serai/processor/scheduler/utxo/transaction-chaining/src/lib.rs

359 lines
13 KiB
Rust

#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![doc = include_str!("../README.md")]
#![deny(missing_docs)]
use core::marker::PhantomData;
use std::collections::HashMap;
use group::GroupEncoding;
use serai_primitives::{Coin, Amount};
use serai_db::DbTxn;
use primitives::{OutputType, ReceivedOutput, Payment};
use scanner::{
LifetimeStage, ScannerFeed, KeyFor, AddressFor, OutputFor, EventualityFor, SchedulerUpdate,
Scheduler as SchedulerTrait,
};
use scheduler_primitives::*;
use utxo_scheduler_primitives::*;
mod db;
use db::Db;
/// The outputs which will be effected by a PlannedTransaction and received by Serai.
pub struct EffectedReceivedOutputs<S: ScannerFeed>(Vec<OutputFor<S>>);
/// A scheduler of transactions for networks premised on the UTXO model which support
/// transaction chaining.
pub struct Scheduler<S: ScannerFeed, P: TransactionPlanner<S, EffectedReceivedOutputs<S>>>(
PhantomData<S>,
PhantomData<P>,
);
impl<S: ScannerFeed, P: TransactionPlanner<S, EffectedReceivedOutputs<S>>> Scheduler<S, P> {
fn handle_queued_payments(
&mut self,
txn: &mut impl DbTxn,
active_keys: &[(KeyFor<S>, LifetimeStage)],
key: KeyFor<S>,
) -> Vec<EventualityFor<S>> {
let mut eventualities = vec![];
for coin in S::NETWORK.coins() {
// Fetch our operating costs and all our outputs
let mut operating_costs = Db::<S>::operating_costs(txn, *coin).0;
let mut outputs = Db::<S>::outputs(txn, key, *coin).unwrap();
// Fetch the queued payments
let mut payments = Db::<S>::queued_payments(txn, key, *coin).unwrap();
if payments.is_empty() {
continue;
}
// If this is our only key, our outputs and operating costs should be greater than the
// payments' value
if active_keys.len() == 1 {
// The available amount of fulfill is the amount we have plus the amount we'll reduce by
// An alternative formulation would be `outputs >= (payments - operating costs)`, but
// that'd risk underflow
let available =
operating_costs + outputs.iter().map(|output| output.balance().amount.0).sum::<u64>();
assert!(
available >= payments.iter().map(|payment| payment.balance().amount.0).sum::<u64>()
);
}
let amount_of_payments_that_can_be_handled =
|operating_costs: u64, outputs: &[_], payments: &[_]| {
let value_available =
operating_costs + outputs.iter().map(|output| output.balance().amount.0).sum::<u64>();
let mut can_handle = 0;
let mut value_used = 0;
for payment in payments {
value_used += payment.balance().amount.0;
if value_available < value_used {
break;
}
can_handle += 1;
}
can_handle
};
// Find the set of payments we should fulfill at this time
{
// Drop to just the payments we currently have the outputs for
{
let can_handle =
amount_of_payments_that_can_be_handled(operating_costs, &outputs, &payments);
let remaining_payments = payments.drain(can_handle ..).collect::<Vec<_>>();
// Restore the rest to the database
Db::<S>::set_queued_payments(txn, key, *coin, &remaining_payments);
}
let payments_value = payments.iter().map(|payment| payment.balance().amount.0).sum::<u64>();
// If these payments are worth less than the operating costs, immediately drop them
if payments_value <= operating_costs {
operating_costs -= payments_value;
Db::<S>::set_operating_costs(txn, *coin, Amount(operating_costs));
return vec![];
}
// We explicitly sort AFTER deciding which payments to handle so we always handle the
// oldest queued payments first (preventing any from eternally being shuffled to the back
// of the line)
payments.sort_by(|a, b| a.balance().amount.0.cmp(&b.balance().amount.0));
}
assert!(!payments.is_empty());
// Find the smallest set of outputs usable to fulfill these outputs
// Size is determined by the largest output, not quantity nor aggregate value
{
// We start by sorting low to high
outputs.sort_by(|a, b| a.balance().amount.0.cmp(&b.balance().amount.0));
let value_needed =
payments.iter().map(|payment| payment.balance().amount.0).sum::<u64>() - operating_costs;
let mut needed = 0;
let mut value_present = 0;
for output in &outputs {
needed += 1;
value_present += output.balance().amount.0;
if value_present >= value_needed {
break;
}
}
// Drain, and save back to the DB, the unnecessary outputs
let remaining_outputs = outputs.drain(needed ..).collect::<Vec<_>>();
Db::<S>::set_outputs(txn, key, *coin, &remaining_outputs);
}
assert!(!outputs.is_empty());
// We now have the current operating costs, the outputs we're using, and the payments
// The database has the unused outputs/unfilfillable payments
// Actually plan/send off the transactions
// While our set of outputs exceed the input limit, aggregate them
while outputs.len() > MAX_INPUTS {
let outputs_chunk = outputs.drain(.. MAX_INPUTS).collect::<Vec<_>>();
// While we're aggregating these outputs, handle any payments we can
let payments_chunk = loop {
let can_handle =
amount_of_payments_that_can_be_handled(operating_costs, &outputs, &payments);
let payments_chunk = payments.drain(.. can_handle.min(MAX_OUTPUTS)).collect::<Vec<_>>();
let payments_value =
payments_chunk.iter().map(|payment| payment.balance().amount.0).sum::<u64>();
if payments_value <= operating_costs {
operating_costs -= payments_value;
continue;
}
break payments_chunk;
};
let Some(planned) = P::plan_transaction_with_fee_amortization(
&mut operating_costs,
fee_rates[coin],
outputs_chunk,
payments_chunk,
// We always use our key for the change here since we may need this change output to
// finish fulfilling these payments
Some(key),
) else {
// We amortized all payments, and even when just trying to make the change output, these
// inputs couldn't afford their own aggregation and were written off
continue;
};
// Send the transactions off for signing
TransactionsToSign::<P::SignableTransaction>::send(txn, &key, &planned.signable);
// Push the Eventualities onto the result
eventualities.push(planned.eventuality);
let mut effected_received_outputs = planned.auxilliary.0;
// Only handle Change so if someone burns to an External address, we don't use it here
// when the scanner will tell us to return it (without accumulating it)
effected_received_outputs.retain(|output| output.kind() == OutputType::Change);
for output in &effected_received_outputs {
Db::<S>::set_already_accumulated_output(txn, output.id());
}
outputs.append(&mut effected_received_outputs);
}
// Now that we have an aggregated set of inputs, create the tree for payments
todo!("TODO");
}
eventualities
}
}
impl<S: ScannerFeed, P: TransactionPlanner<S, EffectedReceivedOutputs<S>>> SchedulerTrait<S>
for Scheduler<S, P>
{
fn activate_key(&mut self, txn: &mut impl DbTxn, key: KeyFor<S>) {
for coin in S::NETWORK.coins() {
assert!(Db::<S>::outputs(txn, key, *coin).is_none());
Db::<S>::set_outputs(txn, key, *coin, &[]);
assert!(Db::<S>::queued_payments(txn, key, *coin).is_none());
Db::<S>::set_queued_payments(txn, key, *coin, &vec![]);
}
}
fn flush_key(&mut self, txn: &mut impl DbTxn, retiring_key: KeyFor<S>, new_key: KeyFor<S>) {
for coin in S::NETWORK.coins() {
let still_queued = Db::<S>::queued_payments(txn, retiring_key, *coin).unwrap();
let mut new_queued = Db::<S>::queued_payments(txn, new_key, *coin).unwrap();
let mut queued = still_queued;
queued.append(&mut new_queued);
Db::<S>::set_queued_payments(txn, retiring_key, *coin, &vec![]);
Db::<S>::set_queued_payments(txn, new_key, *coin, &queued);
}
}
fn retire_key(&mut self, txn: &mut impl DbTxn, key: KeyFor<S>) {
for coin in S::NETWORK.coins() {
assert!(Db::<S>::outputs(txn, key, *coin).unwrap().is_empty());
Db::<S>::del_outputs(txn, key, *coin);
assert!(Db::<S>::queued_payments(txn, key, *coin).unwrap().is_empty());
Db::<S>::del_queued_payments(txn, key, *coin);
}
}
fn update(
&mut self,
txn: &mut impl DbTxn,
active_keys: &[(KeyFor<S>, LifetimeStage)],
update: SchedulerUpdate<S>,
) -> HashMap<Vec<u8>, Vec<EventualityFor<S>>> {
// Accumulate all the outputs
for (key, _) in active_keys {
// Accumulate them in memory
let mut outputs_by_coin = HashMap::with_capacity(1);
for output in update.outputs().iter().filter(|output| output.key() == *key) {
match output.kind() {
OutputType::External | OutputType::Forwarded => {}
// Only accumulate these if we haven't already
OutputType::Branch | OutputType::Change => {
if Db::<S>::take_if_already_accumulated_output(txn, output.id()) {
continue;
}
}
}
let coin = output.balance().coin;
if let std::collections::hash_map::Entry::Vacant(e) = outputs_by_coin.entry(coin) {
e.insert(Db::<S>::outputs(txn, *key, coin).unwrap());
}
outputs_by_coin.get_mut(&coin).unwrap().push(output.clone());
}
// Flush them to the database
for (coin, outputs) in outputs_by_coin {
Db::<S>::set_outputs(txn, *key, coin, &outputs);
}
}
let mut fee_rates: HashMap<Coin, _> = todo!("TODO");
// Fulfill the payments we prior couldn't
let mut eventualities = HashMap::new();
for (key, _stage) in active_keys {
eventualities.insert(
key.to_bytes().as_ref().to_vec(),
self.handle_queued_payments(txn, active_keys, *key),
);
}
// TODO: If this key has been flushed, forward all outputs
// Create the transactions for the forwards/burns
{
let mut planned_txs = vec![];
for forward in update.forwards() {
let key = forward.key();
assert_eq!(active_keys.len(), 2);
assert_eq!(active_keys[0].1, LifetimeStage::Forwarding);
assert_eq!(active_keys[1].1, LifetimeStage::Active);
let forward_to_key = active_keys[1].0;
let Some(plan) = P::plan_transaction_with_fee_amortization(
// This uses 0 for the operating costs as we don't incur any here
&mut 0,
fee_rates[&forward.balance().coin],
vec![forward.clone()],
vec![Payment::new(P::forwarding_address(forward_to_key), forward.balance(), None)],
None,
) else {
continue;
};
planned_txs.push((key, plan));
}
for to_return in update.returns() {
let key = to_return.output().key();
let out_instruction =
Payment::new(to_return.address().clone(), to_return.output().balance(), None);
let Some(plan) = P::plan_transaction_with_fee_amortization(
// This uses 0 for the operating costs as we don't incur any here
&mut 0,
fee_rates[&out_instruction.balance().coin],
vec![to_return.output().clone()],
vec![out_instruction],
None,
) else {
continue;
};
planned_txs.push((key, plan));
}
for (key, planned_tx) in planned_txs {
// Send the transactions off for signing
TransactionsToSign::<P::SignableTransaction>::send(txn, &key, &planned_tx.signable);
// Insert the Eventualities into the result
eventualities[key.to_bytes().as_ref()].push(planned_tx.eventuality);
}
eventualities
}
}
fn fulfill(
&mut self,
txn: &mut impl DbTxn,
active_keys: &[(KeyFor<S>, LifetimeStage)],
mut payments: Vec<Payment<AddressFor<S>>>,
) -> HashMap<Vec<u8>, Vec<EventualityFor<S>>> {
// Find the key to filfill these payments with
let fulfillment_key = match active_keys[0].1 {
LifetimeStage::ActiveYetNotReporting => {
panic!("expected to fulfill payments despite not reporting for the oldest key")
}
LifetimeStage::Active | LifetimeStage::UsingNewForChange => active_keys[0].0,
LifetimeStage::Forwarding | LifetimeStage::Finishing => active_keys[1].0,
};
// Queue the payments for this key
for coin in S::NETWORK.coins() {
let mut queued_payments = Db::<S>::queued_payments(txn, fulfillment_key, *coin).unwrap();
queued_payments
.extend(payments.iter().filter(|payment| payment.balance().coin == *coin).cloned());
Db::<S>::set_queued_payments(txn, fulfillment_key, *coin, &queued_payments);
}
// Handle the queued payments
HashMap::from([(
fulfillment_key.to_bytes().as_ref().to_vec(),
self.handle_queued_payments(txn, active_keys, fulfillment_key),
)])
}
}