stack_wallet/lib/wallets/wallet/wallet_mixin_interfaces/spark_interface.dart
2023-11-27 15:18:20 -06:00

208 lines
7.3 KiB
Dart

import 'dart:typed_data';
import 'package:isar/isar.dart';
import 'package:stackwallet/models/isar/models/blockchain_data/address.dart';
import 'package:stackwallet/utilities/amount/amount.dart';
import 'package:stackwallet/wallets/models/tx_data.dart';
import 'package:stackwallet/wallets/wallet/intermediate/bip39_hd_wallet.dart';
import 'package:stackwallet/wallets/wallet/wallet_mixin_interfaces/electrumx_interface.dart';
mixin SparkInterface on Bip39HDWallet, ElectrumXInterface {
Future<Address?> getCurrentReceivingSparkAddress() async {
return await mainDB.isar.addresses
.where()
.walletIdEqualTo(walletId)
.filter()
.typeEqualTo(AddressType.spark)
.sortByDerivationIndexDesc()
.findFirst();
}
Future<Uint8List> _getSpendKey() async {
final mnemonic = await getMnemonic();
final mnemonicPassphrase = await getMnemonicPassphrase();
// TODO call ffi lib to generate spend key
throw UnimplementedError();
}
Future<Address> generateNextSparkAddress() async {
final highestStoredDiversifier =
(await getCurrentReceivingSparkAddress())?.derivationIndex;
// default to starting at 1 if none found
final int diversifier = (highestStoredDiversifier ?? 0) + 1;
// TODO: use real data
final String derivationPath = "";
final Uint8List publicKey = Uint8List(0); // incomingViewKey?
final String addressString = "";
return Address(
walletId: walletId,
value: addressString,
publicKey: publicKey,
derivationIndex: diversifier,
derivationPath: DerivationPath()..value = derivationPath,
type: AddressType.spark,
subType: AddressSubType.receiving,
);
}
Future<Amount> estimateFeeForSpark(Amount amount) async {
throw UnimplementedError();
}
/// Spark to Spark/Transparent (spend) creation
Future<TxData> prepareSendSpark({
required TxData txData,
}) async {
// https://docs.google.com/document/d/1RG52GoYTZDvKlZz_3G4sQu-PpT6JWSZGHLNswWcrE3o/edit
// To generate a spark spend we need to call createSparkSpendTransaction,
// first unlock the wallet and generate all 3 spark keys,
final spendKey = await _getSpendKey();
//
// recipients is a list of pairs of amounts and bools, this is for transparent
// outputs, first how much to send and second, subtractFeeFromAmount argument
// for each receiver.
//
// privateRecipients is again the list of pairs, first the receiver data
// which has following members, Address which is any spark address,
// amount (v) how much we want to send, and memo which can be any string
// with 32 length (any string we want to send to receiver), and the second
// subtractFeeFromAmount,
//
// coins is the list of all our available spark coins
//
// cover_set_data_all is the list of all anonymity sets,
//
// idAndBlockHashes_all is the list of block hashes for each anonymity set
//
// txHashSig is the transaction hash only without spark data, tx version,
// type, transparent outputs and everything else should be set before generating it.
//
// fee is a output data
//
// serializedSpend is a output data, byte array with spark spend, we need
// to put it into vExtraPayload (this naming can be different in your codebase)
//
// outputScripts is a output data, it is a list of scripts, which we need
// to put in separate tx outputs, and keep the order,
throw UnimplementedError();
}
// this may not be needed for either mints or spends or both
Future<TxData> confirmSendSpark({
required TxData txData,
}) async {
throw UnimplementedError();
}
// TODO lots of room for performance improvements here. Should be similar to
// recoverSparkWallet but only fetch and check anonymity set data that we
// have not yet parsed.
Future<void> refreshSparkData() async {
try {
final latestSparkCoinId = await electrumXClient.getSparkLatestCoinId();
// TODO improve performance by adding this call to the cached client
final anonymitySet = await electrumXClient.getSparkAnonymitySet(
coinGroupId: latestSparkCoinId.toString(),
);
// TODO loop over set and see which coins are ours using the FFI call `identifyCoin`
List myCoins = [];
// fetch metadata for myCoins
// check against spent list (this call could possibly also be cached later on)
final spentCoinTags = await electrumXClient.getSparkUsedCoinsTags(
startNumber: 0,
);
// create list of Spark Coin isar objects
// update wallet spark coins in isar
// refresh spark balance?
throw UnimplementedError();
} catch (e, s) {
// todo logging
rethrow;
}
}
/// Should only be called within the standard wallet [recover] function due to
/// mutex locking. Otherwise behaviour MAY be undefined.
Future<void> recoverSparkWallet(
// {
// required int latestSetId,
// required Map<dynamic, dynamic> setDataMap,
// required Set<String> usedSerialNumbers,
// }
) async {
try {
// do we need to generate any spark address(es) here?
final latestSparkCoinId = await electrumXClient.getSparkLatestCoinId();
// TODO improve performance by adding this call to the cached client
final anonymitySet = await electrumXClient.getSparkAnonymitySet(
coinGroupId: latestSparkCoinId.toString(),
);
// TODO loop over set and see which coins are ours using the FFI call `identifyCoin`
List myCoins = [];
// fetch metadata for myCoins
// create list of Spark Coin isar objects
// update wallet spark coins in isar
throw UnimplementedError();
} catch (e, s) {
// todo logging
rethrow;
}
}
/// Transparent to Spark (mint) transaction creation
Future<TxData> prepareSparkMintTransaction({required TxData txData}) async {
// https://docs.google.com/document/d/1RG52GoYTZDvKlZz_3G4sQu-PpT6JWSZGHLNswWcrE3o/edit
// this kind of transaction is generated like a regular transaction, but in
// place of regulart outputs we put spark outputs, so for that we call
// createSparkMintRecipients function, we get spark related data,
// everything else we do like for regular transaction, and we put CRecipient
// object as a tx outputs, we need to keep the order..
// First we pass spark::MintedCoinData>, has following members, Address
// which is any spark address, amount (v) how much we want to send, and
// memo which can be any string with 32 length (any string we want to send
// to receiver), serial_context is a byte array, which should be unique for
// each transaction, and for that we serialize and put all inputs into
// serial_context vector. So we construct the input part of the transaction
// first then we generate spark related data. And we sign like regular
// transactions at the end.
throw UnimplementedError();
}
@override
Future<void> updateBalance() async {
// call to super to update transparent balance (and lelantus balance if
// what ever class this mixin is used on uses LelantusInterface as well)
final normalBalanceFuture = super.updateBalance();
// todo: spark balance aka update info.tertiaryBalance
// wait for normalBalanceFuture to complete before returning
await normalBalanceFuture;
}
}