serai/crypto/dleq/src/cross_group/mod.rs
Luke Parker 72afcf1f06 Mark cross_group as experimental
While all of Serai can be argued as experimental, the DLEq proof is 
especially so, as it's lacking any formal proofs over its theory.

Also adds doc(hidden) to the generic DLEqProof, now prefixed with __.
2022-07-07 08:36:23 -05:00

366 lines
12 KiB
Rust

use thiserror::Error;
use rand_core::{RngCore, CryptoRng};
use digest::Digest;
use transcript::Transcript;
use group::{ff::{Field, PrimeField, PrimeFieldBits}, prime::PrimeGroup};
use multiexp::BatchVerifier;
use crate::Generators;
pub mod scalar;
use scalar::{scalar_convert, mutual_scalar_from_bytes};
pub(crate) mod schnorr;
use schnorr::SchnorrPoK;
pub(crate) mod aos;
mod bits;
use bits::{BitSignature, Bits};
#[cfg(feature = "serialize")]
use std::io::{Read, Write};
#[cfg(feature = "serialize")]
pub(crate) fn read_point<R: Read, G: PrimeGroup>(r: &mut R) -> std::io::Result<G> {
let mut repr = G::Repr::default();
r.read_exact(repr.as_mut())?;
let point = G::from_bytes(&repr);
if point.is_none().into() {
Err(std::io::Error::new(std::io::ErrorKind::Other, "invalid point"))?;
}
Ok(point.unwrap())
}
#[derive(Error, PartialEq, Eq, Debug)]
pub enum DLEqError {
#[error("invalid proof of knowledge")]
InvalidProofOfKnowledge,
#[error("invalid proof length")]
InvalidProofLength,
#[error("invalid challenge")]
InvalidChallenge,
#[error("invalid proof")]
InvalidProof
}
// This should never be directly instantiated and uses a u8 to represent internal values
// Any external usage is likely invalid
#[doc(hidden)]
// Debug would be such a dump of data this likely isn't helpful, but at least it's available to
// anyone who wants it
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct __DLEqProof<
G0: PrimeGroup,
G1: PrimeGroup,
const SIGNATURE: u8,
const RING_LEN: usize,
const REMAINDER_RING_LEN: usize
> where G0::Scalar: PrimeFieldBits, G1::Scalar: PrimeFieldBits {
bits: Vec<Bits<G0, G1, SIGNATURE, RING_LEN>>,
remainder: Option<Bits<G0, G1, SIGNATURE, REMAINDER_RING_LEN>>,
poks: (SchnorrPoK<G0>, SchnorrPoK<G1>)
}
macro_rules! dleq {
($name: ident, $signature: expr, $remainder: literal) => {
pub type $name<G0, G1> = __DLEqProof<
G0,
G1,
{ $signature.to_u8() },
{ $signature.ring_len() },
// There may not be a remainder, yet if there is one, it'll be just one bit
// A ring for one bit has a RING_LEN of 2
{ if $remainder { 2 } else { 0 } }
>;
}
}
// Proves for 1-bit at a time with the signature form (e, s), as originally described in MRL-0010.
// Uses a merged challenge, unlike MRL-0010, for the ring signature, saving an element from each
// bit and removing a hash while slightly reducing challenge security. This security reduction is
// already applied to the scalar being proven for, a result of the requirement it's mutually valid
// over both scalar fields, hence its application here as well. This is mainly here as a point of
// reference for the following DLEq proofs, all which use merged challenges, and isn't performant
// in comparison to the others
dleq!(ClassicLinearDLEq, BitSignature::ClassicLinear, false);
// Proves for 2-bits at a time to save 3/7 elements of every other bit
// <9% smaller than CompromiseLinear, yet ~12% slower
dleq!(ConciseLinearDLEq, BitSignature::ConciseLinear, true);
// Uses AOS signatures of the form R, s, to enable the final step of the ring signature to be
// batch verified, at the cost of adding an additional element per bit
dleq!(EfficientLinearDLEq, BitSignature::EfficientLinear, false);
// Proves for 2-bits at a time while using the R, s form. This saves 3/7 elements of every other
// bit, while adding 1 element to every bit, and is more efficient than ConciseLinear yet less
// efficient than EfficientLinear due to having more ring signature steps which aren't batched
// >25% smaller than EfficientLinear and just 11% slower, making it the recommended option
dleq!(CompromiseLinearDLEq, BitSignature::CompromiseLinear, true);
impl<
G0: PrimeGroup,
G1: PrimeGroup,
const SIGNATURE: u8,
const RING_LEN: usize,
const REMAINDER_RING_LEN: usize
> __DLEqProof<G0, G1, SIGNATURE, RING_LEN, REMAINDER_RING_LEN> where
G0::Scalar: PrimeFieldBits, G1::Scalar: PrimeFieldBits {
pub(crate) fn transcript<T: Transcript>(
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>),
keys: (G0, G1)
) {
transcript.domain_separate(b"cross_group_dleq");
generators.0.transcript(transcript);
generators.1.transcript(transcript);
transcript.domain_separate(b"points");
transcript.append_message(b"point_0", keys.0.to_bytes().as_ref());
transcript.append_message(b"point_1", keys.1.to_bytes().as_ref());
}
pub(crate) fn blinding_key<R: RngCore + CryptoRng, F: PrimeField>(
rng: &mut R,
total: &mut F,
last: bool
) -> F {
let blinding_key = if last {
-*total
} else {
F::random(&mut *rng)
};
*total += blinding_key;
blinding_key
}
fn reconstruct_keys(&self) -> (G0, G1) {
let mut res = (
self.bits.iter().map(|bit| bit.commitments.0).sum::<G0>(),
self.bits.iter().map(|bit| bit.commitments.1).sum::<G1>()
);
if let Some(bit) = &self.remainder {
res.0 += bit.commitments.0;
res.1 += bit.commitments.1;
}
res
}
fn prove_internal<R: RngCore + CryptoRng, T: Clone + Transcript>(
rng: &mut R,
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>),
f: (G0::Scalar, G1::Scalar)
) -> (Self, (G0::Scalar, G1::Scalar)) {
Self::transcript(
transcript,
generators,
((generators.0.primary * f.0), (generators.1.primary * f.1))
);
let poks = (
SchnorrPoK::<G0>::prove(rng, transcript, generators.0.primary, f.0),
SchnorrPoK::<G1>::prove(rng, transcript, generators.1.primary, f.1)
);
let mut blinding_key_total = (G0::Scalar::zero(), G1::Scalar::zero());
let mut blinding_key = |rng: &mut R, last| {
let blinding_key = (
Self::blinding_key(&mut *rng, &mut blinding_key_total.0, last),
Self::blinding_key(&mut *rng, &mut blinding_key_total.1, last)
);
if last {
debug_assert_eq!(blinding_key_total.0, G0::Scalar::zero());
debug_assert_eq!(blinding_key_total.1, G1::Scalar::zero());
}
blinding_key
};
let capacity = usize::try_from(G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY)).unwrap();
let bits_per_group = BitSignature::from(SIGNATURE).bits();
let mut pow_2 = (generators.0.primary, generators.1.primary);
let raw_bits = f.0.to_le_bits();
let mut bits = Vec::with_capacity(capacity);
let mut these_bits: u8 = 0;
for (i, bit) in raw_bits.iter().enumerate() {
if i == capacity {
break;
}
let bit = *bit as u8;
debug_assert_eq!(bit | 1, 1);
// Accumulate this bit
these_bits |= bit << (i % bits_per_group);
if (i % bits_per_group) == (bits_per_group - 1) {
let last = i == (capacity - 1);
let blinding_key = blinding_key(&mut *rng, last);
bits.push(
Bits::prove(
&mut *rng,
transcript,
generators,
i / bits_per_group,
&mut pow_2,
these_bits,
blinding_key
)
);
these_bits = 0;
}
}
debug_assert_eq!(bits.len(), capacity / bits_per_group);
let mut remainder = None;
if capacity != ((capacity / bits_per_group) * bits_per_group) {
let blinding_key = blinding_key(&mut *rng, true);
remainder = Some(
Bits::prove(
&mut *rng,
transcript,
generators,
capacity / bits_per_group,
&mut pow_2,
these_bits,
blinding_key
)
);
}
let proof = __DLEqProof { bits, remainder, poks };
debug_assert_eq!(
proof.reconstruct_keys(),
(generators.0.primary * f.0, generators.1.primary * f.1)
);
(proof, f)
}
/// Prove the cross-Group Discrete Log Equality for the points derived from the scalar created as
/// the output of the passed in Digest. Given the non-standard requirements to achieve
/// uniformity, needing to be < 2^x instead of less than a prime moduli, this is the simplest way
/// to safely and securely generate a Scalar, without risk of failure, nor bias
/// It also ensures a lack of determinable relation between keys, guaranteeing security in the
/// currently expected use case for this, atomic swaps, where each swap leaks the key. Knowing
/// the relationship between keys would allow breaking all swaps after just one
pub fn prove<R: RngCore + CryptoRng, T: Clone + Transcript, D: Digest>(
rng: &mut R,
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>),
digest: D
) -> (Self, (G0::Scalar, G1::Scalar)) {
Self::prove_internal(
rng,
transcript,
generators,
mutual_scalar_from_bytes(digest.finalize().as_ref())
)
}
/// Prove the cross-Group Discrete Log Equality for the points derived from the scalar passed in,
/// failing if it's not mutually valid. This allows for rejection sampling externally derived
/// scalars until they're safely usable, as needed
pub fn prove_without_bias<R: RngCore + CryptoRng, T: Clone + Transcript>(
rng: &mut R,
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>),
f0: G0::Scalar
) -> Option<(Self, (G0::Scalar, G1::Scalar))> {
scalar_convert(f0).map(|f1| Self::prove_internal(rng, transcript, generators, (f0, f1)))
}
/// Verify a cross-Group Discrete Log Equality statement, returning the points proven for
pub fn verify<R: RngCore + CryptoRng, T: Clone + Transcript>(
&self,
rng: &mut R,
transcript: &mut T,
generators: (Generators<G0>, Generators<G1>)
) -> Result<(G0, G1), DLEqError> {
let capacity = usize::try_from(
G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY)
).unwrap();
let bits_per_group = BitSignature::from(SIGNATURE).bits();
let has_remainder = (capacity % bits_per_group) != 0;
// These shouldn't be possible, as locally created and deserialized proofs should be properly
// formed in these regards, yet it doesn't hurt to check and would be problematic if true
if (self.bits.len() != (capacity / bits_per_group)) || (
(self.remainder.is_none() && has_remainder) || (self.remainder.is_some() && !has_remainder)
) {
return Err(DLEqError::InvalidProofLength);
}
let keys = self.reconstruct_keys();
Self::transcript(transcript, generators, keys);
let batch_capacity = match BitSignature::from(SIGNATURE) {
BitSignature::ClassicLinear => 3,
BitSignature::ConciseLinear => 3,
BitSignature::EfficientLinear => (self.bits.len() + 1) * 3,
BitSignature::CompromiseLinear => (self.bits.len() + 1) * 3
};
let mut batch = (BatchVerifier::new(batch_capacity), BatchVerifier::new(batch_capacity));
self.poks.0.verify(&mut *rng, transcript, generators.0.primary, keys.0, &mut batch.0);
self.poks.1.verify(&mut *rng, transcript, generators.1.primary, keys.1, &mut batch.1);
let mut pow_2 = (generators.0.primary, generators.1.primary);
for (i, bits) in self.bits.iter().enumerate() {
bits.verify(&mut *rng, transcript, generators, &mut batch, i, &mut pow_2)?;
}
if let Some(bit) = &self.remainder {
bit.verify(&mut *rng, transcript, generators, &mut batch, self.bits.len(), &mut pow_2)?;
}
if (!batch.0.verify_vartime()) || (!batch.1.verify_vartime()) {
Err(DLEqError::InvalidProof)?;
}
Ok(keys)
}
#[cfg(feature = "serialize")]
pub fn serialize<W: Write>(&self, w: &mut W) -> std::io::Result<()> {
for bit in &self.bits {
bit.serialize(w)?;
}
if let Some(bit) = &self.remainder {
bit.serialize(w)?;
}
self.poks.0.serialize(w)?;
self.poks.1.serialize(w)
}
#[cfg(feature = "serialize")]
pub fn deserialize<R: Read>(r: &mut R) -> std::io::Result<Self> {
let capacity = usize::try_from(
G0::Scalar::CAPACITY.min(G1::Scalar::CAPACITY)
).unwrap();
let bits_per_group = BitSignature::from(SIGNATURE).bits();
let mut bits = Vec::with_capacity(capacity / bits_per_group);
for _ in 0 .. (capacity / bits_per_group) {
bits.push(Bits::deserialize(r)?);
}
let mut remainder = None;
if (capacity % bits_per_group) != 0 {
remainder = Some(Bits::deserialize(r)?);
}
Ok(
__DLEqProof {
bits,
remainder,
poks: (SchnorrPoK::deserialize(r)?, SchnorrPoK::deserialize(r)?)
}
)
}
}