serai/crypto/multiexp/src/batch.rs
Luke Parker 6fec95b1a7
3.7.2 Remove code randomizing which side odd elements end up on
This could still be gamed. For [1, 2, 3], the options were ([1], [2, 3]) or
([1, 2], [3]). This means 2 would always have the maximum round count, and
thus this is still game-able. There's no point to keeping its complexity
accordingly when the algorithm is as efficient as it is.

While a proper random could be used to satisfy 3.7.2, it'd break the
expected determinism.
2023-03-02 11:16:00 -05:00

146 lines
4.9 KiB
Rust

use rand_core::{RngCore, CryptoRng};
use zeroize::{Zeroize, Zeroizing};
use ff::{Field, PrimeFieldBits};
use group::Group;
use crate::{multiexp, multiexp_vartime};
// Flatten the contained statements to a single Vec.
// Wrapped in Zeroizing in case any of the included statements contain private values.
#[allow(clippy::type_complexity)]
fn flat<Id: Copy + Zeroize, G: Group + Zeroize>(
slice: &[(Id, Vec<(G::Scalar, G)>)],
) -> Zeroizing<Vec<(G::Scalar, G)>>
where
<G as Group>::Scalar: PrimeFieldBits + Zeroize,
{
Zeroizing::new(slice.iter().flat_map(|pairs| pairs.1.iter()).cloned().collect::<Vec<_>>())
}
/// A batch verifier intended to verify a series of statements are each equivalent to zero.
#[allow(clippy::type_complexity)]
#[derive(Clone, Zeroize)]
pub struct BatchVerifier<Id: Copy + Zeroize, G: Group + Zeroize>(Zeroizing<Vec<(Id, Vec<(G::Scalar, G)>)>>)
where
<G as Group>::Scalar: PrimeFieldBits + Zeroize;
impl<Id: Copy + Zeroize, G: Group + Zeroize> BatchVerifier<Id, G>
where
<G as Group>::Scalar: PrimeFieldBits + Zeroize,
{
/// Create a new batch verifier, expected to verify the following amount of statements.
/// This is a size hint and is not required to be accurate.
pub fn new(capacity: usize) -> BatchVerifier<Id, G> {
BatchVerifier(Zeroizing::new(Vec::with_capacity(capacity)))
}
/// Queue a statement for batch verification.
pub fn queue<R: RngCore + CryptoRng, I: IntoIterator<Item = (G::Scalar, G)>>(
&mut self,
rng: &mut R,
id: Id,
pairs: I,
) {
// Define a unique scalar factor for this set of variables so individual items can't overlap
let u = if self.0.is_empty() {
G::Scalar::one()
} else {
let mut weight;
while {
// Generate a random scalar
weight = G::Scalar::random(&mut *rng);
// Clears half the bits, maintaining security, to minimize scalar additions
// Is not practically faster for whatever reason
/*
// Generate a random scalar
let mut repr = G::Scalar::random(&mut *rng).to_repr();
// Calculate the amount of bytes to clear. We want to clear less than half
let repr_len = repr.as_ref().len();
let unused_bits = (repr_len * 8) - usize::try_from(G::Scalar::CAPACITY).unwrap();
// Don't clear any partial bytes
let to_clear = (repr_len / 2) - ((unused_bits + 7) / 8);
// Clear a safe amount of bytes
for b in &mut repr.as_mut()[.. to_clear] {
*b = 0;
}
// Ensure these bits are used as the low bits so low scalars multiplied by this don't
// become large scalars
weight = G::Scalar::from_repr(repr).unwrap();
// Tests if any bit we supposedly just cleared is set, and if so, reverses it
// Not a security issue if this fails, just a minor performance hit at ~2^-120 odds
if weight.to_le_bits().iter().take(to_clear * 8).any(|bit| *bit) {
repr.as_mut().reverse();
weight = G::Scalar::from_repr(repr).unwrap();
}
*/
// Ensure it's non-zero, as a zero scalar would cause this item to pass no matter what
weight.is_zero().into()
} {}
weight
};
self
.0
.push((id, pairs.into_iter().map(|(scalar, point)| (scalar * u, point)).collect()));
}
/// Perform batch verification, returning a boolean of if the statements equaled zero.
#[must_use]
pub fn verify(&self) -> bool {
multiexp(&flat(&self.0)).is_identity().into()
}
/// Perform batch verification in variable time.
#[must_use]
pub fn verify_vartime(&self) -> bool {
multiexp_vartime(&flat(&self.0)).is_identity().into()
}
/// Perform a binary search to identify which statement does not equal 0, returning None if all
/// statements do. This function will only return the ID of one invalid statement, even if
/// multiple are invalid.
// A constant time variant may be beneficial for robust protocols
pub fn blame_vartime(&self) -> Option<Id> {
let mut slice = self.0.as_slice();
while slice.len() > 1 {
let split = slice.len() / 2;
if multiexp_vartime(&flat(&slice[.. split])).is_identity().into() {
slice = &slice[split ..];
} else {
slice = &slice[.. split];
}
}
slice
.get(0)
.filter(|(_, value)| !bool::from(multiexp_vartime(value).is_identity()))
.map(|(id, _)| *id)
}
/// Perform constant time batch verification, and if verification fails, identify one faulty
/// statement in variable time.
pub fn verify_with_vartime_blame(&self) -> Result<(), Id> {
if self.verify() {
Ok(())
} else {
Err(self.blame_vartime().unwrap())
}
}
/// Perform variable time batch verification, and if verification fails, identify one faulty
/// statement in variable time.
pub fn verify_vartime_with_vartime_blame(&self) -> Result<(), Id> {
if self.verify_vartime() {
Ok(())
} else {
Err(self.blame_vartime().unwrap())
}
}
}