x2FDB3E13),
MK_64(0xE8359030,0x1A79A9EB),
MK_64(0x55AEA061,0x4F816E6F),
MK_64(0x2A2767A4,0xAE9B94DB),
MK_64(0xEC06025E,0x74DD7683),
MK_64(0xE7A436CD,0xC4746251),
MK_64(0xC36FBAF9,0x393AD185),
MK_64(0x3EEDBA18,0x33EDFC13)
};
#ifndef SKEIN_USE_ASM
#define SKEIN_USE_ASM (0) /* default is all C code (no ASM) */
#endif
#ifndef SKEIN_LOOP
#define SKEIN_LOOP 001 /* default: unroll 256 and 512, but not 1024 */
#endif
#define BLK_BITS (WCNT*64) /* some useful definitions for code here */
#define KW_TWK_BASE (0)
#define KW_KEY_BASE (3)
#define ks (kw + KW_KEY_BASE)
#define ts (kw + KW_TWK_BASE)
#ifdef SKEIN_DEBUG
#define DebugSaveTweak(ctx) { ctx->h.T[0] = ts[0]; ctx->h.T[1] = ts[1]; }
#else
#define DebugSaveTweak(ctx)
#endif
/***************************** Skein_512 ******************************/
#if !(SKEIN_USE_ASM & 512)
static void Skein_512_Process_Block(Skein_512_Ctxt_t *ctx,const u08b_t *blkPtr,size_t blkCnt,size_t byteCntAdd)
{ /* do it in C */
enum
{
WCNT = SKEIN_512_STATE_WORDS
};
#undef RCNT
#define RCNT (SKEIN_512_ROUNDS_TOTAL/8)
#ifdef SKEIN_LOOP /* configure how much to unroll the loop */
#define SKEIN_UNROLL_512 (((SKEIN_LOOP)/10)%10)
#else
#define SKEIN_UNROLL_512 (0)
#endif
#if SKEIN_UNROLL_512
#if (RCNT % SKEIN_UNROLL_512)
#error "Invalid SKEIN_UNROLL_512" /* sanity check on unroll count */
#endif
size_t r;
u64b_t kw[WCNT+4+RCNT*2]; /* key schedule words : chaining vars + tweak + "rotation"*/
#else
u64b_t kw[WCNT+4]; /* key schedule words : chaining vars + tweak */
#endif
u64b_t X0,X1,X2,X3,X4,X5,X6,X7; /* local copy of vars, for speed */
u64b_t w [WCNT]; /* local copy of input block */
#ifdef SKEIN_DEBUG
const u64b_t *Xptr[8]; /* use for debugging (help compiler put Xn in registers) */
Xptr[0] = &X0; Xptr[1] = &X1; Xptr[2] = &X2; Xptr[3] = &X3;
Xptr[4] = &X4; Xptr[5] = &X5; Xptr[6] = &X6; Xptr[7] = &X7;
#endif
Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */
ts[0] = ctx->h.T[0];
ts[1] = ctx->h.T[1];
do {
/* this implementation only supports 2**64 input bytes (no carry out here) */
ts[0] += byteCntAdd; /* update processed length */
/* precompute the key schedule for this block */
ks[0] = ctx->X[0];
ks[1] = ctx->X[1];
ks[2] = ctx->X[2];
ks[3] = ctx->X[3];
ks[4] = ctx->X[4];
ks[5] = ctx->X[5];
ks[6] = ctx->X[6];
ks[7] = ctx->X[7];
ks[8] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^
ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^ SKEIN_KS_PARITY;
ts[2] = ts[0] ^ ts[1];
Skein_Get64_LSB_First(w,blkPtr,WCNT); /* get input block in little-endian format */
DebugSaveTweak(ctx);
Skein_Show_Block(BLK_BITS,&ctx->h,ctx->X,blkPtr,w,ks,ts);
X0 = w[0] + ks[0]; /* do the first full key injection */
X1 = w[1] + ks[1];
X2 = w[2] + ks[2];
X3 = w[3] + ks[3];
X4 = w[4] + ks[4];
X5 = w[5] + ks[5] + ts[0];
X6 = w[6] + ks[6] + ts[1];
X7 = w[7] + ks[7];
blkPtr += SKEIN_512_BLOCK_BYTES;
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INITIAL,Xptr);
/* run the rounds */
#define Round512(p0,p1,p2,p3,p4,p5,p6,p7,ROT,rNum) \
X##p0 += X##p1; X##p1 = RotL_64(X##p1,ROT##_0); X##p1 ^= X##p0; \
X##p2 += X##p3; X##p3 = RotL_64(X##p3,ROT##_1); X##p3 ^= X##p2; \
X##p4 += X##p5; X##p5 = RotL_64(X##p5,ROT##_2); X##p5 ^= X##p4; \
X##p6 += X##p7; X##p7 = RotL_64(X##p7,ROT##_3); X##p7 ^= X##p6; \
#if SKEIN_UNROLL_512 == 0
#define R512(p0,p1,p2,p3,p4,p5,p6,p7,ROT,rNum) /* unrolled */ \
Round512(p0,p1,p2,p3,p4,p5,p6,p7,ROT,rNum) \
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,rNum,Xptr);
#define I512(R) \
X0 += ks[((R)+1) % 9]; /* inject the key schedule value */ \
X1 += ks[((R)+2) % 9]; \
X2 += ks[((R)+3) % 9]; \
X3 += ks[((R)+4) % 9]; \
X4 += ks[((R)+5) % 9]; \
X5 += ks[((R)+6) % 9] + ts[((R)+1) % 3]; \
X6 += ks[((R)+7) % 9] + ts[((R)+2) % 3]; \
X7 += ks[((R)+8) % 9] + (R)+1; \
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);
#else /* looping version */
#define R512(p0,p1,p2,p3,p4,p5,p6,p7,ROT,rNum) \
Round512(p0,p1,p2,p3,p4,p5,p6,p7,ROT,rNum) \
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,4*(r-1)+rNum,Xptr);
#define I512(R) \
X0 += ks[r+(R)+0]; /* inject the key schedule value */ \
X1 += ks[r+(R)+1]; \
X2 += ks[r+(R)+2]; \
X3 += ks[r+(R)+3]; \
X4 += ks[r+(R)+4]; \
X5 += ks[r+(R)+5] + ts[r+(R)+0]; \
X6 += ks[r+(R)+6] + ts[r+(R)+1]; \
X7 += ks[r+(R)+7] + r+(R) ; \
ks[r + (R)+8] = ks[r+(R)-1]; /* rotate key schedule */ \
ts[r + (R)+2] = ts[r+(R)-1]; \
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);
for (r=1;r < 2*RCNT;r+=2*SKEIN_UNROLL_512) /* loop thru it */
#endif /* end of looped code definitions */
{
#define R512_8_rounds(R) /* do 8 full rounds */ \
R512(0,1,2,3,4,5,6,7,R_512_0,8*(R)+ 1); \
R512(2,1,4,7,6,5,0,3,R_512_1,8*(R)+ 2); \
R512(4,1,6,3,0,5,2,7,R_512_2,8*(R)+ 3); \
R512(6,1,0,7,2,5,4,3,R_512_3,8*(R)+ 4); \
I512(2*(R)); \
R512(0,1,2,3,4,5,6,7,R_512_4,8*(R)+ 5); \
R512(2,1,4,7,6,5,0,3,R_512_5,8*(R)+ 6); \
R512(4,1,6,3,0,5,2,7,R_512_6,8*(R)+ 7); \
R512(6,1,0,7,2,5,4,3,R_512_7,8*(R)+ 8); \
I512(2*(R)+1); /* and key injection */
R512_8_rounds( 0);
#define R512_Unroll_R(NN) ((SKEIN_UNROLL_512 == 0 && SKEIN_512_ROUNDS_TOTAL/8 > (NN)) || (SKEIN_UNROLL_512 > (NN)))
#if R512_Unroll_R( 1)
R512_8_rounds( 1);
#endif
#if R512_Unroll_R( 2)
R512_8_rounds( 2);
#endif
#if R512_Unroll_R( 3)
R512_8_rounds( 3);
#endif
#if R512_Unroll_R( 4)
R512_8_rounds( 4);
#endif
#if R512_Unroll_R( 5)
R512_8_rounds( 5);
#endif
#if R512_Unroll_R( 6)
R512_8_rounds( 6);
#endif
#if R512_Unroll_R( 7)
R512_8_rounds( 7);
#endif
#if R512_Unroll_R( 8)
R512_8_rounds( 8);
#endif
#if R512_Unroll_R( 9)
R512_8_rounds( 9);
#endif
#if R512_Unroll_R(10)
R512_8_rounds(10);
#endif
#if R512_Unroll_R(11)
R512_8_rounds(11);
#endif
#if R512_Unroll_R(12)
R512_8_rounds(12);
#endif
#if R512_Unroll_R(13)
R512_8_rounds(13);
#endif
#if R512_Unroll_R(14)
R512_8_rounds(14);
#endif
#if (SKEIN_UNROLL_512 > 14)
#error "need more unrolling in Skein_512_Process_Block"
#endif
}
/* do the final "feedforward" xor, update context chaining vars */
ctx->X[0] = X0 ^ w[0];
ctx->X[1] = X1 ^ w[1];
ctx->X[2] = X2 ^ w[2];
ctx->X[3] = X3 ^ w[3];
ctx->X[4] = X4 ^ w[4];
ctx->X[5] = X5 ^ w[5];
ctx->X[6] = X6 ^ w[6];
ctx->X[7] = X7 ^ w[7];
Skein_Show_Round(BLK_BITS,&ctx->h,SKEIN_RND_FEED_FWD,ctx->X);
ts[1] &= ~SKEIN_T1_FLAG_FIRST;
}
while (--blkCnt);
ctx->h.T[0] = ts[0];
ctx->h.T[1] = ts[1];
}
#endif
/*****************************************************************/
/* 512-bit Skein */
2017-04-15 06:02:08 +00:00
/*****************************************************************/
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* init the context for a straight hashing operation */
static int Skein_512_Init(Skein_512_Ctxt_t *ctx, size_t hashBitLen)
2017-04-15 06:02:08 +00:00
{
union
{
u08b_t b[SKEIN_512_STATE_BYTES];
u64b_t w[SKEIN_512_STATE_WORDS];
2017-04-15 06:02:08 +00:00
} cfg; /* config block */
Skein_Assert(hashBitLen > 0,SKEIN_BAD_HASHLEN);
ctx->h.hashBitLen = hashBitLen; /* output hash bit count */
switch (hashBitLen)
{ /* use pre-computed values, where available */
#ifndef SKEIN_NO_PRECOMP
case 256: memcpy(ctx->X,SKEIN_512_IV_256,sizeof(ctx->X)); break;
2017-04-15 06:02:08 +00:00
#endif
default:
/* here if there is no precomputed IV value available */
/* build/process the config block, type == CONFIG (could be precomputed) */
Skein_Start_New_Type(ctx,CFG_FINAL); /* set tweaks: T0=0; T1=CFG | FINAL */
cfg.w[0] = Skein_Swap64(SKEIN_SCHEMA_VER); /* set the schema, version */
cfg.w[1] = Skein_Swap64(hashBitLen); /* hash result length in bits */
cfg.w[2] = Skein_Swap64(SKEIN_CFG_TREE_INFO_SEQUENTIAL);
memset(&cfg.w[3],0,sizeof(cfg) - 3*sizeof(cfg.w[0])); /* zero pad config block */
/* compute the initial chaining values from config block */
memset(ctx->X,0,sizeof(ctx->X)); /* zero the chaining variables */
Skein_512_Process_Block(ctx,cfg.b,1,SKEIN_CFG_STR_LEN);
2017-04-15 06:02:08 +00:00
break;
}
2017-04-15 06:02:08 +00:00
/* The chaining vars ctx->X are now initialized for the given hashBitLen. */
/* Set up to process the data message portion of the hash (default) */
Skein_Start_New_Type(ctx,MSG); /* T0=0, T1= MSG type */
return SKEIN_SUCCESS;
}
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* process the input bytes */
static int Skein_512_Update(Skein_512_Ctxt_t *ctx, const u08b_t *msg, size_t msgByteCnt)
2017-04-15 06:02:08 +00:00
{
size_t n;
2017-04-15 06:02:08 +00:00
Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
/* process full blocks, if any */
if (msgByteCnt + ctx->h.bCnt > SKEIN_512_BLOCK_BYTES)
{
if (ctx->h.bCnt) /* finish up any buffered message data */
{
n = SKEIN_512_BLOCK_BYTES - ctx->h.bCnt; /* # bytes free in buffer b[] */
if (n)
{
Skein_assert(n < msgByteCnt); /* check on our logic here */
memcpy(&ctx->b[ctx->h.bCnt],msg,n);
msgByteCnt -= n;
msg += n;
ctx->h.bCnt += n;
}
Skein_assert(ctx->h.bCnt == SKEIN_512_BLOCK_BYTES);
Skein_512_Process_Block(ctx,ctx->b,1,SKEIN_512_BLOCK_BYTES);
ctx->h.bCnt = 0;
}
/* now process any remaining full blocks, directly from input message data */
if (msgByteCnt > SKEIN_512_BLOCK_BYTES)
{
n = (msgByteCnt-1) / SKEIN_512_BLOCK_BYTES; /* number of full blocks to process */
Skein_512_Process_Block(ctx,msg,n,SKEIN_512_BLOCK_BYTES);
msgByteCnt -= n * SKEIN_512_BLOCK_BYTES;
msg += n * SKEIN_512_BLOCK_BYTES;
}
Skein_assert(ctx->h.bCnt == 0);
}
/* copy any remaining source message data bytes into b[] */
if (msgByteCnt)
{
Skein_assert(msgByteCnt + ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES);
memcpy(&ctx->b[ctx->h.bCnt],msg,msgByteCnt);
ctx->h.bCnt += msgByteCnt;
}
return SKEIN_SUCCESS;
}
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* finalize the hash computation and output the result */
static int Skein_512_Final(Skein_512_Ctxt_t *ctx, u08b_t *hashVal)
{
size_t i,n,byteCnt;
u64b_t X[SKEIN_512_STATE_WORDS];
Skein_Assert(ctx->h.bCnt <= SKEIN_512_BLOCK_BYTES,SKEIN_FAIL); /* catch uninitialized context */
ctx->h.T[1] |= SKEIN_T1_FLAG_FINAL; /* tag as the final block */
if (ctx->h.bCnt < SKEIN_512_BLOCK_BYTES) /* zero pad b[] if necessary */
memset(&ctx->b[ctx->h.bCnt],0,SKEIN_512_BLOCK_BYTES - ctx->h.bCnt);
Skein_512_Process_Block(ctx,ctx->b,1,ctx->h.bCnt); /* process the final block */
/* now output the result */
byteCnt = (ctx->h.hashBitLen + 7) >> 3; /* total number of output bytes */
/* run Threefish in "counter mode" to generate output */
memset(ctx->b,0,sizeof(ctx->b)); /* zero out b[], so it can hold the counter */
memcpy(X,ctx->X,sizeof(X)); /* keep a local copy of counter mode "key" */
for (i=0;i*SKEIN_512_BLOCK_BYTES < byteCnt;i++)
{
((u64b_t *)ctx->b)[0]= Skein_Swap64((u64b_t) i); /* build the counter block */
Skein_Start_New_Type(ctx,OUT_FINAL);
Skein_512_Process_Block(ctx,ctx->b,1,sizeof(u64b_t)); /* run "counter mode" */
n = byteCnt - i*SKEIN_512_BLOCK_BYTES; /* number of output bytes left to go */
if (n >= SKEIN_512_BLOCK_BYTES)
n = SKEIN_512_BLOCK_BYTES;
Skein_Put64_LSB_First(hashVal+i*SKEIN_512_BLOCK_BYTES,ctx->X,n); /* "output" the ctr mode bytes */
Skein_Show_Final(512,&ctx->h,n,hashVal+i*SKEIN_512_BLOCK_BYTES);
memcpy(ctx->X,X,sizeof(X)); /* restore the counter mode key for next time */
}
return SKEIN_SUCCESS;
}
#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
static size_t Skein_512_API_CodeSize(void)
{
return ((u08b_t *) Skein_512_API_CodeSize) -
((u08b_t *) Skein_512_Init);
}
#endif
typedef struct
{
uint_t statebits; /* 256, 512, or 1024 */
union
{
Skein_Ctxt_Hdr_t h; /* common header "overlay" */
Skein_512_Ctxt_t ctx_512;
} u;
}
hashState;
/* "incremental" hashing API */
static SkeinHashReturn Init (hashState *state, int hashbitlen);
static SkeinHashReturn Update(hashState *state, const SkeinBitSequence *data, SkeinDataLength databitlen);
static SkeinHashReturn Final (hashState *state, SkeinBitSequence *hashval);
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* select the context size and init the context */
static SkeinHashReturn Init(hashState *state, int hashbitlen)
{
state->statebits = 64*SKEIN_512_STATE_WORDS;
return Skein_512_Init(&state->u.ctx_512,(size_t) hashbitlen);
}
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* process data to be hashed */
static SkeinHashReturn Update(hashState *state, const SkeinBitSequence *data, SkeinDataLength databitlen)
{
/* only the final Update() call is allowed do partial bytes, else assert an error */
Skein_Assert((state->u.h.T[1] & SKEIN_T1_FLAG_BIT_PAD) == 0 || databitlen == 0, SKEIN_FAIL);
Skein_Assert(state->statebits % 256 == 0 && (state->statebits-256) < 1024,SKEIN_FAIL);
if ((databitlen & 7) == 0) /* partial bytes? */
{
return Skein_512_Update(&state->u.ctx_512,data,databitlen >> 3);
2017-04-15 06:02:08 +00:00
}
else
{ /* handle partial final byte */
size_t bCnt = (databitlen >> 3) + 1; /* number of bytes to handle (nonzero here!) */
u08b_t b,mask;
mask = (u08b_t) (1u << (7 - (databitlen & 7))); /* partial byte bit mask */
b = (u08b_t) ((data[bCnt-1] & (0-mask)) | mask); /* apply bit padding on final byte */
Skein_512_Update(&state->u.ctx_512,data,bCnt-1); /* process all but the final byte */
Skein_512_Update(&state->u.ctx_512,&b , 1 ); /* process the (masked) partial byte */
2017-04-15 06:02:08 +00:00
Skein_Set_Bit_Pad_Flag(state->u.h); /* set tweak flag for the final call */
return SKEIN_SUCCESS;
}
}
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* finalize hash computation and output the result (hashbitlen bits) */
static SkeinHashReturn Final(hashState *state, SkeinBitSequence *hashval)
{
Skein_Assert(state->statebits % 256 == 0 && (state->statebits-256) < 1024,FAIL);
return Skein_512_Final(&state->u.ctx_512,hashval);
2017-04-15 06:02:08 +00:00
}
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* all-in-one hash function */
SkeinHashReturn skein_hash(int hashbitlen, const SkeinBitSequence *data, /* all-in-one call */
SkeinDataLength databitlen,SkeinBitSequence *hashval)
{
hashState state;
SkeinHashReturn r = Init(&state,hashbitlen);
if (r == SKEIN_SUCCESS)
{ /* these calls do not fail when called properly */
r = Update(&state,data,databitlen);
Final(&state,hashval);
}
return r;
}
void xmr_skein(const SkeinBitSequence *data, SkeinBitSequence *hashval){
#define XMR_HASHBITLEN 256
#define XMR_DATABITLEN 1600
// Init
hashState state;
state.statebits = 64*SKEIN_512_STATE_WORDS;
// Skein_512_Init(&state.u.ctx_512, (size_t)XMR_HASHBITLEN);
state.u.ctx_512.h.hashBitLen = XMR_HASHBITLEN;
memcpy(state.u.ctx_512.X,SKEIN_512_IV_256,sizeof(state.u.ctx_512.X));
Skein_512_Ctxt_t* ctx = &(state.u.ctx_512);
Skein_Start_New_Type(ctx,MSG);
// Update
if ((XMR_DATABITLEN & 7) == 0){ /* partial bytes? */
Skein_512_Update(&state.u.ctx_512,data,XMR_DATABITLEN >> 3);
}else{ /* handle partial final byte */
size_t bCnt = (XMR_DATABITLEN >> 3) + 1; /* number of bytes to handle (nonzero here!) */
u08b_t b,mask;
mask = (u08b_t) (1u << (7 - (XMR_DATABITLEN & 7))); /* partial byte bit mask */
b = (u08b_t) ((data[bCnt-1] & (0-mask)) | mask); /* apply bit padding on final byte */
Skein_512_Update(&state.u.ctx_512,data,bCnt-1); /* process all but the final byte */
Skein_512_Update(&state.u.ctx_512,&b , 1 ); /* process the (masked) partial byte */
Skein_Set_Bit_Pad_Flag(state.u.h); /* set tweak flag for the final call */
}
// Finalize
Skein_512_Final(&state.u.ctx_512, hashval);
}