serai/networks/monero/verify-chain/src/main.rs
Luke Parker 7d2d739042
Rename the coins folder to networks (#583)
* Rename the coins folder to networks

Ethereum isn't a coin. It's a network.

Resolves #357.

* More renames of coins -> networks in orchestration

* Correct paths in tests/

* cargo fmt
2024-07-18 15:16:45 -04:00

284 lines
9.3 KiB
Rust

#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![doc = include_str!("../README.md")]
#![deny(missing_docs)]
use curve25519_dalek::{scalar::Scalar, edwards::EdwardsPoint};
use serde::Deserialize;
use serde_json::json;
use monero_serai::{
io::decompress_point,
primitives::Commitment,
ringct::{RctPrunable, bulletproofs::BatchVerifier},
transaction::{Input, Transaction},
block::Block,
};
use monero_rpc::{RpcError, Rpc};
use monero_simple_request_rpc::SimpleRequestRpc;
use tokio::task::JoinHandle;
async fn check_block(rpc: impl Rpc, block_i: usize) {
let hash = loop {
match rpc.get_block_hash(block_i).await {
Ok(hash) => break hash,
Err(RpcError::ConnectionError(e)) => {
println!("get_block_hash ConnectionError: {e}");
continue;
}
Err(e) => panic!("couldn't get block {block_i}'s hash: {e:?}"),
}
};
// TODO: Grab the JSON to also check it was deserialized correctly
#[derive(Deserialize, Debug)]
struct BlockResponse {
blob: String,
}
let res: BlockResponse = loop {
match rpc.json_rpc_call("get_block", Some(json!({ "hash": hex::encode(hash) }))).await {
Ok(res) => break res,
Err(RpcError::ConnectionError(e)) => {
println!("get_block ConnectionError: {e}");
continue;
}
Err(e) => panic!("couldn't get block {block_i} via block.hash(): {e:?}"),
}
};
let blob = hex::decode(res.blob).expect("node returned non-hex block");
let block = Block::read(&mut blob.as_slice())
.unwrap_or_else(|e| panic!("couldn't deserialize block {block_i}: {e}"));
assert_eq!(block.hash(), hash, "hash differs");
assert_eq!(block.serialize(), blob, "serialization differs");
let txs_len = 1 + block.transactions.len();
if !block.transactions.is_empty() {
// Test getting pruned transactions
loop {
match rpc.get_pruned_transactions(&block.transactions).await {
Ok(_) => break,
Err(RpcError::ConnectionError(e)) => {
println!("get_pruned_transactions ConnectionError: {e}");
continue;
}
Err(e) => panic!("couldn't call get_pruned_transactions: {e:?}"),
}
}
let txs = loop {
match rpc.get_transactions(&block.transactions).await {
Ok(txs) => break txs,
Err(RpcError::ConnectionError(e)) => {
println!("get_transactions ConnectionError: {e}");
continue;
}
Err(e) => panic!("couldn't call get_transactions: {e:?}"),
}
};
let mut batch = BatchVerifier::new();
for tx in txs {
match tx {
Transaction::V1 { prefix: _, signatures } => {
assert!(!signatures.is_empty());
continue;
}
Transaction::V2 { prefix: _, proofs: None } => {
panic!("proofs were empty in non-miner v2 transaction");
}
Transaction::V2 { ref prefix, proofs: Some(ref proofs) } => {
let sig_hash = tx.signature_hash().expect("no signature hash for TX with proofs");
// Verify all proofs we support proving for
// This is due to having debug_asserts calling verify within their proving, and CLSAG
// multisig explicitly calling verify as part of its signing process
// Accordingly, making sure our signature_hash algorithm is correct is great, and further
// making sure the verification functions are valid is appreciated
match &proofs.prunable {
RctPrunable::AggregateMlsagBorromean { .. } | RctPrunable::MlsagBorromean { .. } => {}
RctPrunable::MlsagBulletproofs { bulletproof, .. } |
RctPrunable::MlsagBulletproofsCompactAmount { bulletproof, .. } => {
assert!(bulletproof.batch_verify(
&mut rand_core::OsRng,
&mut batch,
&proofs.base.commitments
));
}
RctPrunable::Clsag { bulletproof, clsags, pseudo_outs } => {
assert!(bulletproof.batch_verify(
&mut rand_core::OsRng,
&mut batch,
&proofs.base.commitments
));
for (i, clsag) in clsags.iter().enumerate() {
let (amount, key_offsets, image) = match &prefix.inputs[i] {
Input::Gen(_) => panic!("Input::Gen"),
Input::ToKey { amount, key_offsets, key_image } => {
(amount, key_offsets, key_image)
}
};
let mut running_sum = 0;
let mut actual_indexes = vec![];
for offset in key_offsets {
running_sum += offset;
actual_indexes.push(running_sum);
}
async fn get_outs(
rpc: &impl Rpc,
amount: u64,
indexes: &[u64],
) -> Vec<[EdwardsPoint; 2]> {
#[derive(Deserialize, Debug)]
struct Out {
key: String,
mask: String,
}
#[derive(Deserialize, Debug)]
struct Outs {
outs: Vec<Out>,
}
let outs: Outs = loop {
match rpc
.rpc_call(
"get_outs",
Some(json!({
"get_txid": true,
"outputs": indexes.iter().map(|o| json!({
"amount": amount,
"index": o
})).collect::<Vec<_>>()
})),
)
.await
{
Ok(outs) => break outs,
Err(RpcError::ConnectionError(e)) => {
println!("get_outs ConnectionError: {e}");
continue;
}
Err(e) => panic!("couldn't connect to RPC to get outs: {e:?}"),
}
};
let rpc_point = |point: &str| {
decompress_point(
hex::decode(point)
.expect("invalid hex for ring member")
.try_into()
.expect("invalid point len for ring member"),
)
.expect("invalid point for ring member")
};
outs
.outs
.iter()
.map(|out| {
let mask = rpc_point(&out.mask);
if amount != 0 {
assert_eq!(mask, Commitment::new(Scalar::from(1u8), amount).calculate());
}
[rpc_point(&out.key), mask]
})
.collect()
}
clsag
.verify(
&get_outs(&rpc, amount.unwrap_or(0), &actual_indexes).await,
image,
&pseudo_outs[i],
&sig_hash,
)
.unwrap();
}
}
}
}
}
}
assert!(batch.verify());
}
println!("Deserialized, hashed, and reserialized {block_i} with {txs_len} TXs");
}
#[tokio::main]
async fn main() {
let args = std::env::args().collect::<Vec<String>>();
// Read start block as the first arg
let mut block_i =
args.get(1).expect("no start block specified").parse::<usize>().expect("invalid start block");
// How many blocks to work on at once
let async_parallelism: usize =
args.get(2).unwrap_or(&"8".to_string()).parse::<usize>().expect("invalid parallelism argument");
// Read further args as RPC URLs
let default_nodes = vec![
"http://xmr-node-uk.cakewallet.com:18081".to_string(),
"http://xmr-node-eu.cakewallet.com:18081".to_string(),
];
let mut specified_nodes = vec![];
{
let mut i = 0;
loop {
let Some(node) = args.get(3 + i) else { break };
specified_nodes.push(node.clone());
i += 1;
}
}
let nodes = if specified_nodes.is_empty() { default_nodes } else { specified_nodes };
let rpc = |url: String| async move {
SimpleRequestRpc::new(url.clone())
.await
.unwrap_or_else(|_| panic!("couldn't create SimpleRequestRpc connected to {url}"))
};
let main_rpc = rpc(nodes[0].clone()).await;
let mut rpcs = vec![];
for i in 0 .. async_parallelism {
rpcs.push(rpc(nodes[i % nodes.len()].clone()).await);
}
let mut rpc_i = 0;
let mut handles: Vec<JoinHandle<()>> = vec![];
let mut height = 0;
loop {
let new_height = main_rpc.get_height().await.expect("couldn't call get_height");
if new_height == height {
break;
}
height = new_height;
while block_i < height {
if handles.len() >= async_parallelism {
// Guarantee one handle is complete
handles.swap_remove(0).await.unwrap();
// Remove all of the finished handles
let mut i = 0;
while i < handles.len() {
if handles[i].is_finished() {
handles.swap_remove(i).await.unwrap();
continue;
}
i += 1;
}
}
handles.push(tokio::spawn(check_block(rpcs[rpc_i].clone(), block_i)));
rpc_i = (rpc_i + 1) % rpcs.len();
block_i += 1;
}
}
}