serai/crypto/frost/src/algorithm.rs

183 lines
5.6 KiB
Rust

use core::{marker::PhantomData, fmt::Debug};
use std::io::{self, Read, Write};
use zeroize::Zeroizing;
use rand_core::{RngCore, CryptoRng};
use transcript::Transcript;
use crate::{Curve, FrostError, ThresholdView};
pub use schnorr::SchnorrSignature;
/// Write an addendum to a writer.
pub trait WriteAddendum {
fn write<W: Write>(&self, writer: &mut W) -> io::Result<()>;
}
impl WriteAddendum for () {
fn write<W: Write>(&self, _: &mut W) -> io::Result<()> {
Ok(())
}
}
/// Trait alias for the requirements to be used as an addendum.
pub trait Addendum: Clone + PartialEq + Debug + WriteAddendum {}
impl<A: Clone + PartialEq + Debug + WriteAddendum> Addendum for A {}
/// Algorithm trait usable by the FROST signing machine to produce signatures..
pub trait Algorithm<C: Curve>: Clone {
/// The transcript format this algorithm uses. This likely should NOT be the IETF-compatible
/// transcript included in this crate.
type Transcript: Clone + Debug + Transcript;
/// Serializable addendum, used in algorithms requiring more data than just the nonces.
type Addendum: Addendum;
/// The resulting type of the signatures this algorithm will produce.
type Signature: Clone + PartialEq + Debug;
/// Obtain a mutable borrow of the underlying transcript.
fn transcript(&mut self) -> &mut Self::Transcript;
/// Obtain the list of nonces to generate, as specified by the generators to create commitments
/// against per-nonce
fn nonces(&self) -> Vec<Vec<C::G>>;
/// Generate an addendum to FROST"s preprocessing stage.
fn preprocess_addendum<R: RngCore + CryptoRng>(
&mut self,
rng: &mut R,
params: &ThresholdView<C>,
) -> Self::Addendum;
/// Read an addendum from a reader.
fn read_addendum<R: Read>(&self, reader: &mut R) -> io::Result<Self::Addendum>;
/// Proccess the addendum for the specified participant. Guaranteed to be called in order.
fn process_addendum(
&mut self,
params: &ThresholdView<C>,
l: u16,
reader: Self::Addendum,
) -> Result<(), FrostError>;
/// Sign a share with the given secret/nonce.
/// The secret will already have been its lagrange coefficient applied so it is the necessary
/// key share.
/// The nonce will already have been processed into the combined form d + (e * p).
fn sign_share(
&mut self,
params: &ThresholdView<C>,
nonce_sums: &[Vec<C::G>],
nonces: Vec<Zeroizing<C::F>>,
msg: &[u8],
) -> C::F;
/// Verify a signature.
#[must_use]
fn verify(&self, group_key: C::G, nonces: &[Vec<C::G>], sum: C::F) -> Option<Self::Signature>;
/// Verify a specific share given as a response. Used to determine blame if signature
/// verification fails.
#[must_use]
fn verify_share(&self, verification_share: C::G, nonces: &[Vec<C::G>], share: C::F) -> bool;
}
/// IETF-compliant transcript. This is incredibly naive and should not be used within larger
/// protocols.
#[derive(Clone, Debug)]
pub struct IetfTranscript(Vec<u8>);
impl Transcript for IetfTranscript {
type Challenge = Vec<u8>;
fn new(_: &'static [u8]) -> IetfTranscript {
IetfTranscript(vec![])
}
fn domain_separate(&mut self, _: &[u8]) {}
fn append_message<M: AsRef<[u8]>>(&mut self, _: &'static [u8], message: M) {
self.0.extend(message.as_ref());
}
fn challenge(&mut self, _: &'static [u8]) -> Vec<u8> {
self.0.clone()
}
fn rng_seed(&mut self, _: &'static [u8]) -> [u8; 32] {
unimplemented!()
}
}
/// HRAm usable by the included Schnorr signature algorithm to generate challenges.
pub trait Hram<C: Curve>: Clone {
/// HRAm function to generate a challenge.
/// H2 from the IETF draft, despite having a different argument set (not being pre-formatted).
#[allow(non_snake_case)]
fn hram(R: &C::G, A: &C::G, m: &[u8]) -> C::F;
}
/// IETF-compliant Schnorr signature algorithm ((R, s) where s = r + cx).
#[derive(Clone)]
pub struct Schnorr<C: Curve, H: Hram<C>> {
transcript: IetfTranscript,
c: Option<C::F>,
_hram: PhantomData<H>,
}
impl<C: Curve, H: Hram<C>> Default for Schnorr<C, H> {
fn default() -> Self {
Self::new()
}
}
impl<C: Curve, H: Hram<C>> Schnorr<C, H> {
pub fn new() -> Schnorr<C, H> {
Schnorr { transcript: IetfTranscript(vec![]), c: None, _hram: PhantomData }
}
}
impl<C: Curve, H: Hram<C>> Algorithm<C> for Schnorr<C, H> {
type Transcript = IetfTranscript;
type Addendum = ();
type Signature = SchnorrSignature<C>;
fn transcript(&mut self) -> &mut Self::Transcript {
&mut self.transcript
}
fn nonces(&self) -> Vec<Vec<C::G>> {
vec![vec![C::generator()]]
}
fn preprocess_addendum<R: RngCore + CryptoRng>(&mut self, _: &mut R, _: &ThresholdView<C>) {}
fn read_addendum<R: Read>(&self, _: &mut R) -> io::Result<Self::Addendum> {
Ok(())
}
fn process_addendum(&mut self, _: &ThresholdView<C>, _: u16, _: ()) -> Result<(), FrostError> {
Ok(())
}
fn sign_share(
&mut self,
params: &ThresholdView<C>,
nonce_sums: &[Vec<C::G>],
mut nonces: Vec<Zeroizing<C::F>>,
msg: &[u8],
) -> C::F {
let c = H::hram(&nonce_sums[0][0], &params.group_key(), msg);
self.c = Some(c);
SchnorrSignature::<C>::sign(params.secret_share(), nonces.swap_remove(0), c).s
}
#[must_use]
fn verify(&self, group_key: C::G, nonces: &[Vec<C::G>], sum: C::F) -> Option<Self::Signature> {
let sig = SchnorrSignature { R: nonces[0][0], s: sum };
Some(sig).filter(|sig| sig.verify(group_key, self.c.unwrap()))
}
#[must_use]
fn verify_share(&self, verification_share: C::G, nonces: &[Vec<C::G>], share: C::F) -> bool {
SchnorrSignature::<C> { R: nonces[0][0], s: share }.verify(verification_share, self.c.unwrap())
}
}