mirror of
https://github.com/serai-dex/serai.git
synced 2025-01-22 18:54:40 +00:00
1221 lines
45 KiB
Rust
1221 lines
45 KiB
Rust
use core::{ops::Deref, future::Future};
|
|
use std::{
|
|
sync::Arc,
|
|
time::{SystemTime, Duration},
|
|
collections::{VecDeque, HashMap},
|
|
};
|
|
|
|
use zeroize::{Zeroize, Zeroizing};
|
|
use rand_core::OsRng;
|
|
|
|
use ciphersuite::{
|
|
group::ff::{Field, PrimeField},
|
|
Ciphersuite, Ristretto,
|
|
};
|
|
use schnorr::SchnorrSignature;
|
|
use frost::Participant;
|
|
|
|
use serai_db::{DbTxn, Db};
|
|
use serai_env as env;
|
|
|
|
use serai_client::{primitives::NetworkId, Public, Serai};
|
|
|
|
use message_queue::{Service, client::MessageQueue};
|
|
|
|
use futures::stream::StreamExt;
|
|
use tokio::{
|
|
sync::{RwLock, mpsc, broadcast},
|
|
time::sleep,
|
|
};
|
|
|
|
use ::tributary::{ReadWrite, ProvidedError, TransactionKind, TransactionTrait, Block, Tributary};
|
|
|
|
mod tributary;
|
|
use crate::tributary::{
|
|
TributarySpec, SignData, Transaction, TributaryDb, NonceDecider, scanner::RecognizedIdType,
|
|
};
|
|
|
|
mod db;
|
|
use db::MainDb;
|
|
|
|
mod p2p;
|
|
pub use p2p::*;
|
|
|
|
use processor_messages::{key_gen, sign, coordinator, ProcessorMessage};
|
|
|
|
pub mod processors;
|
|
use processors::Processors;
|
|
|
|
mod substrate;
|
|
use substrate::SubstrateDb;
|
|
|
|
#[cfg(test)]
|
|
pub mod tests;
|
|
|
|
#[derive(Clone)]
|
|
pub struct ActiveTributary<D: Db, P: P2p> {
|
|
pub spec: TributarySpec,
|
|
pub tributary: Arc<Tributary<D, Transaction, P>>,
|
|
}
|
|
|
|
// Creates a new tributary and sends it to all listeners.
|
|
async fn add_tributary<D: Db, Pro: Processors, P: P2p>(
|
|
db: D,
|
|
key: Zeroizing<<Ristretto as Ciphersuite>::F>,
|
|
processors: &Pro,
|
|
p2p: P,
|
|
tributaries: &broadcast::Sender<ActiveTributary<D, P>>,
|
|
spec: TributarySpec,
|
|
) {
|
|
log::info!("adding tributary {:?}", spec.set());
|
|
|
|
let tributary = Tributary::<_, Transaction, _>::new(
|
|
// TODO2: Use a db on a distinct volume to protect against DoS attacks
|
|
db,
|
|
spec.genesis(),
|
|
spec.start_time(),
|
|
key.clone(),
|
|
spec.validators(),
|
|
p2p,
|
|
)
|
|
.await
|
|
.unwrap();
|
|
|
|
// Trigger a DKG for the newly added Tributary
|
|
// If we're rebooting, we'll re-fire this message
|
|
// This is safe due to the message-queue deduplicating based off the intent system
|
|
let set = spec.set();
|
|
processors
|
|
.send(
|
|
set.network,
|
|
processor_messages::key_gen::CoordinatorMessage::GenerateKey {
|
|
id: processor_messages::key_gen::KeyGenId { set, attempt: 0 },
|
|
params: frost::ThresholdParams::new(
|
|
spec.t(),
|
|
spec.n(),
|
|
spec
|
|
.i(Ristretto::generator() * key.deref())
|
|
.expect("adding a tributary for a set we aren't in set for"),
|
|
)
|
|
.unwrap(),
|
|
},
|
|
)
|
|
.await;
|
|
|
|
tributaries
|
|
.send(ActiveTributary { spec, tributary: Arc::new(tributary) })
|
|
.map_err(|_| "all ActiveTributary recipients closed")
|
|
.unwrap();
|
|
}
|
|
|
|
pub async fn scan_substrate<D: Db, Pro: Processors>(
|
|
db: D,
|
|
key: Zeroizing<<Ristretto as Ciphersuite>::F>,
|
|
processors: Pro,
|
|
serai: Arc<Serai>,
|
|
new_tributary_spec: mpsc::UnboundedSender<TributarySpec>,
|
|
) {
|
|
log::info!("scanning substrate");
|
|
|
|
let mut db = SubstrateDb::new(db);
|
|
let mut next_substrate_block = db.next_block();
|
|
|
|
let new_substrate_block_notifier = {
|
|
let serai = &serai;
|
|
move || async move {
|
|
loop {
|
|
match serai.newly_finalized_block().await {
|
|
Ok(sub) => return sub,
|
|
Err(e) => {
|
|
log::error!("couldn't communicate with serai node: {e}");
|
|
sleep(Duration::from_secs(5)).await;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
let mut substrate_block_notifier = new_substrate_block_notifier().await;
|
|
|
|
loop {
|
|
// await the next block, yet if our notifier had an error, re-create it
|
|
{
|
|
let Ok(next_block) =
|
|
tokio::time::timeout(Duration::from_secs(60), substrate_block_notifier.next()).await
|
|
else {
|
|
// Timed out, which may be because Serai isn't finalizing or may be some issue with the
|
|
// notifier
|
|
if serai.get_latest_block().await.map(|block| block.number()).ok() ==
|
|
Some(next_substrate_block.saturating_sub(1))
|
|
{
|
|
log::info!("serai hasn't finalized a block in the last 60s...");
|
|
} else {
|
|
substrate_block_notifier = new_substrate_block_notifier().await;
|
|
}
|
|
continue;
|
|
};
|
|
|
|
// next_block is a Option<Result>
|
|
if next_block.and_then(Result::ok).is_none() {
|
|
substrate_block_notifier = new_substrate_block_notifier().await;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
match substrate::handle_new_blocks(
|
|
&mut db,
|
|
&key,
|
|
|db: &mut D, spec: TributarySpec| {
|
|
log::info!("creating new tributary for {:?}", spec.set());
|
|
|
|
// Save it to the database
|
|
let mut txn = db.txn();
|
|
MainDb::<D>::add_active_tributary(&mut txn, &spec);
|
|
txn.commit();
|
|
|
|
// If we reboot before this is read, the fact it was saved to the database means it'll be
|
|
// handled on reboot
|
|
new_tributary_spec.send(spec).unwrap();
|
|
},
|
|
&processors,
|
|
&serai,
|
|
&mut next_substrate_block,
|
|
)
|
|
.await
|
|
{
|
|
Ok(()) => {}
|
|
Err(e) => {
|
|
log::error!("couldn't communicate with serai node: {e}");
|
|
sleep(Duration::from_secs(5)).await;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub(crate) trait RIDTrait<FRid>:
|
|
Clone + Fn(NetworkId, [u8; 32], RecognizedIdType, [u8; 32], u32) -> FRid
|
|
{
|
|
}
|
|
impl<FRid, F: Clone + Fn(NetworkId, [u8; 32], RecognizedIdType, [u8; 32], u32) -> FRid>
|
|
RIDTrait<FRid> for F
|
|
{
|
|
}
|
|
|
|
pub(crate) async fn scan_tributaries<
|
|
D: Db,
|
|
Pro: Processors,
|
|
P: P2p,
|
|
FRid: Send + Future<Output = ()>,
|
|
RID: 'static + Send + Sync + RIDTrait<FRid>,
|
|
>(
|
|
raw_db: D,
|
|
key: Zeroizing<<Ristretto as Ciphersuite>::F>,
|
|
recognized_id: RID,
|
|
processors: Pro,
|
|
serai: Arc<Serai>,
|
|
mut new_tributary: broadcast::Receiver<ActiveTributary<D, P>>,
|
|
) {
|
|
log::info!("scanning tributaries");
|
|
|
|
loop {
|
|
match new_tributary.recv().await {
|
|
Ok(ActiveTributary { spec, tributary }) => {
|
|
// For each Tributary, spawn a dedicated scanner task
|
|
tokio::spawn({
|
|
let raw_db = raw_db.clone();
|
|
let key = key.clone();
|
|
let recognized_id = recognized_id.clone();
|
|
let processors = processors.clone();
|
|
let serai = serai.clone();
|
|
async move {
|
|
let spec = &spec;
|
|
let reader = tributary.reader();
|
|
let mut tributary_db = tributary::TributaryDb::new(raw_db.clone());
|
|
loop {
|
|
// Obtain the next block notification now to prevent obtaining it immediately after
|
|
// the next block occurs
|
|
let next_block_notification = tributary.next_block_notification().await;
|
|
|
|
tributary::scanner::handle_new_blocks::<_, _, _, _, _, _, P>(
|
|
&mut tributary_db,
|
|
&key,
|
|
recognized_id.clone(),
|
|
&processors,
|
|
|set, tx| {
|
|
let serai = serai.clone();
|
|
async move {
|
|
loop {
|
|
match serai.publish(&tx).await {
|
|
Ok(_) => {
|
|
log::info!("set key pair for {set:?}");
|
|
break;
|
|
}
|
|
// This is assumed to be some ephemeral error due to the assumed fault-free
|
|
// creation
|
|
// TODO2: Differentiate connection errors from invariants
|
|
Err(e) => {
|
|
if let Ok(latest) = serai.get_latest_block_hash().await {
|
|
// Check if this failed because the keys were already set by someone
|
|
// else
|
|
if matches!(serai.get_keys(spec.set(), latest).await, Ok(Some(_))) {
|
|
log::info!("another coordinator set key pair for {:?}", set);
|
|
break;
|
|
}
|
|
|
|
// The above block may return false if the keys have been pruned from
|
|
// the state
|
|
// Check if this session is no longer the latest session, meaning it at
|
|
// some point did set keys, and we're just operating off very
|
|
// historical data
|
|
if let Ok(Some(current_session)) =
|
|
serai.get_session(spec.set().network, latest).await
|
|
{
|
|
if current_session.0 > spec.set().session.0 {
|
|
log::warn!(
|
|
"trying to set keys for a set which isn't the latest {:?}",
|
|
set
|
|
);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
log::error!(
|
|
"couldn't connect to Serai node to publish set_keys TX: {:?}",
|
|
e
|
|
);
|
|
tokio::time::sleep(Duration::from_secs(10)).await;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
},
|
|
spec,
|
|
&reader,
|
|
)
|
|
.await;
|
|
|
|
next_block_notification
|
|
.await
|
|
.map_err(|_| "")
|
|
.expect("tributary dropped its notifications?");
|
|
}
|
|
}
|
|
});
|
|
}
|
|
Err(broadcast::error::RecvError::Lagged(_)) => {
|
|
panic!("scan_tributaries lagged to handle new_tributary")
|
|
}
|
|
Err(broadcast::error::RecvError::Closed) => panic!("new_tributary sender closed"),
|
|
}
|
|
}
|
|
}
|
|
|
|
pub async fn heartbeat_tributaries<D: Db, P: P2p>(
|
|
p2p: P,
|
|
mut new_tributary: broadcast::Receiver<ActiveTributary<D, P>>,
|
|
) {
|
|
let ten_blocks_of_time =
|
|
Duration::from_secs((10 * Tributary::<D, Transaction, P>::block_time()).into());
|
|
|
|
let mut readers = vec![];
|
|
loop {
|
|
while let Ok(ActiveTributary { spec: _, tributary }) = {
|
|
match new_tributary.try_recv() {
|
|
Ok(tributary) => Ok(tributary),
|
|
Err(broadcast::error::TryRecvError::Empty) => Err(()),
|
|
Err(broadcast::error::TryRecvError::Lagged(_)) => {
|
|
panic!("heartbeat_tributaries lagged to handle new_tributary")
|
|
}
|
|
Err(broadcast::error::TryRecvError::Closed) => panic!("new_tributary sender closed"),
|
|
}
|
|
} {
|
|
readers.push(tributary.reader());
|
|
}
|
|
|
|
for tributary in &readers {
|
|
let tip = tributary.tip();
|
|
let block_time =
|
|
SystemTime::UNIX_EPOCH + Duration::from_secs(tributary.time_of_block(&tip).unwrap_or(0));
|
|
|
|
// Only trigger syncing if the block is more than a minute behind
|
|
if SystemTime::now() > (block_time + Duration::from_secs(60)) {
|
|
log::warn!("last known tributary block was over a minute ago");
|
|
let mut msg = tip.to_vec();
|
|
// Also include the timestamp so LibP2p doesn't flag this as an old message re-circulating
|
|
let timestamp = SystemTime::now()
|
|
.duration_since(SystemTime::UNIX_EPOCH)
|
|
.expect("system clock is wrong")
|
|
.as_secs();
|
|
// Divide by the block time so if multiple parties send a Heartbeat, they're more likely to
|
|
// overlap
|
|
let time_unit = timestamp / u64::from(Tributary::<D, Transaction, P>::block_time());
|
|
msg.extend(time_unit.to_le_bytes());
|
|
P2p::broadcast(&p2p, P2pMessageKind::Heartbeat(tributary.genesis()), msg).await;
|
|
}
|
|
}
|
|
|
|
// Only check once every 10 blocks of time
|
|
sleep(ten_blocks_of_time).await;
|
|
}
|
|
}
|
|
|
|
pub async fn handle_p2p<D: Db, P: P2p>(
|
|
our_key: <Ristretto as Ciphersuite>::G,
|
|
p2p: P,
|
|
mut new_tributary: broadcast::Receiver<ActiveTributary<D, P>>,
|
|
) {
|
|
let channels = Arc::new(RwLock::new(HashMap::new()));
|
|
tokio::spawn({
|
|
let p2p = p2p.clone();
|
|
let channels = channels.clone();
|
|
async move {
|
|
loop {
|
|
let tributary = new_tributary.recv().await.unwrap();
|
|
let genesis = tributary.spec.genesis();
|
|
|
|
let (send, mut recv) = mpsc::unbounded_channel();
|
|
channels.write().await.insert(genesis, send);
|
|
|
|
tokio::spawn({
|
|
let p2p = p2p.clone();
|
|
async move {
|
|
loop {
|
|
let mut msg: Message<P> = recv.recv().await.unwrap();
|
|
match msg.kind {
|
|
P2pMessageKind::KeepAlive => {}
|
|
|
|
P2pMessageKind::Tributary(msg_genesis) => {
|
|
assert_eq!(msg_genesis, genesis);
|
|
log::trace!("handling message for tributary {:?}", tributary.spec.set());
|
|
if tributary.tributary.handle_message(&msg.msg).await {
|
|
P2p::broadcast(&p2p, msg.kind, msg.msg).await;
|
|
}
|
|
}
|
|
|
|
// TODO2: Rate limit this per timestamp
|
|
// And/or slash on Heartbeat which justifies a response, since the node obviously
|
|
// was offline and we must now use our bandwidth to compensate for them?
|
|
P2pMessageKind::Heartbeat(msg_genesis) => {
|
|
assert_eq!(msg_genesis, genesis);
|
|
if msg.msg.len() != 40 {
|
|
log::error!("validator sent invalid heartbeat");
|
|
continue;
|
|
}
|
|
|
|
let p2p = p2p.clone();
|
|
let spec = tributary.spec.clone();
|
|
let reader = tributary.tributary.reader();
|
|
// Spawn a dedicated task as this may require loading large amounts of data from
|
|
// disk and take a notable amount of time
|
|
tokio::spawn(async move {
|
|
/*
|
|
// Have sqrt(n) nodes reply with the blocks
|
|
let mut responders = (tributary.spec.n() as f32).sqrt().floor() as u64;
|
|
// Try to have at least 3 responders
|
|
if responders < 3 {
|
|
responders = tributary.spec.n().min(3).into();
|
|
}
|
|
*/
|
|
|
|
// Have up to three nodes respond
|
|
let responders = u64::from(spec.n().min(3));
|
|
|
|
// Decide which nodes will respond by using the latest block's hash as a
|
|
// mutually agreed upon entropy source
|
|
// This isn't a secure source of entropy, yet it's fine for this
|
|
let entropy = u64::from_le_bytes(reader.tip()[.. 8].try_into().unwrap());
|
|
// If n = 10, responders = 3, we want `start` to be 0 ..= 7
|
|
// (so the highest is 7, 8, 9)
|
|
// entropy % (10 + 1) - 3 = entropy % 8 = 0 ..= 7
|
|
let start =
|
|
usize::try_from(entropy % (u64::from(spec.n() + 1) - responders)).unwrap();
|
|
let mut selected = false;
|
|
for validator in
|
|
&spec.validators()[start .. (start + usize::try_from(responders).unwrap())]
|
|
{
|
|
if our_key == validator.0 {
|
|
selected = true;
|
|
break;
|
|
}
|
|
}
|
|
if !selected {
|
|
log::debug!("received heartbeat and not selected to respond");
|
|
return;
|
|
}
|
|
|
|
log::debug!("received heartbeat and selected to respond");
|
|
|
|
let mut latest = msg.msg[.. 32].try_into().unwrap();
|
|
while let Some(next) = reader.block_after(&latest) {
|
|
let mut res = reader.block(&next).unwrap().serialize();
|
|
res.extend(reader.commit(&next).unwrap());
|
|
// Also include the timestamp used within the Heartbeat
|
|
res.extend(&msg.msg[32 .. 40]);
|
|
p2p.send(msg.sender, P2pMessageKind::Block(spec.genesis()), res).await;
|
|
latest = next;
|
|
}
|
|
});
|
|
}
|
|
|
|
P2pMessageKind::Block(msg_genesis) => {
|
|
assert_eq!(msg_genesis, genesis);
|
|
let mut msg_ref: &[u8] = msg.msg.as_ref();
|
|
let Ok(block) = Block::<Transaction>::read(&mut msg_ref) else {
|
|
log::error!("received block message with an invalidly serialized block");
|
|
continue;
|
|
};
|
|
// Get just the commit
|
|
msg.msg.drain(.. (msg.msg.len() - msg_ref.len()));
|
|
msg.msg.drain((msg.msg.len() - 8) ..);
|
|
|
|
let res = tributary.tributary.sync_block(block, msg.msg).await;
|
|
log::debug!("received block from {:?}, sync_block returned {}", msg.sender, res);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
});
|
|
}
|
|
}
|
|
});
|
|
|
|
loop {
|
|
let msg = p2p.receive().await;
|
|
match msg.kind {
|
|
P2pMessageKind::KeepAlive => {}
|
|
P2pMessageKind::Tributary(genesis) => {
|
|
if let Some(channel) = channels.read().await.get(&genesis) {
|
|
channel.send(msg).unwrap();
|
|
}
|
|
}
|
|
P2pMessageKind::Heartbeat(genesis) => {
|
|
if let Some(channel) = channels.read().await.get(&genesis) {
|
|
channel.send(msg).unwrap();
|
|
}
|
|
}
|
|
P2pMessageKind::Block(genesis) => {
|
|
if let Some(channel) = channels.read().await.get(&genesis) {
|
|
channel.send(msg).unwrap();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
async fn publish_signed_transaction<D: Db, P: P2p>(
|
|
db: &mut D,
|
|
tributary: &Tributary<D, Transaction, P>,
|
|
tx: Transaction,
|
|
) {
|
|
log::debug!("publishing transaction {}", hex::encode(tx.hash()));
|
|
|
|
let mut txn = db.txn();
|
|
let signer = if let TransactionKind::Signed(signed) = tx.kind() {
|
|
let signer = signed.signer;
|
|
|
|
// Safe as we should deterministically create transactions, meaning if this is already on-disk,
|
|
// it's what we're saving now
|
|
MainDb::<D>::save_signed_transaction(&mut txn, signed.nonce, tx);
|
|
|
|
signer
|
|
} else {
|
|
panic!("non-signed transaction passed to publish_signed_transaction");
|
|
};
|
|
|
|
// If we're trying to publish 5, when the last transaction published was 3, this will delay
|
|
// publication until the point in time we publish 4
|
|
while let Some(tx) = MainDb::<D>::take_signed_transaction(
|
|
&mut txn,
|
|
tributary
|
|
.next_nonce(signer)
|
|
.await
|
|
.expect("we don't have a nonce, meaning we aren't a participant on this tributary"),
|
|
) {
|
|
// We should've created a valid transaction
|
|
// This does assume publish_signed_transaction hasn't been called twice with the same
|
|
// transaction, which risks a race condition on the validity of this assert
|
|
// Our use case only calls this function sequentially
|
|
assert!(tributary.add_transaction(tx).await, "created an invalid transaction");
|
|
}
|
|
txn.commit();
|
|
}
|
|
|
|
async fn handle_processor_messages<D: Db, Pro: Processors, P: P2p>(
|
|
mut db: D,
|
|
key: Zeroizing<<Ristretto as Ciphersuite>::F>,
|
|
serai: Arc<Serai>,
|
|
mut processors: Pro,
|
|
network: NetworkId,
|
|
mut new_tributary: mpsc::UnboundedReceiver<ActiveTributary<D, P>>,
|
|
) {
|
|
let mut db_clone = db.clone(); // Enables cloning the DB while we have a txn
|
|
let pub_key = Ristretto::generator() * key.deref();
|
|
|
|
let mut tributaries = HashMap::new();
|
|
|
|
loop {
|
|
match new_tributary.try_recv() {
|
|
Ok(tributary) => {
|
|
let set = tributary.spec.set();
|
|
assert_eq!(set.network, network);
|
|
tributaries.insert(set.session, tributary);
|
|
}
|
|
Err(mpsc::error::TryRecvError::Empty) => {}
|
|
Err(mpsc::error::TryRecvError::Disconnected) => {
|
|
panic!("handle_processor_messages new_tributary sender closed")
|
|
}
|
|
}
|
|
|
|
// TODO: Check this ID is sane (last handled ID or expected next ID)
|
|
let msg = processors.recv(network).await;
|
|
|
|
// TODO: We need to verify the Batches published to Substrate
|
|
|
|
if !MainDb::<D>::handled_message(&db, msg.network, msg.id) {
|
|
let mut txn = db.txn();
|
|
|
|
let relevant_tributary = match &msg.msg {
|
|
// We'll only receive these if we fired GenerateKey, which we'll only do if if we're
|
|
// in-set, making the Tributary relevant
|
|
ProcessorMessage::KeyGen(inner_msg) => match inner_msg {
|
|
key_gen::ProcessorMessage::Commitments { id, .. } => Some(id.set.session),
|
|
key_gen::ProcessorMessage::Shares { id, .. } => Some(id.set.session),
|
|
key_gen::ProcessorMessage::GeneratedKeyPair { id, .. } => Some(id.set.session),
|
|
},
|
|
// TODO: Review replacing key with Session in messages?
|
|
ProcessorMessage::Sign(inner_msg) => match inner_msg {
|
|
// We'll only receive Preprocess and Share if we're actively signing
|
|
sign::ProcessorMessage::Preprocess { id, .. } => {
|
|
Some(SubstrateDb::<D>::session_for_key(&txn, &id.key).unwrap())
|
|
}
|
|
sign::ProcessorMessage::Share { id, .. } => {
|
|
Some(SubstrateDb::<D>::session_for_key(&txn, &id.key).unwrap())
|
|
}
|
|
// While the Processor's Scanner will always emit Completed, that's routed through the
|
|
// Signer and only becomes a ProcessorMessage::Completed if the Signer is present and
|
|
// confirms it
|
|
sign::ProcessorMessage::Completed { key, .. } => {
|
|
Some(SubstrateDb::<D>::session_for_key(&txn, key).unwrap())
|
|
}
|
|
},
|
|
ProcessorMessage::Coordinator(inner_msg) => match inner_msg {
|
|
// This is a special case as it's relevant to *all* Tributaries for this network
|
|
// It doesn't return a Tributary to become `relevant_tributary` though
|
|
coordinator::ProcessorMessage::SubstrateBlockAck { network, block, plans } => {
|
|
assert_eq!(
|
|
*network, msg.network,
|
|
"processor claimed to be a different network than it was for SubstrateBlockAck",
|
|
);
|
|
|
|
// TODO: Find all Tributaries active at this Substrate block, and make sure we have
|
|
// them all
|
|
|
|
for tributary in tributaries.values() {
|
|
// TODO: This needs to be scoped per multisig
|
|
TributaryDb::<D>::set_plan_ids(&mut txn, tributary.spec.genesis(), *block, plans);
|
|
|
|
let tx = Transaction::SubstrateBlock(*block);
|
|
log::trace!("processor message effected transaction {}", hex::encode(tx.hash()));
|
|
log::trace!("providing transaction {}", hex::encode(tx.hash()));
|
|
let res = tributary.tributary.provide_transaction(tx).await;
|
|
if !(res.is_ok() || (res == Err(ProvidedError::AlreadyProvided))) {
|
|
panic!("provided an invalid transaction: {res:?}");
|
|
}
|
|
}
|
|
|
|
None
|
|
}
|
|
// We'll only fire these if we are the Substrate signer, making the Tributary relevant
|
|
coordinator::ProcessorMessage::BatchPreprocess { id, .. } => {
|
|
Some(SubstrateDb::<D>::session_for_key(&txn, &id.key).unwrap())
|
|
}
|
|
coordinator::ProcessorMessage::BatchShare { id, .. } => {
|
|
Some(SubstrateDb::<D>::session_for_key(&txn, &id.key).unwrap())
|
|
}
|
|
},
|
|
// These don't return a relevant Tributary as there's no Tributary with action expected
|
|
ProcessorMessage::Substrate(inner_msg) => match inner_msg {
|
|
processor_messages::substrate::ProcessorMessage::Batch { batch } => {
|
|
assert_eq!(
|
|
batch.network, msg.network,
|
|
"processor sent us a batch for a different network than it was for",
|
|
);
|
|
let this_batch_id = batch.id;
|
|
MainDb::<D>::save_expected_batch(&mut txn, batch);
|
|
|
|
// Re-define batch
|
|
// We can't drop it, yet it shouldn't be accidentally used in the following block
|
|
#[allow(clippy::let_unit_value, unused_variables)]
|
|
let batch = ();
|
|
|
|
// Verify all `Batch`s which we've already indexed from Substrate
|
|
// This won't be complete, as it only runs when a `Batch` message is received, which
|
|
// will be before we get a `SignedBatch`. It is, however, incremental. We can use a
|
|
// complete version to finish the last section when we need a complete version.
|
|
let last = MainDb::<D>::last_verified_batch(&txn, msg.network);
|
|
// This variable exists so Rust can verify Send/Sync properties
|
|
let mut faulty = None;
|
|
for id in last.map(|last| last + 1).unwrap_or(0) ..= this_batch_id {
|
|
if let Some(on_chain) = SubstrateDb::<D>::batch_instructions_hash(&txn, network, id) {
|
|
let off_chain = MainDb::<D>::expected_batch(&txn, network, id).unwrap();
|
|
if on_chain != off_chain {
|
|
faulty = Some((id, off_chain, on_chain));
|
|
break;
|
|
}
|
|
MainDb::<D>::save_last_verified_batch(&mut txn, msg.network, id);
|
|
}
|
|
}
|
|
|
|
if let Some((id, off_chain, on_chain)) = faulty {
|
|
// Halt operations on this network and spin, as this is a critical fault
|
|
loop {
|
|
log::error!(
|
|
"{}! network: {:?} id: {} off-chain: {} on-chain: {}",
|
|
"on-chain batch doesn't match off-chain",
|
|
network,
|
|
id,
|
|
hex::encode(off_chain),
|
|
hex::encode(on_chain),
|
|
);
|
|
sleep(Duration::from_secs(60)).await;
|
|
}
|
|
}
|
|
|
|
None
|
|
}
|
|
// If this is a new Batch, immediately publish it (if we can)
|
|
processor_messages::substrate::ProcessorMessage::SignedBatch { batch } => {
|
|
assert_eq!(
|
|
batch.batch.network, msg.network,
|
|
"processor sent us a signed batch for a different network than it was for",
|
|
);
|
|
// TODO: Check this key's key pair's substrate key is authorized to publish batches
|
|
|
|
log::debug!("received batch {:?} {}", batch.batch.network, batch.batch.id);
|
|
|
|
// Save this batch to the disk
|
|
MainDb::<D>::save_batch(&mut txn, batch.clone());
|
|
|
|
// Get the next-to-execute batch ID
|
|
async fn get_next(serai: &Serai, network: NetworkId) -> u32 {
|
|
let mut first = true;
|
|
loop {
|
|
if !first {
|
|
log::error!(
|
|
"{} {network:?}",
|
|
"couldn't connect to Serai node to get the next batch ID for",
|
|
);
|
|
tokio::time::sleep(Duration::from_secs(5)).await;
|
|
}
|
|
first = false;
|
|
|
|
let Ok(latest_block) = serai.get_latest_block().await else {
|
|
continue;
|
|
};
|
|
let Ok(last) = serai.get_last_batch_for_network(latest_block.hash(), network).await
|
|
else {
|
|
continue;
|
|
};
|
|
break if let Some(last) = last { last + 1 } else { 0 };
|
|
}
|
|
}
|
|
let mut next = get_next(&serai, network).await;
|
|
|
|
// Since we have a new batch, publish all batches yet to be published to Serai
|
|
// This handles the edge-case where batch n+1 is signed before batch n is
|
|
let mut batches = VecDeque::new();
|
|
while let Some(batch) = MainDb::<D>::batch(&txn, network, next) {
|
|
batches.push_back(batch);
|
|
next += 1;
|
|
}
|
|
|
|
while let Some(batch) = batches.pop_front() {
|
|
// If this Batch should no longer be published, continue
|
|
if get_next(&serai, network).await > batch.batch.id {
|
|
continue;
|
|
}
|
|
|
|
let tx = Serai::execute_batch(batch.clone());
|
|
log::debug!(
|
|
"attempting to publish batch {:?} {}",
|
|
batch.batch.network,
|
|
batch.batch.id,
|
|
);
|
|
// This publish may fail if this transactions already exists in the mempool, which is
|
|
// possible, or if this batch was already executed on-chain
|
|
// Either case will have eventual resolution and be handled by the above check on if
|
|
// this batch should execute
|
|
let res = serai.publish(&tx).await;
|
|
if res.is_ok() {
|
|
log::info!(
|
|
"published batch {network:?} {} (block {})",
|
|
batch.batch.id,
|
|
hex::encode(batch.batch.block),
|
|
);
|
|
} else {
|
|
log::debug!(
|
|
"couldn't publish batch {:?} {}: {:?}",
|
|
batch.batch.network,
|
|
batch.batch.id,
|
|
res,
|
|
);
|
|
// If we failed to publish it, restore it
|
|
batches.push_front(batch);
|
|
// Sleep for a few seconds before retrying to prevent hammering the node
|
|
tokio::time::sleep(Duration::from_secs(5)).await;
|
|
}
|
|
}
|
|
|
|
None
|
|
}
|
|
},
|
|
};
|
|
|
|
// If there's a relevant Tributary...
|
|
if let Some(relevant_tributary) = relevant_tributary {
|
|
// Make sure we have it
|
|
// Per the reasoning above, we only return a Tributary as relevant if we're a participant
|
|
// Accordingly, we do *need* to have this Tributary now to handle it UNLESS the Tributary
|
|
// has already completed and this is simply an old message
|
|
// TODO: Check if the Tributary has already been completed
|
|
let Some(ActiveTributary { spec, tributary }) = tributaries.get(&relevant_tributary) else {
|
|
// Since we don't, sleep for a fraction of a second and move to the next loop iteration
|
|
// At the start of the loop, we'll check for new tributaries, making this eventually
|
|
// resolve
|
|
sleep(Duration::from_millis(100)).await;
|
|
continue;
|
|
};
|
|
|
|
let genesis = spec.genesis();
|
|
|
|
let tx = match msg.msg.clone() {
|
|
ProcessorMessage::KeyGen(inner_msg) => match inner_msg {
|
|
key_gen::ProcessorMessage::Commitments { id, commitments } => Some(
|
|
Transaction::DkgCommitments(id.attempt, commitments, Transaction::empty_signed()),
|
|
),
|
|
key_gen::ProcessorMessage::Shares { id, mut shares } => {
|
|
// Create a MuSig-based machine to inform Substrate of this key generation
|
|
let nonces = crate::tributary::dkg_confirmation_nonces(&key, spec, id.attempt);
|
|
|
|
let mut tx_shares = Vec::with_capacity(shares.len());
|
|
for i in 1 ..= spec.n() {
|
|
let i = Participant::new(i).unwrap();
|
|
if i ==
|
|
spec
|
|
.i(pub_key)
|
|
.expect("processor message to DKG for a session we aren't a validator in")
|
|
{
|
|
continue;
|
|
}
|
|
tx_shares.push(
|
|
shares.remove(&i).expect("processor didn't send share for another validator"),
|
|
);
|
|
}
|
|
|
|
Some(Transaction::DkgShares {
|
|
attempt: id.attempt,
|
|
shares: tx_shares,
|
|
confirmation_nonces: nonces,
|
|
signed: Transaction::empty_signed(),
|
|
})
|
|
}
|
|
key_gen::ProcessorMessage::GeneratedKeyPair { id, substrate_key, network_key } => {
|
|
assert_eq!(
|
|
id.set.network, msg.network,
|
|
"processor claimed to be a different network than it was for GeneratedKeyPair",
|
|
);
|
|
// TODO2: Also check the other KeyGenId fields
|
|
|
|
// Tell the Tributary the key pair, get back the share for the MuSig signature
|
|
let share = crate::tributary::generated_key_pair::<D>(
|
|
&mut txn,
|
|
&key,
|
|
spec,
|
|
&(Public(substrate_key), network_key.try_into().unwrap()),
|
|
id.attempt,
|
|
);
|
|
|
|
match share {
|
|
Ok(share) => {
|
|
Some(Transaction::DkgConfirmed(id.attempt, share, Transaction::empty_signed()))
|
|
}
|
|
Err(p) => {
|
|
todo!("participant {p:?} sent invalid DKG confirmation preprocesses")
|
|
}
|
|
}
|
|
}
|
|
},
|
|
ProcessorMessage::Sign(msg) => match msg {
|
|
sign::ProcessorMessage::Preprocess { id, preprocess } => {
|
|
if id.attempt == 0 {
|
|
MainDb::<D>::save_first_preprocess(&mut txn, network, id.id, preprocess);
|
|
|
|
None
|
|
} else {
|
|
Some(Transaction::SignPreprocess(SignData {
|
|
plan: id.id,
|
|
attempt: id.attempt,
|
|
data: preprocess,
|
|
signed: Transaction::empty_signed(),
|
|
}))
|
|
}
|
|
}
|
|
sign::ProcessorMessage::Share { id, share } => Some(Transaction::SignShare(SignData {
|
|
plan: id.id,
|
|
attempt: id.attempt,
|
|
data: share,
|
|
signed: Transaction::empty_signed(),
|
|
})),
|
|
sign::ProcessorMessage::Completed { key: _, id, tx } => {
|
|
let r = Zeroizing::new(<Ristretto as Ciphersuite>::F::random(&mut OsRng));
|
|
#[allow(non_snake_case)]
|
|
let R = <Ristretto as Ciphersuite>::generator() * r.deref();
|
|
let mut tx = Transaction::SignCompleted {
|
|
plan: id,
|
|
tx_hash: tx,
|
|
first_signer: pub_key,
|
|
signature: SchnorrSignature { R, s: <Ristretto as Ciphersuite>::F::ZERO },
|
|
};
|
|
let signed = SchnorrSignature::sign(&key, r, tx.sign_completed_challenge());
|
|
match &mut tx {
|
|
Transaction::SignCompleted { signature, .. } => {
|
|
*signature = signed;
|
|
}
|
|
_ => unreachable!(),
|
|
}
|
|
Some(tx)
|
|
}
|
|
},
|
|
ProcessorMessage::Coordinator(inner_msg) => match inner_msg {
|
|
coordinator::ProcessorMessage::SubstrateBlockAck { .. } => unreachable!(),
|
|
coordinator::ProcessorMessage::BatchPreprocess { id, block, preprocess } => {
|
|
log::info!(
|
|
"informed of batch (sign ID {}, attempt {}) for block {}",
|
|
hex::encode(id.id),
|
|
id.attempt,
|
|
hex::encode(block),
|
|
);
|
|
// If this is the first attempt instance, wait until we synchronize around
|
|
// the batch first
|
|
if id.attempt == 0 {
|
|
MainDb::<D>::save_first_preprocess(&mut txn, spec.set().network, id.id, preprocess);
|
|
|
|
// TODO: If this is the new key's first Batch, only create this TX once we verify
|
|
// all prior published `Batch`s
|
|
Some(Transaction::Batch(block.0, id.id))
|
|
} else {
|
|
Some(Transaction::BatchPreprocess(SignData {
|
|
plan: id.id,
|
|
attempt: id.attempt,
|
|
data: preprocess,
|
|
signed: Transaction::empty_signed(),
|
|
}))
|
|
}
|
|
}
|
|
coordinator::ProcessorMessage::BatchShare { id, share } => {
|
|
Some(Transaction::BatchShare(SignData {
|
|
plan: id.id,
|
|
attempt: id.attempt,
|
|
data: share.to_vec(),
|
|
signed: Transaction::empty_signed(),
|
|
}))
|
|
}
|
|
},
|
|
ProcessorMessage::Substrate(inner_msg) => match inner_msg {
|
|
processor_messages::substrate::ProcessorMessage::Batch { .. } => unreachable!(),
|
|
processor_messages::substrate::ProcessorMessage::SignedBatch { .. } => unreachable!(),
|
|
},
|
|
};
|
|
|
|
// If this created a transaction, publish it
|
|
if let Some(mut tx) = tx {
|
|
log::trace!("processor message effected transaction {}", hex::encode(tx.hash()));
|
|
|
|
match tx.kind() {
|
|
TransactionKind::Provided(_) => {
|
|
log::trace!("providing transaction {}", hex::encode(tx.hash()));
|
|
let res = tributary.provide_transaction(tx).await;
|
|
if !(res.is_ok() || (res == Err(ProvidedError::AlreadyProvided))) {
|
|
panic!("provided an invalid transaction: {res:?}");
|
|
}
|
|
}
|
|
TransactionKind::Unsigned => {
|
|
log::trace!("publishing unsigned transaction {}", hex::encode(tx.hash()));
|
|
// Ignores the result since we can't differentiate already in-mempool from
|
|
// already on-chain from invalid
|
|
// TODO: Don't ignore the result
|
|
tributary.add_transaction(tx).await;
|
|
}
|
|
TransactionKind::Signed(_) => {
|
|
log::trace!("getting next nonce for Tributary TX in response to processor message");
|
|
|
|
let nonce = loop {
|
|
let Some(nonce) = NonceDecider::<D>::nonce(&txn, genesis, &tx)
|
|
.expect("signed TX didn't have nonce")
|
|
else {
|
|
// This can be None if:
|
|
// 1) We scanned the relevant transaction(s) in a Tributary block
|
|
// 2) The processor was sent a message and responded
|
|
// 3) The Tributary TXN has yet to be committed
|
|
log::warn!("nonce has yet to be saved for processor-instigated transaction");
|
|
sleep(Duration::from_millis(100)).await;
|
|
continue;
|
|
};
|
|
break nonce;
|
|
};
|
|
tx.sign(&mut OsRng, genesis, &key, nonce);
|
|
|
|
publish_signed_transaction(&mut db_clone, tributary, tx).await;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
MainDb::<D>::save_handled_message(&mut txn, msg.network, msg.id);
|
|
txn.commit();
|
|
}
|
|
|
|
processors.ack(msg).await;
|
|
}
|
|
}
|
|
|
|
pub async fn handle_processors<D: Db, Pro: Processors, P: P2p>(
|
|
db: D,
|
|
key: Zeroizing<<Ristretto as Ciphersuite>::F>,
|
|
serai: Arc<Serai>,
|
|
processors: Pro,
|
|
mut new_tributary: broadcast::Receiver<ActiveTributary<D, P>>,
|
|
) {
|
|
let mut channels = HashMap::new();
|
|
for network in [NetworkId::Bitcoin, NetworkId::Ethereum, NetworkId::Monero] {
|
|
let (send, recv) = mpsc::unbounded_channel();
|
|
tokio::spawn(handle_processor_messages(
|
|
db.clone(),
|
|
key.clone(),
|
|
serai.clone(),
|
|
processors.clone(),
|
|
network,
|
|
recv,
|
|
));
|
|
channels.insert(network, send);
|
|
}
|
|
|
|
// Listen to new tributary events
|
|
loop {
|
|
let tributary = new_tributary.recv().await.unwrap();
|
|
channels[&tributary.spec.set().network].send(tributary).unwrap();
|
|
}
|
|
}
|
|
|
|
pub async fn run<D: Db, Pro: Processors, P: P2p>(
|
|
raw_db: D,
|
|
key: Zeroizing<<Ristretto as Ciphersuite>::F>,
|
|
p2p: P,
|
|
processors: Pro,
|
|
serai: Serai,
|
|
) {
|
|
let serai = Arc::new(serai);
|
|
|
|
let (new_tributary_spec_send, mut new_tributary_spec_recv) = mpsc::unbounded_channel();
|
|
// Reload active tributaries from the database
|
|
for spec in MainDb::<D>::active_tributaries(&raw_db).1 {
|
|
new_tributary_spec_send.send(spec).unwrap();
|
|
}
|
|
|
|
// Handle new Substrate blocks
|
|
tokio::spawn(scan_substrate(
|
|
raw_db.clone(),
|
|
key.clone(),
|
|
processors.clone(),
|
|
serai.clone(),
|
|
new_tributary_spec_send,
|
|
));
|
|
|
|
// Handle the Tributaries
|
|
|
|
// This should be large enough for an entire rotation of all tributaries
|
|
// If it's too small, the coordinator fail to boot, which is a decent sanity check
|
|
let (new_tributary, mut new_tributary_listener_1) = broadcast::channel(32);
|
|
let new_tributary_listener_2 = new_tributary.subscribe();
|
|
let new_tributary_listener_3 = new_tributary.subscribe();
|
|
let new_tributary_listener_4 = new_tributary.subscribe();
|
|
let new_tributary_listener_5 = new_tributary.subscribe();
|
|
|
|
// Spawn a task to further add Tributaries as needed
|
|
tokio::spawn({
|
|
let raw_db = raw_db.clone();
|
|
let key = key.clone();
|
|
let processors = processors.clone();
|
|
let p2p = p2p.clone();
|
|
async move {
|
|
loop {
|
|
let spec = new_tributary_spec_recv.recv().await.unwrap();
|
|
// Uses an inner task as Tributary::new may take several seconds
|
|
tokio::spawn({
|
|
let raw_db = raw_db.clone();
|
|
let key = key.clone();
|
|
let processors = processors.clone();
|
|
let p2p = p2p.clone();
|
|
let new_tributary = new_tributary.clone();
|
|
async move {
|
|
add_tributary(raw_db, key, &processors, p2p, &new_tributary, spec).await;
|
|
}
|
|
});
|
|
}
|
|
}
|
|
});
|
|
|
|
// When we reach synchrony on an event requiring signing, send our preprocess for it
|
|
let recognized_id = {
|
|
let raw_db = raw_db.clone();
|
|
let key = key.clone();
|
|
|
|
let tributaries = Arc::new(RwLock::new(HashMap::new()));
|
|
tokio::spawn({
|
|
let tributaries = tributaries.clone();
|
|
async move {
|
|
loop {
|
|
match new_tributary_listener_1.recv().await {
|
|
Ok(tributary) => {
|
|
tributaries.write().await.insert(tributary.spec.genesis(), tributary.tributary);
|
|
}
|
|
Err(broadcast::error::RecvError::Lagged(_)) => {
|
|
panic!("recognized_id lagged to handle new_tributary")
|
|
}
|
|
Err(broadcast::error::RecvError::Closed) => panic!("new_tributary sender closed"),
|
|
}
|
|
}
|
|
}
|
|
});
|
|
|
|
move |network, genesis, id_type, id, nonce| {
|
|
let mut raw_db = raw_db.clone();
|
|
let key = key.clone();
|
|
let tributaries = tributaries.clone();
|
|
async move {
|
|
// The transactions for these are fired before the preprocesses are actually
|
|
// received/saved, creating a race between Tributary ack and the availability of all
|
|
// Preprocesses
|
|
// This waits until the necessary preprocess is available
|
|
let get_preprocess = |raw_db, id| async move {
|
|
loop {
|
|
let Some(preprocess) = MainDb::<D>::first_preprocess(raw_db, network, id) else {
|
|
sleep(Duration::from_millis(100)).await;
|
|
continue;
|
|
};
|
|
return preprocess;
|
|
}
|
|
};
|
|
|
|
let mut tx = match id_type {
|
|
RecognizedIdType::Batch => Transaction::BatchPreprocess(SignData {
|
|
plan: id,
|
|
attempt: 0,
|
|
data: get_preprocess(&raw_db, id).await,
|
|
signed: Transaction::empty_signed(),
|
|
}),
|
|
|
|
RecognizedIdType::Plan => Transaction::SignPreprocess(SignData {
|
|
plan: id,
|
|
attempt: 0,
|
|
data: get_preprocess(&raw_db, id).await,
|
|
signed: Transaction::empty_signed(),
|
|
}),
|
|
};
|
|
|
|
tx.sign(&mut OsRng, genesis, &key, nonce);
|
|
|
|
let tributaries = tributaries.read().await;
|
|
let Some(tributary) = tributaries.get(&genesis) else {
|
|
// TODO: This may happen if the task above is simply slow
|
|
panic!("tributary we don't have came to consensus on an Batch");
|
|
};
|
|
publish_signed_transaction(&mut raw_db, tributary, tx).await;
|
|
}
|
|
}
|
|
};
|
|
|
|
// Handle new blocks for each Tributary
|
|
{
|
|
let raw_db = raw_db.clone();
|
|
tokio::spawn(scan_tributaries(
|
|
raw_db,
|
|
key.clone(),
|
|
recognized_id,
|
|
processors.clone(),
|
|
serai.clone(),
|
|
new_tributary_listener_2,
|
|
));
|
|
}
|
|
|
|
// Spawn the heartbeat task, which will trigger syncing if there hasn't been a Tributary block
|
|
// in a while (presumably because we're behind)
|
|
tokio::spawn(heartbeat_tributaries(p2p.clone(), new_tributary_listener_3));
|
|
|
|
// Handle P2P messages
|
|
tokio::spawn(handle_p2p(Ristretto::generator() * key.deref(), p2p, new_tributary_listener_4));
|
|
|
|
// Handle all messages from processors
|
|
handle_processors(raw_db, key, serai, processors, new_tributary_listener_5).await;
|
|
}
|
|
|
|
#[tokio::main]
|
|
async fn main() {
|
|
// Override the panic handler with one which will panic if any tokio task panics
|
|
{
|
|
let existing = std::panic::take_hook();
|
|
std::panic::set_hook(Box::new(move |panic| {
|
|
existing(panic);
|
|
const MSG: &str = "exiting the process due to a task panicking";
|
|
println!("{MSG}");
|
|
log::error!("{MSG}");
|
|
std::process::exit(1);
|
|
}));
|
|
}
|
|
|
|
if std::env::var("RUST_LOG").is_err() {
|
|
std::env::set_var("RUST_LOG", serai_env::var("RUST_LOG").unwrap_or_else(|| "info".to_string()));
|
|
}
|
|
env_logger::init();
|
|
|
|
log::info!("starting coordinator service...");
|
|
|
|
let db = serai_db::new_rocksdb(&env::var("DB_PATH").expect("path to DB wasn't specified"));
|
|
|
|
let key = {
|
|
let mut key_hex = serai_env::var("SERAI_KEY").expect("Serai key wasn't provided");
|
|
let mut key_vec = hex::decode(&key_hex).map_err(|_| ()).expect("Serai key wasn't hex-encoded");
|
|
key_hex.zeroize();
|
|
if key_vec.len() != 32 {
|
|
key_vec.zeroize();
|
|
panic!("Serai key had an invalid length");
|
|
}
|
|
let mut key_bytes = [0; 32];
|
|
key_bytes.copy_from_slice(&key_vec);
|
|
key_vec.zeroize();
|
|
let key = Zeroizing::new(<Ristretto as Ciphersuite>::F::from_repr(key_bytes).unwrap());
|
|
key_bytes.zeroize();
|
|
key
|
|
};
|
|
let p2p = LibP2p::new();
|
|
|
|
let processors = Arc::new(MessageQueue::from_env(Service::Coordinator));
|
|
|
|
let serai = || async {
|
|
loop {
|
|
let Ok(serai) = Serai::new(&format!(
|
|
"ws://{}:9944",
|
|
serai_env::var("SERAI_HOSTNAME").expect("Serai hostname wasn't provided")
|
|
))
|
|
.await
|
|
else {
|
|
log::error!("couldn't connect to the Serai node");
|
|
sleep(Duration::from_secs(5)).await;
|
|
continue;
|
|
};
|
|
log::info!("made initial connection to Serai node");
|
|
return serai;
|
|
}
|
|
};
|
|
run(db, key, p2p, processors, serai().await).await
|
|
}
|