serai/crypto/dkg/src/tests/frost.rs

333 lines
10 KiB
Rust

use std::collections::HashMap;
use rand_core::{RngCore, CryptoRng};
use ciphersuite::Ciphersuite;
use crate::{
Participant, ThresholdParams, ThresholdCore,
frost::{Commitments, KeyGenMachine, SecretShare, KeyMachine},
encryption::{EncryptionKeyMessage, EncryptedMessage},
tests::{THRESHOLD, PARTICIPANTS, clone_without},
};
type FrostEncryptedMessage<C> = EncryptedMessage<C, SecretShare<<C as Ciphersuite>::F>>;
type FrostSecretShares<C> = HashMap<Participant, FrostEncryptedMessage<C>>;
const CONTEXT: &str = "DKG Test Key Generation";
// Commit, then return commitment messages, enc keys, and shares
#[allow(clippy::type_complexity)]
fn commit_enc_keys_and_shares<R: RngCore + CryptoRng, C: Ciphersuite>(
rng: &mut R,
) -> (
HashMap<Participant, KeyMachine<C>>,
HashMap<Participant, EncryptionKeyMessage<C, Commitments<C>>>,
HashMap<Participant, C::G>,
HashMap<Participant, FrostSecretShares<C>>,
) {
let mut machines = HashMap::new();
let mut commitments = HashMap::new();
let mut enc_keys = HashMap::new();
for i in (1 ..= PARTICIPANTS).map(Participant) {
let params = ThresholdParams::new(THRESHOLD, PARTICIPANTS, i).unwrap();
let machine = KeyGenMachine::<C>::new(params, CONTEXT.to_string());
let (machine, these_commitments) = machine.generate_coefficients(rng);
machines.insert(i, machine);
commitments.insert(
i,
EncryptionKeyMessage::read::<&[u8]>(&mut these_commitments.serialize().as_ref(), params)
.unwrap(),
);
enc_keys.insert(i, commitments[&i].enc_key());
}
let mut secret_shares = HashMap::new();
let machines = machines
.drain()
.map(|(l, machine)| {
let (machine, mut shares) =
machine.generate_secret_shares(rng, clone_without(&commitments, &l)).unwrap();
let shares = shares
.drain()
.map(|(l, share)| {
(
l,
EncryptedMessage::read::<&[u8]>(
&mut share.serialize().as_ref(),
// Only t/n actually matters, so hardcode i to 1 here
ThresholdParams { t: THRESHOLD, n: PARTICIPANTS, i: Participant(1) },
)
.unwrap(),
)
})
.collect::<HashMap<_, _>>();
secret_shares.insert(l, shares);
(l, machine)
})
.collect::<HashMap<_, _>>();
(machines, commitments, enc_keys, secret_shares)
}
fn generate_secret_shares<C: Ciphersuite>(
shares: &HashMap<Participant, FrostSecretShares<C>>,
recipient: Participant,
) -> FrostSecretShares<C> {
let mut our_secret_shares = HashMap::new();
for (i, shares) in shares {
if recipient == *i {
continue;
}
our_secret_shares.insert(*i, shares[&recipient].clone());
}
our_secret_shares
}
/// Fully perform the FROST key generation algorithm.
pub fn frost_gen<R: RngCore + CryptoRng, C: Ciphersuite>(
rng: &mut R,
) -> HashMap<Participant, ThresholdCore<C>> {
let (mut machines, _, _, secret_shares) = commit_enc_keys_and_shares::<_, C>(rng);
let mut verification_shares = None;
let mut group_key = None;
machines
.drain()
.map(|(i, machine)| {
let our_secret_shares = generate_secret_shares(&secret_shares, i);
let these_keys = machine.calculate_share(rng, our_secret_shares).unwrap().complete();
// Verify the verification_shares are agreed upon
if verification_shares.is_none() {
verification_shares = Some(these_keys.verification_shares());
}
assert_eq!(verification_shares.as_ref().unwrap(), &these_keys.verification_shares());
// Verify the group keys are agreed upon
if group_key.is_none() {
group_key = Some(these_keys.group_key());
}
assert_eq!(group_key.unwrap(), these_keys.group_key());
(i, these_keys)
})
.collect::<HashMap<_, _>>()
}
#[cfg(test)]
mod literal {
use rand_core::OsRng;
use ciphersuite::Ristretto;
use crate::{
DkgError,
encryption::EncryptionKeyProof,
frost::{BlameMachine, AdditionalBlameMachine},
};
use super::*;
const ONE: Participant = Participant(1);
const TWO: Participant = Participant(2);
fn test_blame(
commitment_msgs: &HashMap<Participant, EncryptionKeyMessage<Ristretto, Commitments<Ristretto>>>,
machines: Vec<BlameMachine<Ristretto>>,
msg: &FrostEncryptedMessage<Ristretto>,
blame: &Option<EncryptionKeyProof<Ristretto>>,
) {
for machine in machines {
let (additional, blamed) = machine.blame(ONE, TWO, msg.clone(), blame.clone());
assert_eq!(blamed, ONE);
// Verify additional blame also works
assert_eq!(additional.blame(ONE, TWO, msg.clone(), blame.clone()), ONE);
// Verify machines constructed with AdditionalBlameMachine::new work
assert_eq!(
AdditionalBlameMachine::new(
&mut OsRng,
CONTEXT.to_string(),
PARTICIPANTS,
commitment_msgs.clone()
)
.unwrap()
.blame(ONE, TWO, msg.clone(), blame.clone()),
ONE,
);
}
}
// TODO: Write a macro which expands to the following
#[test]
fn invalid_encryption_pop_blame() {
let (mut machines, commitment_msgs, _, mut secret_shares) =
commit_enc_keys_and_shares::<_, Ristretto>(&mut OsRng);
// Mutate the PoP of the encrypted message from 1 to 2
secret_shares.get_mut(&ONE).unwrap().get_mut(&TWO).unwrap().invalidate_pop();
let mut blame = None;
let machines = machines
.drain()
.filter_map(|(i, machine)| {
let our_secret_shares = generate_secret_shares(&secret_shares, i);
let machine = machine.calculate_share(&mut OsRng, our_secret_shares);
if i == TWO {
assert_eq!(machine.err(), Some(DkgError::InvalidShare { participant: ONE, blame: None }));
// Explicitly declare we have a blame object, which happens to be None since invalid PoP
// is self-explainable
blame = Some(None);
None
} else {
Some(machine.unwrap())
}
})
.collect::<Vec<_>>();
test_blame(&commitment_msgs, machines, &secret_shares[&ONE][&TWO].clone(), &blame.unwrap());
}
#[test]
fn invalid_ecdh_blame() {
let (mut machines, commitment_msgs, _, mut secret_shares) =
commit_enc_keys_and_shares::<_, Ristretto>(&mut OsRng);
// Mutate the share to trigger a blame event
// Mutates from 2 to 1, as 1 is expected to end up malicious for test_blame to pass
// While here, 2 is malicious, this is so 1 creates the blame proof
// We then malleate 1's blame proof, so 1 ends up malicious
// Doesn't simply invalidate the PoP as that won't have a blame statement
// By mutating the encrypted data, we do ensure a blame statement is created
secret_shares
.get_mut(&TWO)
.unwrap()
.get_mut(&ONE)
.unwrap()
.invalidate_msg(&mut OsRng, CONTEXT, TWO);
let mut blame = None;
let machines = machines
.drain()
.filter_map(|(i, machine)| {
let our_secret_shares = generate_secret_shares(&secret_shares, i);
let machine = machine.calculate_share(&mut OsRng, our_secret_shares);
if i == ONE {
blame = Some(match machine.err() {
Some(DkgError::InvalidShare { participant: TWO, blame: Some(blame) }) => Some(blame),
_ => panic!(),
});
None
} else {
Some(machine.unwrap())
}
})
.collect::<Vec<_>>();
blame.as_mut().unwrap().as_mut().unwrap().invalidate_key();
test_blame(&commitment_msgs, machines, &secret_shares[&TWO][&ONE].clone(), &blame.unwrap());
}
// This should be largely equivalent to the prior test
#[test]
fn invalid_dleq_blame() {
let (mut machines, commitment_msgs, _, mut secret_shares) =
commit_enc_keys_and_shares::<_, Ristretto>(&mut OsRng);
secret_shares
.get_mut(&TWO)
.unwrap()
.get_mut(&ONE)
.unwrap()
.invalidate_msg(&mut OsRng, CONTEXT, TWO);
let mut blame = None;
let machines = machines
.drain()
.filter_map(|(i, machine)| {
let our_secret_shares = generate_secret_shares(&secret_shares, i);
let machine = machine.calculate_share(&mut OsRng, our_secret_shares);
if i == ONE {
blame = Some(match machine.err() {
Some(DkgError::InvalidShare { participant: TWO, blame: Some(blame) }) => Some(blame),
_ => panic!(),
});
None
} else {
Some(machine.unwrap())
}
})
.collect::<Vec<_>>();
blame.as_mut().unwrap().as_mut().unwrap().invalidate_dleq();
test_blame(&commitment_msgs, machines, &secret_shares[&TWO][&ONE].clone(), &blame.unwrap());
}
#[test]
fn invalid_share_serialization_blame() {
let (mut machines, commitment_msgs, enc_keys, mut secret_shares) =
commit_enc_keys_and_shares::<_, Ristretto>(&mut OsRng);
secret_shares.get_mut(&ONE).unwrap().get_mut(&TWO).unwrap().invalidate_share_serialization(
&mut OsRng,
CONTEXT,
ONE,
enc_keys[&TWO],
);
let mut blame = None;
let machines = machines
.drain()
.filter_map(|(i, machine)| {
let our_secret_shares = generate_secret_shares(&secret_shares, i);
let machine = machine.calculate_share(&mut OsRng, our_secret_shares);
if i == TWO {
blame = Some(match machine.err() {
Some(DkgError::InvalidShare { participant: ONE, blame: Some(blame) }) => Some(blame),
_ => panic!(),
});
None
} else {
Some(machine.unwrap())
}
})
.collect::<Vec<_>>();
test_blame(&commitment_msgs, machines, &secret_shares[&ONE][&TWO].clone(), &blame.unwrap());
}
#[test]
fn invalid_share_value_blame() {
let (mut machines, commitment_msgs, enc_keys, mut secret_shares) =
commit_enc_keys_and_shares::<_, Ristretto>(&mut OsRng);
secret_shares.get_mut(&ONE).unwrap().get_mut(&TWO).unwrap().invalidate_share_value(
&mut OsRng,
CONTEXT,
ONE,
enc_keys[&TWO],
);
let mut blame = None;
let machines = machines
.drain()
.filter_map(|(i, machine)| {
let our_secret_shares = generate_secret_shares(&secret_shares, i);
let machine = machine.calculate_share(&mut OsRng, our_secret_shares);
if i == TWO {
blame = Some(match machine.err() {
Some(DkgError::InvalidShare { participant: ONE, blame: Some(blame) }) => Some(blame),
_ => panic!(),
});
None
} else {
Some(machine.unwrap())
}
})
.collect::<Vec<_>>();
test_blame(&commitment_msgs, machines, &secret_shares[&ONE][&TWO].clone(), &blame.unwrap());
}
}