serai/coins/monero/src/clsag/mod.rs

262 lines
6.5 KiB
Rust

use thiserror::Error;
use rand_core::{RngCore, CryptoRng};
use curve25519_dalek::{
constants::ED25519_BASEPOINT_TABLE,
scalar::Scalar,
traits::VartimePrecomputedMultiscalarMul,
edwards::{EdwardsPoint, VartimeEdwardsPrecomputation}
};
use monero::{
consensus::Encodable,
util::ringct::{Key, Clsag}
};
use crate::{
Commitment,
c_verify_clsag,
random_scalar,
hash_to_scalar,
hash_to_point
};
#[cfg(feature = "multisig")]
mod multisig;
#[cfg(feature = "multisig")]
pub use multisig::Multisig;
#[derive(Error, Debug)]
pub enum Error {
#[error("internal error ({0})")]
InternalError(String),
#[error("invalid ring member (member {0}, ring size {1})")]
InvalidRingMember(u8, u8),
#[error("invalid commitment")]
InvalidCommitment
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct Input {
// Ring, the index we're signing for, and the actual commitment behind it
pub ring: Vec<[EdwardsPoint; 2]>,
pub i: u8,
pub commitment: Commitment
}
impl Input {
pub fn new(
ring: Vec<[EdwardsPoint; 2]>,
i: u8,
commitment: Commitment
) -> Result<Input, Error> {
let n = ring.len();
if n > u8::MAX.into() {
Err(Error::InternalError("max ring size in this library is u8 max".to_string()))?;
}
if i >= (n as u8) {
Err(Error::InvalidRingMember(i, n as u8))?;
}
// Validate the commitment matches
if ring[usize::from(i)][1] != commitment.calculate() {
Err(Error::InvalidCommitment)?;
}
Ok(Input { ring, i, commitment })
}
}
#[allow(non_snake_case)]
pub(crate) fn sign_core<R: RngCore + CryptoRng>(
rng: &mut R,
msg: &[u8; 32],
input: &Input,
image: &EdwardsPoint,
mask: Scalar,
A: EdwardsPoint,
AH: EdwardsPoint
) -> (Clsag, Scalar, Scalar, Scalar, Scalar, EdwardsPoint) {
let n = input.ring.len();
let r: usize = input.i.into();
let C_out;
let mut P = vec![];
P.reserve_exact(n);
let mut C = vec![];
C.reserve_exact(n);
let mut C_non_zero = vec![];
C_non_zero.reserve_exact(n);
let z;
{
C_out = Commitment::new(mask, input.commitment.amount).calculate();
for member in &input.ring {
P.push(member[0]);
C_non_zero.push(member[1]);
C.push(C_non_zero[C_non_zero.len() - 1] - C_out);
}
z = input.commitment.mask - mask;
}
let H = hash_to_point(&P[r]);
let mut D = H * z;
// Doesn't use a constant time table as dalek takes longer to generate those then they save
let images_precomp = VartimeEdwardsPrecomputation::new([image, &D]);
D = Scalar::from(8 as u8).invert() * D;
let mut to_hash = vec![];
to_hash.reserve_exact(((2 * n) + 4) * 32);
const PREFIX: &str = "CLSAG_";
const AGG_0: &str = "CLSAG_agg_0";
const ROUND: &str = "round";
to_hash.extend(AGG_0.bytes());
to_hash.extend([0; 32 - AGG_0.len()]);
for i in 0 .. n {
to_hash.extend(P[i].compress().to_bytes());
}
for i in 0 .. n {
to_hash.extend(C_non_zero[i].compress().to_bytes());
}
to_hash.extend(image.compress().to_bytes());
let D_bytes = D.compress().to_bytes();
to_hash.extend(D_bytes);
to_hash.extend(C_out.compress().to_bytes());
let mu_P = hash_to_scalar(&to_hash);
to_hash[AGG_0.len() - 1] = '1' as u8;
let mu_C = hash_to_scalar(&to_hash);
to_hash.truncate(((2 * n) + 1) * 32);
to_hash.reserve_exact(((2 * n) + 5) * 32);
for i in 0 .. ROUND.len() {
to_hash[PREFIX.len() + i] = ROUND.as_bytes()[i] as u8;
}
to_hash.extend(C_out.compress().to_bytes());
to_hash.extend(msg);
to_hash.extend(A.compress().to_bytes());
to_hash.extend(AH.compress().to_bytes());
let mut c = hash_to_scalar(&to_hash);
let mut c1 = Scalar::zero();
let mut i = (r + 1) % n;
if i == 0 {
c1 = c;
}
let mut s = vec![];
s.resize(n, Scalar::zero());
while i != r {
s[i] = random_scalar(&mut *rng);
let c_p = mu_P * c;
let c_c = mu_C * c;
let L = (&s[i] * &ED25519_BASEPOINT_TABLE) + (c_p * P[i]) + (c_c * C[i]);
let PH = hash_to_point(&P[i]);
// Shouldn't be an issue as all of the variables in this vartime statement are public
let R = (s[i] * PH) + images_precomp.vartime_multiscalar_mul(&[c_p, c_c]);
to_hash.truncate(((2 * n) + 3) * 32);
to_hash.extend(L.compress().to_bytes());
to_hash.extend(R.compress().to_bytes());
c = hash_to_scalar(&to_hash);
i = (i + 1) % n;
if i == 0 {
c1 = c;
}
}
(
Clsag {
s: s.iter().map(|s| Key { key: s.to_bytes() }).collect(),
c1: Key { key: c1.to_bytes() },
D: Key { key: D_bytes }
},
c, mu_C, z, mu_P,
C_out
)
}
#[allow(non_snake_case)]
pub fn sign<R: RngCore + CryptoRng>(
rng: &mut R,
msg: [u8; 32],
inputs: &[(Scalar, Input, EdwardsPoint)],
sum_outputs: Scalar
) -> Option<Vec<(Clsag, EdwardsPoint)>> {
if inputs.len() == 0 {
return None;
}
let nonce = random_scalar(rng);
let mut rand_source = [0; 64];
rng.fill_bytes(&mut rand_source);
let mut res = Vec::with_capacity(inputs.len());
let mut sum_pseudo_outs = Scalar::zero();
for i in 0 .. inputs.len() {
let mut mask = random_scalar(rng);
if i == (inputs.len() - 1) {
mask = sum_outputs - sum_pseudo_outs;
} else {
sum_pseudo_outs += mask;
}
let mut rand_source = [0; 64];
rng.fill_bytes(&mut rand_source);
let (mut clsag, c, mu_C, z, mu_P, C_out) = sign_core(
rng,
&msg,
&inputs[i].1,
&inputs[i].2,
mask,
&nonce * &ED25519_BASEPOINT_TABLE, nonce * hash_to_point(&inputs[i].1.ring[usize::from(inputs[i].1.i)][0])
);
clsag.s[inputs[i].1.i as usize] = Key {
key: (nonce - (c * ((mu_C * z) + (mu_P * inputs[i].0)))).to_bytes()
};
res.push((clsag, C_out));
}
Some(res)
}
// Uses Monero's C verification function to ensure compatibility with Monero
pub fn verify(
clsag: &Clsag,
msg: &[u8; 32],
image: EdwardsPoint,
ring: &[[EdwardsPoint; 2]],
pseudo_out: EdwardsPoint
) -> bool {
// Workaround for the fact monero-rs doesn't include the length of clsag.s in clsag encoding
// despite it being part of clsag encoding. Reason for the patch version pin
let mut serialized = vec![clsag.s.len() as u8];
clsag.consensus_encode(&mut serialized).unwrap();
let image_bytes = image.compress().to_bytes();
let mut ring_bytes = vec![];
for member in ring {
ring_bytes.extend(&member[0].compress().to_bytes());
ring_bytes.extend(&member[1].compress().to_bytes());
}
let pseudo_out_bytes = pseudo_out.compress().to_bytes();
unsafe {
c_verify_clsag(
serialized.len(), serialized.as_ptr(), image_bytes.as_ptr(),
ring.len() as u8, ring_bytes.as_ptr(), msg.as_ptr(), pseudo_out_bytes.as_ptr()
)
}
}