serai/crypto/dkg/src/lib.rs
Luke Parker b296be8515
Replace bincode with borsh (#452)
* Add SignalsConfig to chain_spec

* Correct multiexp feature flagging for rand_core std

* Remove bincode for borsh

Replaces a non-canonical encoding with a canonical encoding which additionally
should be faster.

Also fixes an issue where we used bincode in transcripts where it cannot be
trusted.

This ended up fixing a myriad of other bugs observed, unfortunately.
Accordingly, it either has to be merged or the bug fixes from it must be ported
to a new PR.

* Make serde optional, minimize usage

* Make borsh an optional dependency of substrate/ crates

* Remove unused dependencies

* Use [u8; 64] where possible in the processor messages

* Correct borsh feature flagging
2023-11-25 04:01:11 -05:00

532 lines
16 KiB
Rust

#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![doc = include_str!("../README.md")]
#![cfg_attr(not(feature = "std"), no_std)]
use core::fmt::{self, Debug};
#[cfg(feature = "std")]
use thiserror::Error;
use zeroize::Zeroize;
/// MuSig-style key aggregation.
pub mod musig;
/// Encryption types and utilities used to secure DKG messages.
#[cfg(feature = "std")]
pub mod encryption;
/// The distributed key generation protocol described in the
/// [FROST paper](https://eprint.iacr.org/2020/852).
#[cfg(feature = "std")]
pub mod frost;
/// Promote keys between ciphersuites.
#[cfg(feature = "std")]
pub mod promote;
/// Tests for application-provided curves and algorithms.
#[cfg(any(test, feature = "tests"))]
pub mod tests;
/// The ID of a participant, defined as a non-zero u16.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, Zeroize)]
#[cfg_attr(feature = "borsh", derive(borsh::BorshSerialize, borsh::BorshDeserialize))]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct Participant(pub(crate) u16);
impl Participant {
/// Create a new Participant identifier from a u16.
pub fn new(i: u16) -> Option<Participant> {
if i == 0 {
None
} else {
Some(Participant(i))
}
}
/// Convert a Participant identifier to bytes.
#[allow(clippy::wrong_self_convention)]
pub fn to_bytes(&self) -> [u8; 2] {
self.0.to_le_bytes()
}
}
impl From<Participant> for u16 {
fn from(participant: Participant) -> u16 {
participant.0
}
}
impl fmt::Display for Participant {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.0)
}
}
/// Various errors possible during key generation.
#[derive(Clone, PartialEq, Eq, Debug)]
#[cfg_attr(feature = "std", derive(Error))]
pub enum DkgError<B: Clone + PartialEq + Eq + Debug> {
/// A parameter was zero.
#[cfg_attr(feature = "std", error("a parameter was 0 (threshold {0}, participants {1})"))]
ZeroParameter(u16, u16),
/// The threshold exceeded the amount of participants.
#[cfg_attr(feature = "std", error("invalid threshold (max {1}, got {0})"))]
InvalidThreshold(u16, u16),
/// Invalid participant identifier.
#[cfg_attr(
feature = "std",
error("invalid participant (0 < participant <= {0}, yet participant is {1})")
)]
InvalidParticipant(u16, Participant),
/// Invalid signing set.
#[cfg_attr(feature = "std", error("invalid signing set"))]
InvalidSigningSet,
/// Invalid amount of participants.
#[cfg_attr(feature = "std", error("invalid participant quantity (expected {0}, got {1})"))]
InvalidParticipantQuantity(usize, usize),
/// A participant was duplicated.
#[cfg_attr(feature = "std", error("duplicated participant ({0})"))]
DuplicatedParticipant(Participant),
/// A participant was missing.
#[cfg_attr(feature = "std", error("missing participant {0}"))]
MissingParticipant(Participant),
/// An invalid proof of knowledge was provided.
#[cfg_attr(feature = "std", error("invalid proof of knowledge (participant {0})"))]
InvalidCommitments(Participant),
/// An invalid DKG share was provided.
#[cfg_attr(feature = "std", error("invalid share (participant {participant}, blame {blame})"))]
InvalidShare { participant: Participant, blame: Option<B> },
}
#[cfg(feature = "std")]
mod lib {
pub use super::*;
use core::ops::Deref;
use std::{io, sync::Arc, collections::HashMap};
use zeroize::Zeroizing;
use ciphersuite::{
group::{
ff::{Field, PrimeField},
GroupEncoding,
},
Ciphersuite,
};
// Validate a map of values to have the expected included participants
pub(crate) fn validate_map<T, B: Clone + PartialEq + Eq + Debug>(
map: &HashMap<Participant, T>,
included: &[Participant],
ours: Participant,
) -> Result<(), DkgError<B>> {
if (map.len() + 1) != included.len() {
Err(DkgError::InvalidParticipantQuantity(included.len(), map.len() + 1))?;
}
for included in included {
if *included == ours {
if map.contains_key(included) {
Err(DkgError::DuplicatedParticipant(*included))?;
}
continue;
}
if !map.contains_key(included) {
Err(DkgError::MissingParticipant(*included))?;
}
}
Ok(())
}
/// Parameters for a multisig.
// These fields should not be made public as they should be static
#[derive(Clone, Copy, PartialEq, Eq, Debug, Zeroize)]
#[cfg_attr(feature = "borsh", derive(borsh::BorshSerialize, borsh::BorshDeserialize))]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct ThresholdParams {
/// Participants needed to sign on behalf of the group.
pub(crate) t: u16,
/// Amount of participants.
pub(crate) n: u16,
/// Index of the participant being acted for.
pub(crate) i: Participant,
}
impl ThresholdParams {
/// Create a new set of parameters.
pub fn new(t: u16, n: u16, i: Participant) -> Result<ThresholdParams, DkgError<()>> {
if (t == 0) || (n == 0) {
Err(DkgError::ZeroParameter(t, n))?;
}
if t > n {
Err(DkgError::InvalidThreshold(t, n))?;
}
if u16::from(i) > n {
Err(DkgError::InvalidParticipant(n, i))?;
}
Ok(ThresholdParams { t, n, i })
}
/// Return the threshold for a multisig with these parameters.
pub fn t(&self) -> u16 {
self.t
}
/// Return the amount of participants for a multisig with these parameters.
pub fn n(&self) -> u16 {
self.n
}
/// Return the participant index of the share with these parameters.
pub fn i(&self) -> Participant {
self.i
}
}
/// Calculate the lagrange coefficient for a signing set.
pub fn lagrange<F: PrimeField>(i: Participant, included: &[Participant]) -> F {
let i_f = F::from(u64::from(u16::from(i)));
let mut num = F::ONE;
let mut denom = F::ONE;
for l in included {
if i == *l {
continue;
}
let share = F::from(u64::from(u16::from(*l)));
num *= share;
denom *= share - i_f;
}
// Safe as this will only be 0 if we're part of the above loop
// (which we have an if case to avoid)
num * denom.invert().unwrap()
}
/// Keys and verification shares generated by a DKG.
/// Called core as they're expected to be wrapped into an Arc before usage in various operations.
#[derive(Clone, PartialEq, Eq)]
pub struct ThresholdCore<C: Ciphersuite> {
/// Threshold Parameters.
pub(crate) params: ThresholdParams,
/// Secret share key.
pub(crate) secret_share: Zeroizing<C::F>,
/// Group key.
pub(crate) group_key: C::G,
/// Verification shares.
pub(crate) verification_shares: HashMap<Participant, C::G>,
}
impl<C: Ciphersuite> fmt::Debug for ThresholdCore<C> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt
.debug_struct("ThresholdCore")
.field("params", &self.params)
.field("group_key", &self.group_key)
.field("verification_shares", &self.verification_shares)
.finish_non_exhaustive()
}
}
impl<C: Ciphersuite> Zeroize for ThresholdCore<C> {
fn zeroize(&mut self) {
self.params.zeroize();
self.secret_share.zeroize();
self.group_key.zeroize();
for (_, share) in self.verification_shares.iter_mut() {
share.zeroize();
}
}
}
impl<C: Ciphersuite> ThresholdCore<C> {
pub(crate) fn new(
params: ThresholdParams,
secret_share: Zeroizing<C::F>,
verification_shares: HashMap<Participant, C::G>,
) -> ThresholdCore<C> {
let t = (1 ..= params.t()).map(Participant).collect::<Vec<_>>();
ThresholdCore {
params,
secret_share,
group_key: t.iter().map(|i| verification_shares[i] * lagrange::<C::F>(*i, &t)).sum(),
verification_shares,
}
}
/// Parameters for these keys.
pub fn params(&self) -> ThresholdParams {
self.params
}
/// Secret share for these keys.
pub fn secret_share(&self) -> &Zeroizing<C::F> {
&self.secret_share
}
/// Group key for these keys.
pub fn group_key(&self) -> C::G {
self.group_key
}
pub(crate) fn verification_shares(&self) -> HashMap<Participant, C::G> {
self.verification_shares.clone()
}
/// Write these keys to a type satisfying std::io::Write.
pub fn write<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_all(&u32::try_from(C::ID.len()).unwrap().to_le_bytes())?;
writer.write_all(C::ID)?;
writer.write_all(&self.params.t.to_le_bytes())?;
writer.write_all(&self.params.n.to_le_bytes())?;
writer.write_all(&self.params.i.to_bytes())?;
let mut share_bytes = self.secret_share.to_repr();
writer.write_all(share_bytes.as_ref())?;
share_bytes.as_mut().zeroize();
for l in 1 ..= self.params.n {
writer
.write_all(self.verification_shares[&Participant::new(l).unwrap()].to_bytes().as_ref())?;
}
Ok(())
}
/// Serialize these keys to a `Vec<u8>`.
pub fn serialize(&self) -> Zeroizing<Vec<u8>> {
let mut serialized = Zeroizing::new(vec![]);
self.write::<Vec<u8>>(serialized.as_mut()).unwrap();
serialized
}
/// Read keys from a type satisfying std::io::Read.
pub fn read<R: io::Read>(reader: &mut R) -> io::Result<ThresholdCore<C>> {
{
let different = || io::Error::other("deserializing ThresholdCore for another curve");
let mut id_len = [0; 4];
reader.read_exact(&mut id_len)?;
if u32::try_from(C::ID.len()).unwrap().to_le_bytes() != id_len {
Err(different())?;
}
let mut id = vec![0; C::ID.len()];
reader.read_exact(&mut id)?;
if id != C::ID {
Err(different())?;
}
}
let (t, n, i) = {
let mut read_u16 = || -> io::Result<u16> {
let mut value = [0; 2];
reader.read_exact(&mut value)?;
Ok(u16::from_le_bytes(value))
};
(
read_u16()?,
read_u16()?,
Participant::new(read_u16()?).ok_or(io::Error::other("invalid participant index"))?,
)
};
let secret_share = Zeroizing::new(C::read_F(reader)?);
let mut verification_shares = HashMap::new();
for l in (1 ..= n).map(Participant) {
verification_shares.insert(l, <C as Ciphersuite>::read_G(reader)?);
}
Ok(ThresholdCore::new(
ThresholdParams::new(t, n, i).map_err(|_| io::Error::other("invalid parameters"))?,
secret_share,
verification_shares,
))
}
}
/// Threshold keys usable for signing.
#[derive(Clone, Debug, Zeroize)]
pub struct ThresholdKeys<C: Ciphersuite> {
// Core keys.
// If this is the last reference, the underlying keys will be dropped. When that happens, the
// private key present within it will be zeroed out (as it's within Zeroizing).
#[zeroize(skip)]
pub(crate) core: Arc<ThresholdCore<C>>,
// Offset applied to these keys.
pub(crate) offset: Option<C::F>,
}
/// View of keys, interpolated and offset for usage.
#[derive(Clone)]
pub struct ThresholdView<C: Ciphersuite> {
offset: C::F,
group_key: C::G,
included: Vec<Participant>,
secret_share: Zeroizing<C::F>,
original_verification_shares: HashMap<Participant, C::G>,
verification_shares: HashMap<Participant, C::G>,
}
impl<C: Ciphersuite> fmt::Debug for ThresholdView<C> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt
.debug_struct("ThresholdView")
.field("offset", &self.offset)
.field("group_key", &self.group_key)
.field("included", &self.included)
.field("original_verification_shares", &self.original_verification_shares)
.field("verification_shares", &self.verification_shares)
.finish_non_exhaustive()
}
}
impl<C: Ciphersuite> Zeroize for ThresholdView<C> {
fn zeroize(&mut self) {
self.offset.zeroize();
self.group_key.zeroize();
self.included.zeroize();
self.secret_share.zeroize();
for (_, share) in self.original_verification_shares.iter_mut() {
share.zeroize();
}
for (_, share) in self.verification_shares.iter_mut() {
share.zeroize();
}
}
}
impl<C: Ciphersuite> ThresholdKeys<C> {
/// Create a new set of ThresholdKeys from a ThresholdCore.
pub fn new(core: ThresholdCore<C>) -> ThresholdKeys<C> {
ThresholdKeys { core: Arc::new(core), offset: None }
}
/// Offset the keys by a given scalar to allow for various account and privacy schemes.
///
/// This offset is ephemeral and will not be included when these keys are serialized. It also
/// accumulates, so calling offset multiple times will produce a offset of the offsets' sum.
#[must_use]
pub fn offset(&self, offset: C::F) -> ThresholdKeys<C> {
let mut res = self.clone();
// Carry any existing offset
// Enables schemes like Monero's subaddresses which have a per-subaddress offset and then a
// one-time-key offset
res.offset = Some(offset + res.offset.unwrap_or(C::F::ZERO));
res
}
/// Return the current offset in-use for these keys.
pub fn current_offset(&self) -> Option<C::F> {
self.offset
}
/// Return the parameters for these keys.
pub fn params(&self) -> ThresholdParams {
self.core.params
}
/// Return the secret share for these keys.
pub fn secret_share(&self) -> &Zeroizing<C::F> {
&self.core.secret_share
}
/// Return the group key, with any offset applied.
pub fn group_key(&self) -> C::G {
self.core.group_key + (C::generator() * self.offset.unwrap_or(C::F::ZERO))
}
/// Return all participants' verification shares without any offsetting.
pub(crate) fn verification_shares(&self) -> HashMap<Participant, C::G> {
self.core.verification_shares()
}
/// Serialize these keys to a `Vec<u8>`.
pub fn serialize(&self) -> Zeroizing<Vec<u8>> {
self.core.serialize()
}
/// Obtain a view of these keys, with any offset applied, interpolated for the specified signing
/// set.
pub fn view(&self, mut included: Vec<Participant>) -> Result<ThresholdView<C>, DkgError<()>> {
if (included.len() < self.params().t.into()) ||
(usize::from(self.params().n()) < included.len())
{
Err(DkgError::InvalidSigningSet)?;
}
included.sort();
let mut secret_share = Zeroizing::new(
lagrange::<C::F>(self.params().i(), &included) * self.secret_share().deref(),
);
let mut verification_shares = self.verification_shares();
for (i, share) in verification_shares.iter_mut() {
*share *= lagrange::<C::F>(*i, &included);
}
// The offset is included by adding it to the participant with the lowest ID
let offset = self.offset.unwrap_or(C::F::ZERO);
if included[0] == self.params().i() {
*secret_share += offset;
}
*verification_shares.get_mut(&included[0]).unwrap() += C::generator() * offset;
Ok(ThresholdView {
offset,
group_key: self.group_key(),
secret_share,
original_verification_shares: self.verification_shares(),
verification_shares,
included,
})
}
}
impl<C: Ciphersuite> From<ThresholdCore<C>> for ThresholdKeys<C> {
fn from(keys: ThresholdCore<C>) -> ThresholdKeys<C> {
ThresholdKeys::new(keys)
}
}
impl<C: Ciphersuite> ThresholdView<C> {
/// Return the offset for this view.
pub fn offset(&self) -> C::F {
self.offset
}
/// Return the group key.
pub fn group_key(&self) -> C::G {
self.group_key
}
/// Return the included signers.
pub fn included(&self) -> &[Participant] {
&self.included
}
/// Return the interpolated, offset secret share.
pub fn secret_share(&self) -> &Zeroizing<C::F> {
&self.secret_share
}
/// Return the original verification share for the specified participant.
pub fn original_verification_share(&self, l: Participant) -> C::G {
self.original_verification_shares[&l]
}
/// Return the interpolated, offset verification share for the specified participant.
pub fn verification_share(&self, l: Participant) -> C::G {
self.verification_shares[&l]
}
}
}
#[cfg(feature = "std")]
pub use lib::*;