serai/networks/ethereum/src/machine.rs
Luke Parker 7d2d739042
Rename the coins folder to networks ()
* Rename the coins folder to networks

Ethereum isn't a coin. It's a network.

Resolves .

* More renames of coins -> networks in orchestration

* Correct paths in tests/

* cargo fmt
2024-07-18 15:16:45 -04:00

414 lines
12 KiB
Rust

use std::{
io::{self, Read},
collections::HashMap,
};
use rand_core::{RngCore, CryptoRng};
use transcript::{Transcript, RecommendedTranscript};
use group::GroupEncoding;
use frost::{
curve::{Ciphersuite, Secp256k1},
Participant, ThresholdKeys, FrostError,
algorithm::Schnorr,
sign::*,
};
use alloy_core::primitives::U256;
use crate::{
crypto::{PublicKey, EthereumHram, Signature},
router::{
abi::{Call as AbiCall, OutInstruction as AbiOutInstruction},
Router,
},
};
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct Call {
pub to: [u8; 20],
pub value: U256,
pub data: Vec<u8>,
}
impl Call {
pub fn read<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let mut to = [0; 20];
reader.read_exact(&mut to)?;
let value = {
let mut value_bytes = [0; 32];
reader.read_exact(&mut value_bytes)?;
U256::from_le_slice(&value_bytes)
};
let mut data_len = {
let mut data_len = [0; 4];
reader.read_exact(&mut data_len)?;
usize::try_from(u32::from_le_bytes(data_len)).expect("u32 couldn't fit within a usize")
};
// A valid DoS would be to claim a 4 GB data is present for only 4 bytes
// We read this in 1 KB chunks to only read data actually present (with a max DoS of 1 KB)
let mut data = vec![];
while data_len > 0 {
let chunk_len = data_len.min(1024);
let mut chunk = vec![0; chunk_len];
reader.read_exact(&mut chunk)?;
data.extend(&chunk);
data_len -= chunk_len;
}
Ok(Call { to, value, data })
}
fn write<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
writer.write_all(&self.to)?;
writer.write_all(&self.value.as_le_bytes())?;
let data_len = u32::try_from(self.data.len())
.map_err(|_| io::Error::other("call data length exceeded 2**32"))?;
writer.write_all(&data_len.to_le_bytes())?;
writer.write_all(&self.data)
}
}
impl From<Call> for AbiCall {
fn from(call: Call) -> AbiCall {
AbiCall { to: call.to.into(), value: call.value, data: call.data.into() }
}
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum OutInstructionTarget {
Direct([u8; 20]),
Calls(Vec<Call>),
}
impl OutInstructionTarget {
fn read<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let mut kind = [0xff];
reader.read_exact(&mut kind)?;
match kind[0] {
0 => {
let mut addr = [0; 20];
reader.read_exact(&mut addr)?;
Ok(OutInstructionTarget::Direct(addr))
}
1 => {
let mut calls_len = [0; 4];
reader.read_exact(&mut calls_len)?;
let calls_len = u32::from_le_bytes(calls_len);
let mut calls = vec![];
for _ in 0 .. calls_len {
calls.push(Call::read(reader)?);
}
Ok(OutInstructionTarget::Calls(calls))
}
_ => Err(io::Error::other("unrecognized OutInstructionTarget"))?,
}
}
fn write<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
match self {
OutInstructionTarget::Direct(addr) => {
writer.write_all(&[0])?;
writer.write_all(addr)?;
}
OutInstructionTarget::Calls(calls) => {
writer.write_all(&[1])?;
let call_len = u32::try_from(calls.len())
.map_err(|_| io::Error::other("amount of calls exceeded 2**32"))?;
writer.write_all(&call_len.to_le_bytes())?;
for call in calls {
call.write(writer)?;
}
}
}
Ok(())
}
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct OutInstruction {
pub target: OutInstructionTarget,
pub value: U256,
}
impl OutInstruction {
fn read<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let target = OutInstructionTarget::read(reader)?;
let value = {
let mut value_bytes = [0; 32];
reader.read_exact(&mut value_bytes)?;
U256::from_le_slice(&value_bytes)
};
Ok(OutInstruction { target, value })
}
fn write<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
self.target.write(writer)?;
writer.write_all(&self.value.as_le_bytes())
}
}
impl From<OutInstruction> for AbiOutInstruction {
fn from(instruction: OutInstruction) -> AbiOutInstruction {
match instruction.target {
OutInstructionTarget::Direct(addr) => {
AbiOutInstruction { to: addr.into(), calls: vec![], value: instruction.value }
}
OutInstructionTarget::Calls(calls) => AbiOutInstruction {
to: [0; 20].into(),
calls: calls.into_iter().map(Into::into).collect(),
value: instruction.value,
},
}
}
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum RouterCommand {
UpdateSeraiKey { chain_id: U256, nonce: U256, key: PublicKey },
Execute { chain_id: U256, nonce: U256, outs: Vec<OutInstruction> },
}
impl RouterCommand {
pub fn msg(&self) -> Vec<u8> {
match self {
RouterCommand::UpdateSeraiKey { chain_id, nonce, key } => {
Router::update_serai_key_message(*chain_id, *nonce, key)
}
RouterCommand::Execute { chain_id, nonce, outs } => Router::execute_message(
*chain_id,
*nonce,
outs.iter().map(|out| out.clone().into()).collect(),
),
}
}
pub fn read<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let mut kind = [0xff];
reader.read_exact(&mut kind)?;
match kind[0] {
0 => {
let mut chain_id = [0; 32];
reader.read_exact(&mut chain_id)?;
let mut nonce = [0; 32];
reader.read_exact(&mut nonce)?;
let key = PublicKey::new(Secp256k1::read_G(reader)?)
.ok_or(io::Error::other("key for RouterCommand doesn't have an eth representation"))?;
Ok(RouterCommand::UpdateSeraiKey {
chain_id: U256::from_le_slice(&chain_id),
nonce: U256::from_le_slice(&nonce),
key,
})
}
1 => {
let mut chain_id = [0; 32];
reader.read_exact(&mut chain_id)?;
let chain_id = U256::from_le_slice(&chain_id);
let mut nonce = [0; 32];
reader.read_exact(&mut nonce)?;
let nonce = U256::from_le_slice(&nonce);
let mut outs_len = [0; 4];
reader.read_exact(&mut outs_len)?;
let outs_len = u32::from_le_bytes(outs_len);
let mut outs = vec![];
for _ in 0 .. outs_len {
outs.push(OutInstruction::read(reader)?);
}
Ok(RouterCommand::Execute { chain_id, nonce, outs })
}
_ => Err(io::Error::other("reading unknown type of RouterCommand"))?,
}
}
pub fn write<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
match self {
RouterCommand::UpdateSeraiKey { chain_id, nonce, key } => {
writer.write_all(&[0])?;
writer.write_all(&chain_id.as_le_bytes())?;
writer.write_all(&nonce.as_le_bytes())?;
writer.write_all(&key.A.to_bytes())
}
RouterCommand::Execute { chain_id, nonce, outs } => {
writer.write_all(&[1])?;
writer.write_all(&chain_id.as_le_bytes())?;
writer.write_all(&nonce.as_le_bytes())?;
writer.write_all(&u32::try_from(outs.len()).unwrap().to_le_bytes())?;
for out in outs {
out.write(writer)?;
}
Ok(())
}
}
}
pub fn serialize(&self) -> Vec<u8> {
let mut res = vec![];
self.write(&mut res).unwrap();
res
}
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct SignedRouterCommand {
command: RouterCommand,
signature: Signature,
}
impl SignedRouterCommand {
pub fn new(key: &PublicKey, command: RouterCommand, signature: &[u8; 64]) -> Option<Self> {
let c = Secp256k1::read_F(&mut &signature[.. 32]).ok()?;
let s = Secp256k1::read_F(&mut &signature[32 ..]).ok()?;
let signature = Signature { c, s };
if !signature.verify(key, &command.msg()) {
None?
}
Some(SignedRouterCommand { command, signature })
}
pub fn command(&self) -> &RouterCommand {
&self.command
}
pub fn signature(&self) -> &Signature {
&self.signature
}
pub fn read<R: io::Read>(reader: &mut R) -> io::Result<Self> {
let command = RouterCommand::read(reader)?;
let mut sig = [0; 64];
reader.read_exact(&mut sig)?;
let signature = Signature::from_bytes(sig)?;
Ok(SignedRouterCommand { command, signature })
}
pub fn write<W: io::Write>(&self, writer: &mut W) -> io::Result<()> {
self.command.write(writer)?;
writer.write_all(&self.signature.to_bytes())
}
}
pub struct RouterCommandMachine {
key: PublicKey,
command: RouterCommand,
machine: AlgorithmMachine<Secp256k1, Schnorr<Secp256k1, RecommendedTranscript, EthereumHram>>,
}
impl RouterCommandMachine {
pub fn new(keys: ThresholdKeys<Secp256k1>, command: RouterCommand) -> Option<Self> {
// The Schnorr algorithm should be fine without this, even when using the IETF variant
// If this is better and more comprehensive, we should do it, even if not necessary
let mut transcript = RecommendedTranscript::new(b"ethereum-serai RouterCommandMachine v0.1");
let key = keys.group_key();
transcript.append_message(b"key", key.to_bytes());
transcript.append_message(b"command", command.serialize());
Some(Self {
key: PublicKey::new(key)?,
command,
machine: AlgorithmMachine::new(Schnorr::new(transcript), keys),
})
}
}
impl PreprocessMachine for RouterCommandMachine {
type Preprocess = Preprocess<Secp256k1, ()>;
type Signature = SignedRouterCommand;
type SignMachine = RouterCommandSignMachine;
fn preprocess<R: RngCore + CryptoRng>(
self,
rng: &mut R,
) -> (Self::SignMachine, Self::Preprocess) {
let (machine, preprocess) = self.machine.preprocess(rng);
(RouterCommandSignMachine { key: self.key, command: self.command, machine }, preprocess)
}
}
pub struct RouterCommandSignMachine {
key: PublicKey,
command: RouterCommand,
machine: AlgorithmSignMachine<Secp256k1, Schnorr<Secp256k1, RecommendedTranscript, EthereumHram>>,
}
impl SignMachine<SignedRouterCommand> for RouterCommandSignMachine {
type Params = ();
type Keys = ThresholdKeys<Secp256k1>;
type Preprocess = Preprocess<Secp256k1, ()>;
type SignatureShare = SignatureShare<Secp256k1>;
type SignatureMachine = RouterCommandSignatureMachine;
fn cache(self) -> CachedPreprocess {
unimplemented!(
"RouterCommand machines don't support caching their preprocesses due to {}",
"being already bound to a specific command"
);
}
fn from_cache(
(): (),
_: ThresholdKeys<Secp256k1>,
_: CachedPreprocess,
) -> (Self, Self::Preprocess) {
unimplemented!(
"RouterCommand machines don't support caching their preprocesses due to {}",
"being already bound to a specific command"
);
}
fn read_preprocess<R: Read>(&self, reader: &mut R) -> io::Result<Self::Preprocess> {
self.machine.read_preprocess(reader)
}
fn sign(
self,
commitments: HashMap<Participant, Self::Preprocess>,
msg: &[u8],
) -> Result<(RouterCommandSignatureMachine, Self::SignatureShare), FrostError> {
if !msg.is_empty() {
panic!("message was passed to a RouterCommand machine when it generates its own");
}
let (machine, share) = self.machine.sign(commitments, &self.command.msg())?;
Ok((RouterCommandSignatureMachine { key: self.key, command: self.command, machine }, share))
}
}
pub struct RouterCommandSignatureMachine {
key: PublicKey,
command: RouterCommand,
machine:
AlgorithmSignatureMachine<Secp256k1, Schnorr<Secp256k1, RecommendedTranscript, EthereumHram>>,
}
impl SignatureMachine<SignedRouterCommand> for RouterCommandSignatureMachine {
type SignatureShare = SignatureShare<Secp256k1>;
fn read_share<R: Read>(&self, reader: &mut R) -> io::Result<Self::SignatureShare> {
self.machine.read_share(reader)
}
fn complete(
self,
shares: HashMap<Participant, Self::SignatureShare>,
) -> Result<SignedRouterCommand, FrostError> {
let sig = self.machine.complete(shares)?;
let signature = Signature::new(&self.key, &self.command.msg(), sig)
.expect("machine produced an invalid signature");
Ok(SignedRouterCommand { command: self.command, signature })
}
}