serai/processor/bitcoin/src/scan.rs

125 lines
3.9 KiB
Rust

use std::{sync::LazyLock, collections::HashMap};
use ciphersuite::{Ciphersuite, Secp256k1};
use bitcoin_serai::{
bitcoin::{
blockdata::opcodes,
script::{Instruction, ScriptBuf},
Transaction,
},
wallet::Scanner,
};
use serai_client::networks::bitcoin::Address;
use serai_db::Get;
use primitives::OutputType;
use crate::hash_bytes;
const KEY_DST: &[u8] = b"Serai Bitcoin Processor Key Offset";
static BRANCH_BASE_OFFSET: LazyLock<<Secp256k1 as Ciphersuite>::F> =
LazyLock::new(|| Secp256k1::hash_to_F(KEY_DST, b"branch"));
static CHANGE_BASE_OFFSET: LazyLock<<Secp256k1 as Ciphersuite>::F> =
LazyLock::new(|| Secp256k1::hash_to_F(KEY_DST, b"change"));
static FORWARD_BASE_OFFSET: LazyLock<<Secp256k1 as Ciphersuite>::F> =
LazyLock::new(|| Secp256k1::hash_to_F(KEY_DST, b"forward"));
// Unfortunately, we have per-key offsets as it's the root key plus the base offset may not be
// even. While we could tweak the key until all derivations are even, that'd require significantly
// more tweaking. This algorithmic complexity is preferred.
pub(crate) fn offsets_for_key(
key: <Secp256k1 as Ciphersuite>::G,
) -> HashMap<OutputType, <Secp256k1 as Ciphersuite>::F> {
let mut offsets = HashMap::from([(OutputType::External, <Secp256k1 as Ciphersuite>::F::ZERO)]);
// We create an actual Bitcoin scanner as upon adding an offset, it yields the tweaked offset
// actually used
let mut scanner = Scanner::new(key).unwrap();
let mut register = |kind, offset| {
let tweaked_offset = scanner.register_offset(offset).expect("offset collision");
offsets.insert(kind, tweaked_offset);
};
register(OutputType::Branch, *BRANCH_BASE_OFFSET);
register(OutputType::Change, *CHANGE_BASE_OFFSET);
register(OutputType::Forwarded, *FORWARD_BASE_OFFSET);
offsets
}
pub(crate) fn scanner(key: <Secp256k1 as Ciphersuite>::G) -> Scanner {
let mut scanner = Scanner::new(key).unwrap();
for (_, offset) in offsets_for_key(key) {
let tweaked_offset = scanner.register_offset(offset).unwrap();
assert_eq!(tweaked_offset, offset);
}
scanner
}
pub(crate) fn presumed_origin(getter: &impl Get, tx: &Transaction) -> Option<Address> {
for input in &tx.input {
let txid = hash_bytes(input.previous_output.txid.to_raw_hash());
let vout = input.previous_output.vout;
if let Some(address) =
Address::new(crate::txindex::script_pubkey_for_on_chain_output(getter, txid, vout))
{
return Some(address);
}
}
None?
}
// Checks if this script matches SHA256 PUSH MSG_HASH OP_EQUALVERIFY ..
fn matches_segwit_data(script: &ScriptBuf) -> Option<bool> {
let mut ins = script.instructions();
// first item should be SHA256 code
if ins.next()?.ok()?.opcode()? != opcodes::all::OP_SHA256 {
return Some(false);
}
// next should be a data push
ins.next()?.ok()?.push_bytes()?;
// next should be a equality check
if ins.next()?.ok()?.opcode()? != opcodes::all::OP_EQUALVERIFY {
return Some(false);
}
Some(true)
}
// Extract the data for Serai from a transaction
pub(crate) fn extract_serai_data(tx: &Transaction) -> Vec<u8> {
// Check for an OP_RETURN output
let mut data = (|| {
for output in &tx.output {
if output.script_pubkey.is_op_return() {
match output.script_pubkey.instructions_minimal().last() {
Some(Ok(Instruction::PushBytes(data))) => return Some(data.as_bytes().to_vec()),
_ => continue,
}
}
}
None
})();
// Check the inputs
if data.is_none() {
for input in &tx.input {
let witness = input.witness.to_vec();
// The witness has to have at least 2 items, msg and the redeem script
if witness.len() >= 2 {
let redeem_script = ScriptBuf::from_bytes(witness.last().unwrap().clone());
if matches_segwit_data(&redeem_script) == Some(true) {
data = Some(witness[witness.len() - 2].clone()); // len() - 1 is the redeem_script
break;
}
}
}
}
data.unwrap_or(vec![])
}