mirror of
https://github.com/serai-dex/serai.git
synced 2025-01-07 03:19:30 +00:00
6fec95b1a7
This could still be gamed. For [1, 2, 3], the options were ([1], [2, 3]) or ([1, 2], [3]). This means 2 would always have the maximum round count, and thus this is still game-able. There's no point to keeping its complexity accordingly when the algorithm is as efficient as it is. While a proper random could be used to satisfy 3.7.2, it'd break the expected determinism.
146 lines
4.9 KiB
Rust
146 lines
4.9 KiB
Rust
use rand_core::{RngCore, CryptoRng};
|
|
|
|
use zeroize::{Zeroize, Zeroizing};
|
|
|
|
use ff::{Field, PrimeFieldBits};
|
|
use group::Group;
|
|
|
|
use crate::{multiexp, multiexp_vartime};
|
|
|
|
// Flatten the contained statements to a single Vec.
|
|
// Wrapped in Zeroizing in case any of the included statements contain private values.
|
|
#[allow(clippy::type_complexity)]
|
|
fn flat<Id: Copy + Zeroize, G: Group + Zeroize>(
|
|
slice: &[(Id, Vec<(G::Scalar, G)>)],
|
|
) -> Zeroizing<Vec<(G::Scalar, G)>>
|
|
where
|
|
<G as Group>::Scalar: PrimeFieldBits + Zeroize,
|
|
{
|
|
Zeroizing::new(slice.iter().flat_map(|pairs| pairs.1.iter()).cloned().collect::<Vec<_>>())
|
|
}
|
|
|
|
/// A batch verifier intended to verify a series of statements are each equivalent to zero.
|
|
#[allow(clippy::type_complexity)]
|
|
#[derive(Clone, Zeroize)]
|
|
pub struct BatchVerifier<Id: Copy + Zeroize, G: Group + Zeroize>(Zeroizing<Vec<(Id, Vec<(G::Scalar, G)>)>>)
|
|
where
|
|
<G as Group>::Scalar: PrimeFieldBits + Zeroize;
|
|
|
|
impl<Id: Copy + Zeroize, G: Group + Zeroize> BatchVerifier<Id, G>
|
|
where
|
|
<G as Group>::Scalar: PrimeFieldBits + Zeroize,
|
|
{
|
|
/// Create a new batch verifier, expected to verify the following amount of statements.
|
|
/// This is a size hint and is not required to be accurate.
|
|
pub fn new(capacity: usize) -> BatchVerifier<Id, G> {
|
|
BatchVerifier(Zeroizing::new(Vec::with_capacity(capacity)))
|
|
}
|
|
|
|
/// Queue a statement for batch verification.
|
|
pub fn queue<R: RngCore + CryptoRng, I: IntoIterator<Item = (G::Scalar, G)>>(
|
|
&mut self,
|
|
rng: &mut R,
|
|
id: Id,
|
|
pairs: I,
|
|
) {
|
|
// Define a unique scalar factor for this set of variables so individual items can't overlap
|
|
let u = if self.0.is_empty() {
|
|
G::Scalar::one()
|
|
} else {
|
|
let mut weight;
|
|
while {
|
|
// Generate a random scalar
|
|
weight = G::Scalar::random(&mut *rng);
|
|
|
|
// Clears half the bits, maintaining security, to minimize scalar additions
|
|
// Is not practically faster for whatever reason
|
|
/*
|
|
// Generate a random scalar
|
|
let mut repr = G::Scalar::random(&mut *rng).to_repr();
|
|
|
|
// Calculate the amount of bytes to clear. We want to clear less than half
|
|
let repr_len = repr.as_ref().len();
|
|
let unused_bits = (repr_len * 8) - usize::try_from(G::Scalar::CAPACITY).unwrap();
|
|
// Don't clear any partial bytes
|
|
let to_clear = (repr_len / 2) - ((unused_bits + 7) / 8);
|
|
|
|
// Clear a safe amount of bytes
|
|
for b in &mut repr.as_mut()[.. to_clear] {
|
|
*b = 0;
|
|
}
|
|
|
|
// Ensure these bits are used as the low bits so low scalars multiplied by this don't
|
|
// become large scalars
|
|
weight = G::Scalar::from_repr(repr).unwrap();
|
|
// Tests if any bit we supposedly just cleared is set, and if so, reverses it
|
|
// Not a security issue if this fails, just a minor performance hit at ~2^-120 odds
|
|
if weight.to_le_bits().iter().take(to_clear * 8).any(|bit| *bit) {
|
|
repr.as_mut().reverse();
|
|
weight = G::Scalar::from_repr(repr).unwrap();
|
|
}
|
|
*/
|
|
|
|
// Ensure it's non-zero, as a zero scalar would cause this item to pass no matter what
|
|
weight.is_zero().into()
|
|
} {}
|
|
weight
|
|
};
|
|
|
|
self
|
|
.0
|
|
.push((id, pairs.into_iter().map(|(scalar, point)| (scalar * u, point)).collect()));
|
|
}
|
|
|
|
/// Perform batch verification, returning a boolean of if the statements equaled zero.
|
|
#[must_use]
|
|
pub fn verify(&self) -> bool {
|
|
multiexp(&flat(&self.0)).is_identity().into()
|
|
}
|
|
|
|
/// Perform batch verification in variable time.
|
|
#[must_use]
|
|
pub fn verify_vartime(&self) -> bool {
|
|
multiexp_vartime(&flat(&self.0)).is_identity().into()
|
|
}
|
|
|
|
/// Perform a binary search to identify which statement does not equal 0, returning None if all
|
|
/// statements do. This function will only return the ID of one invalid statement, even if
|
|
/// multiple are invalid.
|
|
// A constant time variant may be beneficial for robust protocols
|
|
pub fn blame_vartime(&self) -> Option<Id> {
|
|
let mut slice = self.0.as_slice();
|
|
while slice.len() > 1 {
|
|
let split = slice.len() / 2;
|
|
if multiexp_vartime(&flat(&slice[.. split])).is_identity().into() {
|
|
slice = &slice[split ..];
|
|
} else {
|
|
slice = &slice[.. split];
|
|
}
|
|
}
|
|
|
|
slice
|
|
.get(0)
|
|
.filter(|(_, value)| !bool::from(multiexp_vartime(value).is_identity()))
|
|
.map(|(id, _)| *id)
|
|
}
|
|
|
|
/// Perform constant time batch verification, and if verification fails, identify one faulty
|
|
/// statement in variable time.
|
|
pub fn verify_with_vartime_blame(&self) -> Result<(), Id> {
|
|
if self.verify() {
|
|
Ok(())
|
|
} else {
|
|
Err(self.blame_vartime().unwrap())
|
|
}
|
|
}
|
|
|
|
/// Perform variable time batch verification, and if verification fails, identify one faulty
|
|
/// statement in variable time.
|
|
pub fn verify_vartime_with_vartime_blame(&self) -> Result<(), Id> {
|
|
if self.verify_vartime() {
|
|
Ok(())
|
|
} else {
|
|
Err(self.blame_vartime().unwrap())
|
|
}
|
|
}
|
|
}
|